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We study asymptotics of the eigenvalues and eigenfunctions of the operators used for constructing
multidimensional scaling (MDS) on closed connected symmetric spaces. They are the limits of eigenvalues
and eigenvectors of squared distance matrices of an increasing sequence of finite subsets covering the
space densely in the limit. We show that for products of spheres and real projective spaces, the numbers
of positive and negative eigenvalues of these operators are both infinite. We also find a class of spaces
(namely RP" with odd n > 1) whose MDS defining operators are not trace class, and original distances
cannot be reconstructed from the eigenvalues and eigenfunctions of these operators.
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1. Introduction

A problem frequently encountered in the modern data science is that of reconstructing a metric space
(X, d) and the Borel probability measure @ on it just from the information on the distances between
points of a sufficiently large finite subset X := ko ,x’,ﬁ} C X. Here we require the subset X to
cover X ‘almost densely’ and with a density approximately . Of course, unless X is finite itself, no
finite set of points will be sufficient to reconstruct the triple (X, d, i) and one can only hope to do this
in the limit as k — oo. To be more precise, we suppose we know the distances between points of each
set X, of some chosen sequence of finite subsets of X, and would like to recover from it the information
on (X,d, ). This is known as the learning problem (or manifold learning, when X is a priori supposed
to be some smooth, say, Riemannian manifold, and d to be its geodesic distance).

One of the basic algorithms aiming to solve the learning problem and widely used in applications
is multidimensional scaling (MDS) [21]. Although the latter has been originally proposed only for
intrinsically Euclidean data (i.e., when X is a subset of a Euclidean space R"” and the distance d is
Euclidean), it has been extended to generic metric spaces. Moreover, in applied science ‘folklore’, it
is often used not only when the distance d is non-Euclidean, but also when d is merely some symmetric
function not necessarily satisfying the triangle inequality (the so-called dissimilarity function). Whether

© The Author(s) 2025. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

Gz0z Alenuer gz uo Jasn G8K0BE0L AQ GSG6S6./8E09ERY/ L /1L /aloNe/lelewl/wod dno-dlwspese)/:sdjjy Wwolj papeojumoq



2 T. MA AND E. STEPANOV

this application of MDS is justified, i.e., what will be reconstructed by MDS when d is a non-Euclidean
distance has been recently posed and solved in [1] with quite an astonishing answer. Namely, take
X :=S! as a unit circle endowed with its geodesic distance, and let the points of X '« C X to be uniformly
spaced so that in the limit as k — oo they cover X uniformly. Then according to [1], MDS yields in the
limit as k — oo a closed curve in an infinite-dimensional space, which is far from being a circle. An easy
calculation shows that it is a fractal object, namely, a snowflake embedding [18] of a circle in an infinite-
dimensional Hilbert space [15]. It becomes an isometric embedding if S! is endowed with the geodesic
distance raised to some power o = 1/2. Although this may be unexpected in view of various commonly
used applications of MDS, an explanation of this fact may be also traced back to the classical work
[20] by von Neumann and Schoenberg. In their paper, all the invariant metrics on the circle that embed
isometrically into a Hilbert space are classified, including of course the 1/2-snowflake re-obtained via
MDS, which is actually credited to the earlier work [22], see also the discussion in ([9], section 7.3).

1.1  Asymptotics of MDS embeddings

In the study of asymptotical behaviour of the spectra of matrices of squared distances between points of
finite samples X} C X, as well as of the embedding maps M, : X — R¥ produced by MDS, the linear
operator T over the space L>(X, /1) defined by the following formulae plays an important role.

1 2
K(an’) = _Ed (x’)’),
(mmm:Amewmmn (1.
T := PKP,

where P is the projector operator to the orthogonal complement of constant functions in L*(X, ). Both
K and T are well-defined under just a mild assumption that u has a finite fourth order moment, i.e.

Af%wmw<w (12)

for some x;, € X (which holds for instance when p is finite and X is bounded). Moreover, in this case, they
are self-adjoint Hilbert—Schmidt (and hence compact) operators. What is more important is the following:
under the same assumption (1.2), suppose the empirical measures (i, of finite samples X := ok xkk}
defined by

1 k
Ky = %gax?’

8, standing for the Dirac mass concentrated in y € X, converge to j as k — o0 in the Kantorovich!
4-distance Wy, i.e. limy W, (g, u) = 0. Then according to ([10], theorem 5.8), the maps M, viewed
as functions from X to R (with R¥ canonically identified with the subspace of R having all zero

! Usually, though historically incorrectly, the distances W), among probability measures are called Wasserstein distances.
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EIGENVALUES/EIGENFUNCTIONS OF MDS DEFINING OPERATORS 3

coordinates except the first k coordinates) converge to some map M: X — R*, called further infinite
MDS map, in measure 1 with respect to the product topology on R (see also [12]). The latter is given
by the formula

M) :=( M), A;¢;(x)....,\/g¢j+(x),...), (1.3)

where AT > )L;' > ... > 0 are positive eigenvalues of T (counting multiplicity), and {¢j"'}j e L2(X, )
is an orthonormal system in L?(X, 1) made of the respective eigenfunctions, i.e. T¢>jJr = )Lj*d);r. Note

that the definition of M depends on the choice of ¢;". Here we silently assume that if the set of positive
eigenvalues of T contains N < oo elements, then (M (x)) ;= 0forj > N.

