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We study asymptotics of the eigenvalues and eigenfunctions of the operators used for constructing 
multidimensional scaling (MDS) on closed connected symmetric spaces. They are the limits of eigenvalues 
and eigenvectors of squared distance matrices of an increasing sequence of finite subsets covering the 
space densely in the limit. We show that for products of spheres and real projective spaces, the numbers 
of positive and negative eigenvalues of these operators are both infinite. We also find a class of spaces 
(namely RPn with odd n > 1) whose MDS defining operators are not trace class, and original distances 
cannot be reconstructed from the eigenvalues and eigenfunctions of these operators. 
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1. Introduction 

A problem frequently encountered in the modern data science is that of reconstructing a metric space 
(X, d) and the Borel probability measure μ on it just from the information on the distances between 
points of a sufficiently large finite subset Σk := {xk 

1, . . . , xk 
k} ⊂  X. Here we require the subset Σk to 

cover X ‘almost densely’ and with a density approximately μ. Of course, unless X is finite itself, no 
finite set of points will be sufficient to reconstruct the triple (X, d, μ) and one can only hope to do this 
in the limit as k → ∞. To be more precise, we suppose we know the distances between points of each 
set Σk of some chosen sequence of finite subsets of X, and would like to recover from it the information 
on (X, d, μ). This is known as the learning problem (or manifold learning, when X is a priori supposed 
to be some smooth, say, Riemannian manifold, and d to be its geodesic distance). 

One of the basic algorithms aiming to solve the learning problem and widely used in applications 
is multidimensional scaling (MDS) [21]. Although the latter has been originally proposed only for 
intrinsically Euclidean data (i.e., when X is a subset of a Euclidean space Rn and the distance d is 
Euclidean), it has been extended to generic metric spaces. Moreover, in applied science ‘folklore’, it 
is often used not only when the distance d is non-Euclidean, but also when d is merely some symmetric 
function not necessarily satisfying the triangle inequality (the so-called dissimilarity function). Whether 
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2 T. MA AND E. STEPANOV

this application of MDS is justified, i.e., what will be reconstructed by MDS when d is a non-Euclidean 
distance has been recently posed and solved in [1] with quite an astonishing answer. Namely, take 
X := S1 as a unit circle endowed with its geodesic distance, and let the points of Σk ⊂ X to be uniformly 
spaced so that in the limit as k → ∞  they cover X uniformly. Then according to [1], MDS yields in the 
limit as k → ∞  a closed curve in an infinite-dimensional space, which is far from being a circle. An easy 
calculation shows that it is a fractal object, namely, a snowflake embedding [18] of a circle in an infinite-
dimensional Hilbert space [15]. It becomes an isometric embedding if S1 is endowed with the geodesic 
distance raised to some power α = 1/2. Although this may be unexpected in view of various commonly 
used applications of MDS, an explanation of this fact may be also traced back to the classical work 
[20] by von Neumann and Schoenberg. In their paper, all the invariant metrics on the circle that embed 
isometrically into a Hilbert space are classified, including of course the 1/2-snowflake re-obtained via 
MDS, which is actually credited to the earlier work [22], see also the discussion in ([9], section 7.3). 

1.1 Asymptotics of MDS embeddings 

In the study of asymptotical behaviour of the spectra of matrices of squared distances between points of 
finite samples Σk ⊂ X, as well as of the embedding maps Mk : Σk → Rk produced by MDS, the linear 
operator T over the space L2(X, μ) defined by the following formulae plays an important role. 

K(x, y) := −1 
2 

d2(x, y), 

(Ku)(x) :=
∫

X 
K(x, y)u(y) dμ(y), 

T := PKP, 

(1.1) 

where P is the projector operator to the orthogonal complement of constant functions in L2(X, μ). Both  
K and T are well-defined under just a mild assumption that μ has a finite fourth order moment, i.e.

∫
X 

d4(x0, y) dμ(y) <  ∞ (1.2) 

for some x0 ∈ X (which holds for instance when μ is finite and X is bounded). Moreover, in this case, they 
are self-adjoint Hilbert–Schmidt (and hence compact) operators. What is more important is the following: 
under the same assumption ( 1.2), suppose the empirical measures μk of finite samples Σk := {xk 

1, . . . , xk 
k} 

defined by 

μk := 
1 
k 

k∑
i=1 

δxk 
i 
, 

δy standing for the Dirac mass concentrated in y ∈ X, converge to μ as k → ∞  in the Kantorovich 1 

4-distance W4, i.e. limk W4(μk, μ) = 0. Then according to ([10], theorem 5.8), the maps Mk viewed 
as functions from X to R∞ (with Rk canonically identified with the subspace of R∞ having all zero 

1 Usually, though historically incorrectly, the distances Wp among probability measures are called Wasserstein distances.
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EIGENVALUES/EIGENFUNCTIONS OF MDS DEFINING OPERATORS 3

coordinates except the first k coordinates) converge to some map M : X → R∞, called further infinite 
MDS map, in measure μ with respect to the product topology on R∞ (see also [12]). The latter is given 
by the formula 

M(x) :=
(√

λ+ 
1 φ

+ 
1 (x),

√
λ+ 

2 φ
+ 
2 (x). . . . ,

√
λ+ 

j φ
+ 
j (x), . . .

)
, (1.3) 

where λ+ 
1 ≥ λ+ 

2 ≥ . . .  >  0 are positive eigenvalues of T (counting multiplicity), and {φ+ 
j }j ∈ L2(X, μ) 

is an orthonormal system in L2(X, μ) made of the respective eigenfunctions, i.e. Tφ+ 
j = λ+ 

j φ
+ 
j . Note  

that the definition of M depends on the choice of φ+ 
j . Here we silently assume that if the set of positive 

eigenvalues of T contains N < ∞ elements, then (M(x))j := 0 for  j > N. 
By calculating explicitly the eigenvalues and eigenfunctions of T and using (1.3), one shows in 

[10] that M gives a snowflake (Assouad-type) embedding of any m-dimensional sphere Sm or any 
m-dimensional flat torus (S1)m into the Hilbert space �2 of square summable sequences (in the 
calculations one assumes μ to be the respective volume measure in all these cases). 

