
Preface

The subject of the January-June 2020 Fields Thematic Program was Toric Topology
and Polyhedral Products. Toric topology at its core is the study of torus actions on
manifolds whose orbit space is a simple polytope and whose homotopy orbit space
has cohomology a Stanley-Reisner ring. It lies at the intersection of a wide array
of mathematical disciplines, including topology, convex geometry, combinatorics,
commutative algebra, and algebraic and symplectic geometry. A key construction
is a moment-angle complex, which is formed by gluing together Cartesian products
of discs and spheres in a manner determined by a simplicial complex. This has
a functorial generalization to Cartesian products of spaces with fixed subspaces,
again with the gluing determined by a simplicial complex. Remarkably, this unifies
several seemingly distinct constructions, for example, the Whitehead filtration in
homotopy theory, complements of complex coordinate subspace arrangements in
combinatorics, intersections of quadrics in complex-analytic geometry, and theDavis
and Salvetti complexes in geometric group theory that have been used to great effect
in studying right-angled Artin and Coxeter groups.

Toric topology arose relatively recently. Its genesis was a paper of Davis and
Januszkiewicz from 1991 that identified an elegant family of manifolds with torus
actions and described many of their geometric, topological and combinatorial prop-
erties. Over the next several years Buchstaber and Panov thoroughly investigated
and generalized these spaces, laying the groundwork for toric topology as its own
discipline. They also anticipated the functorial generalization to polyhedral prod-
ucts, later given full development in a seminal paper by Bahri, Bendersky, Cohen
and Gitler. Some of the great success stories in the area occurred at the intersection
of different disciplines, such as the insightful use of moment-angle complexes by
Bosio and Meersseman to study intersections of quadrics in complex-analytic ge-
ometry, and the use of moment-angle complexes by Grbić and Theriault and later
Iriye and Kishimoto to identify the homotopy types of the complements of families
of complex coordinate subspace arrangements. Driving problems include describ-
ing the homology, cohomology and homotopy types of polyhedral products and
describing the subtle interplay between the algebraic and symplectic geometry and
the combinatorics of toric varieties and symplectic manifolds.

v



vi Preface

The Fields Thematic Program was aimed at intensifying research into the driving
problems, attracting talented young researchers to the area, and exploring potential
interactions with other areas of mathematics. The program had two schools and four
workshops: the first school and twoworkshopswere focused directly on studying toric
topology and polyhedral products while the second school and two workshops were
aimed at crossing boundaries by investigating the interplay between toric topology,
polyhedral products, geometric group theory and applied topology. The programwas
also honoured to have two Distinguished Speakers, Victor Buchstaber and Ulrike
Tillmann, and two Clay Lecturers, Gunnar Carlsson and Shmuel Weinberger.

This volume consists of original articles that emerged from the discussions and
interactions of researchers involved with the program. It spans a wide array of topics,
reflecting the very wide reach of toric topology and polyhedral products.

The program organizers would like to thank the Fields Institute and its staff for
all their support. Special mention should go to the Fields Directors Ian Hambleton,
who patiently answered our many questions during the application process, and
Kumar Murty, who encouraged us to not let the covid outbreak and lockdown in
2020 put a stop to what was a thriving program. We would also like to thank the
other workshop organizers: Peter Bubenik, Graham Denham, Matthias Franz, Jelena
Grbić, Ian Leary, Vidit Nanda and Piotr Przytyckyi, and the many speakers and
participants who made the program a decisive success.
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Connected sums of sphere products and
minimally non-Golod complexes

Steven Amelotte

AbstractWe show that if the moment-angle complexZK associated to a simplicial
complex K is homotopy equivalent to a connected sum of sphere products with two
spheres in each product, then K decomposes as the simplicial join of an n-simplex∆n

and a minimally non-Golod complex. In particular, we prove that K is minimally
non-Golod for every moment-angle complexZK homeomorphic to a connected sum
of two-fold products of spheres, answering a question of Grbić, Panov, Theriault and
Wu.

1 Introduction

A central construction in toric topology functorially assigns to each finite simpli-
cial complex K on m vertices a finite CW-complex ZK , called the moment-angle
complex, which comes equipped with a natural action of the m-torus Tm = (S1)m.
Various homological invariants of Stanley–Reisner rings of basic importance in com-
binatorial commutative algebra are given geometric realizations by ZK and related
spaces. For example, the homotopy orbit space of ZK is the Davis–Januszkiewicz
spacewhose cohomology (with coefficients in a commutative ring k) is the Stanley–
Reisner ring k[K] itself, while the ordinary cohomology of ZK recovers its Koszul
homology (see [2], [8]):

H∗(ZK ; k) � Tor∗k[v1,...,vm]
(k[K], k).

Steven Amelotte
Department of Mathematics, University of Rochester, Rochester, NY 14625, USA
Current address: Department of Mathematics, University of Western Ontario, London, Ontario
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2 Steven Amelotte

Combinatorial properties of simplicial complexes and, in particular, homological
properties of their Stanley–Reisner rings can therefore be studied by investigating the
homotopy types of moment-angle complexes. This point of view has recently been
useful in establishing the Golod property for k[K] for certain families of simplicial
complexes by applying homotopy theoretic methods to show that the corresponding
moment-angle complexZK is homotopy equivalent to a wedge of spheres (see e.g.
[7], [12], [13], [12]). Here, k[K] isGolod if all products and higher Massey products
vanish in Tor∗k[v1,...,vm]

(k[K], k). (Golodness for a graded or local ring implies that
its Poincaré series is a rational function, and an equivalent definition can be given in
terms of a certain equality of formal power series; cf. [G92].) A simplicial complex
K is called Golod if k[K] is Golod for every field k.

Berglund and Jöllenbeck observed in [3] that the Golod property is stable under
deletion of vertices and introduced the notion of a minimally non-Golod complex,
that is, a non-Golod simplicial complexwhich becomesGolod after deleting any of its
vertices. Using combinatorial arguments, they showed that the boundary complexes
of stacked polytopes are minimally non-Golod. Further examples have been given by
Limonchenko [15], who showed that the nerve complexes of even dimensional dual
neighbourly polytopes and certain generalized truncation polytopes are minimally
non-Golod. In each of these cases, the corresponding moment-angle complex ZK

is well known to be a smooth manifold diffeomorphic to a connected sum of sphere
products with two spheres in each product (see [4] and [9]). Moreover, in [7] it was
shown that if K is a flag complex, then K being minimally non-Golod is equivalent
to the condition that ZK is a connected sum of two-fold products of spheres. The
authors raised the question of whether, more generally, K is minimally non-Golod for
all simplicial complexes for whichZK has such a diffeomorphism type ([7, Question
3.5]). The purpose of the present paper is to answer this question affirmatively.

Theorem 1.1 If ZK is homeomorphic to a connected sum of sphere products with
two spheres in each product, then K is minimally non-Golod.

Remark 1.2 The statement of Theorem 1.1 is not true if the “homeomorphic" con-
dition is replaced by “homotopy equivalent". In Section 3 we give a counterexample
in the form of a cone over a minimally non-Golod complex K for which ZK is
homotopy equivalent to a connected sum of sphere products (see Example 3.3), and
we prove that iterated cones of this type are the only such counterexamples. We also
remark that the converse of Theorem 1.1 is not true. In [16], stellar subdivisions
of minimal triangulations of T2 and CP2 are shown to be minimally non-Golod
complexes whose corresponding moment-angle complexes are not connected sums
of sphere products.

We give two proofs of Theorem 1.1. The first is a direct proof that makes crucial
use of the assumption that the moment-angle complex ZK has the structure of
a closed manifold. The second comes as a corollary of the slightly more general
Theorem 1.3 below. See Section 4 for an analogue for real moment-angle complexes.

For n > −1, let ∆n be the standard n-simplex, where ∆−1 = ∅ is the empty
simplicial complex.
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Theorem 1.3 If ZK is homotopy equivalent to a connected sum of sphere products
with two spheres in each product, then K = ∆n ∗ L for some n > −1 where L is
Gorenstein∗ and minimally non-Golod.

Let K be a simplicial complex on the vertex set [m]. The star of a vertex v ∈ K
is the subcomplex

starK (v) = {σ ∈ K | {v} ∪ σ ∈ K}.

The core of K is then defined to be the full subcomplex

core(K) = K{v∈[m] | starK (v),K }

of K on the restricted vertex set {v ∈ [m] | starK (v) , K}. Note that any simplicial
complex can be written as a join

K = ∆n ∗ core(K) , (1)

where ∆n is the simplex with (possibly empty) vertex set [m]\core(K) = {v ∈ [m] |
starK (v) = K}. Since the moment-angle complex functor carries simplicial joins to
Cartesian products and Z∆n � D2(n+1) is contractible, it follows from (1) that the
homotopy type of a moment-angle complex ZK is determined by the core of K . In
the notation of Theorem 1.3, it will be shown that L = core(K) and hence that any
simplicial complex satisfying the hypothesis of Theorem 1.3 has a minimally non-
Golod core. The Gorenstein∗ property implies that Zcore(K) is a closed orientable
manifold.

The author would like to thank the Fields Institute for Research in Mathematical
Sciences and the organizers of the Thematic Program on Polyhedral Products and
Toric Topology for providing both an excellent setting for research and an opportunity
to present this work. In particular, comments and questions from Taras Panov, Don
Stanley and Stephen Theriault led to improvements in this paper.

2 Preliminaries

Throughout this paper, K will denote a finite abstract simplicial complex on the
vertex set [m] = {1, . . . ,m}. We always assume that ∅ ∈ K and that K has no ghost
vertices, that is, {i} ∈ K for all i = 1, . . . ,m.

Let (X, A) = {(Xi, Ai)}
m
i=1 be a sequence of pointed CW-pairs. For each simplex

σ ∈ K , define (X, A)σ to be the subspace of
∏m

i=1 Xi given by

(X, A)σ = {(x1, . . . , xm) ∈
∏m

i=1 Xi | xi ∈ Ai for i < σ}.

The polyhedral product of (X, A) corresponding to K is then defined by

(X, A)K =
⋃
σ∈K

(X, A)σ ⊆
m∏
i=1

Xi . (2)
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In the case where (Xi, Ai) = (D2, S1) for each i = 1, . . . ,m, the polyhedral product
corresponding to K is called the moment-angle complex, denotedZK . Similarly, the
real moment-angle complex RK is defined by the polyhedral product (X, A)K with
(Xi, Ai) = (D1, S0) for each i = 1, . . . ,m. Generalizing these two cases of special
interest, much of the work to date on the homotopy theory of polyhedral products
has focused on pairs of the form (CXi, Xi), where CXi is the reduced cone on Xi . For
a sequence of spaces X = {Xi}

m
i=1, let CX = {CXi}

m
i=1.

For I ⊆ [m], the full subcomplex of K on the vertex set I is defined by

KI = {σ ∈ K | σ ⊆ I}.

We will simply write (X, A)KI for the polyhedral product of {(Xi, Ai)}i∈I corre-
sponding to KI . For any vertex i ∈ [m], we denote by K − {i} the deletion complex
of i defined by

K − {i} = {σ ∈ K | i < σ}.

Note that K − {i} is the full subcomplex of K on the restricted vertex set [m]\{i}. We
will need the following basic but useful property of polyhedral products associated
to full subcomplexes.

Proposition 2.1 Let K be a simplicial complex on the vertex set [m] and let I ⊆ [m]
be a non-empty subset. Then (X, A)KI is a retract of (X, A)K .

