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On SL222-actions of complexity one

I. V. Arzhantsev

Abstract. This paper is devoted to the actions of the group SL2 with two-dimen-
sional generic orbit on normal three-dimensional affine algebraic varieties. We obtain
a complete classification of such actions whenever the stabilizer of general position
is the subgroup of monomial matrices. We also prove some results for arbitrary
actions of complexity one of reductive groups.

§ 1. Introduction

In this paper we study actions of the group SL2(K) = SL2 on normal irreducible
affine varieties. The ground field K is assumed to be algebraically closed and
charK = 0.

The complexity c(X,G) of an action G : X of a reductive groupG on an algebraic
variety X is the codimension of a generic orbit for the induced action of a Borel
subgroup B : X or, by the Rosenlicht theorem,

c(X,G) = tr.degK(X)B.

Detailed information on this concept can be found in [8].
Actions of complexity zero are called spherical .
We consider some general properties of complexity of reductive group actions

in § 2. It is proved there that the complexity of orbits is constant on the sheets and
is an upper semicontinuous function on the variety.

Then we pass to the case G = SL2. For an affine variety X, we have c(X,SL2) =
dimX − 2 if the action is non-trivial.

Spherical actions for the group SL2 can be easily described.

Lemma 1 ([2], § 4.1, Lemma 2). Every algebraic subgroup of SL2 is conjugate to
one of the following:

1) a finite subgroup;
2) a Borel subgroup B;
3) a maximal torus T ;
4) the normalizer N of a maximal torus;

This work was supported in part by the International Science Foundation and Russian Gov-
ernment grant MQZ300.

AMS 1991 Mathematics Subject Classification. 14L30, 14M17.
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5) a finite extension of a maximal unipotent subgroup

Un =

{(
ε a
0 ε−1

)∣∣∣∣ a, ε ∈ K
εn = 1

}
, n = 1, 2, 3 . . . .

It is known that the Levi subgroups of point stabilizers are conjugate on an
open subset of X (see [4]). Hence only the unipotent radical of a generic point
stabilizer can be deformed. It follows from Lemma 1 that for any subgroup of SL2

the unipotent radical is either trivial or one-dimensional, and it cannot be deformed.
This gives the following result.

Lemma 2. For every action of SL2 on X the stabilizer of general position (SGP)
exists.

The next lemma gives us important geometric information about the orbits of
the actions under consideration.

Lemma 3([4], p. 224). Let a reductive group G act on an affine variety X and the
stabilizer of a point x ∈ X contain a maximal torus of G. Then the orbit Gx is
closed. In particular, for G = SL2 the orbits of type SL2 /T or SL2 /N are closed.

So it is clear that if the action SL2 : X is spherical, then X is either a homo-
geneous space isomorphic to SL2 /T or SL2 /N or the closure On of the highest
vector orbit in the irreducible module Vn of SL2 (see [7]).

Remark 1. We denote by Vn the (n+1)-dimensional irreducible SL2-module defined
uniquely up to isomorphism.

Further, it is natural to consider actions of complexity 1 or, equivalently, SL2-
actions on three-dimensional varieties. If the SGP for such an action is a finite
group, then X contains a dense open orbit of SL2. These actions are completely
classified in [1]. It is shown in [1] that a locally transitive SL2-action on a three-
dimensional normal affine variety either is transitive or is specified by a pair of
numbers from N×

(
0, 1

2

]
Q. The first of these determines the order of a stabilizer of

general position, which is cyclic in this case. The second is called the height and
characterizes the algebra of U -invariants.

We consider below the cases where the SGP is equal to Un, N and T respectively.
In the last case we study only the actions on smooth varieties. Such SL2-varieties
of complexity one will be called (S,U)-, (S,N)- and (S, T )-varieties respectively.

Remark 2. The case SGP= B is impossible. Indeed, SL2 /B ∼= P1, but the varietyX
is supposed to be affine.

By an isomorphism of two objects with given SL2-action we shall mean an SL2-
equivariant isomorphism.

The aim of this paper is to show that the study of SL2-actions of complexity
one with fixed SGP equal to H can be reduced to the study of actions of the group
NSL2(H) on a lower-dimensional variety Y . For the reconstruction of the initial
action of SL2 it is necessary to fix an additional set of data on Y .

The author is grateful to his scientific supervisor Professor E.B.Vinberg for
posing the problem and for continuing interest in the work, and to M. Brion,
P. I. Katsylo, H. Kraft, and D.A. Timashev for useful discussions.
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§ 2. General statement of the problem

In this section the variety X is not supposed to be normal.

