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On SLs-actions of complexity one

I. V. Arzhantsev

Abstract. This paper is devoted to the actions of the group SLg with two-dimen-
sional generic orbit on normal three-dimensional affine algebraic varieties. We obtain
a complete classification of such actions whenever the stabilizer of general position
is the subgroup of monomial matrices. We also prove some results for arbitrary
actions of complexity one of reductive groups.

§ 1. Introduction

In this paper we study actions of the group SLa(K) = SLo on normal irreducible
affine varieties. The ground field K is assumed to be algebraically closed and
charK = 0.

The complezity ¢(X, G) of an action G : X of a reductive group G on an algebraic
variety X is the codimension of a generic orbit for the induced action of a Borel
subgroup B : X or, by the Rosenlicht theorem,

c(X,G) = tr.deg K(X)B.

Detailed information on this concept can be found in [8].

Actions of complexity zero are called spherical.

We consider some general properties of complexity of reductive group actions
in § 2. It is proved there that the complexity of orbits is constant on the sheets and
is an upper semicontinuous function on the variety.

Then we pass to the case G = SLs. For an affine variety X, we have ¢(X, SLy) =
dim X — 2 if the action is non-trivial.

Spherical actions for the group SLy can be easily described.

Lemma 1 ([2], § 4.1, Lemma 2). Every algebraic subgroup of SLa is conjugate to
one of the following:

) a finite subgroup;

) a Borel subgroup B;
3) a maximal torus T}

) the normalizer N of a mazximal torus;

This work was supported in part by the International Science Foundation and Russian Gov-
ernment grant MQZ300.
AMS 1991 Mathematics Subject Classification. 14130, 14M17.
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5) a finite extension of a maximal unipotent subgroup
a,e € K

9 a
o= {(5 2)[%55), nmen

It is known that the Levi subgroups of point stabilizers are conjugate on an
open subset of X (see [4]). Hence only the unipotent radical of a generic point
stabilizer can be deformed. It follows from Lemma 1 that for any subgroup of SLy
the unipotent radical is either trivial or one-dimensional, and it cannot be deformed.
This gives the following result.

Lemma 2. For every action of SLa on X the stabilizer of general position (SGP)
erists.

The next lemma gives us important geometric information about the orbits of
the actions under consideration.

Lemma 3([4], p. 224). Let a reductive group G act on an affine variety X and the
stabilizer of a point x € X contain a mazimal torus of G. Then the orbit Gx is
closed. In particular, for G = SLg the orbits of type SLa /T or SLy /N are closed.

So it is clear that if the action SLo : X is spherical, then X is either a homo-
geneous space isomorphic to SLg /T or SLy /N or the closure O,, of the highest
vector orbit in the irreducible module V;, of SLy (see [7]).

Remark 1. We denote by V,, the (n+1)-dimensional irreducible SLa-module defined
uniquely up to isomorphism.

Further, it is natural to consider actions of complexity 1 or, equivalently, SLo-
actions on three-dimensional varieties. If the SGP for such an action is a finite
group, then X contains a dense open orbit of SLo. These actions are completely
classified in [1]. It is shown in [1] that a locally transitive SLo-action on a three-
dimensional normal affine variety either is transitive or is specified by a pair of
numbers from N x (0, %] o The first of these determines the order of a stabilizer of
general position, which is cyclic in this case. The second is called the height and
characterizes the algebra of U-invariants.

We consider below the cases where the SGP is equal to U,,, N and T respectively.
In the last case we study only the actions on smooth varieties. Such SLo-varieties
of complexity one will be called (S,U)-, (S,N)- and (S, T)-varieties respectively.

Remark 2. The case SGP= B is impossible. Indeed, SLy /B =2 P!, but the variety X
is supposed to be affine.

By an isomorphism of two objects with given SLo-action we shall mean an SLo-
equivariant isomorphism.

The aim of this paper is to show that the study of SLy-actions of complexity
one with fixed SGP equal to H can be reduced to the study of actions of the group
N1, (H) on a lower-dimensional variety Y. For the reconstruction of the initial
action of SLs it is necessary to fix an additional set of data on Y.

The author is grateful to his scientific supervisor Professor E.B.Vinberg for
posing the problem and for continuing interest in the work, and to M. Brion,
P.1. Katsylo, H. Kraft, and D. A. Timashev for useful discussions.