Proof Let I = {i1, . . . , ik} ⊆ [m] where 1 6 i1 < · · · < ik 6 m and
k > 1. The simplicial inclusion KI −→ K induces a map of polyhedral prod-
ucts jI : (X, A)KI −→ (X, A)K . It is straightforward to check that the projection∏m

j=1 Xj −→
∏k

j=1 Xi j restricts to a map r : (X, A)K −→ (X, A)KI such that

(X, A)KI
jI
−→ (X, A)K

r
−→ (X, A)KI

is the identity map. �

Let (̂X, A)
K

denote the image of (X, A)K under the natural quotient map∏m
i=1 Xi −→

∧m
i=1 Xi . After suspending, the retraction maps of Proposition 2.1

for all full subcomplexes of K can be added together using the co-H-space structure
on Σ(X, A)K to obtain the following splitting due to Bahri, Bendersky, Cohen and
Gitler.

Theorem 2.2 ([1, Theorem 2.10]) Let K be a simplicial complex on the vertex set
[m] and let (X, A) = {(Xi, Ai)}

m
i=1 be a sequence of pointed CW-pairs. Then there is

a natural homotopy equivalence

Σ(X, A)K '
∨
I⊆[m]

Σ(̂X, A)
KI

.

The authors of [1] go on to further identify the spaces appearing on the right hand
side of the wedge decomposition above in various cases of interest.
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Theorem 2.3 ([1])
Let K be a simplicial complex on the vertex set [m] and let X = {Xi}

m
i=1 be a

sequence of pointed CW-complexes. Then there is a homotopy equivalence

Σ(CX, X)K '
∨
I<K

Σ
2 |KI | ∧ X̂ I

where X̂ I = Xi1 ∧ · · · ∧ Xik for I = {i1, . . . , ik}.

In the special case where Xi = S1 for all i = 1, . . . ,m, Theorem 2.3 gives the fol-
lowing suspension splitting for moment-angle complexes, which can be regarded as a
geometric realization of the description of Tor∗k[v1,...,vm]

(k[K], k) given by Hochster’s
formula.

Corollary 2.4 There is a homotopy equivalence

ΣZK '
∨
I<K

Σ
|I |+2 |KI |.

Next, we use the splittings above to prove a lemma which will be needed in the
proof of Theorem 1.3 to compare the homotopy types of moment-angle complexes
associated to a simplicial complex K and its deletion complexes K − {i}.

Lemma 2.5 Let K be a simplicial complex on the vertex set [m] and let X = {Xj}
m
j=1

be a sequence of pointed CW-complexes which are non-contractible. Let i ∈ [m].
Then the natural inclusion (CX, X)K−{i } −→ (CX, X)K is a homotopy equivalence
if and only if K = {i} ∗ (K − {i}).

Proof If K = {i} ∗ (K − {i}) is the cone over the deletion complex K − {i}, then
permuting coordinates defines a homeomorphism

(CX, X)K � CXi × (CX, X)K−{i },

where the sequence of pairs of spaces (CX, X) on the right-hand side is understood
to be {(CXj, Xj)}j∈[m]\{i }. The natural inclusion (CX, X)K−{i } −→ (CX, X)K com-
posed with the homeomorphism above is the inclusion of the right-hand factor in
the product CXi × (CX, X)K−{i }, which is a homotopy equivalence since CXi is
contractible.

Conversely, suppose (CX, X)K−{i } −→ (CX, X)K is a homotopy equivalence. By
Theorem 2.3, there is a suspension splitting
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Σ(CX, X)K '
∨
I<K

Σ
2 |KI | ∧ X̂ I

'

( ∨
I<K
i<I

Σ
2 |KI | ∧ X̂ I

)
∨

( ∨
I<K
i∈I

Σ
2 |KI | ∧ X̂ I

)

' Σ(CX, X)K−{i } ∨

( ∨
I<K
i∈I

Σ
2 |KI | ∧ X̂ I

)
,

and, up to homotopy, the suspended inclusion Σ(CX, X)K−{i } −→ Σ(CX, X)K is
given by the inclusion of the first wedge summand. Since this is a homotopy equiv-
alence by assumption, it follows that Σ2 |KI | ∧ X̂ I must be contractible for every
non-face I < K containing the vertex i. As the CW-complexes X1, . . . , Xm are all
non-contractible, so are their smash products X̂ I =

∧
j∈I Xj , so this implies in

particular that Σ2 |KI | is contractible for every non-face I < K containing i.
To show that K = {i} ∗ (K − {i}), it suffices to show that {i} ∪ σ ∈ K whenever

σ ∈ K . First observe that {i, j} ∈ K for all j ∈ [m], since otherwise we would
have Σ2 |K{i, j } | = Σ2S0 ' S2 ; ∗, contradicting the conclusion of the previous
paragraph. Next, assume inductively that {i} ∪ σ ∈ K for every simplex σ ∈ K
with |σ | = n. Let τ = { j1, . . . , jn+1} ∈ K . Then for each 1 6 k 6 n + 1, we have
{ j1, . . . , ĵk, . . . , jn+1} ∈ K , which implies {i, j1, . . . , ĵk, . . . , jn+1} ∈ K . Now every
proper subset of {i, j1, . . . , jn+1} is a simplex of K , so if {i, j1, . . . , jn+1} < K , then

Σ
2 |K{i, j1,..., jn+1 } | = Σ

2∂∆n+1 ' Sn+2 ; ∗ ,

which is a contradiction. Therefore {i} ∪ τ ∈ K , which completes the induction. �

By iterating Lemma 2.5, we obtain the following simple combinatorial character-
ization of when the inclusion of a full subcomplex induces a homotopy equivalence
of polyhedral products.

Proposition 2.6 Let K be a simplicial complex on the vertex set [m] and let X =
{Xj}

m
j=1 be a sequence of pointed CW-complexes which are non-contractible. For

I ⊆ [m], let jI : (CX, X)KI −→ (CX, X)K be the natural map induced by the
inclusion KI ⊆ K . The following conditions are equivalent:

(a) jI : (CX, X)KI −→ (CX, X)K is a homotopy equivalence;
(b) core(K) ⊆ KI ;
(c) starK (v) = K for all v ∈ [m]\I;
(d) linkK (v) = K − {v} for all v ∈ [m]\I;
(e) K = ∆m−|I |−1 ∗ KI .

Proof The equivalence of conditions (b), (c), (d) and (e) follows immediately from
the definitions.

(e)⇒ (a): This can be proved exactly as in the proof of Lemma 2.5.
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(a) ⇒ (e): Write [m]\I = { j1, . . . , jp} and note that the map jI factors as a
composite of inclusions

(CX, X)K−{ j1,..., jp } −→ · · · −→ (CX, X)K−{ j1 } −→ (CX, X)K

where each map above has a left inverse by Proposition 2.1. Therefore if jI is a
homotopy equivalence, then so is each map in the composite, so by Lemma 2.5 we
obtain

K = { j1} ∗ (K − { j1})

= { j1} ∗ { j2} ∗ (K − { j1, j2})...
= { j1} ∗ · · · ∗ { jp} ∗ (K − { j1, . . . , jp})

= ∆m−|I |−1 ∗ KI ,

as desired. �

3 Proofs of Theorems 1.1 and 1.3

In this section we restate and prove the main results and discuss some consequences.
We begin with a lemma well known to homotopy theorists and include a short proof
for completeness.

Lemma 3.1 If a space Y is a homotopy retract of a simply-connected wedge of
spheres

∨
α∈I Snα , then Y has the homotopy type of a wedge of spheres.

Proof Suppose Y is a homotopy retract of
∨
α∈I Snα where nα > 2 for all α ∈ I.

Then there is a map r :
∨
α∈I Snα −→ Y inducing a split epimorphism in integral

homology and the Hurewicz natural transformation gives a commutative diagram

π∗(
∨
α∈I Snα ) //

r∗

��

H∗(
∨
α∈I Snα )

r∗

��

π∗(Y ) // H∗(Y ).

The bottom horizontal arrow is an epimorphism since the top horizontal and right
vertical ones are. By hypothesis, H∗(Y ) is a graded free abelian group, so by choosing
Hurewicz pre-images of the elements of a basis for H∗(Y ) and taking their wedge
sum we obtain a map from a wedge of spheres into Y inducing an isomorphism in
homology. This map is therefore a homotopy equivalence by Whitehead’s Theorem
since it also follows from the hypothesis that Y has the homotopy type of a simply-
connected CW-complex. �

Theorem 1.1 If ZK is homeomorphic to a connected sum of sphere products with
two spheres in each product, then K is minimally non-Golod.
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Proof Suppose there is a homeomorphism

ZK �
`
#

k=1
(Snk × Sn−nk )

where ` is finite and 3 6 nk 6 n− 3 for each k = 1, . . . , ` since every moment-angle
complex is a finite 2-connected CW-complex. Note that H∗(ZK ) has a non-trivial cup
product, so K is not Golod. Let i ∈ [m] be a vertex of K and let j : ZK−{i } −→ ZK

be the map induced by the inclusion K − {i} ⊆ K . It follows from the definition
of a polyhedral product (2) that any point (z1, . . . , zm) ∈ (D2)m with |zi | < 1 lies
in ZK outside the image of j, and hence j is not surjective. Since ZK is a closed
manifold by assumption, the complement of a point inZK deformation retracts onto
the (n − 1)-skeleton of ZK . Therefore, up to homotopy, j lifts through the (n − 1)-
skeleton of #`k=1(S

nk × Sn−nk ), which is
∨`

k=1(S
nk ∨ Sn−nk ) since the connected sum

of sphere products has the homotopy type of a wedge of spheres with a single top
cell attached by a sum ofWhitehead products of the form wk : Sn−1 −→ Snk ∨Sn−nk .

Combining the above observation with the fact that j admits a retraction
r : ZK −→ ZK−{i } by Proposition 2.1, we obtain a diagram

∨̀
k=1
(Snk ∨ Sn−nk )

��

ZK−{i }
j

//

99

ZK

r

��

� � // (D2)m

proj
��

ZK−{i }
� � // (D2)m−1

where the bottom triangle and square commute and the top triangle commutes up to
homotopy. It follows that ZK−{i } is a homotopy retract of

∨`
k=1(S

nk ∨ Sn−nk ) and
hence is homotopy equivalent to a wedge of spheres by Lemma 3.1. Consequently,
K − {i} is Golod, which implies K is minimally non-Golod as this holds for every
vertex i of K . �

Let K denote the collection of simplicial complexes whose corresponding
moment-angle complexes are homeomorphic to connected sums of sphere prod-
ucts with two spheres in each product. Then K includes the nerve complexes of all
simple polytopes obtained by vertex truncations of one or a product of two simplices
and all even dimensional dual neighbourly polytopes, as well as all simplicial com-
plexes obtained from these by applying the simplicial wedge construction or vertex
truncation operations in any order (see [9] and [7]).

Corollary 3.2 Let K ∈ K. Then every proper full subcomplex KI of K has the
property that ZKI is homotopy equivalent to a wedge of spheres. In particular, the
Stanley–Reisner ring k[KI ] is Golod over any ring k.
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It is not true that K is minimally non-Golod whenever ZK has the homotopy
type of a connected sum of two-fold products of spheres. We describe the smallest
possible counterexample below before turning to the proof of Theorem 1.3.

Example 3.3 Consider the simplicial complex K on 5 vertices with facets {1, 2, 5},
{2, 3, 5}, {3, 4, 5} and {1, 4, 5}. Observe that K is the cone over the boundary of a
square and can bewritten as the join K = K4∗{5}. It is easy to see thatZK4 � S3×S3.
(More generally, if Km is the boundary of an m-gon with m > 4, then ZKm is
homeomorphic to a connected sum of sphere products by [4].) It follows that ZK

has the homotopy type of a connected sum of sphere products since

ZK � ZK4 ×Z{5} � S3 × S3 × D2 ' S3 × S3,

but K is not minimally non-Golod since its deletion complex K − {5} = K4 is not
Golod.

