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On actions of reductive groups with

one-parameter family of spherical orbits

I. V. Arzhantsev

Abstract. Actions of reductive groups on normal algebraic varieties with one-
parameter families of spherical orbits of maximal dimension are studied under the
assumption that the categorical quotient for the action is one-dimensional. As an
application, the classification of the actions of the group SL2 on three-dimensional
normal affine varieties is completed. The ground field K is assumed to be alge-
braically closed and of characteristic zero.

Bibliography: 15 titles.

1. Introduction

By the complexity c(X,G) of an action G : X of a linear algebraic group G on
an algebraic variety X we mean the codimension of a generic orbit for the induced
action of a Borel subgroup B : X or, which is the same,

c(X,G) = tr.degK(X)B.

The concept of complexity is discussed in greater detail in [1].
Actions of complexity zero are said to be spherical. For actions of complexity

one, there are two fundamentally different possibilities:

(1) there is an open orbit of G in X having complexity one;
(2) G acts on X with one-parameter family of spherical orbits of maximal

dimension; in this case we call X a qs-variety (a quasi-spherical variety)
with respect to the action of G.

We shall consider only the second case in this paper.
In what follows, unless otherwise stated, we assume that G is a connected reduc-

tive group acting regularly on an irreducible normal affine variety X.
Assume that a generic orbit of this action is spherical. Then all the orbits of G

on X are spherical (see [2]). We prove that in this case, under the assumption that
there exists a generic stabilizer, almost all closures of generic orbits are isomorphic,
that is, a ‘generic closure’ is well defined.

After that we proceed to actions of complexity one with spherical orbits. Exam-
ples of such actions are provided by embeddings of homogeneous spaces K∗×G/H,
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where H is an algebraic spherical subgroup of G (the homogeneous space K∗×G/H
is spherical with respect to the group K∗ × G and has complexity one under the
natural action of G). Such embeddings can be classified in the framework of the
general Luna–Vust theory.

A normal affine qs-variety such that dimX//G=1 is called a qs1-variety. If the
action G : X is stable and, in particular, if H contains a maximal torus of G, then
the condition dimX//G = 1 holds automatically. We claim that any birationally
trivial qs1-variety X can be obtained by means of the operation of gluing (defined
below) from spherical embeddings of the homogeneous space K∗ × G/H. Here
‘birational triviality’ means that X contains an open G-invariant subset isomorphic
to G/H×U , where U is a smooth affine curve with trivial action of G. If the group
of equivariant automorphisms of the homogeneous space G/H is finite (this group is
isomorphic to NG(H)/H), then the gluing is unambiguously defined, and therefore
the study of this class of actions is reduced to the well-developed theory of spherical
embeddings. For a birationally non-trivial action we prove that it can be obtained
as a quotient, by an action of a finite group, from a birationally trivial action with
the same generic G-orbit. In particular, this means that the singularities of qs1-
varieties are rational. Furthermore, we consider the class of G-varieties obtained
by gluing over an arbitrary smooth algebraic curve, which need not be affine. It
turns out that this class of G-varieties is characterized by the existence of a ‘good
quotient’ for the action of G in the sense of Mumford. Thereupon, we shall study
the properties of the fibres of the factorization morphism for qs1-varieties.

The results so obtained will make it possible to complete the classification of the
actions of SL2 on normal irreducible three-dimensional affine algebraic varieties.
We recall the necessary information.

Lemma 1.1 (see, for instance, [3], Subsection 4.1, Lemma 2). Each algebraic sub-
group of SL2 is conjugate to one of the following subgroups :

(1) a finite subgroup;
(2) a Borel subgroup B;
(3) a maximal torus T ;
(4) the normalizer N of a maximal torus ;
(5) a finite extension of the maximal unipotent subgroup

Un =

{(
ε a
0 ε−1

) ∣∣∣∣ a, ε ∈ K, εn = 1

}
, n = 1, 2, 3 . . . .

Lemma 1.2. For each action of SL2 there exists a generic stabilizer (GS ).

Let SL2 : X be an action in which X is a three-dimensional variety. If the GS
of this action is a finite subgroup, then X contains a dense orbit of SL2. Such
actions are classified in [4] (see also [3]). It is shown there that a locally transitive
action of SL2 on a three-dimensional affine variety is either transitive or can be
characterized by a pair of numbers in N×(0, 1

2 ]Q. The first of these numbers defines
the order of the generic stabilizer, which is a cyclic subgroup in this case. The second
number is called the height and characterizes the algebra of U -invariants.

The three remaining possibilities are as follows:

(1) GS = Un. We call such SL2-varieties (S,U)-varieties.
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(2) GS = N . We call such SL2-varieties (S,N)-varieties.
(3) GS = T . We call such SL2-varieties (S, T )-varieties.

Remark. The case GS = B cannot occur because SL2/B is a projective line.

Each (S,U)-variety can be uniquely recovered from the spectrum of the algebra
of U -invariants, which is a normal surface with natural action of the maximal torus
of SL2. To be more precise, we have the following result.

Theorem 1 [2]. The (S,U)-varieties are in one-to-one correspondence with normal
affine surfaces Y with a fixed non-trivial Z+-grading of the algebra K[Y ] of regular
functions. This grading defines an action on Y of the one-dimensional torus T ,
and the corresponding (S,U)-variety is isomorphic to the variety

X = (Y ×K2)//T.