Another important observation is the following: with the stronger assumption that T is a trace-class 
operator, i.e.,

∑
i 

|λi| < +∞, 

where {λi} stands for the sequence of all eigenvalues of T , let the metric measure space (X, d, μ) be, 
say, infinitesimally doubling (which includes any smooth Riemannian manifold equipped with geodesic 
distance and volume measure, see ([5], theorem 3.4.3)). Then by ([10], theorem 5.8) (see also [12]), in 
a sense, distances between almost every pair of points can be recovered from the spectrum of T and the 
set of the respective eigenfunctions. Namely, in this case, we have 

∞∑
i=1 

λi

(
φi(x) − φi(y)

)2 = d2(x, y) for μ ⊗ μ − a.e. (x, y), (1.4) 

where {φi} stands for an orthonormal basis in L2(X, μ) made of eigenfunctions of T with Tφi = λiφi. 
The importance of the trace class condition on the operators T and K for the asymptotics of the spectra 
of distance matrices has been also studied recently in [ 19]. This condition is discussed a lot in [12] as  
well, the metric measure spaces for which it holds being called traceable in the latter paper. 

1.2 Questions and results 

The above-cited results raise a series of curious questions. Namely, one asks whether there are natural 
examples of spaces (X, d, μ) such that 

(Q1) no infinite MDS map (i.e., independently on the choice of eigenfunctions of T) gives  a  
topological embedding of X into a separable Hilbert space (which of course without loss of 
generality may be considered �2), 

(Q2) the operator T is not trace-class (i.e. in terms of [12], the metric measure space is not traceable) 
and/or the distance reconstruction formula (1.4) is not valid. 
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4 T. MA AND E. STEPANOV

We find both examples among just compact Riemannian manifolds with volume measure (and 
even more, among compact symmetric spaces), namely, both (Q1) and (Q2) are satisfied by odd-
dimensional projective spaces of sufficiently high dimension. In particular, this answers (negatively) 
the open Question 1 from [12]. We do so by studying the operator T , its eigenvalues and eigenfunctions 
for symmetric compact Riemannian manifolds with volume measure. Note that in general, there seems 
to be no easy way to find either the spectrum or eigenfunctions of T . However, in this particular case 
the situation greatly simplifies since we are able to show that T commutes with the Laplace–Beltrami 
operator, which allows us to search for its eigenfunctions among the eigenfunctions of the latter. We 
are able then to show that if X is a finite product of spheres of any dimensions, the infinite MDS map 
gives a snowflake embedding of X into �2 thus generalizing the results of [10], while if X is a projective 
space with sufficiently high dimension, then M does not send X to �2 at all, and in particular the distance 
reconstruction formula (1.4) is not valid. Curiously however, as long as X is a finite product of spheres 
and projective spaces, the spectrum of T contains infinitely many positive and negative eigenvalues. 
This contrasts with the case that (X, d) is isometrically embeddable in a Hilbert space, in which all the 
eigenvalues of T are positive. 

2. Notation and preliminaries 

For vectors x and y in the Euclidean space Rn, we denote by x · y their Euclidean scalar product. The 
Euclidean norm is denoted by | · |. Let �2 be the usual Banach space of square summable sequences 
equipped with its usual norm ‖·‖2. The space R∞ stands for the linear space of all real-valued sequences 
(sometimes denoted by R N in the literature), equipped with its product topology. This space is metrizable 
and in fact a Polish space. The norm ‖ · ‖2 can be extended to a pseudo-distance on R∞ taking values 
in [0, +∞] which will be used in Lemma 2.1 below (note that this pseudo-distance does not induce 
the product topology on R∞). If X is a smooth Riemannian manifold, we denote by C∞(X) the set of 
infinitely smooth functions over X. 

Throughout the paper we sometimes use the big Theta notation by D. Knuth. 
For a metric measure space (X, d, μ), we will assume μ to be a Borel probability measure. By 〈x, y〉 we 

denote both the standard scalar product in the Hilbert space L2(X, μ). For  a  u ∈ L2(X, μ) we let u⊥ stand 
for its orthogonal complement in L2(X, μ). The spectrum of a linear operator T counting multiplicity 
is denoted as Spec(T). Its signature sgn(T) is written in the form (a, b, c) where the three numbers 
in the parentheses are the numbers of zero, positive and negative eigenvalues, respectively, counting 
multiplicities. 

Recall for a metric measure space (X, d, μ), the MDS map M : X → R∞ defined as in (1.3) are  
obtained from the positive eigenvalues and their corresponding eigenfunction the operator T . Such maps 
are not unique, since a different choice of the orthonormal set {φ+ 

j } yields a different map. However, 
they all have the common property given by the following statement. 

LEMMA 2.1. If the operator T is Hilbert–Schmidt, then for any MDS maps M1,M2, we have

‖M1(x) − M1(y)‖2 = ‖M2(x) − M2(y)‖2, for allx, y ∈ X. 

Moreover, in this case the right-hand side of (1.4) is independent of the choice of eigenfunctions φj 
of K. 

Proof. Since T is compact, every non-zero eigenspace of T is finite-dimensional. A new choice of the 
orthonormal set of {φ+ 

j } is obtained from L2(X, μ)-orthogonal transformation of each eigenspace Eλ+
α 

,

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/14/1/iaae038/7959555 by 10390485 user on 28 January 2025



EIGENVALUES/EIGENFUNCTIONS OF MDS DEFINING OPERATORS 5

corresponding to the eigenvalue λ+
α > 0. Let {φα 

j } and {φ̃α 
j } be two orthonormal bases of Eλ+

α 
. The  

space Eλ+
α 

with L2-norm can be identified as a Euclidean space with the standard norm, and orthogonal 
transformation on Euclidean spaces preserves Euclidean distances. Thus, we have

∑
j

(
φα 

j (x) − φα 
j (y)

)2 =
∑

j

(
φ̃α 

j (x) − φ̃α 
j (y)

)2 

Combining the equation above with the defining formula of MDS maps in (1.3), we obtain the desired 
equality. The independence of the right-hand side of (1.4) on the choice of eigenfunctions φj of K is 
shown in the same way. �

2.1 Review on Riemannian symmetric spaces 

We give a brief review of the basic properties of Riemannian symmetric spaces in this section. We begin 
by recollecting the basic facts on Riemannian manifolds which will be used in this paper. The metric g 
of a connected Riemannian manifold (Mn, g) defines a volume measure μ and a distance function d on 
M, where 

d(x, y) = inf{length(γ ) : γ is a curve from x to y}. 

