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Abstract
Smale proposed to modify the hyperbolic automorphism of the n-torus of codi-
mension 1 in the neighbourhood of a fixed point by surgical operation to obtain
the so-called DA-diffeomorphism. However, the corresponding arc of diffeo-
morphisms is not even mildly stable. The hypothesis of constructing a mildly
stable arc between the Anosov diffeomorphism and the DA diffeomorphism
was formulated by Newhouse et al. A detailed construction of such an arc is
carried out in this paper.
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1. Introduction and formulation of the results

Let Diff(Mn) be the space of diffeomorphisms on a closed n-dimensional manifold Mn

endowed with the C∞-topology. A smooth arc in the space of Diff(Mn) is C∞-smooth map
φ :Mn× [0,1]→Mn such that for each fixed t ∈ [0,1] the map φt = φ|Mn×{t} ∈ Diff(Mn). We
say that the arc φt, t ∈ [0,1], connects diffeomorphisms φ0, φ1.

Following Newhouse et al [10] an arc φt is called mildly stable if it is an inner point
of the equivalence class with respect to the following relation: two arcs φt, φ ′

t are called
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mildly conjugate if there are homeomorphisms h : [0,1] → [0,1], Ht : M→M such that
Htφt = φ ′

h(t)Ht, t ∈ [0,1]. If Ht depends continuously on t also then the arcs φt, φ ′
t are called

conjugate, and the arc φt is called stable.
The arc connecting two structurally stable diffeomorphismsφ0, φ1 is called arc with a finite

number of bifurcations if there are a finite number of values 0< t1 < .. . < tq < 1 such that the
diffeomorphisms φtj are not structurally stable and the diffeomorphisms φt, φτ are topologic-
ally conjugate if t, τ belong to the same connected component of the set [0,1] \ {t1, . . . , tq}.

The problem of the existence of an arc with a finite number of bifurcations connecting
structurally stable systems was included in the list of 50most important problems of dynamical
systems published by Palis and Pugh [16]. On manifolds of any dimension n⩾ 1 there is an
impressive number of counterexamples to the existence of a stable or mildly stable arc with
a finite number of bifurcations between structurally stable diffeomorphisms constructed by
Matsumoto [8], Blanchard [1], Grines et al [4, 11–14] (see also the review [9]).

Smale [21] showed that some Anosov diffeomorphisms (diffeomorphisms with a hyper-
bolic supporting manifold) on the n-torus Tn can be modified into DA-diffeomorphisms. DA-
diffeomorphisms are called structurally stable diffeomorphisms whose basic sets consist of
a (n− 1)-dimensional expanding attractor Λ (dimWu

x = n− 1, x ∈ Λ) and an isolated source
orbit. Williams [23] showed later that the modification can be implemented by the arc with
one pitchfork bifurcation. However such an arc is neither stable nor mildly stable [10]. In
the present paper we implement the transition from the Anosov diffeomorphism to the DA-
diffeomorphism by the mildly stable arc with the single saddle-node bifurcation.

Let us fix our setting:

• A ∈ GL(n,Z) is an integer unimodular matrix with all the eigenvalues, except for one value
λ ∈ (0,1), have absolute values larger than one;

• Ā : Rn → Rn is linear map defined by the matrix A;
• p : Rn → Tn is the cover map given by the formula p(x1, . . . ,xn) = (ei2π x1 , . . . ,ei2π xn);
• Â : Tn → Tn is algebraic automorphism (Anosov diffeomorphism of codimension 1) defined
by the formula pĀ= Âp.

The main result of the paper is the proof of the following theorem.

Theorem 1. There exists a mildly stable arc with a single saddle-node bifurcation that con-
nects the Â diffeomorphism with a DA-diffeomorphism.

2. Necessary concepts and facts

LetMn be a connected closed smooth riemannian manifold of dimension n> 1 with the norm
|| · || : TMn → [0,∞) and the induced metric d :Mn×Mn → [0,∞).

