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Abstract

Smale proposed to modify the hyperbolic automorphism of the n-torus of codi-
mension 1 in the neighbourhood of a fixed point by surgical operation to obtain
the so-called DA-diffeomorphism. However, the corresponding arc of diffeo-
morphisms is not even mildly stable. The hypothesis of constructing a mildly
stable arc between the Anosov diffeomorphism and the DA diffeomorphism
was formulated by Newhouse et al. A detailed construction of such an arc is
carried out in this paper.
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1. Introduction and formulation of the results

Let Diff(M") be the space of diffeomorphisms on a closed n-dimensional manifold M"
endowed with the C>°-topology. A smooth arc in the space of Diff(M") is C*°-smooth map
@ : M" x [0,1] — M" such that for each fixed 7 € [0, 1] the map o = @[y (1 € Diff(M"). We
say that the arc ¢, t € [0, 1], connects diffeomorphisms g, 1.

Following Newhouse et al [10] an arc ¢, is called mildly stable if it is an inner point
of the equivalence class with respect to the following relation: two arcs ¢, ¢, are called
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mildly conjugate if there are homeomorphisms A: [0,1] — [0,1], H;: M — M such that
Hip; = ‘Pii(z)Hf’t € [0, 1]. If H, depends continuously on ¢ also then the arcs ¢, ¢/ are called
conjugate, and the arc ¢, is called stable.

The arc connecting two structurally stable diffeomorphisms g, ¢ is called arc with a finite
number of bifurcations if there are a finite number of values 0 < 7; <... <, < 1 such that the
diffeomorphisms ¢,, are not structurally stable and the diffeomorphisms ¢, ¢ are topologic-
ally conjugate if 7, 7 belong to the same connected component of the set [0, 1]\ {#1,...,7,}.

The problem of the existence of an arc with a finite number of bifurcations connecting
structurally stable systems was included in the list of 50 most important problems of dynamical
systems published by Palis and Pugh [16]. On manifolds of any dimension n > 1 there is an
impressive number of counterexamples to the existence of a stable or mildly stable arc with
a finite number of bifurcations between structurally stable diffeomorphisms constructed by
Matsumoto [8], Blanchard [1], Grines et al [4, 11-14] (see also the review [9]).

Smale [21] showed that some Anosov diffeomorphisms (diffeomorphisms with a hyper-
bolic supporting manifold) on the n-torus T” can be modified into DA-diffeomorphisms. DA-
diffeomorphisms are called structurally stable diffeomorphisms whose basic sets consist of
a (n — 1)-dimensional expanding attractor A (dim W¥ =n — 1, x € A) and an isolated source
orbit. Williams [23] showed later that the modification can be implemented by the arc with
one pitchfork bifurcation. However such an arc is neither stable nor mildly stable [10]. In
the present paper we implement the transition from the Anosov diffeomorphism to the DA-
diffeomorphism by the mildly stable arc with the single saddle-node bifurcation.

Let us fix our setting:

e A € GL(n,Z) is an integer unimodular matrix with all the eigenvalues, except for one value
A € (0,1), have absolute values larger than one;

e A:R" — R" is linear map defined by the matrix A;

e p:R" — T" is the cover map given by the formula p(xy,...,x,) = (€27 ... ™),

e A:T"— T'isal gebraic automorphism (Anosov diffeomorphism of codimension 1) defined
by the formula pA = Ap.

The main result of the paper is the proof of the following theorem.

Theorem 1. There exists a mildly stable arc with a single saddle-node bifurcation that con-
nects the A diffeomorphism with a DA-diffeomorphism.

2. Necessary concepts and facts

Let M" be a connected closed smooth riemannian manifold of dimension n > 1 with the norm
[|-]] : TM" — [0,00) and the induced metric d : M" x M" — [0, 00).

Let f: M" — M" be a diffeomorphism. The set X C M" is called f-invariant if f(X) = X.

