Nonlinearity 38 (2025) 025021 (18pp)

https://doi.org/10.1088/1361-6544/adac9b

Scenario of a mildly stable transition from codimensional one Anosov diffeomorphism to a DA-diffeomorphism

E V Kruglov¹, lu E Petrova² and O V Pochinka^{2,*}

 ¹ National Research Lobachevsky State University of Nizhny Novgorod, Gagarin avenu, 23, Nizhny Novgorod 603022, Russia
 ² National Research University Higher School of Economics, Bol'shaya

Pecherskaya street, 25/12, Nizhny Novgorod 603150, Russia

E-mail: olga-pochinka@yandex.ru, kruglov19@mail.ru and yuepetrova1@hse.ru

Received 6 August 2024; revised 18 December 2024 Accepted for publication 21 January 2025 Published 30 January 2025

Recommended by Dr Lorenzo J Diaz

Abstract

Smale proposed to modify the hyperbolic automorphism of the *n*-torus of codimension 1 in the neighbourhood of a fixed point by surgical operation to obtain the so-called DA-diffeomorphism. However, the corresponding arc of diffeomorphisms is not even mildly stable. The hypothesis of constructing a mildly stable arc between the Anosov diffeomorphism and the DA diffeomorphism was formulated by Newhouse *et al.* A detailed construction of such an arc is carried out in this paper.

Keywords: Anosov diffeomorphism, saddle-node bifurcation, mildly stable arc

Mathematics Subject Classification numbers: 37D20

1. Introduction and formulation of the results

Let Diff (M^n) be the space of diffeomorphisms on a closed *n*-dimensional manifold M^n endowed with the C^{∞} -topology. A smooth arc in the space of Diff (M^n) is C^{∞} -smooth map $\varphi: M^n \times [0,1] \to M^n$ such that for each fixed $t \in [0,1]$ the map $\varphi_t = \varphi|_{M^n \times \{t\}} \in \text{Diff}(M^n)$. We say that the arc $\varphi_t, t \in [0,1]$, connects diffeomorphisms φ_0, φ_1 .

Following Newhouse *et al* [10] an arc φ_t is called *mildly stable* if it is an inner point of the equivalence class with respect to the following relation: two arcs φ_t , φ'_t are called

© 2025 IOP Publishing Ltd & London Mathematical Society.

^{*} Author to whom any correspondence should be addressed.

All rights, including for text and data mining, Al training, and similar technologies, are reserved.

mildly conjugate if there are homeomorphisms $h: [0,1] \rightarrow [0,1], H_t: M \rightarrow M$ such that $H_t\varphi_t = \varphi'_{h(t)}H_t, t \in [0,1]$. If H_t depends continuously on t also then the arcs φ_t, φ'_t are called *conjugate*, and the arc φ_t is called *stable*.

The arc connecting two structurally stable diffeomorphisms φ_0 , φ_1 is called *arc with a finite number of bifurcations* if there are a finite number of values $0 < t_1 < ... < t_q < 1$ such that the diffeomorphisms φ_{t_j} are not structurally stable and the diffeomorphisms φ_t , φ_τ are topologically conjugate if t, τ belong to the same connected component of the set $[0,1] \setminus \{t_1,...,t_q\}$.

The problem of the existence of an arc with a finite number of bifurcations connecting structurally stable systems was included in the list of 50 most important problems of dynamical systems published by Palis and Pugh [16]. On manifolds of any dimension $n \ge 1$ there is an impressive number of counterexamples to the existence of a stable or mildly stable arc with a finite number of bifurcations between structurally stable diffeomorphisms constructed by Matsumoto [8], Blanchard [1], Grines *et al* [4, 11–14] (see also the review [9]).

Smale [21] showed that some *Anosov diffeomorphisms* (diffeomorphisms with a hyperbolic supporting manifold) on the *n*-torus \mathbb{T}^n can be modified into DA-diffeomorphisms. DA-diffeomorphisms are called structurally stable diffeomorphisms whose basic sets consist of a (n-1)-dimensional expanding attractor Λ (dim $W_x^u = n - 1, x \in \Lambda$) and an isolated source orbit. Williams [23] showed later that the modification can be implemented by the arc with one pitchfork bifurcation. However such an arc is neither stable nor mildly stable [10]. In the present paper we implement the transition from the Anosov diffeomorphism to the DA-diffeomorphism by the mildly stable arc with the single saddle-node bifurcation.

Let us fix our setting:

- A ∈ GL(n, Z) is an integer unimodular matrix with all the eigenvalues, except for one value λ ∈ (0, 1), have absolute values larger than one;
- $\overline{A}: \mathbb{R}^n \to \mathbb{R}^n$ is linear map defined by the matrix A;
- $p: \mathbb{R}^n \to \mathbb{T}^n$ is the cover map given by the formula $p(x_1, \ldots, x_n) = (e^{i2\pi x_1}, \ldots, e^{i2\pi x_n});$
- $\widehat{A} : \mathbb{T}^n \to \mathbb{T}^n$ is algebraic automorphism (Anosov diffeomorphism of codimension 1) defined by the formula $p\overline{A} = \widehat{A}p$.

The main result of the paper is the proof of the following theorem.

Theorem 1. There exists a mildly stable arc with a single saddle-node bifurcation that connects the \widehat{A} diffeomorphism with a DA-diffeomorphism.

2. Necessary concepts and facts

Let M^n be a connected closed smooth riemannian manifold of dimension n > 1 with the norm $|| \cdot || : TM^n \to [0, \infty)$ and the induced metric $d : M^n \times M^n \to [0, \infty)$.

Let $f: M^n \to M^n$ be a diffeomorphism. The set $X \subset M^n$ is called *f*-invariant if f(X) = X.