Let f :Mn →Mn be a diffeomorphism. The set X⊂Mn is called f-invariant if f(X) = X.
The diffeomorphisms f, f ′ :Mn →Mn are called topologically conjugate if there exists a

homeomorphism h :Mn →Mn such that h ◦ f = f ′ ◦ h.
f -invariant compact set Λ⊂Mn is called hyperbolic if there is a continuous Df -invariant

decomposition of the tangent bundle TΛMn into stable and unstable subbundles

EsΛ ⊕EuΛ, dimE
s
x+ dimEux = n, x ∈ Λ

such that for a some Riemann metric || · ||, which is called Lyapunov, some constants
0< λ < 1< µ and any k ∈ N the following inequalities are valid:
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∥Df k (v)∥⩽ λk∥v∥, ∀v ∈ EsΛ,
∥Df−k (w)∥⩽ µ−k∥w∥, ∀w ∈ EuΛ.

For any point x of the hyperbolic set Λ there exists an injective immersion Jsx : R
qs →Mn the

imageWs
x = Jsx(R

qs) is called a stable manifold of the point x such that the following properties
hold:

1) TxWs
x = EsΛ;

2) the points x,y ∈Mn belong to the same manifold Ws
x if and only if d( fn(x), f n(y))→ 0 for

n→∞;
3) f(Ws

x) =Ws
f(x);

4) if x,y ∈ Λ then either Ws
x =Ws

y or W
s
x ∩Ws

y = ∅;
5) if the points x,y ∈ Λ are close on Mn then Ws

x, W
s
y are C

1-close on compact sets.

An unstable manifold Wu
x of the point x ∈ Λ is defined as a stable manifold with respect to

the diffeomorphism f−1. Unstable manifolds have similar properties, as the stable ones. Stable
and unstable manifolds are also called invariant manifolds. A path connected component of
the sets Wu

x \ x,Ws
x \ x is called separatrix.

If the entire supporting manifold Mn of the diffeomorphism f is a hyperbolic set, then f is
called to be Anosov diffeomorphism.

Recall that ε-chain of length m ∈ N joining points x,y ∈Mn for f is a set of points x=
x0, . . . ,xm = y such that d( f(xi−1),xi)< ε for 1⩽ i⩽ m. A point x ∈Mn is called chain recur-
rent for f if for any ε> 0 there exists a natural number m depending on ε> 0 and ε-chain of
length m joining x with itself. The set of all chain recurrent points is called chain recurrent set
and is denoted byRf.

It follows from the results of [2, 15, 20, 22] that the hyperbolicity of the set Rf is equival-
ent to Ω-stability f. Recall that f is called Ω-stable if its C1-small perturbations preserve the
structure of a chain recurrent set up to topological conjugacy. The set Rf in this case consists
of a finite number of pairwise disjoint subsets called basic, each is compact invariant and is
topologically transitive (contains an everywhere dense orbit) [21]. If the basic set is a periodic
orbit then it is called trivial. Otherwise, the basic set is called nontrivial.

A basic set Λ of Ω-stable diffeomorphism f is called an attractor if it has a closed trapping
neighborhood UΛ ⊂Mn such that

f(UΛ)⊂ intUΛ,
⋂
k∈N

f k (UΛ) = Λ.

In this case (see, for example, [17])

Λ =
⋃
x∈Λ

Wu
x .

If dimΛ = dimWu
x , then the attractor Λ is called expanding. Repeller is defined as an attractor

for the map f−1.
By theorem 3 in [17] any basic set Λ of codimension one Ω-stable diffeomorphism

f :Mn →Mn is either an attractor or a repeller.
A diffeomorphism f is called structurally stable if there exists its neighborhood in the space

Diff(Mn) with C1-topology such that any diffeomorphism from this neighborhood is topolo-
gically conjugate to the diffeomorphism f. Due to the results of [7, 19] a diffeomorphism f is
structurally stable if and only if 1) it is a Ω-stable diffeomorphism and 2) it satisfies the strong
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Figure 1. 2-bunch b of the two-dimensional expanding attractorΛwith boundary points
p,q.

transversality condition. The latter means that ∀x,y ∈Rf of the manifoldsWs
x andW

u
y intersect

transversely, that is the sum of the tangent spaces to these manifolds coincides with the entire
tangent space at their intersection points.