This yields a metric measure space (M, d, μ). By the Hopf–Rinow theorem, (M, d) is a complete metric 
space if (M, g) is geodesically complete. If (M, g) is complete and connected, then for any x, y ∈ M, 
there exists a distance minimizing geodesic. For any x ∈ M, the tangential cut locus at x is the set of 
v ∈ TxM such that exp(tv) is a minimizing geodesic for t ∈ [0, 1], but fails to be a minimizing geodesic 
for any t > 1. The cut locus Cx at x is the image of this set under the exponential map at x. If  y ∈ Cx, we  
have either y is conjugate to x or there is more than one distance minimizing geodesic from x to y ([ 14], 
lemma 8.2). Therefore, we have y ∈ Cx if and only if x ∈ Cy. Define the symmetric subset of M × M by 

C = {(x, y) ∈ M × M : x ∈ Cy} 

It is a well-known fact that the function d2(x, ·) is smooth outside Cx. 
By a Laplacian (operator) on the Riemannian manifold, we always mean the Laplace–Beltrami 

operator. 
Let (M, g) be a Riemannian manifold. Recall that a local geodesic symmetry at p ∈ M is a local 

diffeomorphism rp on a neighbourhood of p such that for all geodesics γ (t) with γ (0) = p, we have  
rp(γ (t)) = γ (−t). 

DEFINITION 2.2. A Riemannian manifold (M, g) is called a symmetric space if for every p ∈ M, the local 
geodesic symmetry rp can be extended to a global isometry on M fixing p. 

It is obvious from the definition that all symmetric spaces are complete, and all connected symmetric 
spaces are homogeneous, i.e., the isometry group G acts transitively on (M, g). In fact, every connected 
symmetric space is a reductive homogeneous space as follows. Denote G and K the isometry group and 
the isotropy of some p ∈ M, respectively. Let g and k be the corresponding Lie algebras of G and K. 
The geodesic symmetry rp ∈ G at p satisfies r2 

p = Id, where Id stands for the identity map. Denote by 
Ad(rp) the adjoint action of the element rp in the Lie group G. We see that Ad(rp) is an involutive Lie
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6 T. MA AND E. STEPANOV

algebra automorphism of g. The Lie algebra g admits a decomposition g = k + m such that k and m are 
the eigenspaces of Ad(rp) corresponding to the eigenvalues 1 and −1, respectively. 

We close this section with some geodesic properties of symmetric spaces which will be used later. 
Let γ : R → M be a complete geodesic for the symmetric space (M, g). Then the following family of 
composed maps τs = rγ (s) ◦ rγ (0) is a 1-parameter subgroup of the isometry group G. Easily we have 

τs(γ (t)) = γ (t + s). 

Such maps are called geodesic transvections along γ . Although determining the geometry of cut loci of 
a general Riemannian manifold can be difficult, the cut loci of symmetric spaces have been well studied, 
see [ 6, 16, 17]. In particular, for a compact symmetric space (Mn, g), the cut locus at any x ∈ M is 
a finite disjoint union of regular submanifolds with possible different dimensions ([17], theorem 3.3). 
Taking the union of the submanifolds of dimension n − 1 in this decomposition of Cx, the Riemannian 
volume density μ together with the perpendicular unit vector fields define a measure μ

x on Cx. Hence, 
we may view Cx as a ‘piecewise smooth’ manifold of dimension n − 1. Note that μ

x can be zero if the 
decomposition of Cx has no components of dimension n−1, for example when M is the standard sphere. 

3. The MDS map for closed connected symmetric spaces 

From now on, we focus on the MDS maps of closed connected symmetric spaces. Let (S, g) be a closed 
connected symmetric space. Denote d and μ the distance function and Borel measure induced by g 
as before (i.e., the geodesic distance and the Riemannian volume measure). Since S is compact, it is 
well known that there is an orthonormal basis of L2(S) contained in C∞(S) consisting of Laplacian 
eigenfunctions, see e.g., ([23], p. 2) and ([11], theorem 2.2.17). In addition, each eigenvalue of the 
Laplace–Beltrami operator Δ has finite multiplicity, and eigenspaces of distinct eigenvalues are mutually 
orthogonal. 

Several easy consequences follow from our assumption. Since S is compact, the integral kernel of K 
is bounded and uniformly continuous on S×S. Thus, each eigenfunction of K (also for T) is continuous. 
In addition, for each non-zero eigenvalue of K, the corresponding eigenspace is finite-dimensional. 

As both the Laplacian operator and the integral kernel K(x, y) are closely related to the distance 
function, we would like to establish a relation between them. We begin with the following lemma leading 
to the symmetric property of the integral kernel of K for symmetric spaces. 

LEMMA 3.1. Let μ be the volume measure on S. For a compact symmetric space S, the integral kernel of 
K satisfies 

ΔxK(x, y) = ΔyK(x, y) for μ ⊗ μ−a.e. (x, y) ∈ S × S (3.1) 

Here Δx and Δy are the Laplace–Beltrami operators with respect to the x (i.e. first) and y (second) 
coordinates, respectively. 

Proof. First note that the integral kernel K(x, y) = −1 
2 

d2(x, y) is always symmetric, i.e. K(x, y) = 
K(y, x). For a fixed x ∈ S, the function K(x, ·) is smooth on S \ Cx, which is an open set of full measure 
in S. Since x ∈ Cy if and only if y ∈ Cx, the functions ΔxK(x, y) and ΔyK(x, y) are well defined a.e. on 
S × S with respect to μ ⊗ μ.
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EIGENVALUES/EIGENFUNCTIONS OF MDS DEFINING OPERATORS 7

Suppose that x /∈ Cy, and let γ : [−1, 1] → S be the unique minimizing geodesic from x to y. The  
geodesic symmetry r0 at the median γ (0) is an isometry interchanging x and y. Denote Ky the function 
K(·, y). Since r0 is an isometry, in a neighbourhood U of y we have 

(ΔKy)(r0(z)) = Δ(Ky ◦ r0)(z), for allz ∈ U. (3.2) 

Denote Δ1, Δ2 the Laplace–Beltrami operator with respect to the first and second coordinates in S × S, 
respectively. We also have 

Δ(Ky ◦ r0)(z) = Δ1K(r0(z), y) = Δ1K(z, r0(y)) = Δ1K(z, x) = Δ2K(x, z). (3.3) 

Combining ( 3.2) and (3.3) we get 

(Δ1K)(r0(z), x) = (ΔKy)(r0(z)) = Δ2K(x, z), 

and taking z := y, so that r0(z) = r0(y) = x, we get the desired equality. �
The following statement is valid. 