The diffeomorphisms $f, f': M^n \to M^n$ are called *topologically conjugate* if there exists a homeomorphism $h: M^n \to M^n$ such that $h \circ f = f' \circ h$.

f-invariant compact set $\Lambda \subset M^n$ is called *hyperbolic* if there is a continuous *Df*-invariant decomposition of the tangent bundle $T_{\Lambda}M^n$ into *stable* and *unstable* subbundles

$$E_{\Lambda}^{s} \oplus E_{\Lambda}^{u}, \dim E_{x}^{s} + \dim E_{x}^{u} = n, x \in \Lambda$$

such that for a some Riemann metric $|| \cdot ||$, which is called *Lyapunov*, some constants $0 < \lambda < 1 < \mu$ and any $k \in \mathbb{N}$ the following inequalities are valid:

$$\begin{aligned} \|Df^{k}(v)\| &\leq \lambda^{k} \|v\|, \qquad \forall v \in E^{s}_{\Lambda}, \\ \|Df^{-k}(w)\| &\leq \mu^{-k} \|w\|, \qquad \forall w \in E^{u}_{\Lambda} \end{aligned}$$

For any point x of the hyperbolic set Λ there exists an injective immersion $J_x^s : \mathbb{R}^{q_s} \to M^n$ the image $W_x^s = J_x^s(\mathbb{R}^{q_s})$ is called a stable manifold of the point x such that the following properties hold:

- 1) $T_x W_x^s = E_{\Lambda}^s$;
- 2) the points $x, y \in M^n$ belong to the same manifold W_x^s if and only if $d(f^n(x), f^n(y)) \to 0$ for $n \to \infty$;
- 3) $f(W_x^s) = W_{f(x)}^s$;
- 4) if $x, y \in \Lambda$ then either $W_x^s = W_y^s$ or $W_x^s \cap W_y^s = \emptyset$;
- 5) if the points $x, y \in \Lambda$ are close on M^n then W_x^s , W_y^s are C^1 -close on compact sets.

An unstable manifold W_x^u of the point $x \in \Lambda$ is defined as a stable manifold with respect to the diffeomorphism f^{-1} . Unstable manifolds have similar properties, as the stable ones. Stable and unstable manifolds are also called *invariant manifolds*. A path connected component of the sets $W_x^u \setminus x$, $W_x^s \setminus x$ is called *separatrix*.

If the entire supporting manifold M^n of the diffeomorphism f is a hyperbolic set, then f is called to be *Anosov diffeomorphism*.

Recall that ε -chain of length $m \in \mathbb{N}$ joining points $x, y \in M^n$ for f is a set of points $x = x_0, \ldots, x_m = y$ such that $d(f(x_{i-1}), x_i) < \varepsilon$ for $1 \le i \le m$. A point $x \in M^n$ is called *chain recurrent* for f if for any $\varepsilon > 0$ there exists a natural number m depending on $\varepsilon > 0$ and ε -chain of length m joining x with itself. The set of all chain recurrent points is called *chain recurrent set* and is denoted by \mathcal{R}_f .

It follows from the results of [2, 15, 20, 22] that the hyperbolicity of the set \mathcal{R}_f is equivalent to Ω -stability f. Recall that f is called Ω -stable if its C^1 -small perturbations preserve the structure of a chain recurrent set up to topological conjugacy. The set \mathcal{R}_f in this case consists of a finite number of pairwise disjoint subsets called *basic*, each is compact invariant and *is topologically transitive* (contains an everywhere dense orbit) [21]. If the basic set is a periodic orbit then it is called *trivial*. Otherwise, the basic set is called *nontrivial*.

A basic set Λ of Ω -stable diffeomorphism f is called an *attractor* if it has a closed trapping neighborhood $U_{\Lambda} \subset M^n$ such that

$$f(U_{\Lambda}) \subset \operatorname{int} U_{\Lambda}, \bigcap_{k \in \mathbb{N}} f^k(U_{\Lambda}) = \Lambda.$$

In this case (see, for example, [17])

$$\Lambda = \bigcup_{x \in \Lambda} W^u_x.$$

If dim $\Lambda = \dim W_x^u$, then the attractor Λ is called *expanding*. *Repeller* is defined as an attractor for the map f^{-1} .

By theorem 3 in [17] any basic set Λ of codimension one Ω -stable diffeomorphism $f: M^n \to M^n$ is either an attractor or a repeller.

A diffeomorphism f is called *structurally stable* if there exists its neighborhood in the space $\text{Diff}(M^n)$ with C^1 -topology such that any diffeomorphism from this neighborhood is topologically conjugate to the diffeomorphism f. Due to the results of [7, 19] a diffeomorphism f is structurally stable if and only if 1) it is a Ω -stable diffeomorphism and 2) it satisfies the *strong*

Figure 1. 2-bunch *b* of the two-dimensional expanding attractor Λ with boundary points *p*, *q*.

transversality condition. The latter means that $\forall x, y \in \mathcal{R}_f$ of the manifolds W_x^s and W_y^u intersect *transversely*, that is the sum of the tangent spaces to these manifolds coincides with the entire tangent space at their intersection points.

Any expanding attractor Λ of codimension 1 divides its basin W^s_{Λ} by a finite number of connected components. Each such a component of *B* defines *a bunch b* as the union of all unstable manifolds of all periodic points from Λ such that at least one of the stable separatrix of each belongs to *B*. The number k_b of such *boundary points* is finite and is called the *degree* of the bunch b and b is called the k_b -bunch with the basin B (see figure 1).

If $n \ge 3$ then according to [18, theorem 2.1] any expanding attractor of codimension 1 has only 1- or 2-bunches. In this case 1-bunches can be on non-orientable manifolds only.

A structurally stable diffeomorphism f is called a DA-diffeomorphism if its chain recurrent set consists of a single expanding attractor of codimension 1 and isolated sources.