Any expanding attractor Λ of codimension 1 divides its basin Ws
Λ by a finite number of

connected components. Each such a component of B defines a bunch b as the union of all
unstable manifolds of all periodic points from Λ such that at least one of the stable separatrix
of each belongs to B. The number kb of such boundary points is finite and is called the degree
of the bunch b and b is called the kb-bunch with the basin B (see figure 1).

If n⩾ 3 then according to [18, theorem 2.1] any expanding attractor of codimension 1 has
only 1- or 2-bunches. In this case 1-bunches can be on non-orientable manifolds only.

A structurally stable diffeomorphism f is called a DA-diffeomorphism if its chain recurrent
set consists of a single expanding attractor of codimension 1 and isolated sources.

3. Construction of the arc

Let us fix our setting for an integer unimodular matrix G:

• Ḡ : Rn → Rn is the linear map defined by G, that is Ḡ(x) = Gx;
• Ĝ : Tn → Tn is algebraic automorphism defined byG, that is Ĝ(x (mod 1)) = Gx (mod 1).

Let A be an integer unimodular matrix with all the eigenvalues, except for one value λ ∈ (0,1),
have absolute values larger than one. According to the Jordan normal form theorem for the
matrix A there exists a square non-singular matrix C such that given by the matrix J= C−1AC
linear map J̄ has the form

J̄(x,y) = (λx, B̄(y)) (1)

4
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Figure 2. Graph of the function g(x).

in coordinates x ∈ R, y ∈ Rn−1. Here B̄ : Rn−1 → Rn−1 is the linear map defined by the matrix
B. Absolute values of all eigenvalues of B are greater than one and there is µ> 1 such that

||B−ky||< µ−k||y||, ∀y ∈ Rn−1. (2)

Let

V=
{
(x,y) ∈ R×Rn−1 : 0⩽ x⩽ r, ||y||⩽ δ

}
, (3)

for any r> 0, δ > 0where the constants r, δ are chosen so that the cover p is a homeomorphism
on the set V̄= C̄(V).

Next we describe how to construct the function φ(x) so that the diffeomorphism λx+φ(x)
coincides with the linear contraction outside the segment [0,r] and has two hyperbolic fixed
points on the interval (0,r) which are a source and a sink. In addition this function requires
described below in the lemma 3.1 properties allowing to construct the desired arc based on it.
To do this we define C∞-smooth function g : R→ [0,1] by the formula (see figure 2)

g(x) =

{
0, x⩽ 0,

e−
1
x2 , x> 0.

We define C∞-smooth function σ : R→ [0,1] by the formula (see figure 3)

σ (x) =
g(x+ 1)

g(x+ 1)+ g(1− x)
.

It is directly verified that the function σ(x) increases monotonously from 0 to 1 on the
interval (−1,1), it is constant outside (−1,1) and (see figure 4)

σ ′ (x)<
9
8
, x ∈ R. (4)
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Figure 3. Graph of the function σ(x).

Figure 4. Graph of the function σ ′(x).

Let h−,h+ : R→ R are C∞-smooth functions and let h−(x0) = h+(x0) and the function
h : R→ R is defined by the formula

h(x) =

{
h− (x) , x⩽ x0,

h+ (x) , x> x0.

Let the function h(x) is not smooth at the point x0. We say C∞-smooth function

h̃(x) =

(
1−σ

(
x− x0
ε

))
h− (x)+σ

(
x− x0
ε

)
h+ (x)

to be smoothing of the function h(x) at the point x0 for any ε> 0 (see figure 5).

6
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Figure 5. Graph of the smoothing h̃(x) of the function h(x) at the point x0.

Figure 6. Graph of the function φ(x).

By construction h̃(x) differs from h(x) only in ε-neighborhood of the point x0 and

lim
ε→0

(
max

x∈[x0−ε,x0+ε]
|h̃(x)− h(x) |

)
= 0. (5)

Concept of smoothing is naturally generalized to continuous functions composed by a finite
number of smooth parts.