By calculating explicitly the eigenvalues and eigenfunctions of 7" and using (1.3), one shows in
[10] that M gives a snowflake (Assouad-type) embedding of any m-dimensional sphere S” or any
m-dimensional flat torus (S')" into the Hilbert space ¢> of square summable sequences (in the
calculations one assumes w to be the respective volume measure in all these cases).

Another important observation is the following: with the stronger assumption that 7 is a trace-class
operator, i.e.,

DIl < 4o,

1

where {};} stands for the sequence of all eigenvalues of T, let the metric measure space (X,d, 1) be,
say, infinitesimally doubling (which includes any smooth Riemannian manifold equipped with geodesic
distance and volume measure, see ([5], theorem 3.4.3)). Then by ([10], theorem 5.8) (see also [12]), in
a sense, distances between almost every pair of points can be recovered from the spectrum of 7 and the
set of the respective eigenfunctions. Namely, in this case, we have

o0

Sk () — )’ = Pxy) forp @ p— ae (xy), (1.4)

i=1

where {¢;} stands for an orthonormal basis in L?(X, ) made of eigenfunctions of T with T, = A.¢..
The importance of the trace class condition on the operators 7' and K for the asymptotics of the spectra
of distance matrices has been also studied recently in [19]. This condition is discussed a lot in [12] as
well, the metric measure spaces for which it holds being called traceable in the latter paper.

1.2 Questions and results

The above-cited results raise a series of curious questions. Namely, one asks whether there are natural
examples of spaces (X, d, i) such that

(Q1) no infinite MDS map (i.e., independently on the choice of eigenfunctions of 7)) gives a
topological embedding of X into a separable Hilbert space (which of course without loss of
generality may be considered £2),

(Q2) the operator T is not trace-class (i.e. in terms of [12], the metric measure space is not traceable)
and/or the distance reconstruction formula (1.4) is not valid.
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4 T. MA AND E. STEPANOV

We find both examples among just compact Riemannian manifolds with volume measure (and
even more, among compact symmetric spaces), namely, both (Q1) and (Q2) are satisfied by odd-
dimensional projective spaces of sufficiently high dimension. In particular, this answers (negatively)
the open Question 1 from [12]. We do so by studying the operator 7, its eigenvalues and eigenfunctions
for symmetric compact Riemannian manifolds with volume measure. Note that in general, there seems
to be no easy way to find either the spectrum or eigenfunctions of 7. However, in this particular case
the situation greatly simplifies since we are able to show that 7 commutes with the Laplace—Beltrami
operator, which allows us to search for its eigenfunctions among the eigenfunctions of the latter. We
are able then to show that if X is a finite product of spheres of any dimensions, the infinite MDS map
gives a snowflake embedding of X into £2 thus generalizing the results of [10], while if X is a projective
space with sufficiently high dimension, then M does not send X to 2 at all, and in particular the distance
reconstruction formula (1.4) is not valid. Curiously however, as long as X is a finite product of spheres
and projective spaces, the spectrum of 7 contains infinitely many positive and negative eigenvalues.
This contrasts with the case that (X, d) is isometrically embeddable in a Hilbert space, in which all the
eigenvalues of T are positive.

2. Notation and preliminaries

For vectors x and y in the Euclidean space R”, we denote by x - y their Euclidean scalar product. The
Euclidean norm is denoted by | - |. Let £2 be the usual Banach space of square summable sequences
equipped with its usual norm || - ||,. The space R stands for the linear space of all real-valued sequences
(sometimes denoted by RY in the literature), equipped with its product topology. This space is metrizable
and in fact a Polish space. The norm || - ||, can be extended to a pseudo-distance on R* taking values
in [0, 400] which will be used in Lemma 2.1 below (note that this pseudo-distance does not induce
the product topology on R*®). If X is a smooth Riemannian manifold, we denote by C°(X) the set of
infinitely smooth functions over X.

Throughout the paper we sometimes use the big Theta notation by D. Knuth.

For a metric measure space (X, d, i), we will assume u to be a Borel probability measure. By (x, y) we
denote both the standard scalar product in the Hilbert space L2 (X,u).Forau e L2 (X, ) we let u't stand
for its orthogonal complement in L?(X, 11). The spectrum of a linear operator 7' counting multiplicity
is denoted as Spec(T). Its signature sgn(T) is written in the form (a, b, c) where the three numbers
in the parentheses are the numbers of zero, positive and negative eigenvalues, respectively, counting
multiplicities.

Recall for a metric measure space (X, d, i), the MDS map M : X — R defined as in (1.3) are
obtained from the positive eigenvalues and their corresponding eigenfunction the operator 7. Such maps
are not unique, since a different choice of the orthonormal set {¢j+} yields a different map. However,
they all have the common property given by the following statement.

LemmMa 2.1. If the operator T is Hilbert—Schmidt, then for any MDS maps M 1 M2, we have
IM ) = M D)l = IMPx) = MP)l,,  forallx,y € X.

Moreover, in this case the right-hand side of (1.4) is independent of the choice of eigenfunctions ¢
of K.