3. Construction of the arc

Let us fix our setting for an integer unimodular matrix G:

- $\overline{G}: \mathbb{R}^n \to \mathbb{R}^n$ is the linear map defined by *G*, that is $\overline{G}(x) = Gx$;
- $\widehat{G}: \mathbb{T}^n \to \mathbb{T}^n$ is algebraic automorphism defined by G, that is $\widehat{G}(x \pmod{1}) = Gx \pmod{1}$.

Let *A* be an integer unimodular matrix with all the eigenvalues, except for one value $\lambda \in (0, 1)$, have absolute values larger than one. According to the Jordan normal form theorem for the matrix *A* there exists a square non-singular matrix *C* such that given by the matrix $J = C^{-1}AC$ linear map \overline{J} has the form

$$\bar{J}(x,y) = (\lambda x, \bar{B}(y)) \tag{1}$$

Figure 2. Graph of the function g(x).

in coordinates $x \in \mathbb{R}$, $y \in \mathbb{R}^{n-1}$. Here $\overline{B} : \mathbb{R}^{n-1} \to \mathbb{R}^{n-1}$ is the linear map defined by the matrix *B*. Absolute values of all eigenvalues of *B* are greater than one and there is $\mu > 1$ such that

$$||B^{-k}y|| < \mu^{-k}||y||, \ \forall y \in \mathbb{R}^{n-1}.$$
(2)

Let

$$V = \left\{ (x, y) \in \mathbb{R} \times \mathbb{R}^{n-1} : 0 \leqslant x \leqslant r, ||y|| \leqslant \delta \right\},\tag{3}$$

for any r > 0, $\delta > 0$ where the constants r, δ are chosen so that the cover p is a homeomorphism on the set $\bar{V} = \bar{C}(V)$.

Next we describe how to construct the function $\varphi(x)$ so that the diffeomorphism $\lambda x + \varphi(x)$ coincides with the linear contraction outside the segment [0, r] and has two hyperbolic fixed points on the interval (0, r) which are a source and a sink. In addition this function requires described below in the lemma 3.1 properties allowing to construct the desired arc based on it. To do this we define C^{∞} -smooth function $g : \mathbb{R} \to [0, 1]$ by the formula (see figure 2)

$$g(x) = \begin{cases} 0, & x \leq 0, \\ e^{-\frac{1}{x^2}}, & x > 0. \end{cases}$$

We define C^{∞} -smooth function $\sigma : \mathbb{R} \to [0,1]$ by the formula (see figure 3)

$$\sigma(x) = \frac{g(x+1)}{g(x+1) + g(1-x)}$$

It is directly verified that the function $\sigma(x)$ increases monotonously from 0 to 1 on the interval (-1,1), it is constant outside (-1,1) and (see figure 4)

$$\sigma'(x) < \frac{9}{8}, x \in \mathbb{R}.$$
(4)

Figure 3. Graph of the function $\sigma(x)$.

Figure 4. Graph of the function $\sigma'(x)$.

Let $h_-, h_+ : \mathbb{R} \to \mathbb{R}$ are C^{∞} -smooth functions and let $h_-(x_0) = h_+(x_0)$ and the function $h : \mathbb{R} \to \mathbb{R}$ is defined by the formula

$$h(x) = \begin{cases} h_{-}(x), & x \leq x_{0}, \\ h_{+}(x), & x > x_{0}. \end{cases}$$

Let the function h(x) is not smooth at the point x_0 . We say C^{∞} -smooth function

$$\tilde{h}(x) = \left(1 - \sigma\left(\frac{x - x_0}{\varepsilon}\right)\right) h_-(x) + \sigma\left(\frac{x - x_0}{\varepsilon}\right) h_+(x)$$

to be *smoothing of the function* h(x) *at the point* x_0 for any $\varepsilon > 0$ (see figure 5).

Figure 5. Graph of the smoothing $\tilde{h}(x)$ of the function h(x) at the point x_0 .

Figure 6. Graph of the function $\varphi(x)$.

By construction $\tilde{h}(x)$ differs from h(x) only in ε -neighborhood of the point x_0 and

$$\lim_{\varepsilon \to 0} \left(\max_{x \in [x_0 - \varepsilon, x_0 + \varepsilon]} |\tilde{h}(x) - h(x)| \right) = 0.$$
(5)

Concept of smoothing is naturally generalized to continuous functions composed by a finite number of smooth parts.

Let

$$\theta = \frac{\mu - 1}{1 - \lambda} > 0,\tag{6}$$

$$c_0 = \left(1 + \frac{\theta}{4}\right)(1 - \lambda). \tag{7}$$

Lemma 3.1. There is a C^{∞} -smooth function $\varphi(x)$ (see figure 6), having the following properties for some values

$$0 < x_3 < a < x_1 < x_0 < b < x_2 < x_4 < r$$
:

1) $\varphi(x) \equiv 0$ outside the segment $[x_3, x_4]$; 2) $|\varphi(x)| \leq \varphi(x_0) = d_0$ and $x_0(1 - \lambda) < d_0 < x_0 c_0$; 3) $-\frac{\lambda}{2} < \varphi'(x) < (1 + \frac{\theta}{2})(1 - \lambda)$ and $\varphi'(x_1) > \frac{\varphi(x_1)}{x_1}$; 4) $\varphi(x) \equiv -d_1 (x - x_0)^2 + d_0$ on the segment $[x_1, x_2]$ where $d_1 > 0$; 5) The equation $\varphi(x) = (1 - \lambda)x$ for x > 0 has exactly two solutions x = a, x = b such that $\varphi'(a) > 1 - \lambda, \varphi'(b) < 0$.

Figure 7. Graph of the function $\psi(x)$.