Let

θ =
µ− 1
1−λ

> 0, (6)

c0 =

(
1+

θ

4

)
(1−λ) . (7)

Lemma 3.1. There is a C∞-smooth function φ(x) (see figure 6), having the following proper-
ties for some values

0< x3 < a< x1 < x0 < b< x2 < x4 < r :

1) φ(x)≡ 0 outside the segment [x3,x4];
2) |φ(x)|⩽ φ(x0) = d0 and x0(1−λ)< d0 < x0c0;
3) −λ

2 < φ ′(x)<
(
1+ θ

2

)
(1−λ) and φ ′(x1)>

φ(x1)
x1

;

4) φ(x)≡−d1 (x− x0)
2
+ d0 on the segment [x1,x2] where d1 > 0;

5) The equation φ(x) = (1−λ)x for x> 0 has exactly two solutions x= a, x= b such that
φ ′(a)> 1−λ, φ ′(b)< 0.

7
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Figure 7. Graph of the function ψ(x).

Proof. We will find a function φ(x), satisfying the conditions 1)-5), in the form

φ(x) =

xˆ

−∞

ψ̃ (s)ds,

where ψ̃ is a C∞-smoothing of a piecewise linear function ψ. For this aim let us define a
piecewise linear function ψ : R→ R, depending on the parameters 0< k1 < k2 < k3 < k4 <
k5 < 1, by its graph on figure 7(here x0 = rk4, x∗ = ψ−1

(
−λ

4

)
). Let

φ̄(x) =

xˆ

−∞

ψ (s)ds.

To prove the present lemma it is enough to show that there are such constants ki, i ∈ {1, . . . ,5}
that the function φ̄(x) has the following properties:

1̄) φ̄(x)≡ 0 outside the segment [rk1,rk5];
2̄) |φ̄(x)|⩽ φ̄(x0) = d̄0 and x0(1−λ)< d̄0 < x0c0;
3̄) −λ

2 < φ̄ ′(x)<
(
1+ θ

2

)
(1−λ) and φ̄ ′(rk3)>

φ̄(rk3)
rk3

;

4̄) φ̄(x)≡−d̄1 (x− x0)
2
+ d̄0 on the segment [rk3,x∗] where d̄1 > 0;

5̄) the equation φ̄(x) = (1−λ)x for x> 0 has exactly two solutions x= ā, x= b̄ where rk2 <
ā< x0 < b̄< rk5 at the same time φ̄ ′(ā)> 1−λ, φ̄ ′(b̄)< 0.

1̄) The condition φ̄(x)≡ 0 outside the segment [rk1,rk5] is equivalent to the equality of the
areas of the trapezoid above the Ox axis and the triangle under the Ox axis, which is expressed
by the following equality

(k4 − k1 + k3 − k2)

(
1+

θ

4

)
(1−λ) = (k5 − k4)

λ

4
. (8)

2̄) The property |φ̄(x)|⩽ φ̄(x0) is an immediate consequence of the fact that the function
ψ(x) changes the sign from+ to− at the point x0. Note that d̄0 = φ̄(x0) is equal to the area of

8
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the trapezoid located above the Ox axis so d̄0 < x0c0. Fulfilling the condition d̄0 > x0(1−λ)
is equivalent to inequality

(k4 − k1 + k3 − k2)

(
1+

θ

4

)
> 2k4. (9)

3̄) The property −λ
2 < φ̄ ′(x)<

(
1+ θ

2

)
(1−λ) follows directly from the inequality

−λ
4
⩽ ψ (x)⩽

(
1+

θ

4

)
(1−λ) .

Property φ̄ ′(rk3)>
φ̄(rk3)
rk3

is executed because φ(rk3) is the area of a trapezoid located above
the Ox axis and having a lower base [rk1,rk3], φ̄ ′(rk3) = ψ(rk3) = c0 and therefore

φ̄(rk3) = r(2k3 − (k1 + k2))
c0
2
< c0rk3.