The diffeomorphisms f,f : M" — M" are called topologically conjugate if there exists a
homeomorphism & : M" — M" such that hof =f" o h.

f-invariant compact set A C M" is called hyperbolic if there is a continuous Df-invariant
decomposition of the tangent bundle Ty M" into stable and unstable subbundles

E)\ ®E}, dmE] +dimE! =n,x€ A

such that for a some Riemann metric ||-||, which is called Lyapunov, some constants
0 <X <1< pandany k € N the following inequalities are valid:
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1D () || < NI, We R,
IDF*w) | < p~ wll,  vweE,.

For any point x of the hyperbolic set A there exists an injective immersion J5 : R% — M" the
image W8 = J5(R%) is called a stable manifold of the point x such that the following properties
hold:

1) T,\W, =E;

2) the Soints x,y € M" belong to the same manifold W5 if and only if d(f"(x),f"(y)) — O for
n— 00;

3) W) = Wi

4) if x,y € A then either W = W3 or Wy N W3 = 0;

5) if the points x,y € A are close on M" thenVWfC, W are C I_close on compact sets.

An unstable manifold W of the point x € A is defined as a stable manifold with respect to
the diffeomorphism f ~!. Unstable manifolds have similar properties, as the stable ones. Stable
and unstable manifolds are also called invariant manifolds. A path connected component of
the sets Wi\ x, W5 \ x is called separatrix.

If the entire supporting manifold M" of the diffeomorphism f is a hyperbolic set, then f is
called to be Anosov diffeomorphism.

Recall that e-chain of length m € N joining points x,y € M" for f is a set of points x =
X0, -y Xm =y such that d(f(xi—1),x;) < e for 1 <i<m. Apointx € M" is called chain recur-
rent for f if for any € > 0 there exists a natural number m depending on € > 0 and e-chain of
length m joining x with itself. The set of all chain recurrent points is called chain recurrent set
and is denoted by Ry.

It follows from the results of [2, 15, 20, 22] that the hyperbolicity of the set Ry is equival-
ent to ()-stability £. Recall that f is called Q-stable if its C'-small perturbations preserve the
structure of a chain recurrent set up to topological conjugacy. The set Ry in this case consists
of a finite number of pairwise disjoint subsets called basic, each is compact invariant and is
topologically transitive (contains an everywhere dense orbit) [21]. If the basic set is a periodic
orbit then it is called trivial. Otherwise, the basic set is called nontrivial.

A basic set A of Q2-stable diffeomorphism f is called an attractor if it has a closed trapping
neighborhood Uy C M" such that

F(UA) CintUn, [ £*(Un) = A.
keN

In this case (see, for example, [17])

A= Jwe

xeA

If dim A = dim W}, then the attractor A is called expanding. Repeller is defined as an attractor
for the map f~!.

By theorem 3 in [17] any basic set A of codimension one ()-stable diffeomorphism
f:M" — M" is either an attractor or a repeller.

A diffeomorphism f is called structurally stable if there exists its neighborhood in the space
Diff(M") with C'-topology such that any diffeomorphism from this neighborhood is topolo-
gically conjugate to the diffeomorphism f. Due to the results of [7, 19] a diffeomorphism f is
structurally stable if and only if 1) it is a (2-stable diffeomorphism and 2) it satisfies the strong
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Figure 1. 2-bunch b of the two-dimensional expanding attractor A with boundary points
p,q.

transversality condition. The latter means that Vx,y € R of the manifolds W} and W} intersect
transversely, that is the sum of the tangent spaces to these manifolds coincides with the entire
tangent space at their intersection points.

Any expanding attractor A of codimension 1 divides its basin W¥, by a finite number of
connected components. Each such a component of B defines a bunch b as the union of all
unstable manifolds of all periodic points from A such that at least one of the stable separatrix
of each belongs to B. The number k;, of such boundary points is finite and is called the degree
of the bunch b and b is called the kj-bunch with the basin B (see figure 1).

If n > 3 then according to [18, theorem 2.1] any expanding attractor of codimension 1 has
only 1- or 2-bunches. In this case 1-bunches can be on non-orientable manifolds only.

A structurally stable diffeomorphism f is called a DA-diffeomorphism if its chain recurrent
set consists of a single expanding attractor of codimension 1 and isolated sources.