Proof. We will find a function $\varphi(x)$, satisfying the conditions 1)-5), in the form

$$\varphi(\mathbf{x}) = \int_{-\infty}^{x} \tilde{\psi}(s) \, \mathrm{d}s,$$

where $\tilde{\psi}$ is a C^{∞} -smoothing of a piecewise linear function ψ . For this aim let us define a piecewise linear function $\psi : \mathbb{R} \to \mathbb{R}$, depending on the parameters $0 < k_1 < k_2 < k_3 < k_4 <$ $k_5 < 1$, by its graph on figure 7(here $x_0 = rk_4, x_* = \psi^{-1}(-\frac{\lambda}{4})$). Let

$$\bar{\varphi}(x) = \int_{-\infty}^{x} \psi(s) \, \mathrm{d}s.$$

To prove the present lemma it is enough to show that there are such constants $k_i, i \in \{1, ..., 5\}$ that the function $\overline{\varphi}(x)$ has the following properties:

- 1) $\bar{\varphi}(x) \equiv 0$ outside the segment $[rk_1, rk_5]$;

- $\begin{aligned} \hat{z}) \quad & |\bar{\varphi}(x)| \leq \bar{\varphi}(x_0) = \bar{d}_0 \text{ and } x_0(1-\lambda) < \bar{d}_0 < x_0c_0; \\ \bar{3}) \quad & -\frac{\lambda}{2} < \bar{\varphi}'(x) < \left(1 + \frac{\theta}{2}\right)(1-\lambda) \text{ and } \bar{\varphi}'(rk_3) > \frac{\bar{\varphi}(rk_3)}{rk_3}; \\ \bar{4}) \quad & \bar{\varphi}(x) \equiv -\bar{d}_1(x-x_0)^2 + \bar{d}_0 \text{ on the segment } [rk_3, x_*] \text{ where } \bar{d}_1 > 0; \end{aligned}$
- 5) the equation $\bar{\varphi}(x) = (1 \lambda)x$ for x > 0 has exactly two solutions $x = \bar{a}, x = \bar{b}$ where $rk_2 < \bar{b}$ $\bar{a} < x_0 < \bar{b} < rk_5$ at the same time $\bar{\varphi}'(\bar{a}) > 1 - \lambda, \, \bar{\varphi}'(\bar{b}) < 0.$

1) The condition $\bar{\varphi}(x) \equiv 0$ outside the segment $[rk_1, rk_5]$ is equivalent to the equality of the areas of the trapezoid above the Ox axis and the triangle under the Ox axis, which is expressed by the following equality

$$(k_4 - k_1 + k_3 - k_2)\left(1 + \frac{\theta}{4}\right)(1 - \lambda) = (k_5 - k_4)\frac{\lambda}{4}.$$
(8)

2) The property $|\bar{\varphi}(x)| \leq \bar{\varphi}(x_0)$ is an immediate consequence of the fact that the function $\psi(x)$ changes the sign from + to - at the point x_0 . Note that $\overline{d}_0 = \overline{\varphi}(x_0)$ is equal to the area of the trapezoid located above the Ox axis so $\bar{d}_0 < x_0c_0$. Fulfilling the condition $\bar{d}_0 > x_0(1-\lambda)$ is equivalent to inequality

$$(k_4 - k_1 + k_3 - k_2)\left(1 + \frac{\theta}{4}\right) > 2k_4.$$
(9)

 $\bar{3}$) The property $-\frac{\lambda}{2} < \bar{\varphi}'(x) < \left(1 + \frac{\theta}{2}\right)(1 - \lambda)$ follows directly from the inequality

$$-\frac{\lambda}{4} \leq \psi(x) \leq \left(1+\frac{\theta}{4}\right)(1-\lambda).$$

Property $\bar{\varphi}'(rk_3) > \frac{\bar{\varphi}(rk_3)}{rk_3}$ is executed because $\varphi(rk_3)$ is the area of a trapezoid located above the *Ox* axis and having a lower base $[rk_1, rk_3]$, $\bar{\varphi}'(rk_3) = \psi(rk_3) = c_0$ and therefore

$$\bar{\varphi}(rk_3) = r(2k_3 - (k_1 + k_2))\frac{c_0}{2} < c_0 rk_3.$$

 $\overline{4}$) Since the function $\psi(x)$ on the segment $[rk_3, x_*]$ is a straight line with a negative slope then the function $\overline{\varphi}(x)$ on this segment is a quadratic function with a negative coefficient at x^2 . It follows from point $\overline{2}$) that the vertex of the parabola is at the point (x_0, \overline{d}_0) and, therefore,

$$\bar{\varphi}(x) \equiv -\bar{d}_1 \left(x - x_0 \right)^2 + \bar{d}_0$$

on the segment $[rk_3, x_*]$ where $\bar{d}_1 > 0$.

 $\overline{5}$) The function $\overline{\varphi}(x)$ on the segment $[rk_3, x_*]$ coincides with the parabola $y = -\overline{d}_1 (x - x_0)^2 + \overline{d}_0$ whose vertex lies above the straight line $y = (1 - \lambda)x$ and coincides with a straight line with a slope c_0 on the segment $[rk_2, rk_3]$ by construction. Then to prove the property of $\overline{5}$) it is enough to achieve the condition

$$\bar{\varphi}(rk_2) < (1-\lambda)rk_2. \tag{10}$$

Note that $\bar{\varphi}(rk_2)$ is equal to the area of a located above the *Ox* axis and having a base of $[rk_1, rk_2]$ triangle. Therefore the condition (10) is equivalent to inequality

$$(k_2 - k_1)\left(1 + \frac{\theta}{4}\right) < 2k_2. \tag{11}$$

Let us show how to choose constants k_i satisfying all the described conditions. Indeed, let

$$\ell = \frac{1}{1 + \frac{\theta}{4}}$$

and represent the constants $k_i - k_{i-1}$, $i \in \{1, \dots, 5\}$, $k_0 = 0$ as

$$k_i - k_{i-1} = \ell_i k_4.$$

Then the inequalities (9) and (11) have the following forms

$$(2\ell_3 + \ell_2 + \ell_4) > 2\ell, \tag{12}$$

$$\ell_2 < 2(\ell_1 + \ell_2)\ell. \tag{13}$$

Figure 8. Graph of the function $\bar{\varphi}(x)$ for $\theta = 4$, $\lambda = \frac{1}{4}$, r = 10.