PROPOSITION 3.2. Let S be a closed connected symmetric space and μ is its volume measure. The operator 
T commutes with the self-adjoint extension ΔD to L2(S, μ) of the Laplace–Beltrami operator Δ on D, 
in the sense

〈Tf , Δh〉 = 〈TΔf , h〉, for all f , h ∈ C∞(S). (3.4) 

In other words. ΔD(Tf ) = T(ΔDf ) for every f ∈ C∞(S). Thus in particular T preserves each eigenspace 
of the Laplace–Beltrami operator.

Proof. Since the only harmonic functions on closed manifolds are constants, the Laplace-Beltrami 
operator Δ commutes with the projection P in (1.1) when acting on smooth functions. Since T = PKP, 
it suffices to show K commutes with Δ by the following equality.

〈Kf , Δh〉 = 〈KΔf , h〉, for all f , h ∈ C∞(S). (3.5) 

From Lemma 3.1, we have  

ΔxK(x, y) = ΔyK(x, y)for μ ⊗ μ − a.e. (x, y) ∈ S × S 

For any x ∈ S, denote Cx the cut locus of the point x as before. We cut the manifold S from Cx, and obtain 
a manifold Mx with boundary ∂Mx. Let  ix : ∂Mx → Cx be the canonical projection on the boundary. 
Using the decomposition theorem of Cx mentioned in Section 2.1 (see [17] for details), we obtain a 
decomposition of Cx (therefore, also of ∂Mx) as a finite union of disjoint regular submanifolds. Let Cx(l) 
for 1 ≤ l ≤ l0 be the n − 1-dimensional components in this decomposition of Cx. Each Cx(l) is a regular 
submanifold of dimension n − 1. Thus, for any y ∈ Cx(l), there is chart ψy : Uy → Rn such that 
ψy(y) = 0 ∈ Rn and the pre-image ψ−1 

y (Hn−1) is exactly Cx(l) ∩ Uy, where Hn−1 is the hyperplane 
with vanishing last coordinate in Rn. When we cut along Cx to obtain Mx, we see from the chart ψy that 
the pre-image of Cx(l) under (ix)−1 is a double cover ∂M0 

x (l) � ∂M1 
x (l) (boundaries of Mx corresponding
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8 T. MA AND E. STEPANOV

to half spaces of with positive and negative last coordinate in the chart ψy). Thus, by restricting only to 
components of ∂Mx of dimension n − 1, the unit outer normal Nx defines a measure μx on ∂Mx. The  
space (∂Mx, μx) is isomorphic to (Cx, μ

x ) ⊕ (Cx, μ
x ) as measure spaces. For a compact symmetric space 

(Sn, g), the conjugate locus at any x ∈ S has dimension strictly less than n−1 ([6], theorem 3.3 in chapter 
7). Since expx is non-singular outside the tangential conjugate locus, ∇yK(x, y) is well-defined a.e. on 
∂Mx. 

For all f , h ∈ C∞(S), we can apply the divergence theorem to obtain

〈ΔDKf , h〉 =
∫

S 
f (y)

∫
S 
Δxh(x)K(x, y)dμ(x)dμ(y) 

=
∫

S 
f (y)

∫
∂My 

K(x, y)〈∇xh, Ny(x)〉dμy(x)dμ(y) 

−
∫

S 
f (y)

∫
S
〈∇xh, ∇xK(x, y)〉dμ(x)dμ(y) 

Note that for each y ∈ S, the integral

∫
∂My 

K(x, y)〈∇xh, Ny(x)〉dμy(x) = 0 

because h is smooth on S (in fact, the integrals over opposite sides of the boundary cancel out). Therefore, 
we get

〈ΔDKf , h〉 = −
∫

S 
f (y)

∫
S
〈∇xh, ∇xK(x, y)〉dμ(x)dμ(y). (3.6) 

Analogously, we obtain

〈KΔf , h〉 = −
∫

S 
h(x)

∫
S
〈∇yf , ∇yK(x, y)〉dμ(y)dμ(x) (3.7) 

On the other hand, from (3.1) and the divergence theorem, we get

∫
S 

h(x)

(∫
∂Mx 

f (y)〈∇yK, Nx 
y 〉dμx(y) −

∫
S
〈∇yf , ∇yK〉dμ(y)

)
dμ(x) 

=
∫

S 
f (y)

(∫
∂My 

h(x)〈∇xK, Ny 
x 〉dμy(x) −

∫
S
〈∇xh, ∇xK〉dμ(x)

)
dμ(y) 

Comparing this with (3.6),(3.7), we need to prove

∫
S 

h(x)
∫

∂Mx 
f (y)〈∇yK, Nx 

y 〉dμx(y)dμ(x) 

=
∫

S 
f (y)

∫
∂My 

h(x)〈∇xK, Ny 
x 〉dμy(x)dμ(y) 

(3.8)
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EIGENVALUES/EIGENFUNCTIONS OF MDS DEFINING OPERATORS 9

To this aim, for any y ∈ Cx(l) not conjugate to x, let  yj ∈ Mj 
x(l) be the pre-image of y for j = 0, 1. Since 

distance minimizing geodesic segments starting from x cannot intersect Cx except for the end-points, 
there exist distance minimizing unit speed geodesics γj in Mx from x to yj for j = 0, 1. For simplicity, 
denote the geodesic in S corresponding to γj by the same notation. The geodesic transvection τj along 
γj sending x to y is an isometry. It maps Cx to Cy, and the curve γj into itself with τj ◦ rx(y) = x. Thus, 
the component of Cy containing x is a regular submanifold of dimension n − 1, and the preimage i−1 

y (x) 
also contains exactly two points in ∂My. Let  xj be induced by the reversed curve of γj. Because yj is not 
conjugate to x and xj is not conjugate to y, we have ∇yK(x, yj) and ∇xK(y, xj) are well-defined. If we can 
show 