Proposition 1. Let G be a reductive algebraic group and X a quasiprojective G-
variety. Then the complexity of orbits (as homogeneous spaces of G) is constant
along the sheets and is an upper semicontinuous function on the variety X.

Remark 1. A sheet for an action of a group G on a variety X is an irreducible
component of the locally closed subset

{
x ∈ X | dimGx = d

}
for some fixed d

(see [4]).

Proof. It is sufficient to prove that if the variety X is irreducible, then orbits of
maximal dimension have the same complexity and the complexity can not increase
for orbits of lower dimension. After that we can use induction on the dimension.

We claim that on any G-variety there is an open subset such that all
orbits from this subset have the same complexity. Indeed, we can consider the set
G(UG∩UB), where UG (respectively UB) consists of points whose G-orbits (respec-
tively B-orbits) have the maximal dimension. Thus the complexity of an orbit in
general position is defined, COGP(X,G) = c. It is obvious that the complexity of
any other G-orbit of maximal dimension can only be > c.

If the inequality is strict for some orbit O (of any dimension), then there are
algebraically independent B-invariant rational functions f1, . . . , f(c+1) on this orbit.
Let us use the following lemma.

Lemma (Knop [9], § 2). Let X be a quasiprojective G-variety. Then any ratio-
nal B-semi-invariant function on a G-invariant subvariety can be extended to a
B-semi-invariant function with the same weight on X.

Hence the functions f1, . . . , f(c+1) can be extended to B-invariant rational func-
tions F1, . . . , F(c+1) on the variety X. Let {ξj} be a basis of the Lie algebra of the
group G. The functions f1, . . . , f(c+1) are algebraically independent, and the rank

of the matrix
(
∂fi
∂ξj

)
equals (c + 1) along the orbit O. So the rank of the matrix(

∂Fi
∂ξj

)
equals (c + 1) in at least one point on the variety X and the functions

F1, . . . , F(c+1) are algebraically independent after restriction to an orbit of general
position. This contradicts the assumption COGP(X,G) = c.

Remark 2. This proposition was proved for the adjoint representation of a simple
group in [11].

Remark 3. For different sheets of orbits of the same dimension, the complexity
of orbits can be different. For example, consider the representation of the group
SL2× SL2 in the module V ⊕W , where V is the space of 2× 2-matrices with the
action (g1, g2)m = g−1

1 mg2, and W is the representation of the first component SL2

in the binary forms of degree 3 with the trivial action of the second component.

Then the orbit of the vector

((
1 0
0 1

)
, 0

)
is spherical but the orbit of the vector((

0 0
0 0

)
, x2y

)
has complexity one.
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Corollary 1. If there is an open subset on X where all orbits are spherical, then
all orbits on the variety X are spherical.

Remark 4. Every action with spherical generic orbit has a rational section. In fact,
it is known (see [4]) that for any action of a connected soluble group there exists a
rational section. But in our situation, a rational section for a Borel subgroup B is
also a G-section.

Corollary 2. For every G-variety X the set of points with spherical G-orbits is a
closed subvariety.

For the adjoint representation of a simple group this subvariety is described
in [11].

Let us consider actions of complexity one. We have two different possibilities:
there is either an open G-orbit of complexity one on X or one-parameter family of
spherical G-orbits of maximal dimension (for details see [8]).

The first possibility for affine homogeneous spaces was studied in [12]. In the
following sections we consider the second possibility for the group SL2.

In the general situation, we have the following result.

Proposition 2. Suppose that X is an affine variety with an action of a reductive
group G, the complexity equals one and the quotient X//G is one-dimensional.
Then all irreducible components of the quotient morphism φ are equidimensional
spherical varieties.

Proof. Equidimensionality of the quotient morphism follows directly from a theo-
rem on fibres of morphisms (see [5]). Let Y be a non-spherical component of some
fibre of the morphism φ, and let t ∈ K[X]G be a non-constant function. There is a
function w ∈ K(Y )B on Y which separates generic B-orbits. It follows by Knop’s
lemma that w can be extended to a function W ∈ K(X)B = K(X)G. Here we
have tr.deg .K(X)B = 1, the function t is constant on Y and there is an algebraic
relation between t and W . So the function W is constant on Y too. We get a
contradiction with the condition W |Y= w. This completes the proof.