Proof. Since T is compact, every non-zero eigenspace of T is finite-dimensional. A new choice of the
orthonormal set of {qb;'} is obtained from L2(X, w)-orthogonal transformation of each eigenspace E Al
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EIGENVALUES/EIGENFUNCTIONS OF MDS DEFINING OPERATORS 5

corresponding to the eigenvalue kj[‘ > 0. Let {qb]‘."} and {q3]9‘} be two orthonormal bases of EA;. The

space E, + with L%-norm can be identified as a Euclidean space with the standard norm, and orthogonal
transformation on Euclidean spaces preserves Euclidean distances. Thus, we have

> (0w - m) =X (6 - o)

i J

Combining the equation above with the defining formula of MDS maps in (1.3), we obtain the desired
equality. The independence of the right-hand side of (1.4) on the choice of eigenfunctions ¢; of K is
shown in the same way.

2.1 Review on Riemannian symmetric spaces

We give a brief review of the basic properties of Riemannian symmetric spaces in this section. We begin
by recollecting the basic facts on Riemannian manifolds which will be used in this paper. The metric g
of a connected Riemannian manifold (M", g) defines a volume measure p and a distance function d on
M, where

d(x,y) = inf{length(y) : y is a curve from x to y}.

This yields a metric measure space (M, d, ). By the Hopf—Rinow theorem, (M, d) is a complete metric
space if (M, g) is geodesically complete. If (M, g) is complete and connected, then for any x,y € M,
there exists a distance minimizing geodesic. For any x € M, the tangential cut locus at x is the set of
v € T.M such that exp(#v) is a minimizing geodesic for # € [0, 1], but fails to be a minimizing geodesic
for any t > 1. The cut locus C, at x is the image of this set under the exponential map at x. If y € C,, we
have either y is conjugate to x or there is more than one distance minimizing geodesic from x to y ([14],
lemma 8.2). Therefore, we have y € C, if and only if x € Cy. Define the symmetric subset of M x M by

C={(x,y)eM><M:xeCy}

It is a well-known fact that the function d2(x, -) is smooth outside C,.

By a Laplacian (operator) on the Riemannian manifold, we always mean the Laplace-Beltrami
operator.

Let (M, g) be a Riemannian manifold. Recall that a local geodesic symmetry at p € M is a local
diffeomorphism r,ona neighbourhood of p such that for all geodesics y (f) with y(0) = p, we have

r (v () = y (~0).

DeriniTION 2.2, A Riemannian manifold (M, g) is called a symmetric space if for every p € M, the local
geodesic symmetry r, can be extended to a global isometry on M fixing p.

It is obvious from the definition that all symmetric spaces are complete, and all connected symmetric
spaces are homogeneous, i.e., the isometry group G acts transitively on (M, g). In fact, every connected
symmetric space is a reductive homogeneous space as follows. Denote G and K the isometry group and
the isotropy of some p € M, respectively. Let g and € be the corresponding Lie algebras of G and K.
The geodesic symmetry r,, € G at p satisfies rlz, = Id, where Id stands for the identity map. Denote by
Ad (rp) the adjoint action of the element r in the Lie group G. We see that Ad (rp) is an involutive Lie
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6 T. MA AND E. STEPANOV

algebra automorphism of g. The Lie algebra g admits a decomposition g = £ + m such that £ and m are
the eigenspaces of Ad(r,,) corresponding to the eigenvalues 1 and —1, respectively.

We close this section with some geodesic properties of symmetric spaces which will be used later.
Let y : R — M be a complete geodesic for the symmetric space (M, g). Then the following family of
composed maps T, = r,,(; © 7', ) is @ 1-parameter subgroup of the isometry group G. Easily we have

(@) =y +s).

Such maps are called geodesic transvections along y. Although determining the geometry of cut loci of
a general Riemannian manifold can be difficult, the cut loci of symmetric spaces have been well studied,
see [0, 16, 17]. In particular, for a compact symmetric space (M", g), the cut locus at any x € M is
a finite disjoint union of regular submanifolds with possible different dimensions ([17], theorem 3.3).
Taking the union of the submanifolds of dimension n — 1 in this decomposition of C,, the Riemannian
volume density u together with the perpendicular unit vector fields define a measure M on C,. Hence,
we may view C, as a ‘piecewise smooth’ manifold of dimension n — 1. Note that M, can be zero if the
decomposition of C, has no components of dimension n — 1, for example when M is the standard sphere.

3. The MDS map for closed connected symmetric spaces

From now on, we focus on the MDS maps of closed connected symmetric spaces. Let (S, g) be a closed
connected symmetric space. Denote d and u the distance function and Borel measure induced by g
as before (i.e., the geodesic distance and the Riemannian volume measure). Since S is compact, it is
well known that there is an orthonormal basis of L?(S) contained in C*°(S) consisting of Laplacian
eigenfunctions, see e.g., ([23], p. 2) and ([11], theorem 2.2.17). In addition, each eigenvalue of the
Laplace—Beltrami operator A has finite multiplicity, and eigenspaces of distinct eigenvalues are mutually
orthogonal.

Several easy consequences follow from our assumption. Since S is compact, the integral kernel of K
is bounded and uniformly continuous on S x S. Thus, each eigenfunction of X (also for T) is continuous.
In addition, for each non-zero eigenvalue of K, the corresponding eigenspace is finite-dimensional.

As both the Laplacian operator and the integral kernel K(x,y) are closely related to the distance
function, we would like to establish a relation between them. We begin with the following lemma leading
to the symmetric property of the integral kernel of /C for symmetric spaces.