On SLa-actions of complexity one 687

§ 2. General statement of the problem

In this section the variety X is not supposed to be normal.

Proposition 1. Let G be a reductive algebraic group and X a quasiprojective G-
variety. Then the complexity of orbits (as homogeneous spaces of G) is constant
along the sheets and is an upper semicontinuous function on the variety X.

Remark 1. A sheet for an action of a group G on a variety X is an irreducible
component of the locally closed subset {x € X | dimGzx = d} for some fixed d
(see [4]).

Proof. Tt is sufficient to prove that if the variety X is irreducible, then orbits of
maximal dimension have the same complexity and the complexity can not increase
for orbits of lower dimension. After that we can use induction on the dimension.

We claim that on any G-variety there is an open subset such that all
orbits from this subset have the same complexity. Indeed, we can consider the set
G(UgNUpg), where Ug (respectively Ug) consists of points whose G-orbits (respec-
tively B-orbits) have the maximal dimension. Thus the complexity of an orbit in
general position is defined, COGP (X, G) = c. It is obvious that the complexity of
any other G-orbit of maximal dimension can only be > c.

If the inequality is strict for some orbit O (of any dimension), then there are
algebraically independent B-invariant rational functions fi, ..., f(c4+1) on this orbit.
Let us use the following lemma.

Lemma (Knop [9], § 2). Let X be a quasiprojective G-variety. Then any ratio-
nal B-semi-invariant function on a G-invariant subvariety can be extended to a
B-semi-invariant function with the same weight on X.

Hence the functions f1,..., f(c+1) can be extended to B-invariant rational func-
tions F,..., F(c41) on the variety X. Let {£;} be a basis of the Lie algebra of the
group G. The functions fi,..., f(c+1) are algebraically independent, and the rank

of the matrix (gé) equals (c + 1) along the orbit O. So the rank of the matrix

(gg) equals (¢ + 1) in at least one point on the variety X and the functions

Fi,..., F41) are algebraically independent after restriction to an orbit of general
position. This contradicts the assumption COGP(X, G) = c.

Remark 2. This proposition was proved for the adjoint representation of a simple
group in [11].

Remark 3. For different sheets of orbits of the same dimension, the complexity
of orbits can be different. For example, consider the representation of the group
SLs x SLg in the module V @ W, where V is the space of 2 x 2-matrices with the
action (g1, g2)m = gflmgg, and W is the representation of the first component SLo
in the binary forms of degree 3 with the trivial action of the second component.

Then the orbit of the vector <<(1) (1)) ,0) is spherical but the orbit of the vector

((8 8) ,x2y> has complexity one.
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Corollary 1. If there is an open subset on X where all orbits are spherical, then
all orbits on the variety X are spherical.

Remark 4. Every action with spherical generic orbit has a rational section. In fact,
it is known (see [4]) that for any action of a connected soluble group there exists a
rational section. But in our situation, a rational section for a Borel subgroup B is
also a G-section.

Corollary 2. For every G-variety X the set of points with spherical G-orbits is a
closed subvariety.

For the adjoint representation of a simple group this subvariety is described
in [11].

Let us consider actions of complexity one. We have two different possibilities:
there is either an open G-orbit of complexity one on X or one-parameter family of
spherical G-orbits of maximal dimension (for details see [8]).

The first possibility for affine homogeneous spaces was studied in [12]. In the
following sections we consider the second possibility for the group SLs.

In the general situation, we have the following result.

Proposition 2. Suppose that X is an affine variety with an action of a reductive
group G, the complexity equals one and the quotient X//G is one-dimensional.
Then all irreducible components of the quotient morphism ¢ are equidimensional
spherical varieties.

Proof. Equidimensionality of the quotient morphism follows directly from a theo-
rem on fibres of morphisms (see [5]). Let Y be a non-spherical component of some
fibre of the morphism ¢, and let ¢+ € K[X]“ be a non-constant function. There is a
function w € K(Y)Z on Y which separates generic B-orbits. It follows by Knop’s
lemma that w can be extended to a function W € K(X)Z = K(X)¥. Here we
have tr.deg .K(X)? = 1, the function ¢ is constant on Y and there is an algebraic
relation between ¢t and W. So the function W is constant on Y too. We get a
contradiction with the condition W |y = w. This completes the proof.