§ 3. (S,U)(S,U)(S,U)-varieties

We obtain the results of this section using general theory. Let a connected reduc-
tive group G act on an irreducible normal affine variety X, and let the stabilizer of
a generic point contain a maximal unipotent subgroup U ⊂ G. It is known (see [3])
that

K[X] ∼=
(
K[X]U ⊗K[G/U−]

)T
,

where T is a maximal torus of the group G and U− is the opposite unipotent
subgroup with respect to U . The action of G on the algebra on the right-hand
side is given by left multiplication on the second factor of the tensor product.
The torus T acts naturally on K[X]U and by right multiplication on K[G/U−].
Hence the G-variety X can be uniquely reconstructed if we have the T -variety
Y = X//U = SpecK[X]U . In this case, everyweight of the T -moduleK[Y ] = K[X]U

is dominant.
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Conversely, let Y be a variety with a non-trivial action of the torus T , and let
all weights of T -module K[Y ] be dominant. Then we can construct a G-variety X.

Namely, X = Spec
(
K[Y ]⊗K[G/U−]

)T
. Using the Luna-Vust criterion [2], we claim

that the normality of X is equivalent to the normality of X//U .
In the case G = SL2, the homogeneous space SL2 /U

− can be identified
with K2\{0} with the natural action of a one-dimensional torus. Then it follows
that SpecK[SL2 /U

−] = K2. We have proved the following theorem.

Theorem 1. (S,U)-varieties correspond bijectively to normal affine surfaces Y
with fixed non-trivial Z+-grading on the algebra of regular functions K[Y ]. This
grading defines the action of a one-dimensional torus T on Y . The corresponding
(S,U)-variety is isomorphic to the variety

X = (Y ×K2)//T.

In particular, K[X]SL2 ∼= K[Y ]T .

Remark 1. If a generic orbit on X is isomorphic to SL2 /Un, then any other orbit
is either a fixed point or is isomorphic to SL2 /Um, where n divides m.

Remark 2. One of the results of [10] is the following proposition. IfX is unirational
and the algebra K[X] is factorial and has no invertible non-constant elements, then:

a) in the case K[X]SL2 = K, the surface Y is a complete intersection;
b) in the case K[X]SL2 6= K, the surface Y is the affine plane A2.

Remark 3. The smoothness of the surface Y does not guarantee the smoothness of
the variety X. Using the etale slice theory (see some details in § 5), it is possible
to show that smooth (S,U)-varieties correspond to surfaces that are locally trivial
line bundles (in the Zariski topology) over some smooth affine curve. The torus
acts naturally on the fibres: (t, x)→ tx, t ∈ K∗, x ∈ A1. Therefore every smooth
(S,U)-variety is a locally trivial vector bundle over a smooth affine curve with
fibre V1.

For the (S,N)- and (S, T )-varieties considered below, the SL2-action is stable,
and so we obtain the following result.

Proposition 3. Every action of the group SL2 on a smooth three-dimensional
affine variety either is locally transitive or possess a non-constant invariant regular
function.

§ 4. (S,N)(S,N)(S,N)-varieties

Here and in the next section, we suppose that the ground field is the field C of
complex numbers.

4.1. General properties of (S,N)(S,N)(S,N)-varieties. There is a one-parameter family
of orbits of type SL2 /N onX. We already know that all such orbits are closed. The
decomposition of the SL2-module K[X] into a direct sum of irreducible submodules
can contain only irreducible SL2-modules that have a non-zero vector stabilized
by N . These are exactly the modules V4n. This observation shows that there is no
orbit of type SL2 /T on X, and any closed orbit is either SL2 /N or a fixed point.
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Lemma 4. The set of N -fixed points XN is a smooth irreducible affine curve
isomorphic to X// SL2. The set of SL2-fixed points XSL2 is a finite set of points on
this curve.

Proof. It is known (see [4]) that the quotient morphism separates closed orbits
on X. Hence every fibre of the quotient morphism either is an orbit of type SL2 /N
or contains exactly one fixed point. There is only one N -fixed point on an orbit
of type SL2 /N . If we restrict the quotient morphism φ : X → X// SL2 to the
subvariety XN , then we get a bijective mapping. The normality of X implies the
normality of X// SL2. For a curve, normality is equivalent to smoothness. Using
the fact that a bijective morphism on a normal variety is an isomorphism, we get
XN ∼= X// SL2. The set XSL2 is a proper subset of the curve XN .

Lemma 5. Every fibre of the quotient morphism φ : X → X// SL2 is two-
dimensional and irreducible.