Lemma 3.1. Let u be the volume measure on S. For a compact symmetric space S, the integral kernel of
KC satisfies

AK(x,y) = AyK(x,y) for u ® u—ae. (x,y) € S x 8§ 3.1

Here A, and A, are the Laplace-Beltrami operators with respect to the x (i.e. first) and y (second)
coordinates, respectively.

1
Proof. First note that the integral kernel K(x,y) = —§d2 (x,y) is always symmetric, i.e. K(x,y) =

K(y,x). For a fixed x € S, the function K(x, -) is smooth on S \ C,, which is an open set of full measure
in S. Since x € Cy if and only if y € C,, the functions A K (x,y) and AyK(x, y) are well defined a.e. on
S x S with respect to u ® u.
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EIGENVALUES/EIGENFUNCTIONS OF MDS DEFINING OPERATORS 7

Suppose that x ¢ Cy, and let y : [—1,1] — S be the unique minimizing geodesic from x to y. The
geodesic symmetry r; at the median y (0) is an isometry interchanging x and y. Denote K|, the function
K(-,y). Since r is an isometry, in a neighbourhood U of y we have

(AKy)(rO(z)) = A(Ky org)(z), forallze U. (3.2)

Denote Ay, A, the Laplace—Beltrami operator with respect to the first and second coordinates in § x S,
respectively. We also have

A(Ky 0 rp)(z) = A1 K(ry(2),y) = 4K (2, 15(y) = 4K (z,x) = A,K(x,2). (3.3)
Combining (3.2) and (3.3) we get
(A1K)(rp(2),x) = (AK,)(ry(2)) = A,K(x,2),

and taking z :=y, so that ry(z) = r(y) = x, we get the desired equality. (I
The following statement is valid.

ProrposiTion 3.2. Let S be a closed connected symmetric space and w is its volume measure. The operator
T commutes with the self-adjoint extension AP to L>(S, ) of the Laplace-Beltrami operator A on D,
in the sense

(Tf, Ah) = (TAf,h), forallf,h € C*(S). (3.4)

In other words. AP (1f) = (AP 'f) for every f € C°°(S). Thus in particular T preserves each eigenspace
of the Laplace—Beltrami operator.

Proof. Since the only harmonic functions on closed manifolds are constants, the Laplace-Beltrami
operator A commutes with the projection P in (1.1) when acting on smooth functions. Since 7' = PKP,
it suffices to show K commutes with A by the following equality.

(Kf, Ah) = (KAf,h), forallf,he C®(S). 3.5)
From Lemma 3.1, we have
A K(x,y) = AyK(x,y)for nueu—ae (x,y) €S xS

For any x € §, denote C, the cut locus of the point x as before. We cut the manifold S from C,, and obtain
a manifold M, with boundary dM,. Let i, : dM, — C, be the canonical projection on the boundary.
Using the decomposition theorem of C, mentioned in Section 2.1 (see [17] for details), we obtain a
decomposition of C, (therefore, also of dM ) as a finite union of disjoint regular submanifolds. Let C, (/)
for 1 <[ <[, be the n — 1-dimensional components in this decomposition of C,.. Each C,(J) is a regular
submanifold of dimension n — 1. Thus, for any y € C,(), there is chart ¥, : U, — R” such that
¥,(») = 0 € R" and the pre-image wy’] (H,_;) is exactly C,(/) N U,, where H,_, is the hyperplane
with vanishing last coordinate in R". When we cut along C, to obtain M,, we see from the chart v, that
the pre-image of C, (/) under (ix)_1 is a double cover BMB (HhuoM } (/) (boundaries of M, corresponding
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8 T. MA AND E. STEPANOV

to half spaces of with positive and negative last coordinate in the chart ). Thus, by restricting only to
components of 0M, of dimension n — 1, the unit outer normal N, defines a measure u* on dM,. The
space (IM, 1*) is isomorphic to (C,, n)® (C,, i) as measure spaces. For a compact symmetric space
(8", g), the conjugate locus at any x € S has dimension strictly less than n— 1 ([6], theorem 3.3 in chapter
7). Since exp, is non-singular outside the tangential conjugate locus, V K(x,y) is well-defined a.e. on
oM,

For all f, h € C*°(S), we can apply the divergence theorem to obtain

(APK. by = /S £ /S A hCOK (e, ) dp () d i ()
- / ) / K (e, ) (V0 N ()i () )
s M,
- /S £ /S (V1. VK (x )V () da ()
Note that for each y € S, the integral
/ Ko 3) (¥, N (@) di () = 0
oM, =

because % is smooth on S (in fact, the integrals over opposite sides of the boundary cancel out). Therefore,
we get

(APKf. ) = —/Sf(y)/SWXh, VK (x, »)dpx)du(y). (3.6)
Analogously, we obtain

(KAf, h) = —/Sh(X)/S(Vyf, VK (x, y)dp(y)dp(x) 3.7

On the other hand, from (3.1) and the divergence theorem, we get

/S hx) ( | TOTK N 0) /S (V. vyK>du<y>) dp(x)

= /f(y) (/ h(x)(V, K, Ny)dp" (x) — /(Vxh, VXK)dM(X)) du(y)
s M, S
Comparing this with (3.6),(3.7), we need to prove

[ 1 [ o7 Ndi 0o
N oM,
(3.8)
- / ) / BV K N2 i () ()
s M,
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EIGENVALUES/EIGENFUNCTIONS OF MDS DEFINING OPERATORS 9