3. Construction of the arc

Let us fix our setting for an integer unimodular matrix G:

e G:R" — R" is the linear map defined by G, that is G(x) = Gx;
e G:T" — T" is algebraic automorphism defined by G, thatis G(x (mod 1)) = Gx (mod 1).

Let A be an integer unimodular matrix with all the eigenvalues, except for one value A € (0, 1),
have absolute values larger than one. According to the Jordan normal form theorem for the
matrix A there exists a square non-singular matrix C such that given by the matrix / = C~'AC
linear map J has the form

J(x,y) = (Ax,B(y)) )
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Figure 2. Graph of the function g(x).

in coordinates x € R,y € R"~!. Here B: R"~! — R"~! is the linear map defined by the matrix
B. Absolute values of all eigenvalues of B are greater than one and there is ;2 > 1 such that

18451 < bl vy e RO o
Let
V:{(x,y)eRanJ;()gxér,HyHS(S}, (3)

forany r > 0, § > O where the constants r, § are chosen so that the cover p is a homeomorphism
on the set V= C(V).

Next we describe how to construct the function ¢(x) so that the diffeomorphism Ax + ¢(x)
coincides with the linear contraction outside the segment [0, r] and has two hyperbolic fixed
points on the interval (0, r) which are a source and a sink. In addition this function requires
described below in the lemma 3.1 properties allowing to construct the desired arc based on it.
To do this we define C>°-smooth function g : R — [0, 1] by the formula (see figure 2)

0, x <0,
g(x)_{ _1

e 2, x>0.

We define C°°-smooth function ¢ : R — [0, 1] by the formula (see figure 3)

o (x) = gx+1)
glx+1)+g(l—x)

It is directly verified that the function o(x) increases monotonously from O to 1 on the
interval (—1,1), it is constant outside (—1, 1) and (see figure 4)

a’(x)<§7x€R. 4)
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Figure 3. Graph of the function o(x).
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Figure 4. Graph of the function o’ (x).

Let h_,hy : R — R are C*°-smooth functions and let &_(xo) = h4(xo) and the function

h:R — R is defined by the formula

{h (1),
h+ ()C) )

Let the function A(x) is not smooth at the point xo. We say C°°-smooth function

1= (10 (F22) Ju oo (20

to be smoothing of the function h(x) at the point x, for any € > 0 (see figure 5).

x<x07

h(x)

X > Xp.

e

6
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0
/] Xo-€  x, Xo+€ X

Figure 5. Graph of the smoothing A(x) of the function /(x) at the point xo.

X3 ax: Xob X2 a—.

Figure 6. Graph of the function ¢(x).

By construction ﬁ(x) differs from A(x) only in e-neighborhood of the point xy and

lim (Xe[ max  |h(x) —h(x) ) =0. ®)

e—0 Xo—&,X0+€]

Concept of smoothing is naturally generalized to continuous functions composed by a finite
number of smooth parts.

Let
_p—1
9=L=5 >0, (©)
c0=(1+z)(1—)\). 7

Lemma 3.1. There is a C*°-smooth function ¢(x) (see figure 6), having the following proper-
ties for some values

O<p<a<xi<xp<b<xa<xg<r:

1) p(x) =0 outside the segment [x3,x4);
2) lo(xX)| < p(x0) = do and xo(1 — \) < dy < xpco;
3) =3 <'(x) < (1+4) (1= and ¢’ (x1) > 2ba) .

X1

4) o(x) = —d, (x —x0)* + do on the segment [x;,x3] where dy > 0;

5) The equation p(x) = (1 — A\)x for x> 0 has exactly two solutions x = a, x = b such that
e'(a)>1-=M\ ¢'(b) <O.
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ki

Figure 7. Graph of the function ) (x).