Theorem 1.3 If ZK is homotopy equivalent to a connected sum of sphere products
with two spheres in each product, then K = ∆d ∗ L for some d > −1 where L is
Gorenstein∗ and minimally non-Golod.

Proof Suppose there is a homotopy equivalence

ZK '
`
#

k=1
(Snk × Sn−nk )

for some ` > 1 and 3 6 nk 6 n − 3 for each k = 1, . . . , `. For each vertex i ∈ [m],
consider the natural inclusion j : ZK−{i } −→ ZK and the induced homomorphism

j∗ : Z � Hn(ZK ) −→ Hn(ZK−{i }).

By Proposition 2.1, j∗ has a right inverse, so either j∗ is an isomorphism or else
Hn(ZK−{i }) = 0. If j∗ is an isomorphism, then the Poincaré duality of H∗(ZK )

implies that j induces an isomorphism in cohomology in all dimensions and is
thus a homotopy equivalence. In this case, we obtain that K = {i} ∗ (K − {i}) by
Lemma 2.5. It follows that the set of all vertices i ∈ [m] for which the map j∗ above
is an isomorphism span a simplex ∆d in K and that K = ∆d ∗ L, where L is the
full subcomplex of K on the set of vertices i ∈ [m] for which j : ZK−{i } −→ ZK

is not a homotopy equivalence. (Note that L = core(K) by Proposition 2.6, and that
−1 6 d 6 m−5 since L is a simplicial complex on m− d−1 vertices andZL ' ZK

cannot have the homotopy type of a connected sum of two-fold products of spheres
if L has less than 4 vertices.)

For each vertex i of L, we have that Hn(ZL−{i }) = 0. Since ZL−{i } is a retract
of ZL ' ZK ' #`k=1(S

nk × Sn−nk ), it follows that ZL−{i } has the homotopy type
of a simply-connected CW-complex of dimension less than n. Therefore the map
ZL−{i } −→ ZL lifts up to homotopy through the (n−1)-skeleton ofZL ' #`k=1(S

nk×

Sn−nk ). The same argument as in the proof of Theorem 1.1 now shows that ZL−{i }

is homotopy equivalent to a wedge of spheres and hence that L − {i} is Golod.
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Finally, it follows from the Poincaré duality of H∗(ZK ) � Tor∗Z[v1,...,vm]
(Z[K],Z)

that K is a Gorenstein complex (see [4, Theorem 4.6.8]). Thus L = core(K) is a
Gorenstein∗ complex. �

Remark 3.4 A combinatorial-topological characterization due to Stanley [18] states
that a simplicial complex K is Gorenstein∗ if and only if K is a generalized homology
sphere. In [6], it was shown that a moment-angle complexZK is a closed topological
manifold of dimensionm+n if and only ifK is a generalized homology (n−1)-sphere.
In particular, any moment-angle complex satisfying the hypothesis of Theorem 1.3
is in fact homeomorphic to a product of disks and a closed orientable manifold with
the homotopy type of a connected sum of sphere products.

4 An analogue for real moment-angle complexes

In this section we prove an analogue of Theorem 1.3 for real moment-angle com-
plexes. Recall that the real moment-angle complex corresponding to K is defined by
the polyhedral product RK = (CX, X)K for the sequence X = {Xi}

m
i=1 with Xi = S0

for each i = 1, . . . ,m.

Example 4.1 Let Km be the boundary of an m-gon. If m > 4, then the corresponding
real moment-angle complex RKm � #g

k=1(S
1 × S1) is an orientable surface of genus

g = 1 + (m − 4)2m−3 by a result attributed to Coxeter (see [4, Proposition 4.1.8]).
In this case, each deletion complex Km − {i} is a path graph which is Golod and
RKm−{i } is homotopy equivalent to a wedge of circles.

As the example above illustrates, real moment-angle complexes need not be
simply-connected. For this reason, we will need a stronger version of Lemma 3.1. A
proof that the statement of Lemma 3.1 still holds without the simply-connectedness
hypothesis, provided that the index set I is finite, is given in [17, Theorem 3.3].

A further modification to the proof of Theorem 1.3 is required to relate the
homotopy type of RK to the homotopy type of ZK and hence to the Golodness
of K . For this, we refer to the work of Iriye and Kishimoto [12] on the fat wedge
filtration of RK and its relation to the homotopy type of polyhedral products of the
form (CX, X)K .

Theorem 4.2 If RK is homotopy equivalent to a connected sum of sphere products
with two spheres in each product, then K = ∆d ∗ L for some d > −1 where L is
minimally non-Golod.

Proof Suppose RK is homotopy equivalent to a connected sum of sphere products
#`k=1(S

nk × Sn−nk ) with ` > 1 and 1 6 nk 6 n − 1 for each k = 1, . . . , `. As
in the proof of Theorem 1.3, K = ∆d ∗ L where L = core(K) has the property
that j : RL−{i } −→ RL is not a homotopy equivalence for any vertex i of L by
Proposition 2.6. A priori, this does not immediately imply that j does not induce
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an isomorphism in cohomology since RL and its retract RL−{i } are not necessarily
simply-connected. However, the proof of the forward implication in Lemma 2.5
shows that if Σ j : ΣRL−{i } −→ ΣRL is a homotopy equivalence, then L = {i} ∗ (L −
{i}), contradicting that {i} ∈ L = core(L). Thus Σ j is not a homotopy equivalence,
which implies that Σ j does not induce an isomorphism in cohomology since the
suspensions ΣRL−{i } and ΣRL are simply-connected. It follows from the Poincaré
duality of H∗(RL) � H∗(#`k=1(S

nk × Sn−nk )) that

j∗ : Z � Hn(RL) −→ Hn(RL−{i })

is not an isomorphism, and hence the retract RL−{i } does not contain the top cell
of RL . Since RL−{i } is then a homotopy retract of

∨`
k=1(S

nk × Sn−nk ), we conclude
that RL−{i } is homotopy equivalent to a wedge of spheres by [17, Theorem 3.3].

In [12], the fat wedge filtration of a real moment-angle complex is shown to be
a cone decomposition. Since for each vertex i of L, RL−{i } is homotopy equivalent
to a wedge of spheres, it follows that the attaching maps in this cone decomposition
for RL−{i } are null homotopic and by [12, Theorem 1.2], the decomposition of
Σ(CX, X)L−{i } in Theorem 2.3 desuspends for any X . In particular, ZL−{i } is a
suspension, which implies that L − {i} is Golod (see [12, Proposition 6.5]). �

Corollary 4.3 If RK is homeomorphic to a connected sum of sphere products with
two spheres in each product, then K is minimally non-Golod.

Proof Under the given assumption, K = ∆d ∗ L for some minimally non-Golod
complex L by Theorem 4.2. Therefore, RK � R∆d ×RL � Dd+1×RL . But since RK

is a manifold without boundary by assumption, the disk Dd+1 must have dimension
0, so d = −1 and K = L is minimally non-Golod. �
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Toric manifolds over 3-polytopes

Anton Ayzenberg

Abstract In this note we gather and review several facts about existence of toric
spaces over 3-dimensional simple polytopes. First, over every combinatorial simple
3-polytope there exists a quasitoric manifold. Second, there exist combinatorial
3-polytopes, that do not correspond to any smooth projective toric variety. We
give the proof of the second claim which does not refer to complicated algebro-
geometrical technique. If follows from these results that any fullerene supports
quasitoric manifolds but does not support smooth projective toric varieties.

1 Introduction

For a 3-dimensional simple polytope P one can construct a 6-dimensional manifold
with the action of the compact torus T3, whose orbit space is P. The topology of
this manifold tells a lot about the combinatorics of the polytope. There exist sev-
eral constructions of such manifolds arising in different areas of mathematics: toric
varieties in algebraic geometry and singularity theory, symplectic toric manifolds
in symplectic geometry, quasitoric manifolds in algebraic topology. Each construc-
tion requires certain properties from the polytope, and these properties affect the
geometrical structure of the resulting manifold. For example, the construction of a
quasitoric manifold as an identification space [17] requires only the combinatorial
type of a polytope, and the resulting manifold is just a topological manifold. How-
ever, if we fix the affine realization of a polytope, the resulting quasitoric manifold
attains smooth structure, see [2]. The construction of a symplectic toric manifold
requires a polytope to be Delzant [3]. There also exist certain conditions on the
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polytope, which imply the existence of almost complex, or algebraical structure on
the corresponding manifold.

There are several natural questions. What does the existence of certain geomet-
rical structure on a toric space say about the combinatorics of the polytope? The
constructions of toric topology and toric geometry allow to construct a lot of exam-
ples of 6-dimensional manifolds. But how large is the set of examples having certain
geometrical structure? In this paper we gather and review some known results.

There is a well-known correspondence between toric varieties and rational fans.
Projective toric varieties correspond to normal fans of convex polytopes and smooth
projective toric varieties correspond to unimodular polytopal fans (i.e. normal fans of
Delzant polytopes). Quasitoric manifolds are the algebro-topological generalization
of smooth projective toric varieties. A smooth compactmanifold M of real dimension
2n with the action of half-dimensional compact torus Tn is called quasitoric if

1. the action is locally standard (i.e. locally modeled by the standard action of Tn

on Cn by coordinate-wise rotations);
2. the orbit space is diffeomorphic to some simple polytope P as a manifold with

corners.

In this case we say that M is a quasitoric manifold over P. Recall that n-dimensional
convex polytope is called simple if each of its vertices lies in exactly n facets
(equivalently: each vertex lies in exactly n edges). Among all convex polytopes only
simple polytopes are manifolds with corners.

Every smooth projective toric variety X is a quasitoric manifold: we can restrict
the action of an algebraic torus (C×)n on X to its compact subtorus Tn ⊂ (C×)n; and
the orbit space of this action can be identified with the image of the moment map,
which is a simple polytope. However there exist many quasitoric manifolds which are
not toric varieties. The simplest example is CP2#CP2: this is a quasitoric manifold
which is not even a complex algebraic variety [4, Sect.7.6]. On the other hand there
also exist smooth non-projective toric varieties which are not quasitoric [5].

In this paper we discuss two basic theorems:

Theorem 1.1 ([17])
There exists a quasitoric manifold over any 3-dimensional simple polytope.

Theorem 1.2 ([6])
If there exists a smooth projective toric variety over a simple 3-dimensional

polytope P, then P has at least one triangular or quadrangular face.

The recent interest to these results arose in connection with fullerenes. Mathe-
matically, a fullerene is a simple 3-dimensional polytope having only pentagonal
and hexagonal faces. Buchstaber [7] suggested to study fullerenes from the perspec-
tive of toric topology. The celebrated paper [8] provides links between geometry
and combinatorics of 3-dimensional polytopes, the cohomological rigidity of the
related 6-dimensional quasitoric manifolds, and their real 3-dimensional hyperbolic
counterparts.
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Theorems 1.1 and 1.2 above show that (1) there exist quasitoric manifolds over
fullerenes; (2) there are no smooth projective toric varieties over fullerenes. There-
fore, due to their rigid geometrical nature, smooth projective toric varieties are not
suited for the study of fullerenes.

We make a remark that Theorems 1.1 and 1.2 are based on completely different
methods. Theorem 1.1 essentially relies on the Four colors theorem: there are no
known proofs which avoid this result. This argument is well-known it toric topology:
it is included in the paper for completeness. Theorem 1.2 was formulated and proved
by Delaunay in [6], and its proof is based on the work of Reid [9] concerning Mori’s
minimality theory for toric varieties. We restate the proof in more combinatorial
topological terms, without referring to this algebro-geometrical theory, to make the
difference between toric and quasitoric cases more transparent.