§ 3. (S,U)-varieties

We obtain the results of this section using general theory. Let a connected reduc-
tive group G act on an irreducible normal affine variety X, and let the stabilizer of
a generic point contain a maximal unipotent subgroup U C G. It is known (see [3])
that

K[X] = (KXY @ K[G/U])",

where T is a maximal torus of the group G and U~ is the opposite unipotent
subgroup with respect to U. The action of G on the algebra on the right-hand
side is given by left multiplication on the second factor of the tensor product.
The torus 7' acts naturally on K[X]Y and by right multiplication on K[G/U™].
Hence the G-variety X can be uniquely reconstructed if we have the T-variety
Y = X//U = Spec K[X]Y. Inthis case, every weight of the T-module K[Y] = K[X]Y

is dominant.
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Conversely, let Y be a variety with a non-trivial action of the torus T, and let
all weights of T-module K[Y] be dominant. Then we can construct a G-variety X.
Namely, X = Spec(K[Y]®K[G/U *])T. Using the Luna-Vust criterion [2], we claim
that the normality of X is equivalent to the normality of X//U.

In the case G = SL,, the homogeneous space SLo /U~ can be identified
with K*\{0} with the natural action of a one-dimensional torus. Then it follows
that Spec K[SLy /U~| = K2. We have proved the following theorem.

Theorem 1. (S,U)-varieties correspond bijectively to normal affine surfaces Y
with fized non-trivial Z, -grading on the algebra of regular functions K[Y]. This
grading defines the action of a one-dimensional torus T on Y. The corresponding
(S, U)-variety is isomorphic to the variety

X = (Y xK?)//T.
In particular, K[X )5t = K[Y]7.

Remark 1. If a generic orbit on X is isomorphic to SLy /U, then any other orbit
is either a fixed point or is isomorphic to SLg /U,,, where n divides m.

Remark 2. One of the results of [10] is the following proposition. If X is unirational
and the algebra K[X] is factorial and has no invertible non-constant elements, then:
a) in the case K[X]5'2 = K, the surface Y is a complete intersection;
b) in the case K[X]52 # K, the surface Y is the affine plane AZ.

Remark 3. The smoothness of the surface Y does not guarantee the smoothness of
the variety X. Using the etale slice theory (see some details in §5), it is possible
to show that smooth (S, U)-varieties correspond to surfaces that are locally trivial
line bundles (in the Zariski topology) over some smooth affine curve. The torus
acts naturally on the fibres: (t,x) — tx, t € K*, x € Al. Therefore every smooth
(S,U)-variety is a locally trivial vector bundle over a smooth affine curve with
fibre V.

For the (S, N)- and (S, T)-varieties considered below, the SLo-action is stable,
and so we obtain the following result.

Proposition 3. FEvery action of the group SLa on a smooth three-dimensional
affine variety either is locally transitive or possess a mon-constant invariant reqular
function.

§4. (S,N)-varieties

Here and in the next section, we suppose that the ground field is the field C of
complex numbers.

4.1. General properties of (S, N)-varieties. There is a one-parameter family
of orbits of type SLy /N on X. We already know that all such orbits are closed. The
decomposition of the SLa-module K[X] into a direct sum of irreducible submodules
can contain only irreducible SLi-modules that have a non-zero vector stabilized
by N. These are exactly the modules Vj,,. This observation shows that there is no
orbit of type SLy /T on X, and any closed orbit is either SLy /N or a fixed point.
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Lemma 4. The set of N-fized points XN is a smooth irreducible affine curve
isomorphic to X// SLy. The set of SLa-fized points XS¥2 is a finite set of points on
this curve.

Proof. Tt is known (see [4]) that the quotient morphism separates closed orbits
on X. Hence every fibre of the quotient morphism either is an orbit of type SLy /N
or contains exactly one fixed point. There is only one N-fixed point on an orbit
of type SLy /N. If we restrict the quotient morphism ¢: X — X//SLy to the
subvariety X, then we get a bijective mapping. The normality of X implies the
normality of X//SLs. For a curve, normality is equivalent to smoothness. Using
the fact that a bijective morphism on a normal variety is an isomorphism, we get
XN =2 X//SLy. The set X52 is a proper subset of the curve X%,

Lemma 5. FEvery fibre of the quotient morphism ¢: X — X//SLy is two-
dimensional and irreducible.