Proof. The fact that every fibre is two-dimensional follows immediately from a
general theorem on fibres of morphisms. The irreducibility was first proved by me
using an embedding of the variety X in some finite-dimensional SL2-module. Then
Vinberg proposed the following invariant proof. Suppose that the fibre φ−1(x) is
reducible and φ−1(x) = Y1 ∪ Y2, where Y1 and Y2 are closed subsets. We have

K[Y1] ∼=
⊕
i∈I

Vi, K[Y2] ∼=
⊕
j∈J

Vj ,

where I and J are subsemigroups in the semigroup Z+. If i ∈ I, j ∈ J , then the
submodule isomorphic to Vij appears in K[Y1] and in K[Y2]. The components Y1

and Y2 have exactly one common point (the group SL2 is connected, irreducible
components of the fibre are SL2-invariant and the common point is the unique closed
orbit in the fibre). So the G-modules K[φ−1(x)] and K[Y1]⊕K[Y2] differ only by one
one-dimensional submodule. Then the submodule Vij appears in K[φ−1(x)] with
multiplicity > 1.

On the other hand, a generic fibre of the quotient morphism is SL2 /N and the
algebra of regular functions on this fibre is multiplicity-free because this variety
is spherical (see [2]). Consider two functions f1

λ and f2
λ from K[X] that are the

highest vectors with weight λ in the SL2-module K[X] with respect to the Borel
subgroupB. If we restrict these functions to a generic fibre and use the multiplicity-
free condition, we get that the rational function f1

λ/f
2
λ is a constant (possibly equal

to ∞). So it determines a rational function on the quotient. A rational function
on a smooth curve has a definite (possibly infinite) value at each point. As a result
we see that the functions f1

λ and f2
λ are proportional under restriction to any fibre.

Then the algebra of regular functions on any fibre of the quotient morphism is
multiplicity-free. This contradiction concludes the proof.

Remark 1. In the proof of Lemma 5, we made essential use of the fact that the
curve C = X// SL2 is normal. In fact, if we consider the curve

C =
{
(u, v) | u2 = v2 + v3

}
↪→ V N = K2 ↪→ V2 ⊕ V2 = V,
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then the variety SL2(C) contains a unique fixed point, and this point belongs to
the closures of two two-dimensional orbits SL2(x

2, x2) and SL2(x
2,−x2).

Remark 2. Lemma 5 enables us to determine a one-to-one correspondence between
the set of fixed points XSL2 and the set of non-closed orbits on X: every fibre of
the quotient morphism either is an orbit of type SL2 /N or contains one fixed point
and one non-closed orbit.

We shall later denote the curve X// SL2 by C.

4.2. Simple (S,N)(S,N)(S,N)-varieties.

Definition. We say that a normal (S,N)-variety X is simple if X// SL2 = A1 and
XSL2 = {0}.

We denote a generator of the algebra of invariants for a simple (S,N)-variety X
by z.

Example 1. a) Let us consider the action of the group Z2k on the space V2 by
multiplication by 2kth roots of unity. We put Xk ∼= V2//Z2k. There arises an action
SL2 : Xk whose generic orbit is SL2 /N , the quotient Xk// SL2 is A1, XSL2 = {0}
and the non-closed orbit is SL2 //U4k. The variety Xk is normal, being the quotient
of a normal variety.

b) Let φ : Xk → A1 be the quotient morphism. Consider the pullback corre-
sponding to the morphism z → zn:

Xk
n −−−−→ Xky yϕ
A1 z→zn−−−−→ A1 .

So we get new SL2-varieties Xk
n. A point in the variety Xk

n can be realized as a pair
(z, ω), where ω is a binary quadratic form, which is defined up to multiplication
by ε, ε2k = 1, and z ∈ K, zn = (detω)k.

Lemma 6. The variety Xk
n is normal if and only if either n = 1 or k = 1.

Proof. If n = 1, we get exactly the varieties of Example 1a), and they are normal.
By a, b, c we denote the standard coordinates in the three-dimensional space of

binary forms of degree two, V2 = {ax2 + bxy + cy2}.
The variety X1

n is the quotient of the hypersurface zn = b2 − 4ac by the action
of the group Z2. This hypersurface is singular only at the origin. It is well known
that for a hypersurface normality is equivalent to smoothness in codimension one.
So the variety X1

n is normal.
Let us assume that n > 1 and k > 1. The algebra of regular functions on

Xk
n is generated by the monomials z and aibjcl(i + j + l = 2k) with the relation

zn = (b2 − 4ac)k. It is easy to see that(
(b2 − 4ac)lb2k−2l

z

)n
= (b2 − 4ac)nl−kb2kn−2ln,

where l = [ kn ] + 1. This relation shows that the algebra K[Xk
n] is not integrally

closed.
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Lemma 7. Every simple (S,N)-variety is SL2-equivariantly homeomorphic in the
C-topology to one of the varieties Xk

n.