Notice that the analogue of Theorem 1.2 holds in any dimension > 3. We even
get a stronger statement.

Corollary 1.3 If there exists a smooth projective toric variety over a simple n-
dimensional polytope P, n > 3, then any 3-dimensional face of P has at least one
triangular or quadrangular face.

If P is Delzant, so any of its faces is Delzant as well, so this is a direct corollary
of Theorem 1.2.

2 Quasitoric manifolds

Let M be a quasitoric manifold of dimension 2n. Its orbit space under the action of
Tn is a simple polytope P. Let F1, . . . , Fm be the facets of the polytope P. Any point
x in the interior of a facet Fi represents an (n−1)-dimensional orbit of the action. The
stabilizer of this orbit is a 1-dimensional toric subgroup Gi ⊂ Tn. We may assume
that Gi = exp(λi,1, . . . , λi,n), where (λi,1, . . . , λi,n) ∈ Zn is a primitive integral vector
determined uniquely up to sign. One-dimensional stabilizer subgroups define the so
called characteristic function. Let [m] = {1, . . . ,m} be the index set of facets of P.
Consider the function λ : [m] → Zn, λ : i 7→ (λi,1, . . . , λi,n). Actually, the value is
determined uniquely up to sign, however we make a choice of this sign arbitrarily
(this corresponds to the choice of orientation of each stabilizer Gi). Since the action
of the torus is locally standard, characteristic function satisfies the condition:

if facets Fi1, . . . , Fin intersect in a vertex, then {λ(i1), . . . , λ(in)} is a basis of Zn.
(1)

Therefore, for any quasitoric manifold, there is an associated characteristic pair
(P, λ), where P is the simple polytope representing the orbit space, and λ is the
characteristic function.

Construction 2.1 The construction above can be reverted [17]. Given any simple
polytope P with facets F1, . . . , Fm and a function λ : [m] → Zn satisfying condition
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(1), we can construct a quasitoric manifold M(P,λ) as follows. For each i ∈ [m] let
Gi = exp(λ(i)) ⊂ Tn be the corresponding circle subgroup. Take any point x ∈ P; it
lies in the interior of some face F ∈ P. We have F = Fi1 ∩ · · · ∩ Fik . Let Gx denote
the toric subgroup Gi1 × · · · × Gik ⊂ Tn. Consider the identification space

M(P,λ) = (P × Tn)/∼

where (x, t) ∼ (x ′, t ′) whenever the points x, x ′ coincide and t ′t−1 ∈ Gx . One can
check that M(P,λ) is a topological manifold, and there is a locally standard action of
Tn, which rotates the second coordinate. Naturally, the orbit space of this action is
P itself. The canonical smooth structure on M(P,λ) was constructed in [2], so that
M(P,λ) becomes a quasitoric manifold.

To prove Theorem 1.1 one needs to show that every simple 3-polytope admits a
function λ, satisfying condition (1). This is done by the Four colors theorem.

Proof (Proof of Theorem 1.1) Let c : {F1, . . . , Fm} → {a, b, c, d} be the coloring
of facets of P by four colors such that adjacent facets have distinct colors. Let
e1, e2, e3 be the basis of the lattice Z3. Replace colors by the vectors as follows:
a 7→ e1, b 7→ e2, c 7→ e3, d 7→ e1 + e2 + e3. This gives a characteristic function,
since every three vectors among (e1, e2, e3, e1 + e2 + e3) form a basis of the lattice.�

3 Toric varieties

Let V � Rn be an oriented real vector space with the fixed lattice Zn � N ⊂ V .
Recall that a fan in Rn is a collection of convex cones with apex at the origin such
that the intersection of each two cones of the collection is a face of both and belongs
to the collection. The fan is called complete if the union of all cones is the whole
space V . The fan is called rational if all cones are generated by rational vectors. The
cone is called simplicial (resp. unimodular) if it is generated by linearly independent
vectors of V (resp. part of a basis of the lattice N). The fan is called simplicial (resp.
unimodular) if all its cones are simplicial. Every unimodular fan is simplicial.

Let P be a convex polytope in the dual space V∗. With any such polytope one
associates the normal fan: for each face F ⊂ P take the cone spanned by outward
normal vectors to the facets of P containing F, and take the collection of these cones.
Normal fan is complete. Normal fan of a simple polytope is simplicial. Normal fans
of polytopes are called polytopal fans. Note that there exist non-polytopal complete
fans [10].

Definition 3.1 A polytope P is called Delzant if its normal fan is unimodular.

It follows that every Delzant polytope is simple.
Toric varieties are classified by rational fans. Compact toric varieties correspond to

complete fans. Smooth toric varieties correspond to unimodular fans. Projective toric
varieties correspond to polytopal fans. Therefore, smooth projective toric varieties
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correspond to normal fans of Delzant polytopes (i.e. polytopal unimodular fans).
Theorem 1.2 can be restated as follows.

Proposition 3.2 ([6])
Let P be a 3-dimensional Delzant polytope. Then P has at least one triangular

or quadrangular face.

Let P be an n-dimensional Delzant polytope with facets F1, . . . , Fm and let
λ(i) ∈ Zn be the primitive outward normal vector to Fi . The unimodularity property
of the normal fan of P implies that the function λ : [m] → Zn satisfies condition
(1). Therefore each Delzant polytope determines the characteristic pair (P, λ) in a
natural way. Smooth projective toric variety corresponding to the normal fan of P is
equivariantly diffeomorphic to the quasitoric manifold determined by the pair (P, λ),
see [17]. Due to this observation smooth projective toric varieties are particular cases
of quasitoric manifolds (from topological point of view).

Let us introduce a notation to be used in the following. Let ∆ denote a complete
unimodular fan in V � Rn and m be the number of rays in ∆. Let X∆ be the smooth
compact toric variety corresponding to this fan. The underlying simplicial sphere K
of the fan ∆ has m vertices and dim K = n− 1. Let λ : [m] → N be the characteristic
function, that is λ(i) ∈ N is the primitive generator of i-th ray of the fan ∆.

Cohomology.

Theorem 3.3 (Danilov–Jurkiewicz)
H∗(X∆;Z) � Z[K]/Θ, where

Z[K] = Z[v1, . . . , vm]/(vi1 · · · vis | {i1, . . . , is} < K), |v |i = 2

is the Stanley–Reisner ring of the sphere K , and idealΘ is generated by linear forms∑
i∈[m]〈µ, λ(i)〉vi , for each linear functional µ : N → Z.

A similar theorem was proved by Davis and Januszkiewicz for quasitoric man-
ifolds: in this case K is a simplicial sphere dual to a polytope, and λ is a general
characteristic function. Similar theorems hold for coefficients in R (or any other
field).

Let
∫
X∆

: H2n(X∆;Z) → Z denote the pairing with the fundamental class of a
toric variety X∆. Consider a subset I = {i1, . . . , in} ⊂ [m]. We have∫

X∆

vi1 · · · vin =

{
1, if I ∈ K
0, otherwise.

(2)

Indeed, the class vi ∈ H2(X∆;Z) is Poincare dual to the preimage of the facet Fi

under the momentum map. Therefore, the class vi1 · · · vin ∈ H2n(X∆;Z) vanishes
whenever the corresponding facets have empty intersection, and is Poincare dual to
the class of a point in H0(X∆;Z) taken with plus sign (the latter is due to the existence
of complex structure on X∆).

In the following we also need the description of tangent Chern classes of X∆.
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Theorem 3.4 ([11]) Under the isomorphism of Theorem 3.3, the j-th Chern class of
the tangent bundle of the manifold X∆ is the elementary symmetric polynomial in the
variables vi:

cj(X∆) = σj(v1, . . . , vm) =
∑

I ∈K, |I |=j

∏
i∈I

vi ∈ H2j(X∆;Z).

A completely similar theorem was proved in [2] for a quasitoric manifold after
introducing the canonical stably complex structure on it.

Effective cone.
The notion of effective cone is one of the essential points in the proof of Theorem

1.2. This notion is defined in algebraic geometry for arbitrary projective varieties,
however we restrict to the smooth case, where it has a clear geometrical meaning.
This subsection is needed only for the completeness of the exposition: for toric
varieties all necessary notions will be defined in combinatorial-geometrical manner
below.

Let X be an arbitrary smooth Kähler manifold. Each compact complex curve
C ⊂ X determines a homology class [C] ∈ H2(X;R), which is called effective. The
set of all nonnegative linear combinations of effective classes in H2(X;R) is called
the effective cone of the manifold X:

NE(X) =
{∑

ri[Ci] ∈ H2(X;R) | ri > 0
}
.

Proposition 3.5 NE(X) is a strictly convex cone in H2(X;R).
Proof We need to prove that all nonzero effective classes lie in some open half-space
of H2(X;R). Consider the class of a Kähler form ω ∈ H2(X;R). For each complex
curve C we have

〈ω, [C]〉 =
∫
C

ω |C = Vol(C) > 0.

This means that all effective classes lie in the half-space

{α ∈ H2(X;R) | 〈ω, α〉 > 0},

which implies the statement. �

Proposition 3.6 ([9]) Let X be a smooth projective toric variety. Then its effective
cone NE(X) is polyhedral and is generated by the fundamental classes of torus-
invariant 2-spheres (preimages of edges of the polytope under the projection to the
orbit space).

The generators of the effective cone are called extremal cycles. Note that in general
not all edges of the polytope define extremal cycles: some of them may lie in the
cone generated by others.

Effective cone in toric case: combinatorial-geometrical approach.
Here we introduce all the necessary notions from the previous paragraph in

combinatorial manner. Algebraic details can be found in [12, Sections 6.3 and 6.4].
Let X∆ be the smooth projective variety corresponding to a polytopal fan ∆.
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The simplices of K of codimension 1 as well as the corresponding cones of ∆
will be called the walls. For each wall J = {i1, . . . , in−1} ∈ K consider the class
vJ = vi1 · · · vin−1 ∈ H2n−2(X;R). Note that vJ , 0, as follows, for example, from (2).
Consider the cone in H2n−2(X∆;R) generated by the classes vJ for all walls J ∈ K:

NE(X∆) =
{∑

rJ vJ ∈ H2n−2(X∆;R) | rJ > 0
}

Proposition 3.7 For each smooth projective toric variety the effective cone NE(X∆)
is a strictly convex polyhedral cone in H2n−2(X∆;R).

Proof Let V∆ ∈ R[c1, . . . , cm] be the volume polynomial of the fan ∆. By definition,

V∆(c1, . . . , cm) =
1
n!

∫
X∆

(c1v1 + . . . + cmvm)n.

It is known (see [13]), that the values of this polynomial are the volumes of simple
polytopes with the normal fan ∆. More precisely, let P = {x ∈ V∗ | 〈x, λ(i)〉 6 c̃i}
be a simple convex polytope with the normal fan ∆ (since X∆ is projective, at least
one such polytope exists). The numbers c̃i are called the support parameters of P.
Then we have Vol(P) = V∆(c̃1, . . . , c̃m). To avoid the mess, we denote the formal
variables of the volume polynomial by ci , while concrete real numbers substituted
in this polynomial — by c̃i .

Let ∂i = ∂
∂ci

be the differential operators, acting on R[c1, . . . , cm]. Let D =
R[∂1, . . . , ∂m] be the commutative algebra of differential operators with constant
coefficients, and AnnV∆ = {D ∈ D | DV∆ = 0} be the annihilating ideal of the
polynomial V∆. According to [14, 15], we have

D/AnnV∆ � H∗(X∆;R), ∂i ↔ vi .