Proof. The fact that every fibre is two-dimensional follows immediately from a
general theorem on fibres of morphisms. The irreducibility was first proved by me
using an embedding of the variety X in some finite-dimensional SLy-module. Then
Vinberg proposed the following invariant proof. Suppose that the fibre ¢! (z) is
reducible and d)*l(a:) =Y UY5, where Y7 and Y5 are closed subsets. We have

Ky =@v, K=V,

iel jeJ

where I and J are subsemigroups in the semigroup Z,. If i € I, j € J, then the
submodule isomorphic to V;; appears in K[Y7] and in K[Y3]. The components Y;
and Y> have exactly one common point (the group SLs is connected, irreducible
components of the fibre are SLy-invariant and the common point is the unique closed
orbit in the fibre). So the G-modules K[¢~!(z)] and K[Y;]®K[Y>] differ only by one
one-dimensional submodule. Then the submodule V;; appears in K¢~ (z)] with
multiplicity > 1.

On the other hand, a generic fibre of the quotient morphism is SLy /N and the
algebra of regular functions on this fibre is multiplicity-free because this variety
is spherical (see [2]). Consider two functions fi and f? from K[X] that are the
highest vectors with weight A in the SLy-module K[X]| with respect to the Borel
subgroup B. If we restrict these functions to a generic fibre and use the multiplicity-
free condition, we get that the rational function f}/f% is a constant (possibly equal
to 00). So it determines a rational function on the quotient. A rational function
on a smooth curve has a definite (possibly infinite) value at each point. As a result
we see that the functions fi and f} are proportional under restriction to any fibre.
Then the algebra of regular functions on any fibre of the quotient morphism is
multiplicity-free. This contradiction concludes the proof.

Remark 1. In the proof of Lemma 5, we made essential use of the fact that the
curve C' = X// SLy is normal. In fact, if we consider the curve

C={(u) | =0*+0*} S VN =K WKaelh=V,
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then the variety SLo(C') contains a unique fixed point, and this point belongs to
the closures of two two-dimensional orbits SLa (22, z2) and SLa(z?, —2?).

Remark 2. Lemma 5 enables us to determine a one-to-one correspondence between
the set of fixed points X2 and the set of non-closed orbits on X: every fibre of
the quotient morphism either is an orbit of type SLa /N or contains one fixed point
and one non-closed orbit.

We shall later denote the curve X//SLs by C.

4.2. Simple (S, N)-varieties.

Definition. We say that a normal (S, N)-variety X is simple if X// SLy = Al and
X5Lz = [0},

We denote a generator of the algebra of invariants for a simple (S, N)-variety X
by z.

Example 1. a) Let us consider the action of the group Zsr on the space Vo by
multiplication by 2kth roots of unity. We put X* = 1, //Zzy,. There arises an action
SLs : X* whose generic orbit is SLy /N, the quotient X*//SLy is A, X5t = {0}
and the non-closed orbit is SLa //Uyx. The variety X* is normal, being the quotient
of a normal variety.

b) Let ¢: X* — A! be the quotient morphism. Consider the pullback corre-
sponding to the morphism z — z™:

Xk —— Xx*

| e
Al 2220 AL
So we get new SLa-varieties X*. A point in the variety X* can be realized as a pair

(z,w), where w is a binary quadratic form, which is defined up to multiplication
by e, €2 =1,and z € K, 2" = (detw)F.

Lemma 6. The variety XF is normal if and only if either n =1 or k = 1.

Proof. If n =1, we get exactly the varieties of Example 1a), and they are normal.

By a, b, ¢ we denote the standard coordinates in the three-dimensional space of
binary forms of degree two, Vo = {az? + bxy + cy?*}.

The variety X} is the quotient of the hypersurface 2™ = b — 4ac by the action
of the group Zs. This hypersurface is singular only at the origin. It is well known
that for a hypersurface normality is equivalent to smoothness in codimension one.
So the variety X} is normal.

Let us assume that n > 1 and k¥ > 1. The algebra of regular functions on
Xﬁ is generated by the monomials z and a'b’cl(i + j + [ = 2k) with the relation
2" = (b? — 4ac)k. Tt is easy to see that

((b2 - 4ac)lb2k_21)n — (B2 — dac)"t—kp2hn—2in
z

)

where | = [£] 4+ 1. This relation shows that the algebra K[XF] is not integrally
closed.
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Lemma 7. Every simple (S, N)-variety is SLa-equivariantly homeomorphic in the
C-topology to one of the varieties XF.