4̄) Since the function ψ(x) on the segment [rk3,x∗] is a straight line with a negative slope
then the function φ̄(x) on this segment is a quadratic function with a negative coefficient at x2.
It follows from point 2̄) that the vertex of the parabola is at the point (x0, d̄0) and, therefore,

φ̄(x)≡−d̄1 (x− x0)
2
+ d̄0

on the segment [rk3,x∗] where d̄1 > 0.
5̄) The function φ̄(x) on the segment [rk3,x∗] coincides with the parabola y=

−d̄1 (x− x0)
2
+ d̄0 whose vertex lies above the straight line y= (1−λ)x and coincides with

a straight line with a slope c0 on the segment [rk2,rk3] by construction. Then to prove the
property of 5̄) it is enough to achieve the condition

φ̄(rk2)< (1−λ)rk2. (10)

Note that φ̄(rk2) is equal to the area of a located above the Ox axis and having a base of
[rk1,rk2] triangle. Therefore the condition (10) is equivalent to inequality

(k2 − k1)

(
1+

θ

4

)
< 2k2. (11)

Let us show how to choose constants ki satisfying all the described conditions. Indeed, let

ℓ=
1

1+ θ
4

and represent the constants ki− ki−1, i ∈ {1, . . . ,5}, k0 = 0 as

ki− ki−1 = ℓik4.

Then the inequalities (9) and (11) have the following forms

(2ℓ3 + ℓ2 + ℓ4)> 2ℓ, (12)

ℓ2 < 2(ℓ1 + ℓ2)ℓ. (13)

9
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Figure 8. Graph of the function φ̄(x) for θ = 4, λ= 1
4 , r= 10.

To achieve the inequality (12) let us put

ℓ3 = ℓ,

and for the inequality (13) let

ℓ1 =
ℓ(1− ℓ)

1+ ℓ
, ℓ2 = ℓ1ℓ.

The constant ℓ4 is calculated from the condition

ℓ1 + ℓ2 + ℓ3 + ℓ4 = 1

and therefore

ℓ4 = (1− ℓ)
2
.

The equality (8) in the entered variables has the following form

4(2ℓ3 + ℓ2 + ℓ4)(1−λ) = ℓ5λℓ. (14)

We find ℓ5 from (14). Since k5 = (1+ ℓ5)k4 < 1 then k4 can be taken as any value satisfying
the inequality

k4 <
1

1+ ℓ5
.

As illustration we calculate all values ℓi,ki for θ = 4, λ= 1
4 , r= 10 and plot the graph of

the function φ̄(x) using a computer (see figure 8).

We define a C∞-smooth function φt : R→ R for t ∈ [0,1] by the formula

φt (x) = σ (2t− 1)φ(x) . (15)

10
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Lemma 3.2. The functions φt(x) for x> 0 have the following properties:

1) there is a unique value t0 ∈ (0,1) such that φt0(x)< (1−λ)x for any x> 0, excepted a
unique point x= q0 ∈ (x1,x0), where φt0 (q0) = (1−λ)q0 é φ ′

t0 (q0) = (1−λ);
2) φt(x)< (1−λ)x for any t ∈ [0, t0);
3) for any t ∈ (t0,1] the equation φt(x) = (1−λ)x has exactly two solutions x= at, x= bt

where x1 < at < bt < r and φ ′
t (at)> 1−λ, φ ′

t (bt)< 1−λ.

Proof. It follows from the definition of the function σ that φ0(x)≡ 0 and φ1(x)≡ φ(x). It is
obviously that the function φ1(x) has property 3) by lemma 3.1. The intersection points of
the graph of the function φt(x) with the line y= (1−λ)x for any t ∈ (0,1) are exactly the
intersection points of the graph of the function φ(x) with the line y= νtx where

νt =
1−λ

σ (2t− 1)
.

It follows from item 5) of lemma 3.1 that if such points exist then they belong to the seg-
ment [a,b]. Since ν t accepts any values greater than 1−λ, there exists a value t∗ ∈ (0,1) such
that νt∗ = φ(x1)

x1
. According to item 4) of lemma 3.1 the function φ(x) coincides with the para-

bola y=−d1 (x− x0)
2
+ d0 on the segment [x1,x2] therefore the desired intersection points are

exactly solutions of the equation

−d1 (x− x0)
2
+ d0 = νtx (16)

for any t⩽ t∗. Let the discriminant of the quadratic equation (16) equals 0 at t= t0. Then this
equation has exactly two solutions at, bt for t0 < t⩽ t∗, one solution q0 for t= t0 and has no
any solutions for t< t0. The point q0 is the tangent point of the graph of the function φt0(x)
and the straight line y= (1−λ)x, hence φ ′