Proof. We will find a function ¢(x), satisfying the conditions 1)-5), in the form
X
o= [ G
—o0

where 1; is a C*°-smoothing of a piecewise linear function . For this aim let us define a
piecewise linear function v : R — R, depending on the parameters 0 < k| < ky < k3 < k4 <
ks < 1, by its graph on figure 7(here xo = rky, x, = 1~' (—%)). Let

¢ (x) = /Xw(S)d&

To prove the present lemma it is enough to show that there are such constants ;,i € {1,...,5}
that the function ¢(x) has the following properties:

) = 0 outside the segment [rk;, rks];

XO) = EZ() and xo(l — /\) < ao < X0C05

() < (14 9) (1—2) and @' (rks) > 245

)= —dy (x — xo)” + do on the segment [rk3, x,] where d; > 0; )

equation ¢ (x) = (1 — A)x for x > 0 has exactly two solutions x = @, x = b where rk; <

Xo < b < rks at the same time @’(a) > 1 — X\, ¢’(b) < 0.

P
gk
VA

€ o

I IR S
N N N N N
|
Ot

A
l
—

SUN="8
A O

1) The condition @(x) = 0 outside the segment [rk;, rks] is equivalent to the equality of the
areas of the trapezoid above the Ox axis and the triangle under the Ox axis, which is expressed
by the following equality
A
1

(k4—k1+k3—k2)<1+i>(1—>\):(k5—k4) (®)

2) The property |(x)| < p(xo) is an immediate consequence of the fact that the function
1 (x) changes the sign from + to — at the point xy. Note that dy = @(x) is equal to the area of

8
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the trapezoid located above the Ox axis so dy < xoco. Fulfilling the condition dy > xo(1 — \)
is equivalent to inequality

0
(k47k1 +k37k2) <1+4> > 2ky. )

3) The property —% < @’(x) < (1+ %) (1 — A) follows directly from the inequality

A <us <1+Z>(1—A>~

Property @’/ (rks) > “5523) is executed because (rks3) is the area of a trapezoid located above

the Ox axis and having a lower base [rk;,rk3], ¢'(rks) = 1(rks) = co and therefore

¢
@ (rks) = r(2k; — (k1 + k2)) 50 < corkz.
4) Since the function 1) (x) on the segment [rk3,x.] is a straight line with a negative slope
then the function ¢(x) on this segment is a quadratic function with a negative coefficient at x2.
It follows from point 2) that the vertex of the parabola is at the point (xo,dp) and, therefore,

o (x) = —d, (x—x0)2 +dy

on the segment [rk3,x,] where d; > 0.

5) The function (x) on the segment [rks,x.] coincides with the parabola y=
—d; (x — x0)” +do whose vertex lies above the straight line y = (1 — \)x and coincides with
a straight line with a slope ¢y on the segment [rk,,rks] by construction. Then to prove the
property of 5) it is enough to achieve the condition

@ (rky) < (1= X)rky. (10)

Note that @(rk,) is equal to the area of a located above the Ox axis and having a base of
[rky,rk;] triangle. Therefore the condition (10) is equivalent to inequality

(kz—k])<1+z> < 2k,. (11)

Let us show how to choose constants k; satisfying all the described conditions. Indeed, let

and represent the constants k; — k;—1,i € {1,...,5}, ko =0as
ki—ki_1 = €,~k4.
Then the inequalities (9) and (11) have the following forms

(203 + 0y + £4) > 20, (12)
by < 2(61 —|—€2)€ (13)
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Figure 8. Graph of the function @(x) for =4, \ = %, r=10.

To achieve the inequality (12) let us put
by =1,
and for the inequality (13) let

0(1—0)
144

0 = by =0,

The constant ¢, is calculated from the condition
b+l +l3+0s=1
and therefore
ly=(1-10).
The equality (8) in the entered variables has the following form
4(203 4+ Ly +0s) (1 — X) = U5 )L, (14)

We find /5 from (14). Since ks = (1 + ¢5)ky < 1 then k4 can be taken as any value satisfying
the inequality

1

k .
4<1+&

As illustration we calculate all values ¢;,k; for § =4, \ = i, r =10 and plot the graph of
the function @¢(x) using a computer (see figure 8). O

We define a C*°-smooth function ¢, : R — R for 7 € [0, 1] by the formula

e(x) =0 (2t=1)p(x). (15)
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Lemma 3.2. The functions ¢(x) for x > 0 have the following properties:

1) there is a unique value ty € (0,1) such that ¢, (x) < (1 — X)x for any x> 0, excepted a
unique point x = qo € (x1,Xo), where @, (qo) = (1 —X)qo € ¢; (q0) = (1 = X);

2) @i(x) < (1 = X)x foranyt € [0,1);

3) for any t € (t9,1] the equation ,(x) = (1 — A\)x has exactly two solutions x = a;, x = b,
where x1 < a, < b, <rand ¢](a;) >1—X\ @] (b;) <1—\

Proof. It follows from the definition of the function o that ¢o(x) =0 and ¢; (x) = ¢(x). It is
obviously that the function ¢ (x) has property 3) by lemma 3.1. The intersection points of
the graph of the function ,(x) with the line y = (1 — A)x for any ¢ € (0,1) are exactly the
intersection points of the graph of the function ((x) with the line y = vx where

BEES
M -1y

It follows from item 5) of lemma 3.1 that if such points exist then they belong to the seg-
ment [a, b]. Since v; accepts any values greater than 1 — ), there exists a value ¢, € (0,1) such
that v;, = %’:‘). According to item 4) of lemma 3.1 the function ¢ (x) coincides with the para-

bolay = —d; (x — xo)2 + dp on the segment [x|, x| therefore the desired intersection points are
exactly solutions of the equation

—d; (x —x0)2 +dy=uvx (16)

for any ¢ < ¢.. Let the discriminant of the quadratic equation (16) equals O at r = fy. Then this
equation has exactly two solutions ay, b, for fy < t < t,, one solution g for ¢ = #y and has no
any solutions for ¢ < fy. The point g is the tangent point of the graph of the function ¢, (x)
and the straight line y = (1 — A)x, hence ¢, (go) = (1 — A). The graph of the function ¢;, (x)
intersects transversely the line y = (1 — \)x at the point a, with a slope ¢, (a;) > 1 — X and at
the point b, with a slope ¢/ (b;) < 1— A.

As ¢/ (x) = 0(2t— 1)¢’(x) then its values on the segment [a,x;] are not less than o(2¢ —
1)’ (x1) for t € (2,,1). Therefore the smallest value of the derivative is (2t — 1)’ (x;).
Since t, is a solution of the equation

o2t — 1) (x) = (1= X)xy,
and, by item 2) of lemma 3.1,

e (x1) <xip’ (x1),
then

o2t — 1 (x) >1—=A.

Since the function ¢,(x) is monotonously decreasing on the segment [a, x; ] then its graph has
a unique intersection point g, with the line y = (1 — X)x on this segment and ¢, (a;) > 1 — A.
Since the function ¢,(x) coincides on the segment [x;,x,] with a parabola whose branches are
directed downward and the vertex lies to the right of the point x; then there is exactly one more
intersection point b, > x; of the graph of the function ,(x) with a straight line y = (1 — \)x
and ¢/ (b)) <1— A\ O

1
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Figure 9. Graphs of the funcions v,(x) fort = 0,1 =%, r =1, 1= 1.

Note that by lemma 3.2, the graphs of the functions ~,(x) = Ax + ¢,(x) have the form shown

in figure 9.
4|yl — 26
ﬁ@g:(l—a<|wg>) (17)

Let
fory € R"=!, where ||y|| < 4. It follows directly from the formula (4) that

. 9
[0 (v) ] < 35 (18)

We define C*°-smooth map ¢, : V — R by the formula

¢ (6y) =0 (y) i (%), (19)
and define C>°-smooth map ®, : V— R x R"~! by the formula

P (x,y) = (¢ (x,3),0). (20)
Notice, that by construction ®,(x,y) = (0,0) if (x,y) € OV. Let

®,=Ce,C " VR

Then the map ®, can be continued on R" so that the following properties are met in coordinates
X=(x1,...,%,) € R" with the origin 0 = (0,...,0)

12
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®,(x) = 0 outside of all integer shifts of the set V;
®,(x) is 1-periodical function on the vector argument Xx.