Moreover, the integration map
∫
X∆

: H2n(X∆;R) → R coincides with the natural map
(D/AnnV∆)n → R, D 7→ DV∆. To prove the proposition, it suffices to show that the
classes

{∂J = ∂i1 · · · ∂in−1 ∈ (D/AnnV∆)n−1 | J = {i1, . . . , in−1} ∈ K}

lie in one open half-space.
Let P be a convex polytope with the normal fan ∆ and support parameters c̃i .

Consider the element ∂c =
∑

i∈[m] c̃i∂i ∈ (D/AnnV∆)1. Recall a simple fact: for
each homogeneous polynomial Ψ ∈ R[c1, . . . , cm] of degree k there holds 1

k!∂
k
cΨ =

Ψ(c̃1, . . . , c̃m) (this is an instance of Euler’s theorem on homogeneous functions).

Lemma 3.8 Let J ∈ K be a wall. Then ∂c∂JV∆ > 0. �

Proof Note that ∂JV∆ is a linear polynomial in variables ci . Therefore, the number
∂c∂JV∆ coincides with the value of the polynomial ∂JV∆ at the point c̃ = (c̃1, . . . , c̃m)
by the preceding remark. It is known that the value of the polynomial ∂JV∆ at the
point c̃ coincides, up to a positive factor, with the length of the edge FJ ⊂ P dual
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to the wall J ∈ K (this was noted by Timorin in [15], and in [16] we proved that
the factor is the volume of the parallelepiped spanned by λ(i1), . . . , λ(in−1)). Thus
∂c∂JV∆ > 0. �

According to lemma, all classes ∂J ∈ D/AnnV∆ lie in the half-space {D |
D∂cV∆ > 0} which implies the statement. �

Definition 3.9 Let J = {i1, . . . , in−1} ∈ K be a wall such that vJ ∈ H2n−2(X∆;R)
is a generating element of the effective cone NE(X∆). Then J is called an extremal
simplex and vJ is called an extremal class.

The condition of being extremal can be written as follows. Suppose an extremal
class vJ is expressed as a sum ν1 + ν2, where ν1, ν2 ∈ NE(X∆). Then both ν1 and ν2
are proportional to vJ .

Remark 3.10 This definition agrees with the general theory. The vector spaces
H2n−2(X∆;R) and H2(X∆;R) can be identified by Poincare duality, and under this
identification the class vJ = vi1 · · · vin−1 corresponds to the fundamental class of
torus-invariant 2-sphere obtained as a transversal intersection of characteristic sub-
manifolds Xi1, . . . , Xin−1 (preimages of facets Fi1, . . . , Fin−1 under the projection to
the orbit space).

4 Unimodular geometry of fans

An arbitrary wall J = {i1, . . . , in−1} ∈ K is contained in exactly two maximal
simplices: I = {i1, . . . , in−1, i} and I ′ = {i1, . . . , in−1, i′}. Both sets of vectors

{λ(i1), . . . , λ(in−1), λ(i)}, {λ(i1), . . . , λ(in−1), λ(i′)}

are the bases of the lattice. Write λ(i′) in the first basis:

λ(i′) = a1λ(i1) + . . . + an−1λ(in−1) − λ(i).

(Unimodularity condition of the set λ(I ′) guarantees that the coefficient at λ(i) is ±1.
The fact that the cones at I and I ′ lie on the opposite sides of the wall J guarantees
that the coefficient at λ(i) is exactly −1.) In what follows, we assume that the vertices
i1, . . . , in−1 are ordered such that {λ(i1), . . . , λ(in−1), λ(i)} is a positive basis of the
lattice, while, respectively, {λ(i1), . . . , λ(in−1), λ(i′)} is a negative basis.

Definition 4.1 The number

curv(J) = 2 − a1 − . . . − an−1 ∈ Z

is called the unimodular curvature of the wall J.

The underlying simplicial complex K of a fan ∆ may be realized in V � Rn as
a star-shaped sphere as follows: let us send the vertex i to the point λ(i) ∈ V and
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continue the map on each simplex by linearity. We denote the image of this map by
st(K); it is a piecewise linear sphere in V winding around the origin one time.

We say that st(K) is concave (resp. convex, resp. flat) at the wall J if the affine
hyperplane through the points λ(i1), . . . , λ(in−1), λ(i) separates λ(i′) from the origin
(resp. does not separate, resp. contains λ(i′)).

Lemma 4.2 A unimodular curvature and parameters a1, . . . , an−1 defined above
satisfy the following properties.

1. as = det(λ(i1), . . . , λ(is−1), λ(i′), λ(is+1), . . . , λ(in−1), λ(i)).
2. The star-shaped sphere st(K) is convex (resp. flat, resp. concave) at a wall J if

and only if curv(J) > 0 (resp. curv(J) = 0, resp. curv(J) < 0).
3. There exists a wall of positive curvature in a complete simplicial fan.
4.

∫
X∆
vJ vis = −as , curv(J) =

∫
X∆
vJ (

∑
t∈[m] vt ).

Proof (1) Take an exterior product of the relation

λ(i) + λ(i′) =
n−1∑
t=1

atλ(it ) (3)

with the exterior form λ(i1)∧ · · ·∧ λ̂(is)∧ · · ·∧λ(in−1)∧λ(i). The result is the desired
relation. Relation (3) is known toric geometry as a wall relation, see [12, Formula
6.4.4]. It traces back to Reid [9].

(2) The convexity of the star-shaped sphere st(K) at a wall J depends on spatial
relationship between the affine line through the points λ(i), λ(i′) and the codimension
2 affine subspace through the points λ(i1), . . . , λ(in−1), that is on the sign of the
determinant

det(λ(i1) − λ(i′), . . . , λ(in−1) − λ(i′), λ(i) − λ(i′)) =

= det(λ(i1), . . . , λ(in−1), λ(i)) − det(λ(i1), . . . , λ(in−1), λ(i′))−

−

n−1∑
s=1

det(λ(i1), . . . , λ(i′)
s
, . . . λ(in−1), λ(i)) = 1 − (−1) −

n−1∑
s=1

as = curv(J).

(3) If the curvature of any wall is non-positive, then the star-shaped sphere st(K)
could not wind around the origin.

(4) Let us write the class vis as a linear combination of vj, j < J, using linear
relations in the cohomology ring. Consider the linear functional µ on the space V ,
such that 〈µ, λ(i)〉 = 0 and

〈µ, λ(it )〉 =

{
0, if t , s,
1, if t = s.

Applying µ to relation (3), we get 〈µ, λ(i′)〉 = as . It follows that there is a linear
relation vis + asvi′ +

∑
j<{i1,...,in−1,i,i′ } Cjvj in the cohomology ring. Let us multiply
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this relation by vJ . Since J forms a simplex only with vertices i, i′, Stanley–Reisner
relations imply ∫

X∆

vJ vis =

∫
X∆

−asvJ vi′ = −as

∫
X∆

vJt{i′ } = −as

according to (2). The formula for the curvature easily follows:∫
X∆

(
vJ ·

∑
t∈[m]

vt

)
=

∫
X∆

vJ vi +

∫
X∆

vJ vi′ +

n−1∑
s=1

∫
X∆

vJ vis = 2−
n−1∑
s=1

as = curv(J).

One corollary of Lemma 4.2(4) is worth mentioning (this also gives an alternative
proof of pt.3 in the above Lemma in dimension 3).

Proposition 4.3 (Unimodular Gauss–Bonnet theorem) Let ∆ be a unimodular
simplicial fan of dimension 3. Then the sum of curvatures of all its walls equals 24.

Proof It follows from the previous lemma, that∑
J ∈K, |J |=2

curv(J) =
∫
X∆

(
∑

J ∈K, |J |=2

vJ )(
∑
t∈[m]

vt ) =

∫
X∆

c2(X∆)c1(X∆) = c1,2(X∆).

It is known that for stably complex manifolds of real dimension 6 the Chern number
c1,2(X∆) coincides with 24Td(X∆). The Todd genus of a smooth compact toric variety
equals 1, and the statement follows. �

Now we prove Theorem 1.2. Let ∆ be the normal fan of a Delzant polytope P.
The walls of this fan are simply the edges of the 2-dimensional triangulated sphere
K .

Proof (Proof of Theorem 1.2) According to Lemma 4.2(3), there exists a wall J̃ ∈
K of positive curvature. On the other hand, Lemma 4.2(4) implies that the curvature
of the wall J̃ coincides with the value of the linear functional H4(X∆;R) → R,
u 7→

∫
X∆
(u · c1(X∆)) on the effective class vJ̃ . Since a linear functional takes positive

value on some element of the effective cone, this functional should take positive
value on some generator of this cone. Therefore, there exists an extremal wall
J = {i1, i2} ∈ K of positive curvature.

Let a1, a2 be the parameters of the wall J, defined earlier. Since curv(J) =
2−a1−a2 > 0 and the numbers a1, a2 are integers, we have either a1 6 0, or a2 6 0.
Assume a1 6 0. Consider two cases:

(1) a1 < 0. Let us prove that in this case i2 is contained in exactly three maximal
cones. As before, let I = {i, i1, i2}, I ′ = {i′, i1, i2} be the maximal simplices contain-
ing the wall J. Suppose that apart from the vertices i1, i, i′ the vertex i2 is connected
to the vertices k1, . . . , kp , p > 1 (we assume that the neighbors of the vertex i2 are
cyclically ordered as i1, i′, k1, . . . , kp, i, see Fig.1).

According to Lemma 4.2(1), a1 = det(λ(i′), λ(i2), λ(i)) < 0. This means, that
the sum of dihedral angles of the cones C(I) = cone(λ(i1), λ(i2), λ(i)) and C(I ′) =
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i2 i1

i

i'k1
k2

kp

i2 i1

i

i'k1
k2

kp

Fig. 1: The vicinity of the ray R>0λ(i2) in the first and the second cases. The ray R>0λ(i2) points
to the reader.

cone(λ(i1), λ(i2), λ(i′)) at the edge R>0λ(i2) exceeds one straight angle (see left part
of Fig.1). There exists a 2 - plane Π which contains the ray R>0λ(i2) and separates
λ(i1) from the vectors

{λ(i), λ(i′), λ(k1), . . . , λ(kp)}. (4)

Let µ be the linear functional on R3, annihilating the plane Π and taking value 1 on
the vector λ(i1). By construction, µ takes negative values on all vectors from the list
(4). Using µ, we obtain a linear relation

vi1 =
∑

t∈{i,i′,k1,...,kp }

Ct vt +
∑

t<{i1,i2,i,i′,k1,...,kp }

Dt vt,

in H∗(X∆;Z), where all coefficients Ct are positive. Multiplying this relation by vi2 ,
we get

vJ = vi1 vi2 =
∑

t∈{i,i′,k1,...,kp }

Ct vt vi2

(the part of expression, having coefficients Dt vanishes due to Stanley–Reisner
relations). Therefore, the class vJ is expressed as a positive linear combination of the
classes vt vi2 , t ∈ {i, i′, k1, . . . , kp}. Since vJ was chosen to be extremal, each of the
classes vt vi2 is proportional to the class vJ . Since all these classes are nonzero, they
are all proportional to each other. This leads to contradiction. Indeed, according to
relation (2), we have (vi′vi2 )vk1 , 0 since {i′, i2, k1} ∈ K , but (vi1 vi2 )vk1 = 0 since
{i1, i2, k1} < K .