To achieve the inequality (12) let us put

$$\ell_3 = \ell$$
,

and for the inequality (13) let

$$\ell_1 = \frac{\ell (1 - \ell)}{1 + \ell}, \, \ell_2 = \ell_1 \ell$$

The constant ℓ_4 is calculated from the condition

$$\ell_1 + \ell_2 + \ell_3 + \ell_4 = 1$$

and therefore

$$\ell_4 = \left(1 - \ell\right)^2.$$

The equality (8) in the entered variables has the following form

$$4(2\ell_3 + \ell_2 + \ell_4)(1 - \lambda) = \ell_5 \lambda \ell.$$
(14)

We find ℓ_5 from (14). Since $k_5 = (1 + \ell_5)k_4 < 1$ then k_4 can be taken as any value satisfying the inequality

$$k_4 < \frac{1}{1+\ell_5}.$$

As illustration we calculate all values ℓ_i, k_i for $\theta = 4, \lambda = \frac{1}{4}, r = 10$ and plot the graph of the function $\overline{\varphi}(x)$ using a computer (see figure 8).

We define a C^{∞} -smooth function $\varphi_t : \mathbb{R} \to \mathbb{R}$ for $t \in [0, 1]$ by the formula

$$\varphi_t(x) = \sigma \left(2t - 1\right) \varphi(x). \tag{15}$$

Lemma 3.2. The functions $\varphi_t(x)$ for x > 0 have the following properties:

- 1) there is a unique value $t_0 \in (0,1)$ such that $\varphi_{t_0}(x) < (1-\lambda)x$ for any x > 0, excepted a unique point $x = q_0 \in (x_1, x_0)$, where $\varphi_{t_0}(q_0) = (1-\lambda)q_0 \notin \varphi'_{t_0}(q_0) = (1-\lambda);$
- 2) $\varphi_t(x) < (1 \lambda)x$ for any $t \in [0, t_0)$;
- 3) for any $t \in (t_0, 1]$ the equation $\varphi_t(x) = (1 \lambda)x$ has exactly two solutions $x = a_t, x = b_t$ where $x_1 < a_t < b_t < r$ and $\varphi'_t(a_t) > 1 - \lambda$, $\varphi'_t(b_t) < 1 - \lambda$.

Proof. It follows from the definition of the function σ that $\varphi_0(x) \equiv 0$ and $\varphi_1(x) \equiv \varphi(x)$. It is obviously that the function $\varphi_1(x)$ has property 3) by lemma 3.1. The intersection points of the graph of the function $\varphi_t(x)$ with the line $y = (1 - \lambda)x$ for any $t \in (0, 1)$ are exactly the intersection points of the graph of the function $\varphi(x)$ with the line $y = \nu_t x$ where

$$\nu_t = \frac{1-\lambda}{\sigma\left(2t-1\right)}.$$

It follows from item 5) of lemma 3.1 that if such points exist then they belong to the segment [a,b]. Since ν_t accepts any values greater than $1 - \lambda$, there exists a value $t_* \in (0,1)$ such that $\nu_{t_*} = \frac{\varphi(x_1)}{x_1}$. According to item 4) of lemma 3.1 the function $\varphi(x)$ coincides with the parabola $y = -d_1(x - x_0)^2 + d_0$ on the segment $[x_1, x_2]$ therefore the desired intersection points are exactly solutions of the equation

$$-d_1 (x - x_0)^2 + d_0 = \nu_t x \tag{16}$$

for any $t \leq t_*$. Let the discriminant of the quadratic equation (16) equals 0 at $t = t_0$. Then this equation has exactly two solutions a_t , b_t for $t_0 < t \leq t_*$, one solution q_0 for $t = t_0$ and has no any solutions for $t < t_0$. The point q_0 is the tangent point of the graph of the function $\varphi_{t_0}(x)$ and the straight line $y = (1 - \lambda)x$, hence $\varphi'_{t_0}(q_0) = (1 - \lambda)$. The graph of the function $\varphi_{t_0}(x)$ intersects transversely the line $y = (1 - \lambda)x$ at the point a_t with a slope $\varphi'_t(a_t) > 1 - \lambda$ and at the point b_t with a slope $\varphi'_t(b_t) < 1 - \lambda$.

As $\varphi'_t(x) = \sigma(2t-1)\varphi'(x)$ then its values on the segment $[a, x_1]$ are not less than $\sigma(2t-1)\varphi'(x_1)$ for $t \in (t_*, 1)$. Therefore the smallest value of the derivative is $\sigma(2t_*-1)\varphi'(x_1)$. Since t_* is a solution of the equation

$$\sigma\left(2t_*-1\right)\varphi\left(x_1\right)=(1-\lambda)x_1,$$

and, by item 2) of lemma 3.1,

$$\varphi(x_1) < x_1 \varphi'(x_1),$$

then

$$\sigma\left(2t_*-1\right)\varphi\left(x_1\right) > 1-\lambda.$$

Since the function $\varphi_t(x)$ is monotonously decreasing on the segment $[a, x_1]$ then its graph has a unique intersection point a_t with the line $y = (1 - \lambda)x$ on this segment and $\varphi'_t(a_t) > 1 - \lambda$. Since the function $\varphi_t(x)$ coincides on the segment $[x_1, x_2]$ with a parabola whose branches are directed downward and the vertex lies to the right of the point x_1 then there is exactly one more intersection point $b_t > x_1$ of the graph of the function $\varphi_t(x)$ with a straight line $y = (1 - \lambda)x$ and $\varphi'_t(b_t) < 1 - \lambda$.

Figure 9. Graphs of the functions $\gamma_t(x)$ for $t = 0, t = \frac{t_0}{2}, t = t_0, t = 1$.