t0 (q0) = (1−λ). The graph of the function φt0(x)
intersects transversely the line y= (1−λ)x at the point at with a slope φ ′

t (at)> 1−λ and at
the point bt with a slope φ ′

t (bt)< 1−λ.
As φ ′

t (x) = σ(2t− 1)φ ′(x) then its values on the segment [a,x1] are not less than σ(2t−
1)φ ′(x1) for t ∈ (t∗,1). Therefore the smallest value of the derivative is σ(2t∗ − 1)φ ′(x1).
Since t∗ is a solution of the equation

σ (2t∗ − 1)φ(x1) = (1−λ)x1,

and, by item 2) of lemma 3.1,

φ(x1)< x1φ
′ (x1) ,

then

σ (2t∗ − 1)φ(x1)> 1−λ.

Since the functionφt(x) is monotonously decreasing on the segment [a,x1] then its graph has
a unique intersection point at with the line y= (1−λ)x on this segment and φ ′

t (at)> 1−λ.
Since the function φt(x) coincides on the segment [x1,x2] with a parabola whose branches are
directed downward and the vertex lies to the right of the point x1 then there is exactly one more
intersection point bt > x1 of the graph of the function φt(x) with a straight line y= (1−λ)x
and φ ′

t (bt)< 1−λ.

11
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Figure 9. Graphs of the funcions γt(x) for t= 0, t= t0
2 , t= t0, t= 1.

Note that by lemma 3.2, the graphs of the functions γt(x) = λx+φt(x) have the form shown
in figure 9.

Let

ϑ(y) =

(
1−σ

(
4||y|| − 2δ

δ

))
(17)

for y ∈ Rn−1, where ||y||< δ. It follows directly from the formula (4) that

|ϑ ′ (y) |< 9
2δ
. (18)

We define C∞-smooth map ϕt : V→ R by the formula

ϕt (x,y) = ϑ(y)φt (x) , (19)

and define C∞-smooth map Φt : V→ R×Rn−1 by the formula

Φt (x,y) = (ϕt (x,y) ,0) . (20)

Notice, that by construction Φt(x,y) = (0,0) if (x,y) ∈ ∂V. Let

Φ̄t = C̄ΦtC̄
−1 : V̄→ Rn.

Then the map Φ̄t can be continued onRn so that the following properties are met in coordinates
x̄= (x1, . . . ,xn) ∈ Rn with the origin 0̄= (0, . . . ,0)

12
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• Φ̄t(x̄) = 0̄ outside of all integer shifts of the set V̄;
• Φ̄t(x̄) is 1-periodical function on the vector argument x̄.

We define a smooth arc f̄t : Rn → Rn by the formula

f̄t (x̄) = Ā(x̄)+ Φ̄t (x̄)

and a smooth arc ft : Tn → Tn from the formula

p̄ft = ftp. (21)

The above construction holds for any r> 0, δ > 0 and admits an obvious generalization to
the case of modification of the Anosov diffeomorphism in the neighbourhood of any number of
periodic orbits. For simplisity we prove theorem 1 for the constructed arc ft in the next section.

4. Mild stability of the arc ft

Lemma 4.1. There are parameters r> 0, δ > 0 such that the arc ft, defined by the formula (21),
is mildly stable and joints the diffeomorphism f0 = Â with a DA-diffeomorphism f1.

Proof.
I. Mild stability of the arc. For any point x ∈ Tn we denote by F s

x and F u
x the leaves of

stable F s, and unstable F u foliations of the Anosov diffeomorphism Â passing through the
point x respectively. By construction, the diffeomorphism ft for any t ∈ [0,1] preserves the
invariant foliation F s. Note that in a general case the foliation F u is not invariant with respect
to the diffeomorphism ft. However, every diffeomorphism ft has a fixed saddle pointO= p(0̄).
Moreover the diffeomorphism ft coincides with the diffeomorphism Â in some neighborhood
of the point O.