Proof. Consider an equivariant closed embedding of X in some finite-dimensional
SLo-module:
YV X V=V, @@ Vg, ki = 0.

We have the embedding
,¢I: XN ~ Al s VN — <1‘2k1y2k1> D---P <$2kpy2kp>.

(Here we identify irreducible SLy-modules with the corresponding spaces of binary
forms.)

We can assume that {0} € A! corresponds to the origin of the space V. Denote
the coordinates in this space by (x1,-..,Xp). Then the embedding ¢’ is given by

Xi = a2 b2 4 4 £0 (1)

(the dots stand for the terms of higher degree in z).

The embedding 1 can be defined on the open subset SL2 (X™\{0}) C X by the

formula
gv — ((aiz”i + bz )w%i)le, g € SLo, ve XV,
where w = g(zy) and z is the coordinate of v on the curve XV = Al.

There is only one non-closed orbit on a simple (S, N)-variety (by definition, we
have only one fixed point), and this orbit is isomorphic to SLg /Uyy, for some k. The
existence of this orbit means that for some sequence {w;} of binary quadratic forms
with determinant 1 and for some sequence {z;}, z; — 0, there exists a finite limit

ng;

2k;
lim; 00 a; zj%" ¢j> for any ¢ (the sequences {¢;} and {z;} do not depend on ¢).

This limit is non-zero for some i. This implies that the points of the non-closed orbit
have non-zero coordinates only in those modules Vjx, where the numbers 7; = 7

are minimal. We may suppose that this minimum is achieved fori =1,...,1. Then
k divides the numbers kq,...,k;, and (k—kl, ceey %) = 1. Taking into account the
equality (k:‘% =...= ﬁ, we conclude that the number n = %’“ =...= ”k#’k is

an integer. Define a rational mapping X* — X by

w?ki

(Z7w)_>{(az+bzz+)zn1W7 221771)}

This mapping defines an isomorphism on the open subset of orbits of type
SL, /N, since by construction the line (X*)" is mapped isomorphically onto X ™.
We have 7 = ’,;‘—l fori=1,...,l and 7 > % for ¢ > I, and therefore this ratio-
nal mapping can be continuously extended to the points (z,w) with det(w) = 0

= tends to 1 for i = 1,...,l and to 0 for ¢ > [. Moreover, the con-

(deiw)ki
dition (%, R %) = 1 implies that the stabilizer of the image of a point from the

because
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non-closed orbit under this mapping is Uy. So the mapping is bijective on the
non-closed orbit.

We have constructed a birational morphism X* — X and this morphism can
be continuously extended to a bijective mapping. Let us check the continuity of
the inverse mapping. Proposition 5 below claims that all fibres of the quotient
morphism ¢: X — X//SLy are normal. Hence the “null-fibre” is isomorphic to Oy
(see §1). The weight semigroup of the T-module K[O4%]Y is 4kZ,. On the other
hand, the weight semigroup of the T-module K[¢~'(0)] Yis 4k1Z4 J - UdkyZoy .
We get that one number from the set k1, ..., k; is equal to k. Let k; = k.

The image of X in every submodule Vyy, lies in the set of binary forms of degree
4k; that are 2k;-powers of quadratic forms. For any x € X, the quadratic form

wi(z) = (¥i(x))* is defined up to multiplication by €, €% = 1.
Let us define a mapping X — X* by the formula

w1(z)

(a1+blz(aj)+)ﬁ

x— | z(x),

This mapping is well defined for sufficiently small values of z(z), and it extends
the isomorphism of the open subsets SLy X* and SL2(XX)¥ to a continuous bijec-
tion in a neighbourhood of the “null-fibre”. Thus the desired homeomorphism is
constructed.

In order to return from topological statements to algebraic ones, we need the
following lemma.

Lemma 8. a) Let X and Y be birationally isomorphic normal affine varieties.
Suppose that there is an isomorphism of their open subsets Ux and Uy which can
be extended to a C-homeomorphism of X and Y. Then this C-homeomorphism is
an isomorphism of algebraic varieties.

b) Under the conditions of a), if the variety X is not normal, then Y is the
normalization of X and the normalization morphism is bijective.