1∑
j=0

〈∇yK(x, yj), Nx 
yj
〉 =  

1∑
j=0

〈∇xK(y, xj), Ny 
xj
〉, (3.9) 

then ( 3.8) is just an application of the Fubini theorem and hence the proof would be concluded. Since γj 
is a distance minimizing geodesic segment from x to yj, we have  

∇yK(x, yj) = −d(x, y)γ̇j(d(x, y)) 

Combining the equality above with the fact τj ◦ rx is an isometry mapping y to x, we obtain 

(τj ◦ rx)∗(∇yK(x, yj)) = ∇xK(xj, y), (τj ◦ rx)∗(Nx 
yj ) = Ny 

xj , for all j = 0, 1 

Thus ( 3.9) holds which proves (3.8) and therefore (3.5) which as explained concludes the proof of the 
fact that T and ΔD commute as claimed. 

To prove the last claim, i.e. that T preserves each eigenspace of Δ, note that for all f1, f2 ∈ C∞(S) 
such that Δfi = λif with i = 1 and 2, we have

〈Tf1, λ2f2〉 = 〈Tf , Δf2〉 = 〈TΔf1, f2〉 = 〈λ1Tf1, f2〉. 

Therefore, Tf1 is perpendicular to all eigenspaces of Δ corresponding to eigenvalues distinct from λ1. 
Since there is an orthonormal basis of L2(S) consisting of Δ-eigenfunctions, we see Tf1 is contained in 
the eigenspace of λ1 for Δ. This completes the proof. �

4. MDS for elementary symmetric spaces 

4.1 Products of spheres 

We can derive the spectrum of T for product spaces based on the components in the decomposition. 
More precisely, we can obtain the spectrum of T for a product of finite number of spaces based on the 
spectra of all the Ti which are the spectra of the MDS associated operators for component spaces in the 
product. The discussion of a product of two spaces has already been given in ([10], section 6.2) (see 
also ([12], sections 4.1, 4.3)). Here we follow their approach to derive the general formula of a product 
of N spaces, which serves both as a review of the above cited results, and also gives us a possibility to 
compute explicitly the signature of the operator T associated with the product space of spheres. These 
results are summarized in Proposition 4.1 in the sequel.
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10 T. MA AND E. STEPANOV

To this aim, let (X, d, μ) be the metric measure space induced by the product manifold 

X = 
N∏

i=1 
Xi, g = 

N∑
i=1 

gi; 

where each gi is the Riemannian metric on a compact connected manifold Xi. Denote di and μi the 
Riemannian distance and the normalized Riemannian volume on (Xi, gi). It follows that for x = (xi) ∈ X 
and y = (yi) ∈ X, we have  

μ = 
N∏

i=1 
μi, d2(x, y) = 

N∑
i=1 

d2 
i (xi, yi). 

Since the space (Xi, gi) are all connected, the Hilbert spaces L2(X, μ) and L2(Xi, μi) are all separable. 
One would naturally expect the MDS maps and the associated operator to be in the form of Cartesian 
products of those for each component. This is exactly the case as in ([ 10], section 6.2). Suppose {φj 

i} 
is an orthonormal basis diagonalizing the associated operator Ti for (Xi, di, μi). Then {φj1 

i1 
, . . . , φjN 

iN
} 

is an orthonormal basis for L2(X, μ) by the Fubini theorem. According to ([10], proposition 6.2), the 
associated operator T is diagonalizable with respect to this basis. Since the constant functions are in the 
kernel of Ti for all 1 ≤ i ≤ N, we can choose {φj 

i} such that the non-constant elements are in 1⊥. Then 
for Φ = φj1 

i1 
· · ·  φjN 

iN 
, we have  T(Φ) = 0 unless the components of Φ contain exactly 1 non-constant 

function. To see this, we first compute 

−2K(Φ)(x) = 
N∑

i=1

∫
X 

d2 
i (xi, yi)φ

j1 
i1 
(y1) · · ·  φjN 

in 
(yN)dμ(y) 

If there is more than one non-constant component in Φ, apply the Fubini theorem to the integrals above. 
We can re-order the integration so that inside each integral, the innermost term satisfies

∫
Xl 

φ
jl 
l dμl = 0 

Therefore, if N > 1, the kernel of T is infinite dimensional. 
If all components of Φ are constant, clearly T(Φ) = PKP(Φ) = 0. Assume Φ = φj1 

1 is non-constant 
and T1(φ

j1 
1 ) = λj1 

1 φ
j1 
1 . We obtain T(Φ) = λj1 

1 Φ. As a result, for the non-zero spectra of T and Ti, we  
have 

Spec(T) \ {0} = �N 
i=1

(
Spec(Ti) \ {0}) , (4.1) 

where both sides of the relation above are eigenvalues counted with multiplicity. This implies T is a 
trace-class operator if and only if each Ti is trace-class. 

Since the map T for any compact space has at least one positive eigenvalue, the product of N 
Riemannian manifolds shall have at least N positive eigenvalues counting multiplicity. 

Now let X be a product of N spheres with N > 1. We know from ([10], section 6.1) that the operator 
Ti for each component sphere is trace-class and has signature (1, ∞, ∞), where the three numbers in
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EIGENVALUES/EIGENFUNCTIONS OF MDS DEFINING OPERATORS 11

the parentheses denote the number of zero, positive and negative eigenvalues counting multiplicity. The 
condition N > 1 implies T has an infinite-dimensional kernel. From (4.1), we see T has infinitely many 
strictly positive and negative eigenvalues counting multiplicity. Therefore T has signature (∞, ∞, ∞). 
Summing up, we obtain the following statements. 

PROPOSITION 4.1. Let X = ∏N 
i=1 Xi and g = ∑N 

i=1 gi be the product space of compact connected 
Riemannian manifolds. Denote by d and μ the geodesic distance and the volume measure induced by g 
respectively. Then the map T for (X, d, μ) has at least N positive eigenvalues counting multiplicity, and 
T is a trace-class operator if and only if each Ti is trace-class. 