Here K[X]SL2 ∼= K[Y ]T .

This theorem reduces the classification of (S,U)-varieties to that of actions of a
one-dimensional torus on normal surfaces. As regards the latter, see [5].

We now consider the case of (S,N)-varieties. Any such variety is birationally
trivial. An embedding of a spherical homogeneous space K∗ × SL2/N is defined
by a pair of coprime positive integers, and there exists a unique way of gluing such
embeddings over a smooth affine curve. Therefore, to define an (S,N)-variety we
must define a smooth irreducible affine curve and to place marks (pairs of coprime
positive integers) at finitely many points on this curve; see Theorem 3 below. In [2],
this result was obtained over the complex field by topological methods, without
referring to the Luna–Vust theory.

Birationally trivial (S, T )-varieties can be described in a perfectly similar way
to (S,N)-varieties. It remains to consider the case of birationally non-trivial
(S, T )-varieties. Each of these can be obtained as a quotient, by an action of Z2,
of a birationally trivial (S, T )-variety. Hence a birationally non-trivial variety is
defined by a smooth irreducible affine curve with a fixed non-trivial action of Z2

and with Z2-invariant system of marks; see Theorem 4.

Thus, we have described all non-trivial actions of SL2 on normal affine three-
dimensional algebraic varieties. Smooth (S,N)-varieties and (S, T )-varieties are
described in [2].

The author wishes to express his deep gratitude to his research supervisor, Prof.
È. B. Vinberg, for setting the problem and constant attention to this work. I
learned about many facts used in this paper from conversations with M. Brion and
F. Knop during the conference “Algebraic Group Actions” (Poland, June 1996).

An approach to the classification of the actions of complexity one in terms of
the Luna–Vust theory is developed in the recent paper [6]. The comparison of
those results with ours enabled us to correct some inaccuracies. The author thanks
D. A. Timashev for the critical reading of the preliminary version of this text.
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2. Actions with generic spherical orbit

In the following proposition, it is not essential that X be normal.

Proposition 1. Let X be a G-variety with all G-orbits spherical, assume that there
exists a generic stabilizer, and let GS(G : X) = H. Then almost all the closures of
orbits of type G/H (for an open dense subset of orbits of type G/H) are isomorphic
to some embedding Y of the spherical homogeneous space G/H.

Proof. Let Γ(X) be the semigroup of highest weights of G that correspond to the
irreducible G-modules occurring in the decomposition of the algebra K[X] into
irreducible G-modules. This semigroup is finitely generated by Khadzhiev’s theo-
rem (see [7]). Let {λ1, . . . , λk} be a basis in Γ(X). We now choose highest vectors
Fλ1 , . . . , Fλk of the G-moduleK[X] having weights λ1, . . . , λk respectively, and con-
sider the set X of points at which none of the functions Fλ1 , . . . , Fλk vanishes. This
set is Zariski open. Hence the closure of a generic orbit is a multiplicity-free affine
variety (since G/H is spherical), and its spectrum is Γ(X). It remains to show that
multiplication in all the algebras of regular functions on these closures has the same
structure. This follows from the fact that the algebra of regular functions on the
closure of an orbit of type G/H is a G-invariant subalgebra of K[G/H]. This last
algebra is multiplicity-free, therefore the multiplicative structure on this subalge-
bra with given decomposition into irreducible G-modules is uniquely defined. This
completes the proof of the proposition.

Remarks. (1) There exists a conjecture that spherical subgroups of a reductive
group have no non-trivial deformations, so that, for an action with generic spherical
orbit, a GS exists automatically. Hence our condition on the existence of a GS is
probably not restrictive.

(2) The variety Y is not necessarily normal even if X is normal. For instance, let
us consider the following action of a one-dimensional torus on the two-dimensional
plane:

(x, y)→ (t2x, t3y).

Here Y is a semicubical parabola. In what follows we prove that if dimX//G = 1,
then the variety Y is normal and coincides with the generic fibre of the quotient
morphism π : X → X//G.

The following example suggested by Knop shows that if the generic orbit G/H
is not spherical, then a generic closure does not necessarily exist.

We consider the action of SL2 on the three-dimensional projective space P3

regarded as the projectivization of the space M2×2 of matrices with SL2 acting
by left multiplication. In P3 there exist an open orbit of the type PSL2 and a
one-parameter family P1 × P1 of orbits, where SL2 acts on the first factor only.

Let Γ be a non-commutative finite subgroup of SL2. We consider the quotient of
P3 by the action of Γ induced by the action of Γ on M2×2 by right multiplication.
Again, there is a one-parameter family P1×P1 of SL2-orbits in P3/Γ. We consider
the product (P3/Γ)× P1 with trivial action of SL2 on the second factor and blow
up the subvariety P1 × ∆ ⊂ P1 × P1 × P1 ⊂ P3/Γ × P1, where ∆ is the diagonal
in the product of the second and the third factors, and SL2 acts only on the first
copy of P1.
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On the resulting variety, the embeddings of the homogeneous space SL2/Γ cor-
respond to blow-ups of various orbits of type SL2/B, and it is impossible that
almost all of them be isomorphic because the group of equivariant automorphisms
of SL2/Γ is finite.