Note that by lemma 3.2, the graphs of the functions $\gamma_t(x) = \lambda x + \varphi_t(x)$ have the form shown in figure 9.

$$\vartheta\left(y\right) = \left(1 - \sigma\left(\frac{4||y|| - 2\delta}{\delta}\right)\right) \tag{17}$$

for $y \in \mathbb{R}^{n-1}$, where $||y|| < \delta$. It follows directly from the formula (4) that

$$|\vartheta'(\mathbf{y})| < \frac{9}{2\delta}.\tag{18}$$

We define C^{∞} -smooth map $\phi_t : V \to \mathbb{R}$ by the formula

$$\phi_t(x, y) = \vartheta(y) \varphi_t(x), \tag{19}$$

and define C^{∞} -smooth map $\Phi_t : V \to \mathbb{R} \times \mathbb{R}^{n-1}$ by the formula

$$\Phi_t(x, y) = (\phi_t(x, y), 0).$$
(20)

Notice, that by construction $\Phi_t(x, y) = (0, 0)$ if $(x, y) \in \partial V$. Let

 $\bar{\Phi}_t = \bar{C} \Phi_t \bar{C}^{-1} : \bar{V} \to \mathbb{R}^n.$

Then the map $\overline{\Phi}_t$ can be continued on \mathbb{R}^n so that the following properties are met in coordinates $\overline{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ with the origin $\overline{0} = (0, \dots, 0)$

- $\bar{\Phi}_t(\bar{x}) = \bar{0}$ outside of all integer shifts of the set \bar{V} ;
- $\bar{\Phi}_t(\bar{x})$ is 1-periodical function on the vector argument \bar{x} .

We define a smooth arc $\overline{f}_t : \mathbb{R}^n \to \mathbb{R}^n$ by the formula

$$\bar{f}_t(\bar{x}) = \bar{A}(\bar{x}) + \bar{\Phi}_t(\bar{x})$$

and a smooth arc $f_t : \mathbb{T}^n \to \mathbb{T}^n$ from the formula

$$pf_t = f_t p. \tag{21}$$

The above construction holds for any r > 0, $\delta > 0$ and admits an obvious generalization to the case of modification of the Anosov diffeomorphism in the neighbourhood of any number of periodic orbits. For simplicity we prove theorem 1 for the constructed arc f_t in the next section.

4. Mild stability of the arc f_t

Lemma 4.1. There are parameters r > 0, $\delta > 0$ such that the arc f_t , defined by the formula (21), is mildly stable and joints the diffeomorphism $f_0 = \widehat{A}$ with a DA-diffeomorphism f_1 .

Proof.

I. Mild stability of the arc. For any point $x \in \mathbb{T}^n$ we denote by \mathcal{F}_x^s and \mathcal{F}_x^u the leaves of stable \mathcal{F}^s , and unstable \mathcal{F}^u foliations of the Anosov diffeomorphism \widehat{A} passing through the point x respectively. By construction, the diffeomorphism f_t for any $t \in [0, 1]$ preserves the invariant foliation \mathcal{F}^s . Note that in a general case the foliation \mathcal{F}^u is not invariant with respect to the diffeomorphism f_t . However, every diffeomorphism f_t has a fixed saddle point $O = p(\overline{0})$. Moreover the diffeomorphism f_t coincides with the diffeomorphism \widehat{A} in some neighborhood of the point O.

To prove the mild stability of the arc f_t , by [10], it is enough to achieve the following its properties:

- 1) any diffeomorphism f_t , $t \in [0, t_0)$ is an Anosov diffeomorphism;
- 2) the arc f_t unfolds generically at the saddle-node point (q, t_0) , where $q = p(C(q_0, 0))$, that is the arc f_t undergoes a bifurcation at the saddle-node, whose strongly unstable foliation is transversal to the foliation \mathcal{F}^s ;
- 3) any diffeomorphism f_t , $t \in (t_0, 1]$ is a structurally stable diffeomorphism whose chain recurrent set consists of a (n 1)-dimensional expanding attractor Λ_t with two boundary points $\beta_0 = p(\bar{C}(0,0)), \beta_t = p(\bar{C}(b_t,0))$ and an isolated source $\alpha_t = p(\bar{C}(a_t,0))$.

Recall that an arc f_t undergoes a saddle-node bifurcation at a point (q, t_0) , if the arc f_t is conjugate to the arc

$$\tilde{f}_{\tilde{t}}(x_1, x_2, \dots, x_n) = \left(x_1 - \frac{x_1^2}{2} + \tilde{t}, \pm 2x_2, 2x_3, \dots, 2x_n\right),$$
(22)

where $(x_1, \ldots, x_n) \in \mathbb{R}^n$, $|x_i| < 1/2$, $|\tilde{t}| < 1/10$ in some neighborhood of this point (see figure 10).

In local coordinates $(x_1, ..., x_n, \tilde{t})$ the bifurcation occurs at the time $\tilde{t} = 0$, the coordinates origin $O \in \mathbb{R}^n$ being the saddle-node. Here

Figure 10. Graphs of the map $x_1 - \frac{x_1^2}{2} + \tilde{t}$ for $\tilde{t} = -0, 1; \tilde{t} = 0$ and $\tilde{t} = 0, 1$.

- *Ox*₁—the *central manifold*;

- $W_O^u = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : x_1 \ge 0, x_2 = \dots = x_n = 0\}$ —the stable manifold of O; $W_O^u = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : x_1 \le 0\}$ —the unstable manifold of O; $\mathcal{F}_O^{uu} = \bigcup_{c>0} \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : x_1 = c\}$ —the strongly unstable foliation.

If q is the saddle-node of the diffeomorphism f_{t_0} then, by [5], there is a unique f_{t_0} -invariant strongly unstable foliation \mathcal{F}_q^{uu} with smooth leaves (see Fig 11) such that ∂W_q^u is a leaf of this foliation.