In particular, if X is a finite product of N spheres (possibly just circles), then the operator T is trace-
class and has signature (∞, ∞, ∞) for N > 1, i.e. T has infinitely many zero, positive and negative 
eigenvalues counting multiplicity. 

REMARK 4.2. Suppose X is a product of spheres (in particular just circles). Since X is closed symmetric, by 
Proposition 3.2 the operator T preserves all eigenspaces of Δ. Let  Eλα 

i 
be an eigenspace of the Laplace– 

Beltrami operator for (Xi, gi) and denote πi : X → Xi the canonical projection. The map πi pulls back the 
space of functions Eλα 

i 
on Xi to a space of functions π∗

i (Eλα 
i 
) on X. The operator T preserves the space 

π∗
i (Eλα 

i 
) and is self-adjoint on it with respect to the L2(X, μ)-norm. In fact, the operator T is simply a 

constant scaling on π∗
i (Eλα 

i 
). To show this, denote by G the isometry group of g, then for any s ∈ G we 

have 

K(s · f )(x) =
∫

X 
K(x, y)f (s · y)dμ(y) 

=
∫

X 
K(s · x, s · y)f (s · y)dμ(y) 

=
∫

X 
K(s · x, z)f (z)dμ(z) = K(f )(s · x). 

Therefore, the natural action of G commutes with the operator K (hence T). Let Gi be the isometry group 
of (Xi, gi). Since each component (Xi, gi) is a sphere, the isometry group Gi acts irreducibly on Eλα 

i 
([ 7], 

theorem 3.1 in the Introduction), and preserves the eigenspaces of T when viewed as a subgroup of G. 
Thus, T can have only one real eigenvalue on each π∗

i (Eλα 
i 
). In particular, the map T has only one real 

eigenvalue on each Laplacian eigenspace of standard spheres. 

4.2 Projective spaces 

4.2.1 Signature of T for projective spaces Here we consider the case X := RPn, an  n-dimensional 
real projective space equipped with its geodesic distance d and Riemannian volume measure μ. Since 
RP

n = Sn/Z2, we expect the MDS for projective spaces to behave similarly compared to spheres. On 
the other hand, we will see in this section how the global topology makes a difference in MDS maps 
on projective spaces compared to the MDS on spheres. We start by determining the signature of T for 
projective spaces RPn. 

The Laplacian eigenfunctions on RPn are well-defined projections of spherical harmonics. Hence, 
they are projections of spherical harmonics of even degree. Clearly as for the spheres, the group SO(n) 
acts irreducibly on each Laplacian eigenspace of RPn. Thus, each eigenspace of T is a direct sum of 
eigenspace of Δ on RPn.
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12 T. MA AND E. STEPANOV

For x, y ∈ S
n, the distance between the lines [x] and [y] on  RPn is arccos(|x · y|). We know that the 

operators T and K share all eigenvalues and eigenfunctions except for those corresponding to constant 
functions. To compute the spectrum of K for projective spaces, let 2k be even. Then by the Funk–Hecke 
theorem ([4], p. 98), the eigenvalues λn 

2k of K for RPn corresponding to spherical harmonics of degree 
2k are given by 

λn 
2k = σn

∫ 1 

0 
arccos2(t)Pn 

2k(t)
(

1 − t2
)(n−2)/2 

dt, (4.2) 

where Pn 
2k(t) is the Legendre polynomials for Sn of degree 2k, and the numbers 

σn = −vol(Sn−1) 
vol(Sn) 

are negative constants depending only on n. To avoid the confusion, let us emphasize the subscript 2k 
in the notation λn 

2k does not stand for the consecutive number of the eigenvalue in the increasing order. 
Inside the integral in ( 4.2), only the term 

Fn 
2k(t) = Pn 

2k(t)(1 − t2)(n−2)/2 = Rn 
2k

(
d 
dt

)2k (
1 − t2

)2k+(n−2)/2 
(4.3) 

is affected by the dimension n and even degree 2k. For 2k even, the Rodrigues constants Rn 
2k are given 

by ([ 13], p. 22) 

Rn 
2k = 

1 
4k 

Γ (n/2) 
Γ (n/2 + 2k) 

. (4.4) 

These constants are all positive. Note that the equations ( 4.2) and (4.3)) are still valid for the special 
case n = 1, where P1 

2k are given by Chebyshev polynomials of the first kind. For n ≥ 1 and 2k ≥ 2, a 

substitution t = cos θ using 
d 

dθ 
= − sin θ · d 

dt 
yields 

Fn 
2k(cos θ)  

=Rn 
2k

( −1 
sin θ 

d 
dθ

)2k [
(sin θ)4k+n−2

]

=(4k + n − 2)Rn 
2k

( −1 
sin θ 

d 
dθ

)2k−2[
(2(2k − 1) + n − 2)(sin θ)2(2k−2)+n−2 

− (2(2k − 1) + n − 1)(sin θ)2(2k−2)+n
]

=(4k + n − 2)

[
(2(2k − 1) + n − 2) 

Rn 
2k 

Rn 
2k−2 

Fn 
2k−2(cos θ)  

−(2(2k − 1) + n − 1) 
Rn 

2k 
Rn+2 

2k−2 
Fn+2 

2k−2(cos θ)

]
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EIGENVALUES/EIGENFUNCTIONS OF MDS DEFINING OPERATORS 13

By linearity of the integration, we combine the equation above and (4.2) to obtain 

1 
σn 

λn 
2k =(4k + n − 2)

(
(4k + n − 4) 

Rn 
2k 

σnRn 
2k−2 

λn 
2k−2 − (4k + n − 3) 

Rn 
2k 

σn+2Rn+2 
2k−2 

λn+2 
2k−2

)
(4.5) 

Note for n ≥ 1 and 2k ≥ 2, we always have 4k + n − 4 > 0. From the signs of the coefficients in 
the equation above, we see the following: if {λn 

2k}∞k=1 is a sequence of alternating signs indexed by even 
numbers 2k, the signs of numbers in the sequence {λn+2 

2k } will also be alternating. For the basic case 
n = 1, the Riemannian manifold RP1 is isomorphic to S1 by doubling the angles between lines. For S1, 
the signs of eigenvalues of K corresponding to the eigenfunctions cos(mθ)  are alternating, depending on 
whether m is odd or even ([ 2], section 2). Thus, the signs of the sequence {λ1 

2k} indexed by even 2k are 
also alternating. Combined with the argument above, we obtain the following result. 