To any embedding of the projective variety P obtained after the blow-up there
corresponds a very ample bundle over P . By considering a sufficiently high tensor
power of this bundle we can arrange that the corresponding affine cone over P be
a normal affine variety. This cone is an example of a variety with generic orbit of
type (K∗ × SL2)/Γ in which a generic closure does not exist.

The problem about the classes of quasi-affine homogeneous spaces in which a
generic closure does exist seems to be of a certain interest.

3. Main construction

Let S be a normal affine embedding of the spherical homogeneous spaceK∗×G/H
of the group K∗×G such that S//G ∼= A1. There arises a natural action of K∗ on
the quotient A1, and we regard a unique fixed point of this action as the origin on
the line A1. The inverse image in S of any point of A1 distinct from the origin is a
spherical G-variety Y . We call Y the generic fibre for S.

We now describe several operations enabling one to construct new qs1-varieties
from known ones.

1. The operation of passage to a fibre product.
Let U be a smooth affine curve and let ϕ : U → A1 be an étale morphism such

that ϕ−1(0) = {u}. We consider the fibre product X = S ×A1 U , where

X −−−−→ Sy y
U

ϕ−−−−→ A1,

defined by the condition K[X] = K[U ] ⊗K[A1] K[S]. The variety X is a normal
qs1-variety (since ϕ is étale) with generic fibre Y .

2. The operation of gluing.
Let C be a smooth affine curve covered by finitely many distinct affine Zariski

open sets Uj such that if U is their intersection, then Uj = U ∪ {cj} for each j,
where cj ∈ C.

Let {Lj} be a collection of affine varieties and let {Lj → Uj} be a collection of
morphisms such that all the inverse images ofU in all the varieties Lj are isomorphic
via isomorphisms compatible with the given morphisms. Then we identify the
corresponding points in these isomorphic open subsets of the varieties Lj. We obtain
a prevariety L and, in accordance with the affine criterion in [8], Chapter 1, § 2.3,
the given morphisms can be ‘glued together’ into a morphism L→ C.

There is no canonical way to define isomorphisms of the open pieces, therefore
the result of this gluing is not uniquely defined. We say that L is obtained from
the varieties Lj by the operation of gluing if L can be obtained using the above
construction for some choice of isomorphisms of isomorphic open subsets.

In our situation, let {Sj} be a collection of spherical embeddings for K∗ ×G/H
having the same generic fibre Y . For each Uj we consider the étale morphism used
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in the passage to the fibre product. Let Xj be the corresponding fibre product
constructed over Uj. Then the isomorphic parts U × Y of these products can be
identified (‘glued’), so that we obtain a prevariety X.

Lemma 3.1. The prevariety X is separated, that is, X is an algebraic variety.
Proof. As is known (see [8], Chapter 1, § 2.5) a prevariety X is separated if and

only if for any two morphisms ϕ,ψ : Y → X (here Y is an arbitrary prevariety)
the set {y ∈ Y | ϕ(y) = ψ(y)} is closed in Y . It is also shown in [8] that if any
two points in X belong to the same open affine subset, then X is separated. Set
Z = {y ∈ Y | ϕ(y) = ψ(y)} for some morphisms ϕ,ψ : Y → X and let z ∈ Z \ Z.
Then the points ϕ(z) and ψ(z) cannot both belong to the same one of the affine
varieties that are being glued together, because that contradicts the separation
property of this affine variety. Therefore, we can assume that ϕ(z) ∈ π−1(cj1) and
ψ(z) ∈ π−1(cj2), j1 6= j2. We consider the composite of the morphisms π ◦ ϕ and
π ◦ ψ : Y → C. Since C is separated, it follows that Z ′ = {y ∈ Y | (π ◦ ϕ)(y) =
(π ◦ ψ)(y)} is a closed subset of Y and z /∈ Z ′. On the other hand it is clear that
Z ⊂ Z ′. The contradiction thus obtained proves Lemma 3.1.

The following lemma proves that the variety X is affine.

The affine morphism lemma (see [9]). Let f : X → Y be a morphism of algebraic
varieties and let {Vi} be an open covering of Y such that f−1(Vi) is affine for each i.
Then the inverse image f−1(V ) of each affine open set V ↪→ Y is affine.

Proposition 2. If AutG Y is finite, then the gluing is defined unambiguously.

We need the following result for the proof of this proposition.

Lemma 3.2. Each G-automorphism of Y can be uniquely extended to a G-auto-
morphism of S that is trivial on the quotient S//G.

Proof. Since K[Y ] is a multiplicity-free G-module, each G-automorphism acts
on each of its irreducible submodules as multiplication by some constant. This
automorphism can be extended in a natural way to K[(A1 \ {0}) × Y ] and then
to K[S], which is a G-invariant subalgebra. This completes the proof of Lemma 3.2.

Since AutG Y is finite, the identification of points in isomorphic open subsets
of the varieties Sj1 and Sj2 can be defined by a single element of AutG Y , and
therefore it is unique up to isomorphisms of the glued varieties. This completes the
proof of Proposition 2.