Proof. Consider an equivariant closed embedding of X in some finite-dimensional
SL2-module:

ψ : X ↪→ V = V4k1 ⊕ · · · ⊕ V4kp , ki > 0.

We have the embedding

ψ′ : XN ∼= A1 ↪→ V N = 〈x2k1y2k1〉 ⊕ · · · ⊕ 〈x2kpy2kp〉 .

(Here we identify irreducible SL2-modules with the corresponding spaces of binary
forms.)

We can assume that {0} ∈ A1 corresponds to the origin of the space V N . Denote
the coordinates in this space by (χ1, . . . , χp). Then the embedding ψ′ is given by

χi = aiz
ni + biz

ni+1 + · · · , ai 6= 0 (1)

(the dots stand for the terms of higher degree in z).
The embedding ψ can be defined on the open subset SL2

(
XN\{0}

)
⊂ X by the

formula

gv →
(
(aiz

ni + biz
ni+1 + · · · )ω2ki

)p
i=1

, g ∈ SL2, v ∈ XN ,

where ω = g(xy) and z is the coordinate of v on the curve XN ∼= A1.
There is only one non-closed orbit on a simple (S,N)-variety (by definition, we

have only one fixed point), and this orbit is isomorphic to SL2 /U4k for some k. The
existence of this orbit means that for some sequence {ωj} of binary quadratic forms
with determinant 1 and for some sequence {zj}, zj → 0, there exists a finite limit

limj→∞ ai

(
z
ni
2ki
j ψj

)2ki

for any i (the sequences {ψj} and {zj} do not depend on i).

This limit is non-zero for some i. This implies that the points of the non-closed orbit
have non-zero coordinates only in those modules V4ki where the numbers τi = ni

ki
are minimal. We may suppose that this minimum is achieved for i = 1, . . . , l. Then
k divides the numbers k1, . . . , kl, and

(
k1

k
, . . . , kl

k

)
= 1. Taking into account the

equality n1

(k1/k) = · · · = nl
(kl/k) , we conclude that the number n = n1k

k1
= · · · = nlk

kl
is

an integer. Define a rational mapping Xk
n → X by

(z, ω)→
{

(ai + biz + · · · )zni ω2ki

(detω)ki
, i = 1, . . . , p

}
.

This mapping defines an isomorphism on the open subset of orbits of type
SL2 /N , since by construction the line (Xk

n)N is mapped isomorphically onto XN .
We have n

k = ni
ki

for i = 1, . . . , l and n
k > ni

ki
for i > l, and therefore this ratio-

nal mapping can be continuously extended to the points (z, ω) with det(ω) = 0

because zni

(detω)ki
tends to 1 for i = 1, . . . , l and to 0 for i > l. Moreover, the con-

dition
(
k1

k
, . . . , kl

k

)
= 1 implies that the stabilizer of the image of a point from the
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non-closed orbit under this mapping is U4k. So the mapping is bijective on the
non-closed orbit.

We have constructed a birational morphism Xk
n → X, and this morphism can

be continuously extended to a bijective mapping. Let us check the continuity of
the inverse mapping. Proposition 5 below claims that all fibres of the quotient
morphism φ : X → X// SL2 are normal. Hence the “null-fibre” is isomorphic to O4k

(see § 1). The weight semigroup of the T -module K[O4k]
U is 4kZ+. On the other

hand, the weight semigroup of the T -module K
[
φ−1(0)

]U
is 4k1Z+ ∪ · · · ∪ 4klZ+.

We get that one number from the set k1, . . . , kl is equal to k. Let k1 = k.
The image of X in every submodule V4ki lies in the set of binary forms of degree

4ki that are 2ki-powers of quadratic forms. For any x ∈ X, the quadratic form

ωi(x) =
(
ψi(x)

) 1
2ki is defined up to multiplication by ε, ε2ki = 1.

Let us define a mapping X → Xk
n by the formula

x→

z(x), ω1(x)(
a1 + b1z(x) + · · ·

) 1
2k1

 .

This mapping is well defined for sufficiently small values of z(x), and it extends
the isomorphism of the open subsets SL2X

N and SL2(X
k
n)N to a continuous bijec-

tion in a neighbourhood of the “null-fibre”. Thus the desired homeomorphism is
constructed.

In order to return from topological statements to algebraic ones, we need the
following lemma.

Lemma 8. a) Let X and Y be birationally isomorphic normal affine varieties.
Suppose that there is an isomorphism of their open subsets UX and UY which can
be extended to a C-homeomorphism of X and Y . Then this C-homeomorphism is
an isomorphism of algebraic varieties.

b) Under the conditions of a), if the variety X is not normal, then Y is the
normalization of X and the normalization morphism is bijective.