Proof. a) Consider the affine variety X x Y and the diagonal Uxxy defined by
the given isomorphism Ux = Uy. Put I' = Uxxy. The closure of a quasi-affine
variety in the Zarisky topology coincides with its closure in the C-topology. Hence
the projection I' = X is a homeomorphism. This is a bijective morphism and the
normality of X implies the isomorphism X = I'". Analogously, we get Y =T

The statement b) follows from the proof of a).

We now study the normalization Norm XF of the variety XX forn > 1 and k > 1.
k
Let d = (k,n). Then there is a natural embedding K[XF] < K{X(‘iﬂ)}, which is
d
defined tautologically: z — 2/, a’v/c! — (a’)*(b')(¢')!. The algebra K[X(i)} is
d
integral over the subalgebra K[X], and the quotient fields of these algebras coincide
because
(b2 — dac) T b*

nd—n

z

=

8

() H T eKIXy, )% = € QK[XE),
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|

and so on. Therefore the normalization X coincides with the normalization X (

als ™

)
Consequently, we can consider Norm(XF) only for coprime n and k.

Lemma 9. The normalization morphism Norm(XF) — Xﬁ s a bijection if and
only if k and n are coprime.

Proof. Let us embed the algebra K[X}] = K[a'b/c'(i +j + 1 = 2k),z | 2" =
(b2 — 4ac)*] into the algebra AX = Kla,b,c,z | 2" = (b* — 4ac)*]. The algebra AF
is integral over the algebra K[X[]. For coprime k and n, the algebra A¥ has no zero

2
divisors, and its integral closure is obtained by adding the element A = w

where (—u)k + vn = 1 (we can always assume that v > 0 and v > 0). In fact,
A = z, and the algebra A%[\] = K[a,b,c, A | A" = b% — 4ac] is integrally closed.
We deduce that

(b2 — 4ac)“’§]

Ztu

)

n n

Norm (K[X}]) = K[X}] [

where £ runs through all homogeneous forms of degree « in a, b, ¢ such that (a+2vt)
is a multiple of 2k, and ¢ runs through the natural numbers. The element %
raised to the power k is equal to z'¢¥. When one restricts regular functions to
the fibre z = 0, every added element becomes nilpotent, and the reduced “null-
fibre” of the quotient morphism for the variety Norm(X¥) is isomorphic to the
corresponding fibre for the variety X*. The normalization morphism is surjective
and hence determines a bijection on the “null-fibre”. The variety X* is smooth
outside the “null-fibre”, so the normalization morphism is an isomorphism. This
completes the proof for coprime k and n.

In the case d = (k,n) > 1, the “null-fibre” of the quotient morphism for the vari-
ety Norm(X¥) contains a non-closed orbit of type SLy / Us, and the normalization
morphism is a d-sheeted covering on this fibre. This covering is ramified exactly
over the fixed point.

Comparing the statements of Lemma 7, Lemma 8b) and Lemma 9, one obtains
the following result.

Proposition 4. Fuvery simple (S, N)-variety is isomorphic to one of the varieties
Norm(XPF) for coprime k and n.

Remark 3. The varieties Norm(XF¥) and Norm(X ,’j:) with different pairs of coprime
numbers (k,n) and (k’,n’) are not isomorphic. Indeed, if k # &/, then these varieties
have different non-closed orbits. The number n for Norm(X?) is the order of the
group of those equivariant automorphisms of this variety that act identically on the
“pull-fibre” of the quotient morphism. (Such automorphisms act identically on the
functions a’®’c!(i + j + 1 = 2k) and multiply z by an nth root of unity.)

4.3. The classification of (S, N)-varieties. Let X be an arbitrary (S, N)-
variety. We fix a local analytic parameter z in the neighbourhood of a point
x € X5 on the smooth curve X~. Then, for an embedding X < V, the embed-
ding XV — V¥ is defined by formulae of type (1), where we now have series (not
necessarily polynomials) on the right. However, this does not affect the subsequent
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reasoning, and one obtains that the variety X in the neighbourhood of z is SLo-
equivariantly homeomorphic to the variety X” for some coprime numbers & and n.
We shall call these numbers the marks of the point z € XSz,

Let us remark that a fibre of general position for the quotient morphism
¢: X — X//SLs is isomorphic to SLs /N, and Autgr,, SLa /N = Ngp, (V)/N = {e}.
Therefore X\¢~*(p(X52)) = (C\¢p(X5™2)) x SLy /N. This implies that an
(S, N)-variety is uniquely determined by the following set of data: a smooth
curve C, a set of points X532, and the pairs of marks at the points from X5l2.