Remark. If AutG Y is infinite, then the gluing can be carried out in many ways.
For instance, if G is a one-dimensional torus, then the question on the number of
ways to carry out the identification is the problem of determining the number of
linear bundles over a smooth affine curve that are locally trivial with respect to the
Zariski topology.

As we show now, the suggested construction of a gluing is universal in a certain
sense.

Definition. A qs1-variety X is said to be simple if the following conditions hold:

(1) there exists a GS (G : X), which we denote by H;
(2) the variety X has trivial birational type, that is, it contains an open

G-invariant subset X0 isomorphic to G/H × U for some smooth curve U .
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Condition (2) is equivalent to the triviality of some Galois cohomology class.
If G is a torus, then this condition holds for every action. It can be shown that
condition (2) holds if the group NG(H)/H is connected (see [7], § 2.7).

The following proposition shows that each qs1-variety can be obtained from a
simple qs1-variety on taking the quotient by a finite group.

Proposition 3. For each qs1-variety X with generic stabilizer H there exists a

simple qs1-variety X̃ with the same generic stabilizer and a finite group F acting

on X̃ by regular G-equivariant automorphisms such that

X ∼= X̃//F.

Proof. LetX1 be the open subset ofX consisting of points with stabilizers conjugate
to H and let XH

1 ⊂ X1 be the set of H-fixed points. We consider an arbitrary
curve in XH

1 that intersects the generic NG(H)-orbits in XH
1 transversally. This

curve defines a quasisection for the action G : X. There exists a natural dominant
morphism G/H × U → X. We now consider the extension K(X//G) ⊂ K(U) and

continue it to a Galois extension K(X//G) ⊂ K(U) ⊂ K(Ũ) with Galois group F .

Let K̃[X] be the integral closure ofK[X] inK(G/H×Ũ) and let X̃ = Spec K̃[X].

Then the morphism X̃ → X is finite and therefore surjective. Since X is normal,

it follows that X ∼= X̃//F . Finally, the fact that X̃ is birationally isomorphic to

G/H × Ũ follows from the following standard lemma.

Lemma 3.3. Let A be a finitely generated integral algebra over K, and let F1 = QA
be its quotient field. If F1 ⊂ F2 is a finite extension of fields and B is the integral
closure of A in F2, then QB = F2.

We now return to simple qs1-varieties. We denote by Y the closure of the generic
orbit G/H, which exists by Proposition 1. The algebra of regular functions on X0

is K[U ]
⊗

K K[G/H], and K[G/H] is multiplicity-free. By taking a smaller U if
necessary we can assume that X contains an open G-invariant subset isomorphic
to U × Y . In what follows we denote this subset by X0.

Let C = X//G be the smooth affine curve SpecK[X]G (it is smooth because X
is normal). All components of the fibres of the quotient morphism π : X → C have
codimension one in X. The following proposition shows that U can be regarded as
a subset of C and that π−1(U) = X0

∼= U × Y .

Proposition 4. Let f : X → X1 be a dominant morphism of irreducible normal
affine varieties and assume that the generic fibres of this morphism are connected
(the last condition holds for the quotient morphism with respect to a connected
reductive group). Then the generic fibres are irreducible.

Proof. Let K̃(X1) be the algebraic closure of K(X1) in K(X). If K̃(X1) 6= K(X1),

then also K̃[X1] 6= K[X1] by Lemma 3.3, where K̃[X1] is the integral closure of

K[X1] in K(X). Since X is normal, it follows that K̃[X1] ⊂ K[X], and therefore

there exist regular morphisms X → X̃1 → X1, where the latter morphism is finite
and not birational. This contradicts the condition that the fibres are connected.
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As regards the case where K̃(X1) = K(X1), see [10], vol. 1, Chapter 2, § 6,
Theorem 1. This completes the proof of the proposition.

Remark. The assertion of the proposition fails if we do not assume thatX is normal.
Indeed, we can consider the surface x2 = y2z and the projection onto the line with
coordinate z.

We now consider the isotypical decomposition K[Y ] =
⊕

λ Vλ. Then we have
K[X0] =

⊕
(K[U ]⊗KVλ), and thereforeK[X] =

⊕
(Tλ⊗KVλ) by the G-invariance,

where Tλ ⊂ K[U ].
The algebra K[X] is finitely generated, and we can assume that it is generated

by elements of the form cλivλi , i = 1, . . . , s, where vλi ∈ Vλi and cλ ∈ K[U ].
Considering a smaller set U if necessary, we can assume that cλi ∈ K[U ]∗.

Let C \ U = {y1, . . . , yt}. Passing to a smaller U if necessary, we can assume
that

(1) Uj = U
⋃
{yj} is affine;

(2) there exists πj ∈ Rj such that πj = %∗j , the map %j : Uj → A1 is étale, and

%−1
j (0) = {yj} (here Rj = K[Uj]).

We denote the ring K[U ] by R. Then πjRj is an ideal associated with yj , and
R∗ = R∗j × {πkj }k∈Z. Let Xj = π−1(Uj). Then

K[Xj] = Rj [. . . , π
rl
j Vλl , . . . ]

for some finite set Pj = {(rl, λl) ∈ Z× Γ(X)} of pairs.
We now consider the variety

Sj = SpecK[t, . . . , trlVλl , . . . ], where K[t, . . . , trlVλl , . . . ] ⊂ K[t]⊗K[Y ].