To this aim, for any y € C,.(/) not conjugate to x, let yj € M,(1) be the pre-image of y for j = 0, 1. Since
distance minimizing geodesic segments starting from x cannot intersect C, except for the end-points,
there exist distance minimizing unit speed geodesics y; in M, from x to y; for j = 0, 1. For simplicity,
denote the geodesic in S corresponding to y; by the same notation. The geodesic transvection 7; along

¥; sending x to y is an isometry. It maps C, to Cy, and the curve y; into itself with 7; o r,(y) = x. Thus,

the component of Cy containing x is a regular submanifold of dimension n — 1, and the preimage i, L(x)
also contains exactly two points in dM,. Let x; be induced by the reversed curve of y;. Because y; is not
conjugate to x and x; is not conjugate to y, we have V K (x, y;) and V K (y, x;) are well-defined. If we can
show

1 1
(VK63 Ny) = D (VK (%), Ny), 3.9)
j=0 i=0

J

then (3.8) is just an application of the Fubini theorem and hence the proof would be concluded. Since y;
is a distance minimizing geodesic segment from x to y;, we have

V,K(6,y;) = —d(x,y)7;(d(,y)

Combining the equality above with the fact 7; o r, is an isometry mapping y to x, we obtain
(7j 0 r) (VK (x,y)) = V,K(x;.y), (f0r,),(Ny) =Ny, forallj=0,1

Thus (3.9) holds which proves (3.8) and therefore (3.5) which as explained concludes the proof of the
fact that 7 and AP commute as claimed.

To prove the last claim, i.e. that T preserves each eigenspace of A, note that for all f;,f, € C*(S)
such that Af; = A,f with i = 1 and 2, we have

(Tfl,)\zfﬁ = (Tf, Af2> = (TAfl’f2> = ()L1Tf1,f2>-

Therefore, Tf; is perpendicular to all eigenspaces of A corresponding to eigenvalues distinct from A,.
Since there is an orthonormal basis of L?(S) consisting of A-eigenfunctions, we see Tf, is contained in
the eigenspace of A; for A. This completes the proof. (I

4. MDS for elementary symmetric spaces
4.1 Products of spheres

We can derive the spectrum of 7 for product spaces based on the components in the decomposition.
More precisely, we can obtain the spectrum of T for a product of finite number of spaces based on the
spectra of all the 7; which are the spectra of the MDS associated operators for component spaces in the
product. The discussion of a product of two spaces has already been given in ([10], section 6.2) (see
also ([12], sections 4.1, 4.3)). Here we follow their approach to derive the general formula of a product
of N spaces, which serves both as a review of the above cited results, and also gives us a possibility to
compute explicitly the signature of the operator T associated with the product space of spheres. These
results are summarized in Proposition 4.1 in the sequel.
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10 T. MA AND E. STEPANOV

To this aim, let (X, d, u) be the metric measure space induced by the product manifold

N N
X=11x.g=2 s
i=1 i=1

where each g; is the Riemannian metric on a compact connected manifold X;. Denote d; and p; the
Riemannian distance and the normalized Riemannian volume on (X, g;). It follows that for x = (x;) € X
and y = (y;) € X, we have

N N
w=[Twm ey =D d (..
i=1

i=1

Since the space (X, g;) are all connected, the Hilbert spaces L2(X, 1) and L2 (X;, u;) are all separable.
One would naturally expect the MDS maps and the associated operator to be in the form of Cartesian

products of those for each component. This is exactly the case as in ([10], section 6.2). Suppose {q&f }
is an orthonormal basis diagonalizing the associated operator T; for (X;,d;, u;). Then {d)fll,,qﬁrfg' }
is an orthonormal basis for L>(X, i) by the Fubini theorem. According to ([10], proposition 6.2), the
associated operator T is diagonalizable with respect to this basis. Since the constant functions are in the
kernel of T; forall 1 < i < N, we can choose {q&{: } such that the non-constant elements are in 1+. Then

for @ = dffll e q&fx , we have T(®) = 0 unless the components of @ contain exactly 1 non-constant
function. To see this, we first compute

N
—2K(D)(x) = > | /X & (e Y 1) - 81 ) ()
i=1

If there is more than one non-constant component in @, apply the Fubini theorem to the integrals above.
We can re-order the integration so that inside each integral, the innermost term satisfies

/ #]dﬂz =0
Xi

Therefore, if N > 1, the kernel of T is infinite dimensional. .
If all components of @ are constant, clearly T(®) = PICP(®) = 0. Assume @ = dﬁl is non-constant

and T, (q&’f) = )\]f ¢r’1.‘. We obtain T(®) = )lel @. As a result, for the non-zero spectra of T and T, we
have

Spec(T) \ {0} = L, (Spec(T;) \ {0}), 4.1

where both sides of the relation above are eigenvalues counted with multiplicity. This implies T is a
trace-class operator if and only if each T; is trace-class.

Since the map T for any compact space has at least one positive eigenvalue, the product of N
Riemannian manifolds shall have at least N positive eigenvalues counting multiplicity.