Proof. a) Consider the affine variety X × Y and the diagonal UX×Y defined by
the given isomorphism UX ∼= UY . Put Γ = UX×Y . The closure of a quasi-affine
variety in the Zarisky topology coincides with its closure in the C-topology. Hence
the projection Γ→ X is a homeomorphism. This is a bijective morphism and the
normality of X implies the isomorphism X ∼= Γ. Analogously, we get Y ∼= Γ.

The statement b) follows from the proof of a).

We now study the normalization NormXk
n of the varietyXk

n for n > 1 and k > 1.

Let d = (k, n). Then there is a natural embedding K[Xk
n] ↪→ K

[
X

k
d

(nd )

]
, which is

defined tautologically: z → z′, aibjcl → (a′)i(b′)j(c′)l. The algebra K
[
X

k
d

(nd )

]
is

integral over the subalgebraK[Xk
n], and the quotient fields of these algebras coincide

because

(
(b′)

2k
d

)d ∈ K[Xk
n], (b′)

2k
d =

(b2 − 4ac)
kd−k
d b

2k
d

z
nd−n
d

∈ Qk[Xk
n],
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and so on. Therefore the normalization Xk
n coincides with the normalization X

k
d

(nd ).

Consequently, we can consider Norm(Xk
n) only for coprime n and k.

Lemma 9. The normalization morphism Norm(Xk
n) → Xk

n is a bijection if and
only if k and n are coprime.

Proof. Let us embed the algebra K[Xk
n] = K

[
aibjcl(i + j + l = 2k), z | zn =

(b2 − 4ac)k
]

into the algebra Akn = K
[
a, b, c, z | zn = (b2 − 4ac)k

]
. The algebra Akn

is integral over the algebra K[Xk
n]. For coprime k and n, the algebra Akn has no zero

divisors, and its integral closure is obtained by adding the element λ = (b2−4ac)v

zu
,

where (−u)k + vn = 1 (we can always assume that u > 0 and v > 0). In fact,
λk = z, and the algebra Akn[λ] = K

[
a, b, c, λ | λn = b2 − 4ac

]
is integrally closed.

We deduce that

Norm
(
K[Xk

n]
)

= K[Xk
n]

[
(b2 − 4ac)tvξ

ztu

]
,

where ξ runs through all homogeneous forms of degree α in a, b, c such that (α+2vt)

is a multiple of 2k, and t runs through the natural numbers. The element (b2−4ac)tvξ
ztu

raised to the power k is equal to ztξk. When one restricts regular functions to
the fibre z = 0, every added element becomes nilpotent, and the reduced “null-
fibre” of the quotient morphism for the variety Norm(Xk

n) is isomorphic to the
corresponding fibre for the variety Xk

n. The normalization morphism is surjective
and hence determines a bijection on the “null-fibre”. The variety Xk

n is smooth
outside the “null-fibre”, so the normalization morphism is an isomorphism. This
completes the proof for coprime k and n.

In the case d = (k, n) > 1, the “null-fibre” of the quotient morphism for the vari-
ety Norm(Xk

n) contains a non-closed orbit of type SL2 /U 4k
d

, and the normalization

morphism is a d-sheeted covering on this fibre. This covering is ramified exactly
over the fixed point.

Comparing the statements of Lemma 7, Lemma 8b) and Lemma 9, one obtains
the following result.

Proposition 4. Every simple (S,N)-variety is isomorphic to one of the varieties
Norm(Xk

n) for coprime k and n.

Remark 3. The varieties Norm(Xk
n) and Norm(Xk′

n′ ) with different pairs of coprime
numbers (k, n) and (k′, n′) are not isomorphic. Indeed, if k 6= k′, then these varieties
have different non-closed orbits. The number n for Norm(Xk

n) is the order of the
group of those equivariant automorphisms of this variety that act identically on the
“null-fibre” of the quotient morphism. (Such automorphisms act identically on the
functions aibjcl(i+ j + l = 2k) and multiply z by an nth root of unity.)

4.3. The classification of (S,N)(S,N)(S,N)-varieties. Let X be an arbitrary (S,N)-
variety. We fix a local analytic parameter z in the neighbourhood of a point
x ∈ XSL2 on the smooth curve XN . Then, for an embedding X ↪→ V , the embed-
ding XN ↪→ V N is defined by formulae of type (1), where we now have series (not
necessarily polynomials) on the right. However, this does not affect the subsequent
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reasoning, and one obtains that the variety X in the neighbourhood of x is SL2-
equivariantly homeomorphic to the variety Xk

n for some coprime numbers k and n.
We shall call these numbers the marks of the point x ∈ XSL2 .