There is a natural action of the one-dimensional torus on Sj (in the variable t),
and therefore Sj turns out to be a spherical variety for the group K∗ ×G.

We have the following commutative diagram:

Xj
q−→ Uj ×A1

t
Sj

p2−→ Sj⋃ ⋃ ⋃
U × Y

∼=−→ Uj ×A1
t
(Y ×K∗) −→ Y ×K∗

and the map q is an isomorphism. Since %j : Uj → A1 is étale, the projection p2 is
also étale. In particular, Sj is normal.

Thus, the variety X can be obtained in two steps: by passing from the fibre
products of the spherical varieties Sj to the Xj and by gluing the Xj after that. In
our discussion we have followed the line of reasoning of [5], where a similar argument
had been carried out in the toric case. Thus, we have proved the following result.

Theorem 2.1. Each simple qs1-variety with generic stabilizer H can be obtained
by gluing normal spherical embeddings Sj of the homogeneous space K∗ × G/H
having the same typical fibre Y and such that Sj//G = A1.

Remark. In the spirit of [5], we can say that simple qs1-varieties are spheroidal.
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Corollary. The singularities of a qs1-variety are rational.

Indeed, the singularities of spherical varieties are rational, as is shown in [11].
Hence the corollary follows from the fact that the morphisms constructed are étale
and from Proposition 4, because the rationality of singularities is preserved by
taking the quotient with respect to a finite (or, more generally, a reductive) group;
see [7], Subsection 3.9.

In what follows we assume that the reader is acquainted with the concept of a
coloured cone. As regards this concept, see [12].

Let Cj be a finite set of coloured cones that define embeddings Sj of the homoge-
neous space K∗×G/H. A gluing of these embeddings over some curve into a single
simple qs1-variety is possible if and only if the following conditions are satisfied:
(a) Sj//G = A1; (b) the typical fibres of all the embeddings Sj are isomorphic to
the same G/H-embedding Y ; (c) all the Sj are affine.

Definition. A qs-variety X is said to be rigid if the generic stabilizer H is such
that NG(H) = H.

If a spherical homogeneous space G/H is quasi-affine and NG(H)/H is finite,
then it follows from the results of Brion and Knop that the subgroupH is reductive
(see, for example, [13], Corollary 7.6). According to the Luna closedness criterion for
orbits, the homogeneous space G/H admits in this case a unique affine embedding,
which consists of a single orbit G/H. Therefore, generic G-orbits in X are closed,
and each rigid qs-variety is a qs1-variety. Each rigid qs-variety is birationally trivial.

For rigid qs-varieties, we can use Proposition 2 to reformulate Theorem 2.1 as
follows.

Theorem 2.2. Each rigid qs-variety X with generic stabilizer H is uniquely deter-
mined by the following set of data:

(1) a smooth affine curve C (which is the quotient X//G);
(2) a finite (possibly empty) set P of pairwise distinct points on the curve C;
(3) to each point in the set P there must correspond a coloured cone for the

homogeneous space K∗×G/H that does not lie in the subspace corresponding
to G/H and defines an affine embedding of K∗ ×G/H.

Conversely, every such set of data defines a rigid qs-variety of the group G.

Remark. The question on whether an embedding corresponding to a given coloured
cone is affine can be readily solved using the criterion in [12].

Corollary. If, under the assumptions of Theorem 2.2, it is additionally known that
the homogeneous space G/H is of rank one, then it suffices to assign to each point
in P a pair of coprime positive integers in place of a coloured cone. In this case all
fibres of the quotient morphism π : X → C are irreducible.

Proof. As is known [12], the dimension of the cone ΥG/H of invariant valuations is
the rank of the corresponding homogeneous space, and if NG(H)/H is finite, then
ΥG/H is strictly convex. We can identify ΥG/H with the non-negative ray of the
coordinate line; then the cone ΥK∗×G/H is the left half-plane (Fig. 1).

The set of colours of the space G/H is not empty because otherwise G/H would
have to admit at least two affine embeddings, namely, (0,∅) and (ΥG/H ,∅). Not
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Figure 1

all the colours lie in the left half-plane, because otherwise there must exist an affine
cone (ΥG/H , ρ(D)). The homogeneous space G/H is affine, therefore all its colours

lie in the right half-plane. Considering the automorphism t→ t−1 of the torus K∗

we can assume that our coloured cone lies in the upper half-plane. It must contain
all colours of G/H, therefore to define this cone it is necessary and sufficient to
select a ray in the upper left quadrant. Since the ambient space is defined over the
field of rationals, such a ray is uniquely determined by a pair of coprime positive
integers. This ray corresponds to an irreducible divisor which is the fibre of the
quotient morphism over a singular point, and therefore all fibres are irreducible.
This completes the proof of the corollary.

It is clear that a gluing of the affine embeddings Sj can be carried out not only
over an affine curve but also over an arbitrary smooth algebraic curve. Let us
determine the class of G-varieties of complexity one obtained in this way.

In Mumford’s geometric invariant theory one is acquainted with a concept of a
‘good quotient’.