Now let X be a product of N spheres with N > 1. We know from ([10], section 6.1) that the operator
T; for each component sphere is trace-class and has signature (1, 0o, 00), where the three numbers in
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the parentheses denote the number of zero, positive and negative eigenvalues counting multiplicity. The
condition N > 1 implies T has an infinite-dimensional kernel. From (4.1), we see T has infinitely many
strictly positive and negative eigenvalues counting multiplicity. Therefore T has signature (0o, 00, 00).
Summing up, we obtain the following statements.

ProprosiTiON 4.1. Let X = Hf.vlel- and g = vazl g; be the product space of compact connected
Riemannian manifolds. Denote by d and p the geodesic distance and the volume measure induced by g
respectively. Then the map T for (X, d, i) has at least N positive eigenvalues counting multiplicity, and
T is a trace-class operator if and only if each T; is trace-class.

In particular, if X is a finite product of N spheres (possibly just circles), then the operator T is trace-
class and has signature (0o, 00,00) for N > 1, i.e. T has infinitely many zero, positive and negative
eigenvalues counting multiplicity.

ReMARK 4.2. Suppose X is a product of spheres (in particular just circles). Since X is closed symmetric, by
Proposition 3.2 the operator T preserves all eigenspaces of A. Let E,;« be an eigenspace of the Laplace—
Beltrami operator for (X;, g;) and denote 7r; : X — X; the canonical prlojection. The map 7; pulls back the
space of functions Elf’ on X; to a space of functions 7 (El?‘) on X. The operator T preserves the space

ni* (E,«) and is self-adjoint on it with respect to the L*(X, w)-norm. In fact, the operator T is simply a
constant scaling on 7*(E;«). To show this, denote by G the isometry group of g, then for any s € G we
have

K(s-Hx) = /XK(x,y)f(s-y)du(y)
=/XK(S~x,S~y)f(S~y)du(y)

= /XK(s-x,z)f(z)du(z) = K({)(s - x).

Therefore, the natural action of G commutes with the operator /C (hence 7). Let G; be the isometry group
of (X;, g;). Since each component (X;, g;) is a sphere, the isometry group G; acts irreducibly on E,« ([7],
theorem 3.1 in the Introduction), and preserves the eigenspaces of T when viewed as a subgroupl of G.
Thus, T can have only one real eigenvalue on each 7" (E,«). In particular, the map T has only one real
eigenvalue on each Laplacian eigenspace of standard sphelres.

4.2 Projective spaces

4.2.1 Signature of T for projective spaces Here we consider the case X := RP", an n-dimensional
real projective space equipped with its geodesic distance d and Riemannian volume measure (. Since
RP" = §"/Z,, we expect the MDS for projective spaces to behave similarly compared to spheres. On
the other hand, we will see in this section how the global topology makes a difference in MDS maps
on projective spaces compared to the MDS on spheres. We start by determining the signature of 7 for
projective spaces RIP".

The Laplacian eigenfunctions on RP" are well-defined projections of spherical harmonics. Hence,
they are projections of spherical harmonics of even degree. Clearly as for the spheres, the group SO(n)
acts irreducibly on each Laplacian eigenspace of RP". Thus, each eigenspace of T is a direct sum of
eigenspace of A on RP”".
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12 T. MA AND E. STEPANOV

For x,y € S", the distance between the lines [x] and [y] on RP" is arccos(|x - y|). We know that the
operators T and /C share all eigenvalues and eigenfunctions except for those corresponding to constant
functions. To compute the spectrum of K for projective spaces, let 2k be even. Then by the Funk—Hecke
theorem ([4], p. 98), the eigenvalues 1%, of K for RP" corresponding to spherical harmonics of degree
2k are given by

! (n—2)/2
M=o, / arccos” () Py(0) (1 2) " a, 4.2)
0

where P75, (1) is the Legendre polynomials for S" of degree 2k, and the numbers

vol(S"~1)
0, =——5—
vol(S")
are negative constants depending only on n. To avoid the confusion, let us emphasize the subscript 2k

in the notation A%, does not stand for the consecutive number of the eigenvalue in the increasing order.
Inside the integral in (4.2), only the term

_ d\* 2U+(n—2)/2
50 = PR =)D = Ry, (E) (1-7) 4.3)

is affected by the dimension n and even degree 2k. For 2k even, the Rodrigues constants R7, are given
by ([13], p. 22)

.1 T@®2

%= F TR 20 @4

These constants are all positive. Note that the equations (4.2) and (4.3)) are still valid for the special
case n = 1, where Pék are given by Chebyshev polynomials of the first kind. For n > 1 and 2k > 2, a

d
substitution t = cos 8 using — = —sinf - — yields
de dt

F5(cos 0)

1 a\*
:Rn _ : 04k+n72
2k(sin0d0) [(Sm) ]
-1 d

2k—2
R, 202k — 1 — 2)(si 2(2k—2)+n—2
sin@d@) |:( 2k )+n )(sin 6)

=(dk +n—2)RY, (

—Q2Qk—1)+n- 1)(sin9)2<2k—2>+n]

1

R
=(4k4+n—2) |:(2(2k — 1) +n—2)=2F ,(cosh)

n
R2k72

R}’l
—QQ2k—=1)4+n— 1)1_‘),1%1?;;32@% 9)}
2k—2
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By linearity of the integration, we combine the equation above and (4.2) to obtain

1 R" R"
— M =kt =2 Gkt n— 4T — @kt = 3)—— ot (4.5)
o, Onfok—2 o2l

Note for n > 1 and 2k > 2, we always have 4k + n — 4 > 0. From the signs of the coefficients in
the equation above, we see the following: if {1}, ]2, is a sequence of alternating signs indexed by even
numbers 2k, the signs of numbers in the sequence {k’;l‘:z} will also be alternating. For the basic case
n = 1, the Riemannian manifold RP! is isomorphic to S! by doubling the angles between lines. For S!,
the signs of eigenvalues of K corresponding to the eigenfunctions cos(mf) are alternating, depending on
whether m is odd or even ([2], section 2). Thus, the signs of the sequence {Xék} indexed by even 2k are
also alternating. Combined with the argument above, we obtain the following result.