II. The existence of cones. Let

$$F_t = \bar{C}^{-1} \bar{f}_t \bar{C} : \mathbb{R} \times \mathbb{R}^{n-1} \to \mathbb{R} \times \mathbb{R}^{n-1}.$$

Then the diffeomorphism $F_t|_V$ has a form

$$F_t(x,y) = \left(\Gamma_t(x,y), \bar{B}(y)\right),\tag{23}$$

where $\Gamma_t: V \to \mathbb{R}$ is the map defined by the formula

$$\Gamma_t(x,y) = \lambda x + \Phi_t(x,y).$$
(24)

It follows from formulas (19) and (20) that the Jacobi matrix $Y_{F_t}(x, y)$ of the map $F_t(x, y)$ has the form

$$Y_{F_t}|_{(x,y)} = \begin{pmatrix} \lambda + L_t(x,y) & M_t(x,y) \\ 0 & B \end{pmatrix},$$
(25)

where

$$L_t(x, y) = \vartheta(y) \varphi_t'(x),$$

$$M_t(x, y) = \vartheta'(y) \varphi_t(x).$$

Figure 11. Strongly unstable lamination of the saddle node q.

Then the differential DF_t of the map F_t in coordinates $v \in E_v \cong \mathbb{R}$, $w \in E_w \cong \mathbb{R}^{n-1}$ of the tangent bundle has the form

$$DF_t(v,w) = ((\lambda + L_t)v + M_t w, Bw) = (v', w').$$
(26)

Directly from lemmas 3.1, 3.2 and formulas (18), (17) we obtain the following estimates

$$\frac{\lambda}{2} < \lambda + L_t < \frac{\mu + 1}{2}.\tag{27}$$

$$|M_t| < \frac{9rc_0}{2\delta}.\tag{28}$$

We choose the values of r, δ so that

$$|M_t| < \frac{\mu - 1}{4}\sqrt{\mu^2 - 1} = m_0.$$
⁽²⁹⁾

Let

$$\gamma = \frac{\sqrt{\mu^2 - 1}}{2} \tag{30}$$

and

$$K_{\gamma} = \{(v,w) : ||v|| \leq \gamma ||w||\}.$$

We show that for any $(v, w) \in K_{\gamma}$ the inequalities

 $||v'|| < \gamma ||w'||,$ (31)

$$v'^2 + w'^2 > v^2 + w^2 \tag{32}$$

are valid. Indeed, we get (31) from the following chain of inequalities

$$\begin{split} ||v'|| &= ||(\lambda + L_t)v + M_t w|| \leq ||(\lambda + L_t)v|| + ||M_t w|| < \\ &< \frac{\mu + 1}{2} ||v|| + m_0 ||w|| \leq \left(\frac{\mu + 1}{2}\gamma + m_0\right) \frac{||w'||}{\mu} < \\ &< \frac{\sqrt{\mu^2 - 1}}{2} ||w'|| = \gamma ||w'||. \end{split}$$

We get (32) from the following chain of inequalities

$$\begin{aligned} v'^{2} + w'^{2} &= ||(\lambda + L_{t})v + M_{t}w||^{2} + ||w'||^{2} \ge \mu^{2}||w|| \\ &\ge v^{2} + w^{2} + \left(\frac{\mu^{2} - 1}{\gamma^{2}} - 1\right)v^{2} > v^{2} + w^{2}. \end{aligned}$$

III. Fulfilling the properties 1)-3) of a mildly stable arc. Due to the criterion of cones (see, for example, [6, Corollary 6.4.8]), constructed in the previous section the cone K_{γ} guarantees the existence of a continuous DF_t -invariant decomposition of the tangent bundle into subbundles

$$E_v \oplus E^u, \dim E^u = n - 1 \tag{33}$$

such that for some constant $\mu_t > 1$ and any $k \in \mathbb{N}$ the inequality holds

$$||\mathbf{DF}_t^{-k}(u)|| \leq \mu_t^{-k} ||u||, \quad \forall u \in E^u$$

1) If $t \in [0, t_0)$ then according to lemma 3.2

$$0 < \lambda + L_t < \lambda_t < 1,$$

and for any $k \in \mathbb{N}$ the inequality

$$||\mathbf{DF}_t^k(v)|| \leq \lambda_t^k ||v||, \quad \forall v \in E_v$$

is valid. Thus f_t is an Anosov diffeomorphism.

2) It follows from lemma 3.2 that the arc $\gamma_t(x) = \lambda x + \varphi_t(x)$ is conjugate to the arc $x_1 - \frac{x_1^2}{2} + \tilde{t}$ in a neighborhood of the point (q_0, t_0) . Since the map \bar{B} is a linear hyperbolic extension then (see, for example, [15, theorem 5.5]) the arc f_t is conjugate to the arc \tilde{f}_t in some neighborhood of the point $(q, t_0) \in \mathbb{T}^n \times [0, 1]$. Thus, the saddle-node bifurcation unfolds generically on the arc f_t at the point (q, t_0) where $q = p(\bar{C}(q_0, 0))$.

3) For any $t \in (t_0, 1]$, the diffeomorphism $\gamma_t(x) = \lambda x + \varphi_t(x)$ has exactly three fixed points: hyperbolic sinks x = 0, $x = a_t$ and hyperbolic source $x = b_t$. In this case the point a_t is an isolated source of the diffeomorphism F_t and the point $\alpha_t = p(\bar{C}(a_t, 0))$ is an isolated source of the diffeomorphism f_t .

We show that $\mathbb{T}^n \setminus W^u_{\alpha_t}$ is a hyperbolic set. To do this it is enough to show that the set $U = \{(x, y) \in V : \lambda + L_t(x, y) \ge 1\}$ is a subset of the unstable manifold $W^u_{a_t}$.