Let us remark that a fibre of general position for the quotient morphism
φ : X → X// SL2 is isomorphic to SL2 /N , and AutSL2 SL2 /N ∼= NSL2(N)/N = {e}.
Therefore X\φ−1

(
φ(XSL2)

) ∼= (
C\φ(XSL2)

)
× SL2 /N . This implies that an

(S,N)-variety is uniquely determined by the following set of data: a smooth
curve C, a set of points XSL2 , and the pairs of marks at the points from XSL2 .

We shall now prove that to any data there corresponds an (S,N)-variety. We
need the following standard lemma from the theory of algebraic curves.

Lemma 10. For an irreducible smooth affine algebraic curve C and a fixed point x
on this curve there exists a regular morphism φ : C → A1 such that x is not a
ramification point of φ.

Given a point xi ∈ XSL2 with marks (ki, ni) on C, we remove from C all ramifica-
tion points of φ and all the points ofXSL2 except xi. We get an open subset Ci ↪→ C.
Consider the variety Norm(Xki

ni
), the quotient morphism φi : Norm(Xki

ni
)→ A1 and

the induced fibering Zi over Ci:

Zi −−−−→ Norm(Xki
ni)yψi yϕi

Ci −−−−→ A1 .

It is easy to see that Zi is normal and has an open subset
(
Ci\{xi}

)
×SL2 /N . One

can consider the projection

ψ : Z =
(
C\XSL2

)
× SL2 /N →

(
C\XSL2

)
.

The varieties Z and Zi (over all i) can be uniquely glued to give an algebraic
variety X (a fibre of general position is SL2 /N , this fibre has only the identity
equivariant automorphism, and one can identify two fibres in a unique way) and a
mapping X → C which is compatible with all morphisms ψ and ψi.

Lemma (on the affine morphism [6]). Let f : X → Y be a morphism of algebraic
varieties such that there exists an open covering {Vi} of the variety Y and f−1(Vi)
is affine for every i. Then for every open affine subset V ↪→ Y the variety f−1(V )
is affine.

So the varietyX is affine. Normality is a local property of algebraic varieties, and
X is locally isomorphic to either Z or Zi. The desired variety X is now constructed.
These arguments prove the following theorem.

Theorem 2. (S,N)-varieties are in one-to-one correspondence with the following
data:

1) C, a smooth irreducible affine algebraic curve;
2) K, a finite collection of m points on this curve (possibly m = 0);
3) W , a set of pairs of coprime numbers (k1, n1), . . . , (km, nm), which are the

marks of the points from K.
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Remark 4. An (S,N)-variety is smooth if and only if X ∼= C × SL2 /N . (In terms
of Theorem 2 this means that the set K is empty.) In other cases the set of singular
points of the variety X is XSL2 . In fact, the tangent space at every fixed point is
an SL2-module which contains an irreducible submodule of dimension > 5. But the
variety X is three-dimensional. Other points on X are regular because their orbits
are two-dimensional and a normal variety is smooth in codimension 1.

We would now like to establish some general facts about SL2-actions on three-
dimensional normal affine varieties.

Proposition 5. If the group SL2 acts on an irreducible three-dimensional normal
affine variety X, then all fibres of the quotient morphism are irreducible and normal.

We may assume that dimX// SL2 = 1, since otherwise a fibre of the quotient
morphism is the whole variety X.

The passage to the variety SpecK[X]U shows that this proposition is equivalent
to the following.

Proposition 5′. Suppose that a one-dimensional torus T acts faithfully on a nor-
mal affine surface Y , the T -module K[Y ] has only non-negative weights of the
torus T , and the quotient Y//T is one-dimensional. Then every fibre of the quotient
morphism φ is isomorphic to the affine line.

Proof. It was proved in [14], Chapter 4 that the surface Y is toroidal. This means
that each point on Y has a T -invariant neighbourhood which is obtained from a
T -invariant neighbourhood on an affine toric variety for a two-dimensional torus
T ×K∗ by means of an etale morphism. Under the conditions of Proposition 5′, the
irreducibility and normality of every fibre of the quotient morphism is easily checked
for such a toric variety. The unique normal affine toric variety for a one-dimensional
torus with non-negative weights is the affine line. So the proof is complete.

Proposition 6. Let the group SL2 act on an irreducible three-dimensional normal
affine variety X. Suppose that one of the following conditions is fulfilled:

1) the action SL2 : X is locally transitive;
2) K[X]SL2 6= K.
Then all singularities of the variety X are rational.