To prove the mild stability of the arc ft, by [10], it is enough to achieve the following its
properties:

1) any diffeomorphism ft, t ∈ [0, t0) is an Anosov diffeomorphism;
2) the arc ft unfolds generically at the saddle-node point (q, t0), where q= p(C̄(q0,0)), that is

the arc ft undergoes a bifurcation at the saddle-node, whose strongly unstable foliation is
transversal to the foliation F s;

3) any diffeomorphism ft, t ∈ (t0,1] is a structurally stable diffeomorphism whose chain recur-
rent set consists of a (n− 1)-dimensional expanding attractor Λt with two boundary points
β0 = p(C̄(0,0)), βt = p(C̄(bt,0)) and an isolated source αt = p(C̄(at,0)).

Recall that an arc ft undergoes a saddle-node bifurcation at a point (q, t0), if the arc ft is
conjugate to the arc

f̃̃t (x1,x2, . . . ,xn) =

(
x1 −

x21
2
+ t̃,±2x2,2x3, . . . ,2xn

)
, (22)

where (x1, . . . ,xn) ∈ Rn, |xi|< 1/2, |̃t|< 1/10 in some neighborhood of this point (see
figure 10).

In local coordinates (x1, . . . ,xn, t̃) the bifurcation occurs at the time t̃= 0, the coordinates
origin O ∈ Rn being the saddle-node. Here

13
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Figure 10. Graphs of the map x1 − x21
2 + t̃ for t̃=−0,1; t̃= 0 and t̃= 0,1.

• Ox1—the central manifold;
• Ws

O = {(x1,x2, . . . ,xn) ∈ Rn : x1 ⩾ 0, x2 = · · ·= xn = 0}—the stable manifold of O;
• Wu

O = {(x1,x2, . . . ,xn) ∈ Rn : x1 ⩽ 0}—the unstable manifold of O;
• Fuu

O =
⋃
c>0

{(x1,x2, . . . ,xn) ∈ Rn : x1 = c}—the strongly unstable foliation.

If q is the saddle-node of the diffeomorphism ft0 then, by [5], there is a unique ft0-invariant
strongly unstable foliation Fuu

q with smooth leaves (see Fig 11) such that ∂Wu
q is a leaf of this

foliation.

II. The existence of cones. Let

Ft = C̄−1̄ftC̄ : R×Rn−1 → R×Rn−1.

Then the diffeomorphism Ft|V has a form

Ft (x,y) = (Γt (x,y) , B̄(y)) , (23)

where Γt : V→ R is the map defined by the formula

Γt (x,y) = λx+Φt (x,y) . (24)

It follows from formulas (19) and (20) that the Jacobi matrix YFt(x,y) of the map Ft(x,y) has
the form

YFt |(x,y) =
(
λ+Lt (x,y) Mt (x,y)

0 B

)
, (25)

where

Lt (x,y) = ϑ(y)φ ′
t (x) ,

Mt (x,y) = ϑ ′ (y)φt (x) .

14
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Figure 11. Strongly unstable lamination of the saddle node q.

Then the differential DFt of the map Ft in coordinates v ∈ Ev ∼= R, w ∈ Ew ∼= Rn−1 of the tan-
gent bundle has the form

DFt (v,w) = ((λ+Lt)v+Mtw,Bw) = (v ′,w ′) . (26)

Directly from lemmas 3.1, 3.2 and formulas (18), (17) we obtain the following estimates

λ

2
< λ+Lt <

µ+ 1
2

. (27)

|Mt|<
9rc0
2δ

. (28)

We choose the values of r, δ so that

|Mt|<
µ− 1
4

√
µ2 − 1= m0. (29)

Let

γ =

√
µ2 − 1
2

(30)

and

Kγ = {(v,w) : ||v||⩽ γ||w||} .

We show that for any (v,w) ∈ Kγ the inequalities

||v ′||< γ||w ′||, (31)

v ′2 +w ′2 > v2 +w2 (32)

15
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are valid. Indeed, we get (31) from the following chain of inequalities

||v ′||= ||(λ+Lt)v+Mtw||⩽ ||(λ+Lt)v||+ ||Mtw||<

<
µ+ 1
2

||v||+m0 ||w||⩽
(
µ+ 1
2

γ+m0

)
||w ′||
µ

<

<

√
µ2 − 1
2

||w ′||= γ ||w ′||.