We shall now prove that to any data there corresponds an (S, N)-variety. We
need the following standard lemma from the theory of algebraic curves.

Lemma 10. For an irreducible smooth affine algebraic curve C and a fized point
on this curve there exists a regular morphism ¢: C — Al such that z is not a
ramification point of ¢.

Given a point z; € X5 with marks (k;,n;) on C, we remove from C all ramifica-
tion points of ¢ and all the points of X 5% except ;. We get an open subset C; — C.
Consider the variety Norm(Xk:), the quotient morphism ¢; : Norm(X,’fzﬁ) — Al and
the induced fibering Z; over Cj:

Z; — Norm(XF1)

lwi lw

CZ‘ E— Al.

It is easy to see that Z; is normal and has an open subset (C;\{z;}) x SLz /N. One
can consider the projection

¢: Z = (C\X®"2) x SLy /N — (C\X5"2).

The varieties Z and Z; (over all i) can be uniquely glued to give an algebraic
variety X (a fibre of general position is SLy /N, this fibre has only the identity
equivariant automorphism, and one can identify two fibres in a unique way) and a
mapping X — C which is compatible with all morphisms ¢ and ;.

Lemma (on the affine morphism [6]). Let f: X — Y be a morphism of algebraic
varieties such that there exists an open covering {Vi} of the variety Y and f=1(V;)
is affine for every i. Then for every open affine subset V<Y the variety f=*(V)
s affine.

So the variety X is affine. Normality is a local property of algebraic varieties, and
X is locally isomorphic to either Z or Z;. The desired variety X is now constructed.
These arguments prove the following theorem.

Theorem 2. (S, N)-varieties are in one-to-one correspondence with the following
data:

1) C, a smooth irreducible affine algebraic curve;

2) K, a finite collection of m points on this curve (possibly m = 0);

3) W, a set of pairs of coprime numbers (ki,n1),..., (km,nm), which are the
marks of the points from K.
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Remark 4. An (S, N)-variety is smooth if and only if X = C x SLy /N. (In terms
of Theorem 2 this means that the set K is empty.) In other cases the set of singular
points of the variety X is XSt2. In fact, the tangent space at every fixed point is
an SLy-module which contains an irreducible submodule of dimension > 5. But the
variety X is three-dimensional. Other points on X are regular because their orbits
are two-dimensional and a normal variety is smooth in codimension 1.

We would now like to establish some general facts about SLo-actions on three-
dimensional normal affine varieties.

Proposition 5. If the group SLy acts on an irreducible three-dimensional normal
affine variety X, then all fibres of the quotient morphism are irreducible and normal.

We may assume that dim X//SLy = 1, since otherwise a fibre of the quotient
morphism is the whole variety X.

The passage to the variety Spec K[X]Y shows that this proposition is equivalent
to the following.

Proposition 5'. Suppose that a one-dimensional torus T acts faithfully on a nor-
mal affine surface Y, the T-module K[Y] has only non-negative weights of the
torus T, and the quotient Y//T is one-dimensional. Then every fibre of the quotient
morphism ¢ is isomorphic to the affine line.

Proof. Tt was proved in [14], Chapter 4 that the surface Y is toroidal. This means
that each point on Y has a T-invariant neighbourhood which is obtained from a
T-invariant neighbourhood on an affine toric variety for a two-dimensional torus
T x K* by means of an etale morphism. Under the conditions of Proposition 5, the
irreducibility and normality of every fibre of the quotient morphism is easily checked
for such a toric variety. The unique normal affine toric variety for a one-dimensional
torus with non-negative weights is the affine line. So the proof is complete.

Proposition 6. Let the group SLy act on an irreducible three-dimensional normal
affine variety X. Suppose that one of the following conditions is fulfilled:

1) the action SLq : X is locally transitive;

2) K[X]5L2 #£ K.

Then all singularities of the variety X are rational.