Proof. In case 1) this was proved by Popov (see [3]). In the case K[X]SL2 6= K
we have the quotient morphism X → X// SL2 to the smooth curve X// SL2. This
morphism is flat and each of its fibres is a normal spherical variety. It is shown
in [3] that such fibres have only rational singularities. To complete the proof we use
the following fact. Suppose that f : X → S is a flat morphism, x ∈ X, the point
s = f(x) is a rational singularity on S, and x is a rational singularity on the fibre
f−1(s). Then x is a rational singularity on X (see [13]).

Remark 5. This result can also be reformulated for actions of a one-dimensional
torus on a normal surface.

Remark 6. The case of (S,U)-varieties with K[X]SL2 = K is the only case not
covered by Proposition 6. In this case, only one singular point is possible on X,
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the one-point orbit. The singularity at this point can be non-rational. In fact, in
terms of Theorem 1 one can consider Y =

{
(x, y, z) | x3 + y3 + z3 = 0

}
with the

natural torus action t(x, y, z) = (tx, ty, tz).

§ 5. Smooth (S, T )(S, T )(S, T )-varieties

By definition, the orbit of general position on X is the homogeneous space
SL2 /T . Also there can be finitely many orbits of types SL2 /N , SL2 /U2k and
{ point } on X.

We have an easy example of a smooth (S, T )-variety: if C is a smooth irreducible
affine curve, then put X = (SL2 /T ) × C. Let us call such a variety a variety of
trivial type. (The triviality is equivalent to the condition that the curve XT is not
connected.) All other smooth (S, T )-varieties will be called varieties of non-trivial
type.

Using the etale slice theory due to Luna, one can prove that the smoothness ofX
implies the smoothness of the curve XT (see [4], p. 212). Therefore the curve XT

is irreducible for varieties of non-trivial type.
The group Z2 = N(T )/T acts naturally on the curve XT , and if all orbits on

the variety X are closed, then

X = SL2 /T ∗Z2 X
T .

We now study the structure of X in a neighbourhood of a non-closed orbit
SL2 /U2k. The reasoning about the tangent space at a fixed point from the previous
section shows that smoothness of X implies k = 1. Using etale slice theory [4],
p. 213, we obtain that some complex neighbourhood of a non-closed orbit in X is
analytically equivariantly isomorphic to an invariant neighbourhood of zero in the
three-dimensional SL2-module TxX. This implies that TxX is isomorphic to the
module V2.

So we have the following data: a smooth irreducible affine curve XT with a given
non-trivial algebraic action of the group N(T )/T = Z2 and a finite collection of
points XSL2 on XN . Let us show how to construct the (S, T )-variety corresponding
to such data.

Let C be a smooth irreducible affine curve with non-trivial action of the group Z2.
We fix a set K ⊂ CZ2 , which will play the role of XSL2 . Let x be a point of the
set K. Consider an etale slice S for the action Z2 : C at the point x. One of Luna’s
theorems [4], p. 212 shows that there exists an excellent morphism φ : S → A1

which is Z2-equivariant with respect to the natural action of the group Z2 on
the line and satisfies φ(x) = 0. This morphism induces a morphism of quotients
φ/Z2 : C′ → A1. On the other hand, there is a morphism of quotients V2 → A1.
Considering the pullback of the space V2 for the morphism φ/Z2, we obtain some
SL2-variety. If we “glue” all these varieties (for all points x ∈ K) and the variety
SL2 ∗N (C\K) over the common open subset SL2 ∗N (C\CZ2), we obtain the desired
smooth (S, T )-variety X.

By definition of an excellent morphism, the etale slice of the variety X at a
fixed point x is isomorphic to the corresponding pullback of the space V2. Using
the formula NSL2

(T )/T ∼= Z2 and the fact that a complete complex curve without



698 I. V. Arzhantsev

finitely many points is connected (this guarantees the uniqueness of the “gluing”),
we obtain the uniqueness of the corresponding (S, T )-variety.

Thus we have proved the following theorem.

Theorem 3. Smooth (S, T )-varieties of non-trivial type are in one-to-one corre-
spondence with the following data:

1) C, a smooth irreducible affine curve with a fixed non-trivial algebraic action
of the group Z2;

2) K, a subset (possibly empty) of the set of fixed points CZ2 (possibly empty).

Remark. The fact that all orbits on X are isomorphic to the homogeneous space
SL2 /T does not imply that the variety X is of trivial type. For example, one can
consider the variety SL2 ∗NC, where C =

{
(x, y) | xy = 1

}
and the involution is

defined by (x, y)→ (−x,−y).
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