We define a smooth arc f; : R” — R” by the formula
H(®)=AR) + 2 (3)
and a smooth arc f; : T" — T” from the formula

phi=rfp. 1)

The above construction holds for any » > 0, § > 0 and admits an obvious generalization to
the case of modification of the Anosov diffeomorphism in the neighbourhood of any number of
periodic orbits. For simplisity we prove theorem 1 for the constructed arc f; in the next section.

4. Mild stability of the arc f;

Lemma4.1. There are parametersr > 0, 0 > 0 such that the arc f,, defined by the formula (21),
is mildly stable and joints the diffeomorphism fy = A with a DA-diffeomorphism f;.

Proof.
I. Mild stability of the arc. For any point x € T" we denote by F*; and F", the leaves of
stable F*, and unstable F " foliations of the Anosov diffeomorphism A passing through the
point x respectively. By construction, the diffeomorphism f; for any 7 € [0,1] preserves the
invariant foliation F °. Note that in a general case the foliation F " is not invariant with respect
to the diffeomorphism f;. However, every diffeomorphism f; has a fixed saddle point O = p(0).
Moreover the diffeomorphism f; coincides with the diffeomorphism A in some neighborhood
of the point O.

To prove the mild stability of the arc f;, by [10], it is enough to achieve the following its
properties:

1) any diffeomorphism f;, ¢ € [0,7y) is an Anosov diffeomorphism;

2) the arc f; unfolds generically at the saddle-node point (g, ), where ¢ = p(C(qo,0)), that is
the arc f; undergoes a bifurcation at the saddle-node, whose strongly unstable foliation is
transversal to the foliation F*;

3) any diffeomorphism f;, 7 € (ty, 1] is a structurally stable diffeomorphism whose chain recur-
rent set consists of a (n — 1)-dimensional expanding attractor A, with two boundary points
Bo =p(C(0,0)), B, = p(C(b,;,0)) and an isolated source ; = p(C (a;,0)).

Recall that an arc f; undergoes a saddle-node bifurcation at a point (g, 1), if the arc f; is
conjugate to the arc

~ x2 ~
Filxr, %0, x) = <x1 — El —|—t,:|:2x2,2x3,...,2xn) , (22)

where (xi,...,x,) €ER", |x;| <1/2,]7| <1/10 in some neighborhood of this point (see
figure 10).

In local coordinates (xi,...,x,,f) the bifurcation occurs at the time 7 = 0, the coordinates
origin O € R" being the saddle-node. Here
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=01

Figure 10. Graphs of the map x| — Lj +ifort=-0,1;7=0and7=0,1.

e Ox;—the central manifold,
o Wi, ={(x1,x2,...,x,) €ER": x; > 0, xp = --- = x,, = 0}—the stable manifold of O;
o Wi ={(x1,x2,...,%,) € R": x; < 0}—the unstable manifold of O,

o FY = UO{(x1 W X2, ..y X) € R xyp = c}—the strongly unstable foliation.
c>

If g is the saddle-node of the diffeomorphism f;, then, by [5], there is a unique f; -invariant
strongly unstable foliation F;* with smooth leaves (see Fig 11) such that 9W is a leaf of this
foliation.

II. The existence of cones. Let
F=CY%C:RxR" T 5 RxR"!

Then the diffeomorphism F;|y has a form

Fi(x,y) = (I (x,y),B(y)), (23)
where I'; : V— R is the map defined by the formula
Ft(x7y) :M+q)t(x7y) (24)

It follows from formulas (19) and (20) that the Jacobi matrix Yr,(x,y) of the map F,(x,y) has
the form

YE |y = <“L{)(X’y )M g’y )) , (25)
where

Li(x,y) =9 (y) ¢/ (x),

M, (x,y) = 0" (y) i (x) .
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LA A

Figure 11. Strongly unstable lamination of the saddle node q.

Then the differential DF, of the map F; in coordinates v € E, 2R, w € E,, = R"! of the tan-

gent bundle has the form

DF, (v,w) = ((A+L,)v+Mw,Bw) = (v',w’).

(26)

Directly from lemmas 3.1, 3.2 and formulas (18), (17) we obtain the following estimates

A 1
E <A+L < &
9rcy
M| < —.
‘ t| 26

We choose the values of r, § so that

-1
|M,| < MT\/uzflzmo.