Proof. In case 1) this was proved by Popov (see [3]). In the case K[X]" # K
we have the quotient morphism X — X// SLy to the smooth curve X// SLy. This
morphism is flat and each of its fibres is a normal spherical variety. It is shown
in [3] that such fibres have only rational singularities. To complete the proof we use
the following fact. Suppose that f: X — S is a flat morphism, z € X, the point
s = f(x) is a rational singularity on S, and z is a rational singularity on the fibre
f71(s). Then z is a rational singularity on X (see [13]).

Remark 5. This result can also be reformulated for actions of a one-dimensional
torus on a normal surface.

Remark 6. The case of (S, U)-varieties with K[X]|S'2 = K is the only case not
covered by Proposition 6. In this case, only one singular point is possible on X,
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the one-point orbit. The singularity at this point can be non-rational. In fact, in
terms of Theorem 1 one can consider Y = {(a;,y,z) | 23 + 2 + 23 = 0} with the
natural torus action t(x,y, z) = (tz, ty, tz).

§ 5. Smooth (S, T)-varieties

By definition, the orbit of general position on X is the homogeneous space
SLo /T. Also there can be finitely many orbits of types SLa /N, SLy /Usz; and
{ point } on X.

We have an easy example of a smooth (.S, T')-variety: if C' is a smooth irreducible
affine curve, then put X = (SLy /T) x C. Let us call such a variety a variety of
trivial type. (The triviality is equivalent to the condition that the curve X7 is not
connected.) All other smooth (.9, T')-varieties will be called varieties of non-trivial
type.

Using the etale slice theory due to Luna, one can prove that the smoothness of X
implies the smoothness of the curve X7 (see [4], p.212). Therefore the curve X7
is irreducible for varieties of non-trivial type.

The group Zs = N(T)/T acts naturally on the curve X7, and if all orbits on
the variety X are closed, then

X =SLy /T %z, X7

We now study the structure of X in a neighbourhood of a non-closed orbit
SLs /Usg. The reasoning about the tangent space at a fixed point from the previous
section shows that smoothness of X implies k¥ = 1. Using etale slice theory [4],
p- 213, we obtain that some complex neighbourhood of a non-closed orbit in X is
analytically equivariantly isomorphic to an invariant neighbourhood of zero in the
three-dimensional SLo-module T, X. This implies that T,X is isomorphic to the
module V5.

So we have the following data: a smooth irreducible affine curve X7 with a given
non-trivial algebraic action of the group N(T)/T = Zs and a finite collection of
points X552 on X V. Let us show how to construct the (S, T')-variety corresponding
to such data.

Let C be a smooth irreducible affine curve with non-trivial action of the group Z.
We fix a set K C C?2, which will play the role of X52. Let = be a point of the
set K. Consider an etale slice S for the action Zs : C' at the point . One of Luna’s
theorems [4], p.212 shows that there exists an excellent morphism ¢: S — Al
which is Zs-equivariant with respect to the natural action of the group Zs on
the line and satisfies ¢(z) = 0. This morphism induces a morphism of quotients
®/Zo : C" — A'. On the other hand, there is a morphism of quotients Vo — Al.
Considering the pullback of the space V; for the morphism ¢/Z2, we obtain some
SLo-variety. If we “glue” all these varieties (for all points « € K) and the variety
SLy #n(C\K) over the common open subset SLy * 5 (C\C%2), we obtain the desired
smooth (S, T)-variety X.

By definition of an excellent morphism, the etale slice of the variety X at a
fixed point x is isomorphic to the corresponding pullback of the space V5. Using
the formula Ngr, (T')/T = Z, and the fact that a complete complex curve without
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finitely many points is connected (this guarantees the uniqueness of the “gluing”),
we obtain the uniqueness of the corresponding (.S, T')-variety.
Thus we have proved the following theorem.

Theorem 3. Smooth (S,T)-varieties of non-trivial type are in one-to-one corre-
spondence with the following data:

1) C, a smooth irreducible affine curve with a fized non-trivial algebraic action
of the group Zs;

2) K, a subset (possibly empty) of the set of fived points C%2 (possibly empty).

Remark. The fact that all orbits on X are isomorphic to the homogeneous space
SLy /T does not imply that the variety X is of trivial type. For example, one can
consider the variety SLy xxC, where C' = {(a;,y) | zy = 1} and the involution is
defined by (z,y) = (—z, —y).
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