(2) a1 = 0. We prove that in this case the vertex i2 is contained in four maximal
cones. The proof is similar to the previous case. Assume the contrary: let the vertex
i2 have the neighbors i, i1, i′, k1, . . . , kp , p > 2, written in the cyclic order.

According to Lemma 4.2(1), the condition a1 = 0 implies that the vectors
λ(i2), λ(i), λ(i′) belong to a single 2-plane, say Π. Let µ be the linear functional
annihilating Π and taking value 1 on the vector λ(i1). Consequently, µ takes strictly
negative values on the vectors λ(k1), . . . , λ(kp). By the same arguments as before,
the class vJ = vi1 vi2 is written as a positive linear combination of the classes vt vi2 ,
t ∈ {k1, . . . , kp}. The extremality of the wall J implies that all these classes (there
are at least two of them by assumption) are proportional to the class vJ . Again,
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this leads to contradiction: vk1 vi2 vi = 0 since {k1, i2, i} < K , but vi1 vi2 vi , 0 since
{i1, i2, i} ∈ K .

We proved that there are no more than four maximal cones containing λ(i2).
There can not be three maximal cones by obvious geometrical reasons: the vectors
λ(i2), λ(i), λ(i′) belong to a 2-plane and therefore do not span a maximal cone.

It was shown that in the 2-sphere K there exists a vertex having either 3 or 4
neighbors. This means that in the dual 3-polytope P there exists either a triangular
or quadrangular face. �

Remark 4.4 The existence of a strictly convex effective cone, and as a corollary,
extremal classes, is the fact, which marks out projective smooth toric varieties
among all quasitoric manifolds. For general quasitoric manifolds we may still define
the cohomology classes vJ ∈ H2n−2(X;R) corresponding to the walls, however their
nonnegative linear combinations may span the whole space H2n−2(X;R) rather than
a strictly convex cone. This is why it is impossible to find “extremal” classes with
nice properties.
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Symmetric products and a Cartan-type formula
for polyhedral products

A. Bahri, M. Bendersky, F. R. Cohen and S. Gitler

Abstract We give a geometric method for determining the cohomology groups
of a polyhedral product Z

(
K; (X, A)

)
, under suitable freeness conditions or with

coefficients taken in a field k. This is done by considering first the special case
where the pair (Xi, Ai) = (Bi ∨ Ci, Bi ∨ Ei) for all i, and Ei ↪→ Ci is a null
homotopic inclusion.We derive a decomposition for these polyhedral products which
resembles a Cartan formula. The theory of symmetric products is used then to
generalize the result to arbitrary polyhedral products Z

(
K; (X, A)

)
. This leads to

a direct computation of the Hilbert-Poincaré series for Z
(
K; (X, A)

)
and to other

applications.

1 Introduction

Our purpose is to recall some standard properties of infinite symmetric products,
known also as the Dold-Thom construction [11], and to develop some related maps
which are defined for polyhedral products. The main feature is that topological maps
on the level of infinite symmetric products applied to polyhedral products can be
defined directly from homological information.

Polyhedral products Z
(
K; (X, A)

)
, [1], are defined for a simplicial complex K on

the vertex set [m] = {1, 2, . . . ,m}, and a family of pointed CW pairs

(X, A) =
{
(Xi, Ai) : i = 1, 2, . . . ,m

}
.
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They are natural subspaces of the Cartesian product X1 × X2 × · · · × Xm, in such a
way that if K = ∆m−1, the (m − 1)-simplex, then

Z
(
K; (X, A)

)
= X1 × X2 × · · · × Xm.

More specifically, we consider K to be a category where the objects are the simplices
of K and the morphisms dσ,τ are the inclusionsσ ⊂ τ. A polyhedral product is given
as the colimit of a diagram D(X,A) : K → CW∗, where at each σ ∈ K , we set

D(X,A)(σ) =
m∏
i=1

Wi, where Wi =

{
Xi if i ∈ σ
Ai if i ∈ [m] − σ. (1)

Here, the colimit is a union given by

Z(K; (X, A)) =
⋃
σ∈K

D(X,A)(σ),

but the full colimit structure is used heavily in the development of the elementary
theory. Notice that when σ ⊂ τ then D(X,A)(σ) ⊆ D(X,A)(τ). In the case that K itself
is a simplex,

Z(K; (X, A)) =
m∏
i=1

Xi .

Polyhedral products were formulated first for the case (Xi, Ai) = (D2, S1) by
V. Buchstaber and T. Panov in [7]; they called their spacesmoment-angle complexes.

In a way entirely similar to that above, a related space Ẑ(K; (X, A)), called the
polyhedral smash product, is defined by replacing the Cartesian product everywhere
above by the smash product. That is,

D̂(X,A)(σ) =
m∧
i=1

Wi and Ẑ(K; (X, A)) =
⋃
σ∈K

D̂(X,A)(σ)

with
Ẑ(K; (X, A)) ⊆

m∧
i=1

Xi .

The polyhedral smash product is related to the polyhedral product by the stable
decomposition discussed in [1] and [2]. We denote by (X, A)J the restricted family
of CW-pairs

{
(Xj, Aj

)
}j∈J , and by KJ , the full subcomplex on J ⊂ [m].

Theorem 1.1 [2, Theorem 2.10] Let K be an abstract simplicial complex on vertices
[m]. Given a family {(Xj, Aj)}

m
j=1 of pointed pairs of CW-complexes, there is a natural

pointed homotopy equivalence

H : Σ
(
Z
(
K; (X, A)

) )
−→ Σ

( ∨
J⊆[m]

Ẑ
(
KJ ; (X, A)J

) )
. (2)
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In many of the most important cases, the spaces Ẑ
(
KJ ; (X, A)J

) )
can be identified

explicitly, [2]. Aside from the various unstable and stable splitting theorems, [1, 14,
13, 15, 16], there is an extensive history of computations of the cohomology groups
and rings of various families of polyhedral products, [5, Sections 5, 8 and 11], see
also [17, 12, 6, 19, 20, 4, 8, 9].

Some very early calculations of the cohomology of certain moment-angle com-
plexes, (the case (Xi, Ai) = (D2, S1) for all i = 1, 2, . . . ,m), appeared in the work
of Santiago López de Medrano [17], though at that time the spaces he studied were
not recognized to have the structure of a moment-angle complex. The cohomology
algebras of all moment-angle complexes was computed first by M. Franz [12] and
by I. Baskakov, V. Buchstaber and T. Panov in [6].

The cohomology of the polyhedral product Z
(
K; (X, A)

)
, for (X, A), satisfying

certain freeness conditions, (coefficients in a field k for example), was computed
using a spectral sequence by the authors in [4]. A computation using different
methods by Q. Zheng can be found in [19, 20].

The special family of CW pairs (U,V) = (B ∨ C, B ∨ E) satisfying the condition
that for all i, (Ui,Vi) = (Bi ∨ Ci, Bi ∨ Ei), where Ei ↪→ Ci is a null homotopic
inclusion, is called wedge decomposable. As announced in [5, Section 12], one
goal of the current paper is to show that for wedge decomposable pairs (U,V), the
algebraic decomposition given by the spectral sequence calculation [4, Theorem 5.4]
is a consequence of an underlying geometric splitting. Moreover, the results of this
observation extend to general based CW-pairs of finite type.

This paper is partly a revised version of the authors’ unpublished preprint from
2014, which in turn originated from an earlier preprint from 2010. In addition, the
results of this paper have been extended to describe the product structure in the
cohomology and these will appear separately.

We begin in Section 2 by deriving for wedge decomposable pairs (U,V) an explicit
decomposition of the polyhedral product into a wedge of much simpler spaces,
(Theorem 1.1 and Corollary 2.4). In particular, this allows us to identify explicit
additive generators for H∗

(
Z
(
K; (U,V)

)
. The proof in Section 4 is an induction

based on a filtration of the polyhedral product which is introduced in Section 3.
These decompositions give a direct framework for deducing, (Theorem 7.1), an

analogous homological Cartan formula for the additive structure of the homology of
Z
(
K; (X, A)

)
for any family of pairs of finite, pointed, path-connectedCW-complexes

(X, A), This is done by applying properties of the infinite symmetric product SP(−)
and the polyhedral product. Namely, given pointed pairs of finite, path-connected
CW-complexes, (X, A), there exist pointed pairs of path-connected CW-complexes

(U,V) = (B ∨ C, B ∨ E)

together with a homotopy equivalence

SP
(
Ẑ(K; (U,V))

)
−→ SP

(
Ẑ(K; (X, A))

)
Applications of the additive results comprise Sections 9 and 10.
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2 The polyhedral product of wedge decomposable pairs

We begin with a definition.

Definition 2.1 The special family of CW pairs (U,V) = (B ∨ C, B ∨ E) satisfying
(Ui,Vi) = (Bi ∨ Ci, Bi ∨ Ei) for all i, where Ei ↪→ Ci is a null homotopic inclusion,
is called wedge decomposable.

The fact that the smash product distributes over wedges of spaces, leads to the
characterization of the smash polyhedral product in a way which resembles a Cartan
formula.

Theorem 2.2 (Cartan Formula) Let (U,V) = (B ∨ C, B ∨ E) be a wedge decompos-
able pair, then there is a homotopy equivalence

Ẑ
(
K; (U,V)

)
−→

∨
I≤[m]

(
Ẑ
(
KI ; (C, E)I

)
∧ Ẑ

(
K[m]−I ; (B, B)[m]−I

) )
which is natural with respect to maps of decomposable pairs. Of course,

Ẑ
(
K[m]−I ; (B, B)[m]−I

)
=

∧
j ∈ [m]−I

Bj

with the convention that

Ẑ
(
K∅; (B, B)∅

)
, Ẑ

(
K∅; (C, E)∅

)
and Ẑ

(
KI ; (∅,∅)I

)
= S0.

We can decompose Ẑ
(
K; (U,V)

)
further by applying (a generalization of) theWedge

Lemma. We recall first the definition of a link. For σ a simplex in a simplicial
complex K, lkσ(K) the link of σ in K, is defined to be the simplicial complex for
which

τ ∈ lkσ(K) if and only if τ ∪ σ ∈ K .

Theorem 2.3 [1, Theorem 2.12], [21, Lemma 1.8] Let K be a simplicial complex
on [m] and (C, E) a family of CW pairs satisfying Ei ↪→ Ci is null homotopic for all
i then

Ẑ(K; (C, E)) '
∨
σ∈K

|∆(K)<σ | ∗ D̂[m]
C,E
(σ)

where |∆(K)<σ | � |lkσ(K)|, the realization of the link ofσ in the simplicial complex
K and
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D̂[m]
C,E
(σ) =

m∧
j=1

Wi j , with Wi j =

{
Ci j if ij ∈ σ
Ei j if ij ∈ [m] − σ.

(3)

�

Applying this to the decomposition of Theorem 1.1, we get

Corollary 2.4 There is a homotopy equivalence

Ẑ
(
K; (U,V)

)
−→

∨
I≤[m]

( ( ∨
σ∈KI

|lkσ(KI )| ∗ D̂I
C,E (σ)

)
∧ Ẑ

(
K[m]−I ; (B, B)[m]−I

) )
.

where D̂I
C,E (σ) is as in (3) with I replacing [m].

Combined with Theorem 1.1, this gives a complete description of the topological
spaces Z

(
K; (U,V)

)
for wedge decomposable pairs (U,V)

)
.

The case Ei ' ∗ simplifies further by [2, Theorem 2.15] to give the next corollary.