LemMA 4.3. For n odd, the MDS defining operator T on RIP" has both infinitely many positive and
negative eigenvalues.

We then turn to the case of even-dimensional projective spaces, starting from the basic case of
RP?. We expect that the signature of T for even-dimensional projective spaces is similar to the odd
dimension cases. A numerical computation for the first 6 eigenvalues (corresponding to even degree
spherical harmonics up to 2k = 10) shows they have alternating signs, see the pictures below.

Plot of the first 6 eigenvalues of RP*2

0.1

-0.14

-03+

-04

-051

Although computing the spectrum of T for projective spaces can be difficult, we can easily obtain
some information on sgn(T) for RP? using Mercer’s theorem.

Lemma 4.4. The operator T on RP? has infinitely many strictly positive and negative eigenvalues
counting multiplicity.
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14 T. MA AND E. STEPANOV

Proof. Since RP? is homogeneous, we only need to prove this statement for K. Suppose K has only
finitely many strictly negative eigenvalues counting multiplicity. Let A,; be the eigenvalue of K for RP?
corresponding to the degree 2k spherical harmonics. Let {¢%; } with —2k < m < 2k denote the standard

L2-orthonormal basis with respect to u of the Laplacian eigenspace H,y of RP? corresponding to degree
2k spherical harmonics. The function

2k
NGy = D Ay D $h@e50) (4.6)
)\2k<0 m=—2k

is smooth and bounded, since the summation above is finite. We can decompose the integral kernel as
K(x,y) = N(x,y) + H(x,y),

where N(x,y) is a negative integral kernel and H (x, y) is a positive integral kernel. Because the positive
operator

HO® = [ He 0)du0)
RP

has a continuous bounded kernel, Mercer’s theorem ([3], theorem 4.10) implies the following conver-
gence with respect to summation of A, ¢%; (x)¢7%; (y) is absolute and uniform:

2k
Hxy) = D D dydh0e50). 4.7)

Aok =>0m=—2k
From the basic properties of spherical harmonics ([4], theorem 3.3.3) we obtain

2k

D 5 @G5 () =dim(H,) Py (cos(d(x, y)))

m=-—2k

Here we use x, y to denote both points in RP? and their lifts to S? (hence also to R3 ). Since P, is even,
the value of P, (x-y) is always well-defined. Therefore, we obtain the absolute and uniform convergence
of the series

H(xy) = D Ay (dk+ Py (x-),

Aok=0

and, taking into account that in (4.6) we have only a finite sum, it follows that on (R]P’z)2 the series

1 2 1 2 <
—5d*0ry) = =5 arccos’ (x - y]) = K(x,y) = D dg Bk + 1Py (x - y) 4.8)
k=0
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converge absolutely and uniformly. This implies for ¢ € [0, 1], the convergence

arccos>(r) = —2 Z Ao (4k + )Py (1) (4.9)
k=0

is also absolute and uniform over [0, 1].
On the other hand, from (4.2) we know the eigenvalues of K for RP! are given by

1! 1

M= arccos2(£)C,:(t —dh, 4.10

2j n/o (NCy(0) T (4.10)

where the C,; are the Chebyshev polynomials of the first kind of degree 2j. Since the convergence in
(4.9) is absolute and uniform, the Lebesgue dominated convergence theorem implies

p ! 1
ryj = p D@k + 1) / Poy (1) Coy (1) ——=dt (4.11)
=0 0 V11—t

According to ([8], p. 96), the even degree Legendre polynomials can be expanded by Chebyshev
polynomials as

L Tan+kh \?
Pl = (F(1/2>r<k+ 1)) o

L2 Z":(r(k—zur 12T (k+i+1/2)

r:1/2) Fkk—i+ DI k+i+1) )C2i(t)

i=1

The functions Czj(t) are even, and we have

1
/ (0 Cof(B) et = (51 +8087)
o T i 4N
Therefore, we obtain
1
1
Py Cyj—eeedt = 0, 0 < k < j, (4.12)
/0 2k~ 2j /—1 )
1
1
Py Coj—edit > 0, k > j. (4.13)
/0 RN /

These equalities and (4.11) imply )L%j is always non-negative for sufficiently large j. This leads to

a contradiction. Thus, the operator K (hence also T) for RP? has to admit infinitely many negative
eigenvalues counting multiplicity. Similarly, we can prove that 7" on RP? also has infinitely many positive
eigenvalues counting multiplicity, concluding the proof. (]

Gz0z Alenuer gz uo Jasn G8K0BE0L AQ GSG6S6./8E09ERY/ L /1L /aloNe/lelewl/wod dno-dlwspese)/:sdjjy Wwolj papeojumoq



16 T. MA AND E. STEPANOV

We can get now the result analogous to Lemma 4.3 but for even dimensional projective spaces.