Definition. Let X be an algebraic G-variety. A morphism π : X → C, where C is
an algebraic space, is called a good quotient if

(a) π is G-equivariant with respect to the given action of G on X and the trivial
action of G on C;

(b) π is an affine morphism;
(c) π∗(O

G
X) ∼= OC .

Condition (b) means that there exists a finite affine covering of C such that
its inverse image is an affine covering of X. A good quotient is a categorical
quotient, and therefore it is defined uniquely up to canonical isomorphism. For
arbitrary actions on algebraic varieties this quotient seldom exists. It is necessary,
in particular, that each point in X have an open affine invariant neighbourhood.
If X is affine, then there always exists a good quotient π : X → Spec(K[X]G).

As is known, a good quotient can be obtained from the Mumford quotient
for the set of points semistable under some embedding of X into a projective
space if and only if C is a quasiprojective variety. In a more general situation,
good quotients were studied by Bialynicki-Birula and Swiecicka (see [14] and the
bibliography therein). In the same papers the problem of the description of all
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open invariant subsets admitting a good quotient was considered for an algebraic
G-variety.

We can now describe a certain class of G-varieties with a good quotient irrespec-
tive of any embedding, in a rather constructive way.

Theorem 2.3. A normal algebraic birationally trivial G-variety X of complex-
ity one with generic stabilizer H admits a good quotient onto a smooth algebraic
curve C if and only if it can be obtained by gluing over C some normal affine
spherical embeddings Sj of the homogeneous space K∗ × G/H that all have the
same typical fibre Y and are such that Sj//G = A1.

To prove Theorem 2.3, it suffices to choose a covering of C in the same way as
in the main construction and to apply the affine morphism lemma.

Since each algebraic curve is quasiprojective, the quotient in question can be
obtained using the Mumford construction for an appropriate embedding in a pro-
jective space.

Corollary. Each variety in Theorem 2.3 is quasiprojective.

4. Properties of the fibres of the quotient morphism

Theorem 2.1 reduces the study of many geometric problems concerning varieties
of complexity one with one-parameter families of spherical orbits to questions about
spherical varieties, which are well understood. We now consider the problem of the
normality and irreducibility of the fibres of the quotient morphism for simple
qs1-varieties.

Let ω be the operation of passage from a G-algebra to the subalgebra consisting
of its U -invariants (that is, ω : K[X]→ K[X]U), where U is a maximal unipotent
subgroup ofG. We denote by the same letter a similar passage ω : X → SpecK[X]U

proceeding on the level of G-varieties. If X is a qs1-variety for G, then SpecK[X]U

is a qs1-variety for a maximal torus T of G, and ω commutes with the passage to
the algebra of regular functions on some fibre of the quotient morphism. Since the
properties of an algebra to be integrally closed or integral are stable (using a term
from [11]), the fibres of X are irreducible and normal if and only if the fibres of the
T -variety SpecK[X]U are stable. Therefore, we can restrict ourselves to actions of
tori, and by Theorem 2.1 it suffices to study the case when X is a toric variety for
an (n+ 1)-dimensional torus, where n = rankG.

A toric variety is uniquely determined by a convex cone C ⊂ Qn+1 with linear
span equal to the entire space Qn+1 that is generated by the vectors corresponding
to all weights of the torus (K∗)n+1 occurring in the weight decomposition of K[X].
This is the cone dual to the one usually considered in the theory of toric varieties.
The condition X//T = A1 means that C contains the positive ray of the last
coordinate axis in Qn+1 but does not contain the negative ray (we assume here
that T is embedded into (K∗)n+1 with respect to the first n variables).

Definition. We call an action T : X an fp-action (a fixed-point action) if the
projection C0 of C onto Qn (the first n variables) lies in some closed subspace.
Otherwise the action is called an nfp-action.

If G is semisimple, then the induced action T : Spec(K[X]U) is an fp-action.
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Lemma 4.1. All fibres of the quotient morphism π : X → X//T = A1, except for
the fibre over the origin, are toric varieties with respect to the torus T corresponding
to the cone C0.

Proof. We have K[X] = K[t, . . . , trlχλl , . . . ]. Hence

K[π−1(A1 \ {0})] = K[X][t−1] = K[t, t−1]⊗KK[. . . , χλl , . . . ] = K[t, t−1]
⊗
K

K[Y ].

It follows from Lemma 4.1 that nfp-actions can be characterized by the condition
that the generic fibre of the morphism π : X → X//T be the torus T itself.

Remark. If we have a finite set of cones in Qn+1 containing only the positive ray
of the last coordinate axis such that their projections onto Qn are the same, then
the toric varieties corresponding to these cones can be glued together (in more than
one way) into a single variety X, and each normal affine (n+1)-dimensional variety
endowed with an effective action of the n-dimensional torus with one-dimensional
quotient can be obtained in this way.

It remains to consider the fibre Y0 of the morphism π over the origin. The algebra
K[Y ] has a well-defined Z-filtration: to each weight (q1, . . . , qn), qi ∈ Z, belonging
to C0 we assign the least number qn+1 ∈ Z such that (q1, . . . , qn, qn+1) ∈ C.