LEMMA 4.3. For n odd, the MDS defining operator T on RPn has both infinitely many positive and 
negative eigenvalues. 

We then turn to the case of even-dimensional projective spaces, starting from the basic case of 
RP

2. We expect that the signature of T for even-dimensional projective spaces is similar to the odd 
dimension cases. A numerical computation for the first 6 eigenvalues (corresponding to even degree 
spherical harmonics up to 2k = 10) shows they have alternating signs, see the pictures below. 

Although computing the spectrum of T for projective spaces can be difficult, we can easily obtain 
some information on sgn(T) for RP2 using Mercer’s theorem. 

LEMMA 4.4. The operator T on RP2 has infinitely many strictly positive and negative eigenvalues 
counting multiplicity.
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14 T. MA AND E. STEPANOV

Proof. Since RP2 is homogeneous, we only need to prove this statement for K. Suppose K has only 
finitely many strictly negative eigenvalues counting multiplicity. Let λ2k be the eigenvalue of K for RP2 

corresponding to the degree 2k spherical harmonics. Let {φm 
2k} with −2k ≤ m ≤ 2k denote the standard 

L2-orthonormal basis with respect to μ of the Laplacian eigenspace H2k of RP2 corresponding to degree 
2k spherical harmonics. The function 

N(x, y) =
∑

λ2k<0 
λ2k 

2k∑
m=−2k 

φm 
2k(x)φ

m 
2k(y) (4.6) 

is smooth and bounded, since the summation above is finite. We can decompose the integral kernel as 

K(x, y) = N(x, y) + H(x, y), 

where N(x, y) is a negative integral kernel and H(x, y) is a positive integral kernel. Because the positive 
operator 

H(f )(x) =
∫
RP

2 
H(x, y)f (y)dμ(y) 

has a continuous bounded kernel, Mercer’s theorem ([ 3], theorem 4.10) implies the following conver-
gence with respect to summation of λ2kφ

m 
2k(x)φ

m 
2k(y) is absolute and uniform: 

H(x, y) =
∑

λ2k≥0 

2k∑
m=−2k 

λ2kφ
m 
2k(x)φ

m 
2k(y). (4.7) 

From the basic properties of spherical harmonics ([ 4], theorem 3.3.3) we obtain 

2k∑
m=−2k 

φm 
2k(x)φ

m 
2k(y) =dim(Hk)P2k(cos(d(x, y))) 

=(4k + 1)P2k(x · y). 

Here we use x, y to denote both points in RP2 and their lifts to S2 (hence also to R3). Since P2k is even, 
the value of P2k(x ·y) is always well-defined. Therefore, we obtain the absolute and uniform convergence 
of the series 

H(x, y) =
∑

λ2k≥0 
λ2k(4k + 1)P2k(x · y), 

and, taking into account that in ( 4.6) we have only a finite sum, it follows that on (RP2)2 the series 

−1 
2 

d2(x, y) = −1 
2 

arccos2(|x · y|) = K(x, y) = 
∞∑

k=0 
λ2k(4k + 1)P2k(x · y) (4.8)
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converge absolutely and uniformly. This implies for t ∈ [0, 1], the convergence 

arccos2(t) = −2 
∞∑

k=0 
λ2k(4k + 1)P2k(t) (4.9) 

is also absolute and uniform over [0, 1]. 
On the other hand, from ( 4.2) we know the eigenvalues of K for RP1 are given by 

λ1 
2j = −  

1 
π

∫ 1 

0 
arccos2(t)C2j(t) 

1√
1 − t2 

dt, (4.10) 

where the C2j are the Chebyshev polynomials of the first kind of degree 2j. Since the convergence in 
( 4.9) is absolute and uniform, the Lebesgue dominated convergence theorem implies 

λ1 
2j = 

2 
π 

∞∑
k=0 

λ2k(4k + 1)

∫ 1 

0 
P2k(t)C2j(t) 

1√
1 − t2 

dt (4.11) 

According to ([ 8], p. 96), the even degree Legendre polynomials can be expanded by Chebyshev 
polynomials as 

P2k(t) =
(

Γ (1/2 + k) 
Γ (1/2)Γ (k + 1)

)2 
C0 

+ 2 
Γ 2(1/2) 

k∑
i=1

(
Γ (k − i + 1/2)Γ (k + i + 1/2) 

Γ (k − i + 1)Γ (k + i + 1)

)
C2i(t) 

The functions C2j(t) are even, and we have

∫ 1 

0 
C2i(t)C2j(t) 

1√
1 − t2 

dt = 
π 
4

(
δi 

j + δ0 
i δ

0 
j

)

Therefore, we obtain

∫ 1 

0 
P2kC2j 

1√
1 − t2 

dt = 0, 0 ≤ k < j, (4.12)

∫ 1 

0 
P2kC2j 

1√
1 − t2 

dt > 0, k ≥ j. (4.13) 

These equalities and ( 4.11) imply  λ1 
2j is always non-negative for sufficiently large j. This leads to 

a contradiction. Thus, the operator K (hence also T) for  RP2 has to admit infinitely many negative 
eigenvalues counting multiplicity. Similarly, we can prove that T on RP2 also has infinitely many positive 
eigenvalues counting multiplicity, concluding the proof. �
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16 T. MA AND E. STEPANOV

We can get now the result analogous to Lemma 4.3 but for even dimensional projective spaces. 

LEMMA 4.5. For n even, the MDS defining operator T on RPn has both infinitely many positive and 
negative eigenvalues. 