LemMA 4.5. For n even, the MDS defining operator T on RP” has both infinitely many positive and
negative eigenvalues.

Proof. For n = 2 the statement is given by Lemma 4.4. For higher but even dimensions of the projective
space one uses the following induction argument on the dimension: sSuppose that the operator K for
RP”" has infinitely many strictly positive and negative eigenvalues counting multiplicity. It follows that
for arbitrarily large k, > 1, we can find k > k; such that Agk < 0 and )Jz’k_z > 0. The sign of the
coefficients in (4.5) tells that kg,j_zz > (. Therefore K (hence also T') for RP"*? has infinitely many
strictly positive eigenvalues. Similarly, we see K and T have infinitely many negative eigenvalues. [J

Combining Lemma 4.3 with Lemma 4.5 gives the following result.

THeoREM 4.6. For any projective space RP”, the operator T always has both infinitely many positive and
negative eigenvalues counting multiplicity.

4.2.2  Spectral asymptotics of T on odd-dimensional projective spaces Now we estimate the norm of
the eigenvalues of T for odd-dimensional projective spaces. This will show how the MDS maps of RIP"
differ from the MDS maps of §" for odd n. To estimate the asymptotics of the eigenvalues {17, }, we need
the following lemma.

LemMA 4.7. For odd-dimensional projective space RP", we have

gk - (kf(n+3)/2) )

Proof. We prove this statement by induction on n. For the base case n = 1, a simple integration by parts
shows

My=0 (k2.

Suppose 13, = = @ (k~"+3/2) holds. All coefficients for the eigenvalues in (4.5) are non-zero. Solving
this equation for )‘Zk 5, We get

Rn+2 Rn+2
A2 < (o, k)( ;k 2 )AL | 4 Cy(n k) RZ" 2 )

2k 2k—2

n+2 R;Z_ZZ n
[Aor 51Ca(n k) = Cy(n, k) A2k 2l
2k 2

where the second inequality comes from the fact that the sequence {A3,} indexed by 2k has alternating
signs. Here C;(n, k) and C,(n, k) are positive functions such that C,(n, k) = O (k~2) and Cy(n, k) =
©® (1) when n is fixed. Moreover, from the formula of Rodrigues constants, we get

n+2 n+2

R R
0< 2’; 2=0( and0 < X2 -9 (k_l). (4.14)
R R2k 2
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Then these inequalities together imply ASZ'Z = Ok 1= +3/2), (]

Recall that by Lemma 2.1, for any x,y € X, the value of |M(x) — M(y)||, is independent of the
choice of the eigenfunctions of I defining M. We are able to state the following result regarding the
MDS maps for odd-dimensional projective spaces.

TueoreM 4.8. For every odd n > 1, the operator T for RP" is not trace-class. Furthermore, given any
x € RP", there exists a positive volume measure set U, such that

M) — MW, =400, forallye U, (4.15)

and the distance reconstruction formula (1.4) does not hold 1 ® u almost everywhere.
Proof. According to ([4], theorem 3.1.4), the dimension of the space of degree 2k spherical harmonics

on RP" is given by

dim(HY,) = (4.16)

dk+n—1 2k+n—1
2k+n—1 n—1 '

Using the relation of binomial coefficients, we easily deduce that dim (7, ) is a polynomial in k of degree
n — 1. Then for all odd n, we have

AL \dim(HY,) = © (k<"—5>/2) 4.17)

Therefore, for all odd n with n > 1, the operator 7 on RP” is not a trace-class operator.
First we show || M(x) — M(y)ll, = +o0o when x - y = 0. Let {¢;,} with i € I7, be an orthonormal
basis with respect to u of H3,. For x,y € RP", we have

IME) = MO = D g D @30 — d50))°

Lop>0 ielg’k

=D harr D Giyan® = Blyn ) .18)

: n
i€l iy

k=0
[o)0]

= Z)‘4k+2 dim(Hjyio) - 2(1 = Py 5 (x - )
=0

The Legendre polynomials have the following recurrence relation (see ([4], proposition 3.3.11))

(k+n—1DPL (1) — 2k +n— DPL() + kP}_, (1) = 0. (4.19)
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18 T. MA AND E. STEPANOV

Therefore, for fixed n we can see {|P}, (0]} for k > 0 is a decreasing sequence uniformly bounded
away from 1. Since x - y = 0, for any n > 1, there exists some §,, > 0 such that

IME) = M3 = 28, D Agpsn - dim(Hyy ,).
k=0

Using (4.17), we can see || M(x) — /\/l(y)||% = +4oo foroddn > 1.

From (4.18), we see that |M(x) — M(y)||, depends only on |x - y|. Moreover, if x;, - x; = 0, the
triangle inequality implies there is a set of positive measure U, such that [ M(y) — M(x) || = +oo for
ally € U,, and for some i = 0 or 1. The operator 7 commutes with the action of the isometry group G,
so the distance || M (x) — M ()|, is invariant under the action by G. Since G acts transitively on RP",
it follows that for every x € RP" with odd n > 1, there exists a positive measure set U, such that (4.15)
holds.

Finally, by the Fubini theorem one has that the series on the left-hand side of the distance
reconstruction formula (1.4) does not converge on a set of couples (x,y) of positive 4 ® p measure,
and hence (1.4) does not hold i ® w almost everywhere, which concludes the proof. g
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