The passage fromK[X] to K[Y0] consists in considering the quotient by the ideal
(t), which can be interpreted as the passage from K[Y ] to the associated algebra
grK[Y ] with respect to the above filtration and the subsequent passage to the
quotient by the maximal nilpotent ideal. After this, the only weights that remain
in K[Y ] are those that are the projections of integral points lying in the proper
faces of C. A product of eigenfunctions with respect to the torus that correspond
to points in distinct faces of C corresponds to a point inside C, and therefore this
product becomes a nilpotent function after the restriction to the fibre over the
origin.

Hence it is easy to see that the number of irreducible components of the fibre Y0

is the number of those projections of the faces of C onto Qn having dimension n.
These projections define a partition of C0 into cones of the same dimension.

Proposition 5. (1) For nfp-actions, the number of irreducible components of the
fibre over the origin is the number of faces of the cone C.

(2) For fp-actions, the number of irreducible components of the fibre over the
origin is at least the number of faces of the cone C minus n.

Corollary 1. All fibres of the quotient morphism corresponding to an action of
a rank one semisimple group or an fp-action of the one-dimensional torus are
irreducible.

Thus, we have obtained another proof of Proposition 5 of [2].

Corollary 2. For an nfp-action of an n-dimensional torus on an (n+ 1)-dimen-
sional normal affine variety, the following conditions are equivalent:

(1) all fibres of the quotient morphism are irreducible;
(2) all fibres of the quotient morphism are isomorphic to the n-dimensional

torus itself.
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In the case of fp-actions the irreducibility of the fibres means that the corre-
sponding cone is simplicial. We also note that, as a rule, there is more than one way
to extend an action of the n-dimensional torus on an (n+1)-dimensional variety to
a locally transitive action of the (n + 1)-dimensional torus. However, the number
of faces of the resulting cone is always the same.

Now let Ci be some face of C having projection C0,i of maximal dimension n,
C0,i ⊂ C0. Let a1x1 + · · ·+ anxn + an+1xn+1 = 0 be an equation distinguishing Ci
in C. Then the projections of integer points lying in Ci are distinguished among

all points in C0,i with integer coordinates by the condition
a1x1 + · · ·+ anxn

an+1
∈ Z,

that is, they belong to a sublattice of finite index. Hence the irreducible component
of the fibre over the origin corresponding to the face C0,i is a toric variety, although
not for the torus T itself, but for its quotient with respect to the finite subgroup
defined by the above sublattice. Hence we obtain the following result.

Proposition 6. Assume that we have a simple qs1-action of a reductive group G.
Then all irreducible components of each of the fibres of the quotient morphism are
normal.

Now, we proceed to the case G = SL2.

5. Classification of (S,N)(S,N)(S,N)-varieties

We consider the classification of affine normal embeddings of the homogeneous
space K∗ × SL2/N in the framework of the Luna–Vust theory.

Figure 2

In Fig. 2 we depict the respective cones of invariant valuations Υ and the ‘colours’
for the homogeneous spaces K∗, SL2/N , and K∗×SL2/N . For the required defini-
tions, see [12]. The affine criterion in [12] shows that all normal affine embeddings
of the homogeneous space K∗×SL2/N are defined by coloured cones of one of the
types depicted in Fig. 3.

The first two embeddings are SL2/N × K∗ and SL2/N × K respectively. To
define a cone of type (3) it suffices to specify a line in the upper left quadrant that
is defined over the field of rationals. This is equivalent to the specification of a pair
of coprime positive integers (n, k).

The embeddings corresponding to the cones of the types (2′) and (3′) can be
obtained from the embeddings corresponding to (2) and (3) by means of the auto-
morphism t→ t−1 of K∗.
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(0,∅) (Q+(0, 1),∅) (Q+(0,−1),∅)

Figure 3

Figure 4

The algebra of regular functions on the variety corresponding to the embedding
defined by a pair (n, k) can be described explicitly, as shown in Fig. 4.

Namely, we consider the cone C in Q2 contained between the positive ray of the
axis Oy and the ray from the origin passing through the point (k, n) (recall that
k > 0 and n > 0 by assumption). Then

K[X] =
{
tr2V4r1 | (r1, r2) ∈ C, r1, r2 ∈ Z} ⊂ K[A1]⊗K[SL2/N ], (1)

where by V4r1 we mean the (4r1 + 1)-dimensional irreducible SL2-module. The
resulting variety X is normal because Spec k[X]U is a toric variety by construction.
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Using gluing and Proposition 2 we obtain the following result.

Theorem 3. The (S,N)-varieties are in one-to-one correspondence with the fol-
lowing set of data:

(1) a smooth irreducible affine curve C;
(2) a finite collection W of points on this curve (possibly empty);
(3) a collection of pairs of coprime positive integers (k1, n1), . . . , (km, nm),

where M =| W |, each pair attached to some point in W and called the
mark of this point.

The assertion of Theorem 3 is a special case of the corollary to Theorem 2.2, but
we can present in this case a geometric construction of the variety corresponding
to a pair of numbers (n, k). The corresponding variety is constructed in [2] and
is denoted in that paper by NormXk

n. We now recall the necessary definitions
from [2]. Let V2 be the module of the adjoint representation for SL2 and let Xk

be the quotient of V2 by the group Z2k acting as scalar multiplications by the 2kth
roots of unity. If we denote the standard coordinate functions in V2 by a, b, and c,
then K[Xk] = K[aibjcl | i + j + l = 2k]. We now consider the variety Xk

n that is
the spectrum of the algebra K[aibjcl(i + j + l = 2k), z | zn = (b2 − 4ac)k]. The
action of SL2 on all these varieties is naturally induced by the action on V2, and
the element z is invariant. The valuation morphism NormXk

n → Xk
n is bijective.