Let

and
Ky ={,w) [Vl < Aliwll} -
We show that for any (v,w) € K, the inequalities

V1T < Alwl,

v/2 —|—W/2 > V2 +W2

27)

(28)

(29)

(30)

€29
(32)
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are valid. Indeed, we get (31) from the following chain of inequalities
V=1l (A+ L) v+ Mwl|| < |A+LMM+HMMH<

N+ ||
— <

I < (252 0 ) 12

ﬁ

[w[] = [lw]l.
We get (32) from the following chain of inequalities
V2w = ([ (A L) v+ Mwl[* + [[w/|* > 1] [wl]

2
>#+M+<”2—Q#>#+M.
v

I1I. Fulfilling the properties 1)-3) of a mildly stable arc. Due to the criterion of cones (see,
for example, [6, Corollary 6.4.8]), constructed in the previous section the cone K., guarantees
the existence of a continuous DF;-invariant decomposition of the tangent bundle into sub-
bundles

E,®&FE, dimE" =n—1 (33)
such that for some constant y, > 1 and any k € N the inequality holds
[IDE,  (u) || < 7 ¥Jul], V€ E*.
1) If r € [0,1y) then according to lemma 3.2
O<A+L <A<,
and for any k € N the inequality
IDE ) [ < AfVIl, W € E,

is valid. Thus f; is an Anosov diffeomorphism.

2) It follows from lemma 3.2 that the arc y,(x) = Ax + ¢;(x) is conjugate to the arc x; — % +
7in a neighborhood of the point (g, #). Since the map B is a linear hyperbolic extension then
(see, for example, [15, theorem 5.5]) the arc f; is conjugate to the arc]‘; in some neighborhood
of the point (g,7) € T" x [0, 1]. Thus, the saddle-node bifurcation unfolds generically on the
arc f; at the point (g,y) where g = p(C(qo,0)).

3) For any ¢ € (#y, 1], the diffeomorphism 7;(x) = Ax + ¢,(x) has exactly three fixed points:
hyperbolic sinks x =0, x = a; and hyperbolic source x = b;. In this case the point a; is an
isolated source of the diffeomorphism F, and the point o, = p(C(a,,0)) is an isolated source
of the diffeomorphism f;.

We show that T" \ W}, is a hyperbolic set. To do this it is enough to show that the set
U={(x,y) € V: A L(x,y) = 1} is a subset of the unstable manifold W}; .

Note that the diffeomorphism F(x,y) has the form

Fi(x,y) = (Ao (xy),B(x,y)).

16
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on the set G = [0,b,] x [—%, g]. It follows from the properties of the diffeomorphism ¢, that

(UNG) C WY and therefore F; '(UNG) C int(UNG). Let Uy = UNR x {y}. Since 9(y)
decreases monotonously from 1 to 0 with respect to the variable ||y|| then F; ' (U,) C U o)
and therefore U C W;.

Let A, =Ry \ a;. We prove that A, is a (n — 1)-dimensional expanding attractor.

To do this we first show that W(, C A,. Since f; = A in some neighborhood of the point O
then O ¢ W, and therefore Wg; C A,. In addition cl(W}, N W) = W, that directly implies
that all points of W{; are chain recurrent. Since A, C (T" \ W}, ) then A, is a hyperbolic set and
therefore periodic points are dense in it.

Let us show that cl WY = A,.

Indeed there is a periodic point p of the period m, in any neighborhood of U, of any point
a € A,. Then ;" (F*,) = F*,. Since the leaf F*, is everywhere dense on the torus T", then

there is a point ¢ € (F*, N W). Then klim d(ﬁ"”k(q),p) =0 and therefore U, N W, # 0.
—00

Thus A, is a basic set. Its topological dimension is less than n since otherwise it would
coincide with the entire torus T" (see, for example, [3, Lemma 8.1]). On the other hand
dim WY =n — 1, x € A, whichmeans dim A, = n — 1 and therefore A, isa (n — 1)-dimensional
expanding attractor. O
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