Proof. For n = 2 the statement is given by Lemma 4.4. For higher but even dimensions of the projective 
space one uses the following induction argument on the dimension: sSuppose that the operator K for 
RP

n has infinitely many strictly positive and negative eigenvalues counting multiplicity. It follows that 
for arbitrarily large k0 ≥ 1, we can find k ≥ k0 such that λn 

2k ≤ 0 and λn 
2k−2 > 0. The sign of the 

coefficients in (4.5) tells that λn+2 
2k−2 > 0. Therefore K (hence also T) for  RPn+2 has infinitely many 

strictly positive eigenvalues. Similarly, we see K and T have infinitely many negative eigenvalues. �
Combining Lemma 4.3 with Lemma 4.5 gives the following result. 

THEOREM 4.6. For any projective space RPn, the operator T always has both infinitely many positive and 
negative eigenvalues counting multiplicity. 

4.2.2 Spectral asymptotics of T on odd-dimensional projective spaces Now we estimate the norm of 
the eigenvalues of T for odd-dimensional projective spaces. This will show how the MDS maps of RPn 

differ from the MDS maps of Sn for odd n. To estimate the asymptotics of the eigenvalues {λn 
2k}, we need 

the following lemma. 

LEMMA 4.7. For odd-dimensional projective space RPn, we have  

λn 
2k = Θ

(
k−(n+3)/2

)
. 

Proof. We prove this statement by induction on n. For the base case n = 1, a simple integration by parts 
shows 

λ1 
2k = Θ

(
k−2

)
. 

Suppose λn 
2k = Θ(k−(n+3)/2) holds. All coefficients for the eigenvalues in ( 4.5) are non-zero. Solving 

this equation for λn 
2k−2, we get 

|λn+2 
2k−2| ≤  C1(n, k)

(
Rn+2 

2k−2 
Rn 

2k

)
|λn 

2k| +  C2(n, k)

(
Rn+2 

2k−2 
Rn 

2k−2

)
|λn 

2k−2| 

|λn+2 
2k−2|C2(n, k) ≥ C2(n, k)

(
Rn+2 

2k−2 
Rn 

2k−2

)
|λn 

2k−2|, 

where the second inequality comes from the fact that the sequence {λn 
2k} indexed by 2k has alternating 

signs. Here C1(n, k) and C2(n, k) are positive functions such that C1(n, k) = Θ(k−2) and C2(n, k) = 
Θ(1) when n is fixed. Moreover, from the formula of Rodrigues constants, we get 

0 < 
Rn+2 

2k−2 
Rn 

2k 
= Θ(k) and 0 < 

Rn+2 
2k−2 

Rn 
2k−2 

= Θ
(

k−1
)

. (4.14) 
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Then these inequalities together imply λn+2 
2k = Θ(k−1−(n+3)/2). �

Recall that by Lemma 2.1, for any x, y ∈ X, the value of ‖M(x) − M(y)‖2 is independent of the 
choice of the eigenfunctions of K defining M. We are able to state the following result regarding the 
MDS maps for odd-dimensional projective spaces. 

THEOREM 4.8. For every odd n > 1, the operator T for RPn is not trace-class. Furthermore, given any 
x ∈ RPn, there exists a positive volume measure set Ux such that

‖M(x) − M(y)‖2 = +∞, for all y ∈ Ux, (4.15) 

and the distance reconstruction formula (1.4) does not hold μ ⊗ μ almost everywhere. 

Proof. According to ([4], theorem 3.1.4), the dimension of the space of degree 2k spherical harmonics 
on RPn is given by 

dim(Hn 
2k) = 

4k + n − 1 
2k + n − 1

(
2k + n − 1 

n − 1

)
. (4.16) 

Using the relation of binomial coefficients, we easily deduce that dim(Hn 
2k) is a polynomial in k of degree 

n − 1. Then for all odd n, we have  

|λn 
2k|dim(Hn 

2k) = Θ
(

k(n−5)/2
)

(4.17) 

Therefore, for all odd n with n > 1, the operator T on RPn is not a trace-class operator. 
First we show ‖M(x) − M(y)‖2 = +∞  when x · y = 0. Let {φi 

2k} with i ∈ In 
2k be an orthonormal 

basis with respect to μ of Hn 
2k. For  x, y ∈ RPn, we have

‖M(x) − M(y)‖2 
2 =

∑
λ2k>0 

λ2k

∑
i∈In 

2k 

(φi 
2k(x) − φi 

2k(y))
2 

= 
∞∑

k=0 
λ4k+2

∑
i∈In 

4k+2 

(φi 
4k+2(x) − φi 

4k+2(y))
2 

= 
∞∑

k=0 
λ4k+2 · dim(Hn 

4k+2) · 2(1 − Pn 
4k+2(x · y)) 

(4.18) 

The Legendre polynomials have the following recurrence relation (see ([ 4], proposition 3.3.11)) 

(k + n − 1)Pn 
k+1(t) − (2k + n − 1)tPn 

k(t) + kPn 
k−1(t) = 0. (4.19)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/14/1/iaae038/7959555 by 10390485 user on 28 January 2025



18 T. MA AND E. STEPANOV

Therefore, for fixed n we can see {|Pn 
4k+2(0)|} for k ≥ 0 is a decreasing sequence uniformly bounded 

away from 1. Since x · y = 0, for any n > 1, there exists some δn > 0 such that

‖M(x) − M(y)‖2 
2 ≥ 2δn 

∞∑
k=0 

λ4k+2 · dim(Hn 
4k+2). 

Using (4.17), we can see ‖M(x) − M(y)‖2 
2 = +∞  for odd n > 1. 

From (4.18), we see that ‖M(x) − M(y)‖2 depends only on |x · y|. Moreover, if x0 · x1 = 0, the 
triangle inequality implies there is a set of positive measure Uxi such that ‖M(y) − M(xi)‖ = +∞  for 
all y ∈ Uxi and for some i = 0 or 1. The operator T commutes with the action of the isometry group G, 
so the distance ‖M(x) − M(y)‖2 is invariant under the action by G. Since G acts transitively on RPn, 
it follows that for every x ∈ RPn with odd n > 1, there exists a positive measure set Ux such that (4.15) 
holds. 

Finally, by the Fubini theorem one has that the series on the left-hand side of the distance 
reconstruction formula (1.4) does not converge on a set of couples (x, y) of positive μ ⊗ μ measure, 
and hence (1.4) does not hold μ ⊗ μ almost everywhere, which concludes the proof. �
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