Note that the diffeomorphism $F_t(x, y)$ has the form

$$F_t(x,y) = (\lambda + \varphi_t(x,y), \overline{B}(x,y)).$$

on the set $G = [0, b_t] \times \left[-\frac{\delta}{4}, \frac{\delta}{4}\right]$. It follows from the properties of the diffeomorphism φ_t that $(U \cap G) \subset W_{a_t}^u$ and therefore $F_t^{-1}(U \cap G) \subset \operatorname{int}(U \cap G)$. Let $U_y = U \cap \mathbb{R} \times \{y\}$. Since $\vartheta(y)$ decreases monotonously from 1 to 0 with respect to the variable ||y|| then $F_t^{-1}(U_y) \subset U_{\overline{B}^{-1}(y)}$ and therefore $U \subset W_a^u$.

Let $\Lambda_t = \mathcal{R}_{f_t} \setminus a_t$. We prove that Λ_t is a (n-1)-dimensional expanding attractor.

To do this we first show that $W_O^u \subset \Lambda_t$. Since $f_t = \hat{A}$ in some neighborhood of the point O then $O \notin W_{a_t}^u$ and therefore $W_O^u \subset \Lambda_t$. In addition $\operatorname{cl}(W_O^s \cap W_O^u) = W_O^u$, that directly implies that all points of W_O^u are chain recurrent. Since $\Lambda_t \subset (\mathbb{T}^n \setminus W_{\alpha_t}^u)$ then Λ_t is a hyperbolic set and therefore periodic points are dense in it.

Let us show that $\operatorname{cl} W_O^u = \Lambda_t$.

Indeed there is a periodic point p of the period m_p in any neighborhood of U_a of any point $a \in \Lambda_t$. Then $f_t^{m_p}(\mathcal{F}_p^s) = \mathcal{F}_p^s$. Since the leaf \mathcal{F}_p^s is everywhere dense on the torus \mathbb{T}^n , then there is a point $q \in (\mathcal{F}_p^s \cap W_Q^u)$. Then $\lim_{k \to \infty} d(f_t^{m_p k}(q), p) = 0$ and therefore $U_a \cap W_Q^u \neq \emptyset$.

Thus Λ_t is a basic set. Its topological dimension is less than *n* since otherwise it would coincide with the entire torus \mathbb{T}^n (see, for example, [3, Lemma 8.1]). On the other hand dim $W_x^u = n - 1$, $x \in \Lambda_t$ which means dim $\Lambda_t = n - 1$ and therefore Λ_t is a (n - 1)-dimensional expanding attractor.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Funding

The research was carried out within the framework of the HSE Fundamental Research Program.

References

- Blanchard P R 1980 Invariants of the NPT isotopy classes of Morse-Smale diffeomorphisms of surfaces *Duke Math. J.* 47 33–46
- [2] Franks J E and Selgrade J F 1977 Hyperbolicity and chain recurrence J. Differ. Equ. 26 27-36
- [3] Grines V, Medvedev T and Pochinka O 2016 Dynamical Systems on 2- and 3-Manifolds (Springer) p 303
- [4] Grines V and Pochinka O 2013 On the simple isotopy class of a source-sink diffeomorphism on the 3-sphere Math. Notes 94 862–75
- [5] Hirsh M W, Pugh C C and Shub M 1977 Invariant Manifolds (Springer Lecture Notes in Mathematics) p 583
- [6] Katok A and Hasselblatt B 1995 Introduction to the Modern Theory of Dynamical Systems (Cambridge University Press) p 802
- [7] Ma né R 1988 A proof of C^1 stability conjecture *Publ. Math. IHES* **66** 161–210
- [8] Matsumoto S 1979 There are two isotopic Morse-Smale diffeomorphisms which cannot be joined by simple arcs *Invent. Math.* 51 1–7
- [9] Medvedev T V, Nozdrinova E V and Pochinka O V 2022 Components of Stable Isotopy Connectedness of Morse-Smale Diffeomorphisms *Regul. Chaotic Dyn.* 27 77–97
- [10] Newhouse S, Palis J and Takens F 1983 Bifurcations and stability of families of diffeomorphisms Publ. Math. le l'I.H.E.S. 57 5–71
- [11] Nozdrinova E 2018 Rotation number as a complete topological invariant of a simple isotopic class of rough transformations of a circle *Russ. J. Nonlinear Dyn.* 14 543–51

- [12] Nozdrinova E and Pochinka O 2020 On the solution of the 33rd Palis-Pugh problem for gradientlike diffeomorphisms of a 2-sphere Russ. Math. Surv. 75 383–5
- [13] Nozdrinova E and Pochinka O 2021 Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere Discrete Contin. Dyn. Syst. 41 1101–31
- [14] Nozdrinova E and Pochinka O 2021 Stable arcs connecting polar cascades on a torus Russ. J. Nonlinear Dyn. 17 23–37
- [15] Palis J and de Melo W 1982 Geometric Theory of Dynamical Systems (Springer) p 198
- [16] Palis J and Pugh C 1975 Fifty Problems in Dynamical Systems (Lecture Notes in Mathematics) vol 468 pp 345–53
- [17] Plykin R V 1971 The topology of basic sets of Smale diffeomorphisms *Îathematics USSR-Sbornik* 13 297–307
- [18] Plykin R V 1984 On the geometry of hyperbolic attractors of smooth cascades *Russ. Math. Surv.* 39 85–104
- [19] Robinson C 1976 Structural stability of C¹ diffeomorphisms J. Differ. Equ. 22 28–73
- [20] Shub M 1978 Stabilite globale des systemes dynamiques Asterisque 56
- [21] Smale S 1967 Differentiable dynamical systems Bull. Am. Math. Soc. 73 747-817
- [22] Smale S 1970 The Ω-stability Theorem Proc. Symp. in Pure Mathematics XIV (Global Analysis) (AMS)
- [23] Williams R F 1970 The DA-maps of Smale and structural stability Proc. Symp. Pure Math. vol 14 (American Mathematical Society) pp 329–34