Corollary 2.5 For wedge decomposable pairs of the form (B ∨ C, B), corresponding
to Ei ' ∗ for all i = 1, 2, . . . ,m, there are homotopy equivalences

Ẑ
(
KI ; (C, E)I

)
' Ẑ

(
KI ; (C, ∗)I

)
' ĈI,

and so Theorem 1.1 gives Ẑ
(
K; (B ∨ C, B)

)
'

∨
I≤[m]

(
ĈI ∧ B̂([m]−I )

)
. �

Notice here that the Poincaré series for the space Ẑ
(
K; (B ∨ C, B)

)
follows easily

from Corollary 2.5.

Remark 2.6 In comparing these observations with [4, Theorem 5.4], notice that the
links appear in the terms Ẑ

(
KI ; (C, E)I

)
. Also, while Theorem 1.1 and Corollary 2.4

give a geometric underpinning for the cohomology calculation in [4, Theorem 5.4]
for wedge decomposable pairs, the geometric splitting does not require that E, B or
C have torsion-free cohomology

3 A filtration

We begin by reviewing the filtration on polyhedral products used for the spectral
sequence calculation in [4], following [4, Section 2], wheremore details can be found.
The length-lexicographical ordering on the faces of the (m − 1)-simplex ∆[m − 1] is
induced by an ordering on the vertices. This is the left lexicographical ordering on
strings of varying lengths with shorter strings taking precedence. The ordering gives
a filtration on ∆[m − 1] by

Ft (∆[m − 1]) =
⋃
s≤t

σs .

In turn, this gives a total ordering on the simplices of a simplicial K on m vertices
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σ0 = ∅ < σ1 < σ2 < . . . < σt < . . . < σs (4)

via the natural inclusion
K ⊂ ∆[m − 1].

This is filtration preserving in the sense that FtK = K ∩ Ft∆[m − 1].

Example 3.1 Consider [m] = [3] and

K =
{
φ, {v1}, {v2}, {v3},

{
{v1}, {v3}

}
,
{
{v2}, {v3}

}}
with the realization consisting of two edges with a common vertex. Here the length-
lexicographical ordering on the two-simplex ∆[2] is

φ < v1 < v2 < v3 < v1v2 < v1v3 < v2v3 < v1v2v3

and so the induced ordering on K is

φ < v1 < v2 < v3 < v1v3 < v2v3.

Remark 3.2 Notice that if t < m, then FtK will contain ghost vertices, that is,
vertices which are in [m] but are not considered simplices, They do however label
Cartesian product factors in the polyhedral product.

As described in [4, Section 2], this induces a natural filtration on the polyhedral
product Z

(
K; (X, A)

)
and the smash polyhedral product Ẑ

(
K; (X, A)

)
as follows:

Ft Z(K; (X, A)) =
⋃
k≤t

D(X,A)(σk) and Ft Ẑ(K; (X, A)) =
⋃
k≤t

D̂X,A(σk).

Notice also that the filtration satisfies

Ft Ẑ(K; (X, A)) = Ẑ(FtK; (X, A)). (5)

4 The proof of Theorem 1.1

Let the family of CW pairs (U,V) be wedge decomposable as in Definition 2.1.
We begin by checking that Theorem 1.1 holds for F0 Ẑ(K; (U,V)). In this case F0K
consists of the empty simplex, (the boundary of a point), and m − 1 ghost vertices.
So,

Ẑ(F0K; (U,V)) = V1 ∧ V2 · · · ∧ Vm = (B1 ∨ E1) ∧ (B2 ∨ E2) ∧ · · · ∧ (Bm ∨ Em).

(6)

Next, fix I = (i1, i2, . . . , ik) ⊂ [m] and set [m] − I = ( ji, j2, . . . jm−k). Then
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Ẑ
(
F0KI ; (C, E)I

)
∧Ẑ

(
K[m]−I ; (B, B)[m]−I

)
= (Ei1∧Ei2∧· · · Eik )∧(Bj1∧Bj2∧· · · Bjm−k ).

is the I-th wedge term in the expansion of the right hand side of (6). This confirms
Theorem 1.1 for t = 1.

We suppose next the induction hypothesis that

Ft−1 Ẑ(K; (U,V)) '
∨

I≤[m]

Ẑ
(
Ft−1KI ; (C, E)I

)
∧ Ẑ

(
K[m]−I ; (B, B)[m]−I

)
,

with a view to verifying it for Ft . The definition of the filtration gives

Ft Ẑ(K; (U,V)) = D̂U,V (σt ) ∪ Ft−1 Ẑ(K; (U,V)) (7)

' D̂U,V (σt ) ∪
∨

I≤[m]

Ẑ
(
Ft−1KI ; (C, E)I

)
∧ Ẑ

(
K[m]−I ; (B, B)[m]−I

)
.

The space D̂U,V (σt ) is the smash product

m∧
j=1

Bj ∨ Yj, with Yj =

{
Cj if j ∈ σt

Ej if j < σt .
(8)

After a shuffle of wedge factors, the space D̂U,V (σt ) becomes

∨
I≤[m], σt ∈I

D̂I
C,E (σt ) ∧ Ẑ

(
K[m]−I ; (B, B)[m]−I

)
∨

∨
I≤[m], σt<I

Ẑ
(
KI ; (C, E)I

)
∧ Ẑ

(
K[m]−I ; (B, B)[m]−I

)
(9)

where the space D̂I
C,E (σt ) is defined by (3).

Remark 4.1 Notice here the relevant fact that the number of subsets I ≤ [m] is the
same as the number of wedge summands in the expansion of (8), namely 2m.

The right-hand wedge summand in (9) is a subset of∨
I≤[m]

Ẑ
(
Ft−1KI ; (C, E)I

)
∧ Ẑ

(
K[m]−I ; (B, B)[m]−I

)
and so, ∨

I≤[m]
σt<Î

Z
(
KI ; (C, E)I

)
∧ Ẑ

(
K[m]−I ; (B, B)[m]−I

)
⋃ ∨

I≤[m]

Ẑ
(
Ft−1KI ; (C, E)I

)
∧ Ẑ

(
K[m]−I ; (B, B)[m]−I

)
=

∨
I≤[m]

Ẑ
(
Ft−1KI ; (C, E)I

)
∧ Ẑ

(
K[m]−I ; (B, B)[m]−I

)
.
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Finally, for each I ≤ [m] with σt ∈ I, we have

D̂I
C,E (σt ) ∪ Ẑ

(
Ft−1KI ; (C, E)I

)
= Ẑ

(
FtKI ; (C, E)I

)
. (10)

This concludes the inductive step to give

Ft Ẑ(K; (U,V)) '
∨

I≤[m]

Ẑ
(
FtKI ; (C, E)I

)
∧ Ẑ

(
K[m]−I ; (B, B)[m]−I

)
. (11)

It is straightforward to explicitly check the steps above in the case of F0 and F1. This
completes the proof. 2

5 Symmetric products

We begin with a definition.

Definition 5.1 Let (X, ∗) denote a pointed topological space. The m-fold symmetric
product for (X, ∗) is the orbit space

SPm(X) = Xm/
Σm

where the symmetric group on m-letters Σm acts on the left by permutation of
coordinates. There are natural maps

e : SPm(X) −→ SPm+1(X)

[x1, x2, . . . , xm] 7→ [x1, x2, . . . , xm, ∗]
(12)

which allow for the definition of the infinite symmetric product as a colimit

SP(X) = colim
1≤m

SPm(X).

The colimit becomes a filtered unital commutative monoid under concatenation,
with ∗ as the unit. Furthermore, there is a natural inclusion

EX : X −→ SP(X)
p 7→ [p]

. (13)

One version of the classical Dold-Thom theorem is as follows.

Theorem 5.2 [11] Given a pointed, path-connected pair of finite CW-complexes
(X, A, ∗) (where A is a closed subcomplex of X), then the following hold.

1. SP(X) is homotopy equivalent to a product of Eilenberg-Mac Lane spaces∏
1≤q≤∞

K(Hq(X), q)
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2. The natural map
SP(X) −→ SP(X/A)

is a quasi-fibration with quasi-fibre SP(A).

A natural map,

θ̂ : SPq1 (X1) ∧ SPq2 (X2) ∧ · · · ∧ SPqm (Xm) −→ SPq(X1 ∧ X2 ∧ · · · ∧ Xm),

for q = q1q2 · · · qm, is constructed next by setting

θ̂
( [
[x11, x12, . . . , x1q1 ], [x21, x22, . . . , x2q2 ], . . . , [xm1, xm2, . . . , xmqm ]

]∧)
=

[ ∏
1≤ jt ≤qt
1≤t≤m

[
x1j1, x2j2, . . . , xmjm

]∧] (14)

where here, square brackets [ ] are used to denote equivalence classes in the sym-
metric product, and [ ]∧ for the smash products. Next we introduce an extension of
θ̂ which we shall use throughout to deduce the main results.

Theorem 5.3 The construction of the map θ̂ extends in a natural way to give

θ̂ : SP(X1) ∧ SP(X2) ∧ · · · ∧ SP(Xm) −→ SP(X1 ∧ X2 ∧ · · · ∧ Xm)

a map of colimits.

Proof It suffices to check that the diagram below commutes

SPq1 (X1) ∧ · · · ∧ SPqk (Xk) ∧ · · · ∧ SPqm (Xm) SPq(X1 ∧ X2 ∧ · · · ∧ Xm)

SPq1 (X1) ∧ · · · ∧ SPqk+1(Xk) ∧ · · · ∧ SPqm (Xm) SPq′(X1 ∧ X2 ∧ · · · ∧ Xm)

θ̂

e e

θ̂

where here, q = q1q2 · · · qm, q′ = q1q2 · · · qk−1(qk + 1)qk+1 · · · qm and the map e is
as in (12). Consider then,

e ◦ θ
( [
[x11, x12, . . . , x1q1 ], [x21, x22, . . . , x2q2 ], . . . , [xm1, xm2, . . . , xmqm ]

]∧)
= e

( [ ∏
1≤ jt ≤qt
1≤t≤m

[
x1j1, x2j2, . . . , xmjm

]∧] )
=

[ ∏
1≤ jt ≤qt
1≤t≤m

[
x1j1, x2j2, . . . , xmjm

]∧
, [∗]∧, . . . , [∗]∧︸          ︷︷          ︸

q′−q

]
.

On the other hand,



36 A. Bahri, M. Bendersky, F. R. Cohen and S. Gitler

θ ◦ e
( [
[x11, x12, . . . , x1q1 ], [x21, x22, . . . , x2q2 ], . . . , [xm1, xm2, . . . , xmqm ]

]∧)
= θ

( [
[x11, x12, . . . , x1q1 ], . . . , [x21, x22, . . . , x2qk,∗], . . . , [xm1, xm2, . . . , xmqm ]

]∧)
=

[ ∏
1≤ jt ≤qt
1≤t≤m

[
x1j1, x2j2, . . . , xmjm

]∧ ∏
1≤ jt ≤qt

1≤t≤m, t,k

[
x1j1, x2j2, . . . , xmjm, ∗

]∧]
=

[ ∏
1≤ jt ≤qt
1≤t≤m

[
x1j1, x2j2, . . . , xmjm

]∧
, ∗, . . . , ∗︸  ︷︷  ︸

q′−q

]
A simple example illustrates the proof of Theorem 5.3 for m = 2, q = 2 and q′ = 4.

SP1(X1) ∧ SP2(X2) SP2(X1 ∧ X2)

SP2(X1) ∧ SP2(X2) SP4(X1 ∧ X2)

θ̂

e×1 e

θ̂

(15)

Here,

(e ◦ θ̂)
( [
[x11], [x21, x22]

]∧)
= e

[
[x11, x21]

∧, [x11, x22]
∧
]

=
[
[x11, x21]

∧, [x11, x22]
∧, [∗]∧, [∗]∧

]
,

whereas,(
θ̂ ◦ (e × 1)

) ( [
[x11], [x21, x22]

]∧)
= θ̂

( [
[x11, ∗], [x21, x22]

]∧)
=

[
[x11, x21]

∧, [x11, x22]
∧, [∗, x21]

∧, [∗, x22]
∧
]
.