We now find the cone corresponding to the embedding NormXk
n.

Let ε be the fundamental weight of K∗ and let λ be the fundamental weight
of a maximal torus in SL2. Since the closure of a B-invariant divisor on the
homogeneous space K∗×SL2/N contains the unique SL2-fixed point of NormXk

n,
it follows that the ‘colour’ D1 enters the cone under consideration. There exists
precisely one divisor F on NormXk

n that is invariant with respect to K∗ × SL2;
namely, the fibre of the quotient morphism for SL2 containing the fixed point. The
function z is SL2-invariant, and it is an eigenfunction of weight ε for the torus K∗.

Let q be the order of the zero of z on F . The function
a2k

(b2 − 4ac)k
isK∗-invariant,

and it is semi-invariant of weight 4kλ with respect to SL2. This function has a pole
of order qn on F . Thus, we can associate with F a valuation that has the coordinates
(−qn/k, q) in our notation. The corresponding cone is defined by the pair (n, k).

The variety Xk
n can be obtained from Xk by passing to the fibre product with

respect to the morphism z → zn of quotients. Hence k corresponds to the order of
the stabilizer of a point in a non-closed orbit of the singular fibre of Xk

n, while n is a
kind of a ‘rotation index’ of the variety with respect to this singular fibre. A similar
situation occurs in the theory of actions of compact groups on three-dimensional
varieties. Namely, it is for the same reasons that oriented Seifert invariants were
introduced in Raymond’s classification of effective and smooth actions of the circle
on smooth closed connected 3-varieties (see, for instance, [15]).

6. Classification of (S, T )(S, T )(S, T )-varieties

In a similar way to (S,N)-varieties we can classify (S, T )-varieties of birationally
trivial type. The only modification required is the replacement of V4r1 by V2r1

in (1). Theorem 3 holds also in this case.
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Consequently, there can be no orbits of type SL2/N in a birationally trivial
(S, T )-variety. This is also implied in étale slice theory because ifXT were reducible,
then the slice in a neighbourhood of a closed orbit of type SL2/N would be reducible
and connected, and therefore not normal. On the other hand a point in the slice is
normal if and only if it is normal in the variety.

The homogeneous space SL2/T admits exactly one non-trivial SL2-equivariant
automorphism, and by Lemma 3.2 this automorphism can be extended to each
(S, T )-variety. Passing to the quotient by this action of Z2 we obtain an (S,N)-
variety.

Proposition 7. Each (S,N)-variety admits a two-fold covering in the above way
by a unique (S, T )-variety of birationally trivial type. Under this covering, the mark
(ki, ni) on the (S,N)-variety corresponds to the mark (2ki, ni) if ni is odd and to
(ki, ni/2) if ni is even. The fixed point is an isolated branching point in the first
case, and there exists a branching divisor in the second.

The proof follows from the fact that the action of Z2 commutes with the passage
to a fibre product and gluing.

We now consider a birationally non-trivial (S, T )-variety X. The condition
that X be non-trivial is equivalent to the condition that the curve XT be irre-
ducible. By Proposition 3, X has a twofold covering by a birationally trivial (S, T )-

variety X̃, and the covering morphism is the quotient morphism by Z2 (a two-fold
covering is always a Galois covering). Such a covering is unique because the alge-

bra of regular functions on X̃ coincides with the integral closure of K[X] in the
canonically defined extension of degree two of the field k(X).

Example. The three-dimensional space of the adjoint representation of SL2 is a
birationally non-trivial (S, T )-variety. It has a twofold covering that is a birationally
trivial (S, T )-variety, the hypersurface z2 = b2 − 4ac in four-dimensional space. In
our classification of birationally trivial (S, T )-varieties this hypersurface corresponds
to a line with a single mark (1, 1) at the origin.

The SL2-equivariant action of Z2 on X̃ induces a non-trivial action of Z2 on

the quotient X̃//SL2 = C. As follows from the classification of birationally trivial
(S, T )-varieties, to define a birationally trivial (S, T )-variety with required action
of Z2 it is necessary and sufficient to define an irreducible smooth affine curve with
non-trivial action of Z2 and to put marks on this curve with the only constraint:
points belonging to the same Z2-orbit must be either both unmarked or marked by
the same pair of numbers (in particular, there are no restrictions on the marks at
Z2-fixed points). Such a system of marks is said to be Z2-invariant.

Theorem 4. Birationally non-trivial (S, T )-varieties are in one-to-one correspon-
dence with the following set of data:

(1) a smooth irreducible affine curve C endowed with a non-trivial action of Z2;
(2) a (maybe empty) Z2-invariant system of marks on C.

Remarks. (1) The unmarked Z2-fixed points in C correspond to the fibres of type
SL2/N in X.
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(2) If X is a birationally non-trivial (S, T )-variety, then the irreducible curve XT

is not necessarily smooth. In particular, it is certainly singular if not only Z2-fixed
points are marked on C.
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