We get (32) from the following chain of inequalities

v ′2 +w ′2 = ||(λ+Lt)v+Mtw||2 + ||w ′||2 ⩾ µ2||w||

⩾ v2 +w2 +

(
µ2 − 1
γ2

− 1

)
v2 > v2 +w2.

III. Fulfilling the properties 1)-3) of a mildly stable arc. Due to the criterion of cones (see,
for example, [6, Corollary 6.4.8]), constructed in the previous section the cone Kγ guarantees
the existence of a continuous DFt-invariant decomposition of the tangent bundle into sub-
bundles

Ev⊕Eu, dimEu = n− 1 (33)

such that for some constant µt > 1 and any k ∈ N the inequality holds

||DF−k
t (u) ||⩽ µ−k

t ||u||, ∀u ∈ Eu.

1) If t ∈ [0, t0) then according to lemma 3.2

0< λ+Lt < λt < 1,

and for any k ∈ N the inequality

||DFkt (v) ||⩽ λkt ||v||, ∀v ∈ Ev

is valid. Thus ft is an Anosov diffeomorphism.

2) It follows from lemma 3.2 that the arc γt(x) = λx+φt(x) is conjugate to the arc x1 − x21
2 +

t̃ in a neighborhood of the point (q0, t0). Since the map B̄ is a linear hyperbolic extension then
(see, for example, [15, theorem 5.5]) the arc ft is conjugate to the arc f̃̃t in some neighborhood
of the point (q, t0) ∈ Tn× [0,1]. Thus, the saddle-node bifurcation unfolds generically on the
arc ft at the point (q, t0) where q= p(C̄(q0,0)).

3) For any t ∈ (t0,1], the diffeomorphism γt(x) = λx+φt(x) has exactly three fixed points:
hyperbolic sinks x= 0, x= at and hyperbolic source x= bt. In this case the point at is an
isolated source of the diffeomorphism Ft and the point αt = p(C̄(at,0)) is an isolated source
of the diffeomorphism ft.

We show that Tn \Wu
αt

is a hyperbolic set. To do this it is enough to show that the set
U= {(x,y) ∈ V : λ+Lt(x,y)⩾ 1} is a subset of the unstable manifold Wu

at .
Note that the diffeomorphism Ft(x,y) has the form

Ft (x,y) = (λ+φt (x,y) , B̄(x,y)) .

16
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on the set G= [0,bt]×
[
− δ

4 ,
δ
4

]
. It follows from the properties of the diffeomorphism φt that

(U∩G)⊂Wu
at and therefore F−1

t (U∩G)⊂ int(U∩G). Let Uy = U∩R×{y}. Since ϑ(y)
decreases monotonously from 1 to 0 with respect to the variable ||y|| then F−1

t (Uy)⊂ UB̄−1(y)

and therefore U⊂Wu
at .

Let Λt =Rft \ at. We prove that Λt is a (n− 1)-dimensional expanding attractor.
To do this we first show that Wu

O ⊂ Λt. Since ft = Â in some neighborhood of the point O
then O /∈Wu

at and therefore Wu
O ⊂ Λt. In addition cl(Ws

O ∩Wu
O) =Wu

O, that directly implies
that all points ofWu

O are chain recurrent. Since Λt ⊂ (Tn \Wu
αt
) then Λt is a hyperbolic set and

therefore periodic points are dense in it.
Let us show that clWu

O = Λt.
Indeed there is a periodic point p of the period mp in any neighborhood of Ua of any point

a ∈ Λt. Then f
mp
t (F s

p) = F s
p. Since the leaf F s

p is everywhere dense on the torus Tn, then

there is a point q ∈ (F s
p ∩Wu

O). Then lim
k→∞

d( fmpk
t (q),p) = 0 and therefore Ua ∩Wu

O ̸= ∅.
Thus Λt is a basic set. Its topological dimension is less than n since otherwise it would

coincide with the entire torus Tn (see, for example, [3, Lemma 8.1]). On the other hand
dimWu

x = n− 1, x ∈ Λt whichmeans dim Λt = n− 1 and thereforeΛt is a (n− 1)-dimensional
expanding attractor.
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