The diagram commutes because both [∗, x21]
∧ and [∗, x22]

∧ equal [∗]∧.

6 Connections between symmetric products and polyhedral
products

Consider a simplicial complex K on [m] and a family of pointed CW pairs (X, A).
We adopt the notation(

SP∗(X), SP∗(A)
)
=

{(
SPqi (Xi), SPqi (Ai)

)}m
i=1, (16)

and construct a structure map

ζ : Ẑ
(
K;

(
SP(X), SP(A)

) )
−→ SP

(
Ẑ(K; (X, A))

)
. (17)

by considering first the composite map
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Ẑ
(
K;

(
SP∗(X), SP∗(A)

) ) ι
−−−→ SPq1 (X1) ∧ SPq2 (X2) ∧ · · · ∧ SPqm (Xm)

θ̂
−−−−→ SPq(X1 ∧ X2 ∧ · · · ∧ Xm) (18)

Lemma 6.1 A map ζ exists in the diagram below making the diagram commute

Ẑ
(
K;

(
SP∗(X), SP∗(A)

) )
SPq(X1 ∧ X2 ∧ · · · ∧ Xm)

SPq
(
Ẑ(K; (X, A))

)
Θ̂ ◦ ι

ζ
SPq (ι) (19)

where ι : Ẑ(K; (X, A)) ↪−→ X1 ∧ X2 ∧ · · · ∧ Xm is the inclusion. Moreover, the map
ζ extends to a map at level of infinite symmetric products

ζ : Ẑ
(
K;

(
SP(X), SP(A)

) )
−→ SP

(
Ẑ(K; (X, A))

)
. (20)

Proof We use the indexing from (16), and begin by defining

ζ : D̂(SP∗(X),SP∗(A))(σ) −→ SPq (
D̂(X,A)(σ)

)
for σ ∈ K , where

D̂(SP∗(X),SP∗(A))(σ) =
m∧
i=1

Yi, where Yi =
{

SPqi (Xi) if i ∈ σ
SPqi (Ai) if i ∈ [m] − σ, (21)

and
D̂(X,A)(σ) =

m∧
i=1

Wi, where Wi =

{
Xi if i ∈ σ
Ai if i ∈ [m] − σ, (22)

by

ζ
( [
[x11, x12, . . . , x1q1 ], [x21, x22, . . . , x2q2 ], . . . , [xm1, xm2, . . . , xmqm ]

]∧)
=

[ ∏
1≤ jt ≤qt
1≤t≤m

[
x1j1, x2j2, . . . , xmjm

]∧] (23)

The key point whichmakes the target of ζ equal to SPq
(
D̂(X,A)(σ)

)
is the observation

that if a point [xr1, xr2, . . . , xrqr ]
∧ is in Âqr

r then[
x1j1, x2j2, . . . , xr jr , . . . , xmjm

]∧
∈ X1 ∧ · · · ∧ Xr−1 ∧ Ar ∧ Xr+1 ∧ · · · ∧ Xm.

Next, we need to check that the diagram following commutes.
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D̂(SP∗(X),SP∗(A))(σ) SPq
(
D̂(X,A)(σ)

)
D̂(SP∗(X),SP∗(A))(τ) SPq

(
D̂(X,A)(τ)

)
ζ

` SPq (`)

ζ

(24)

whenever σ
`

↪−−→ τ in K , but this is immediate from the definitions (22) and (21).
Taking colimits with respect to the diagram of K , we get the dashed arrow of (19),

ζ : Ẑ
(
K;

(
SP∗(X), SP∗(A)

) )
−→ SPq (

Ẑ(K; (X, A))
)

(25)

It remains to check the commutativity of diagram (19). Let[
[x11, x12, . . . , x1q1 ], [x21, x22, . . . , x2q2 ], . . . , [xm1, xm2, . . . , xmqm ]

]∧
∈ D(SP∗(X),SP∗(A))(σ) ,

we have,

(θ̂ ◦ ι)
( [
[x11, x12, . . . , x1q1 ], [x21, x22, . . . , x2q2 ], . . . , [xm1, xm2, . . . , xmqm ]

]∧)
= θ̂

( [
[x11, x12, . . . , x1q1 ], [x21, x22, . . . , x2q2 ], . . . , [xm1, xm2, . . . , xmqm ]

]∧)
=

[ ∏
1≤ jt ≤qt
1≤t≤m

[
x1j1, x2j2, . . . , xmjm

]∧]
Also,(

SPq(ι) ◦ ζ
) ( [
[x11, x12, . . . , x1q1 ], [x21, x22, . . . , x2q2 ], . . . , [xm1, xm2, . . . , xmqm ]

]∧)
= SPq(ι)

( [ ∏
1≤ jt ≤qt
1≤t≤m

[
x1j1, x2j2, . . . , xmjm

]∧] )
=

[ ∏
1≤ jt ≤qt
1≤t≤m

[
x1j1, x2j2, . . . , xmjm

]∧]
Finally, we need to check that the map ζ extends to a map of the colimits defining

the infinite symmetric products, as in (20). To this end, we fix k ∈ [m] and modify
(16) by setting (

SP∗k (X), SP∗k (A)
)
=

{(
SPq′i (Xi), SPq′i (Ai)

)}m
i=1, (26)

where
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q′i =

{
qi if i , k
qk + 1 if i = k

and q′ = q′1q′2 · · · q
′
m. It suffices now to check the commutativity of the diagram

Ẑ
(
K;

(
SP∗(X), SP∗(A)

) )
SPq

(
Ẑ(K; (X, A))

)
Ẑ
(
K;

(
SP∗k (X), SP∗k (A)

) )
SPq′

(
Ẑ(K; (X, A))

)
ζ

Ẑ(K ; e) e

ζ

(27)

In the notation of (23), we have

(e ◦ ζ)
( [
[x11, x12, . . . , x1q1 ], [x21, x22, . . . , x2q2 ], . . . , [xm1, xm2, . . . , xmqm ]

]∧)
= e

( [ ∏
1≤ jt ≤qt
1≤t≤m

[
x1j1, x2j2, . . . , xmjm

]∧] )
=

[ ∏
1≤ jt ≤qt
1≤t≤m

[
x1j1, x2j2, . . . , xmjm

]∧
, ∗, . . . , ∗︸  ︷︷  ︸

q′−q

]
.

On the other hand,

(ζ ◦ e)
( [
[x11, x12, . . . , x1q1 ], [x21, x22, . . . , x2q2 ], . . . , [xm1, xm2, . . . , xmqm ]

]∧)
= ζ

( [
[x11, x12, . . . , x1q1 ], . . . , [x21, x22, . . . , x2qk,∗], . . . , [xm1, xm2, . . . , xmqm ]

]∧)
=

[ ∏
1≤ jt ≤qt
1≤t≤m

[
x1j1, x2j2, . . . , xmjm

]∧ ∏
1≤ jt ≤qt

1≤t≤m, t,k

[
x1j1, x2j2, . . . , xmjm, ∗

]∧]
=

[ ∏
1≤ jt ≤qt
1≤t≤m

[
x1j1, x2j2, . . . , xmjm

]∧
, ∗, . . . , ∗︸  ︷︷  ︸

q′−q

]
The next construction is standard.

Lemma 6.2 A map of the form φ : X −→ SPk(Y ), which induces a map

φ : X −→ SP(Y )

admits a canonical multiplicative extension ψ : SP(X) −→ SP(Y ). This extension is
the identity map if X = Y and the map φ is the inclusion EX .

Proof The map ψ is defined by the map φ as a composite

SPq(X)
SPq (φ)
−−−−−−→ SPq (

SPk(Y )
) η
−→ SPqk(Y ) (28)
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where the map η is given by:[
[y11, y12, . . . , y1k], [y21, y22, . . . , y2k], . . . , [yq1, xq2, . . . , yqk]

]
7−−−−→ [y11, y12, . . . , y1k, y21, x22, . . . , y2k, . . . , yq1, yq2, . . . , yqk]

so, writing φ(xi) = [φ(xi)1, φ(xi)2, . . . , φ(xi)k] ∈ SPk(Y ), we have

ψ
(
[x1, x2, . . . , xq]

)
= η

( [
φ(x1), φ(x2), . . . , φ(xq)

] )
= [φ(x1)1, φ(x1)2, . . . , φ(x1)k, φ(x2)1, φ(x2)2, . . . ,

φ(x2)k, . . . , φ(xq)1, φ(xq)2, . . . , φ(xq)k]

The map ψ fits into a commutative diagram as follows.

SPq(X) SPqk(Y )

SPq+1(X) SP(q+1)k(Y ).

ψ

e e

ψ

(29)

More specifically, let [x1, x2, . . . , xq] ∈ SPq(X), then

(e ◦ ψ)
(
[x1, x2, . . . , xq]

)
= e

(
η([φ(x1), φ(x2), . . . , φ(xq)])

)
=

[
φ(x1)1, φ(x1)2, . . . , φ(x1)k, . . . , φ(xq)1, φ(xq)2, . . . , φ(xq)k, ∗, . . . , ∗︸  ︷︷  ︸

k

]
On the other hand,

(ψ ◦ e)
(
[x1, x2, . . . , xq]

)
= ψ(

(
[x1, x2, . . . , xq, ∗]

)
= η

(
[φ(x1), φ(x2), . . . , φ(xq), φ(∗)]

)
= [φ(x1), φ(x2), . . . , φ(xq), ∗, . . . , ∗︸  ︷︷  ︸

k

]

=
[
φ(x1)1, φ(x1)2, . . . , φ(x1)k, . . . , φ(xq)1, φ(xq)2, . . . , φ(xq)k, ∗, . . . , ∗︸  ︷︷  ︸

k

]
The second statement of the lemma follows from the definition of the map EX .

Notice further that, for the map EX of (13), we see that

(ψ ◦ EX ) : X −→ SP(Y ) (30)

coincides with φ : X −→ SP(Y ). �
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Applying Lemma 6.2 to the map ζ of (20), we get its multiplicative extension

ψ : SP
(
Ẑ
(
K;

(
SP(X), SP(A)

) )
−→ SP

(
Ẑ(K; (X, A))

)
. (31)

More properties of the map ψ are given next.

Lemma 6.3 Let K be a simlicial complex on [m] and (X, A) a family of finite pointed
CW pairs.

1. The maps (EXi , EAi ) : (Xi, Ai) −→
(
SP(Xi), SP(Ai

)
induce a morphism of

polyhedral smash products

EK
(X,A) : Ẑ(K; (X, A)

)
−→ Ẑ

(
K; (SP(X), SP(A))

)
.

2. There is a commutative diagram

Ẑ(K; (X, A)) Ẑ
(
K; (SP(X), SP(A))

)

SP
(
Ẑ
(
K; (X, A)

) )
EK
(X,A)

EẐ (K ;(X,A)
ζ

3. There is a strictly commutative multiplicative diagram

SP
(
Ẑ(K; (X, A)) SP

(
Ẑ
(
K; (SP(X), SP(A)

)

SP
(
Ẑ
(
K; (X, A)

) )
SP

(
EK
(X,A)

)
1

ψ

where

SP
(
Ẑ(K; (X, A)) SP

(
Ẑ
(
K; (SP(X), SP(A)

)SP
(
EK
(X,A)

)
is multiplicative.

Proof Part 1 is a consequence of the functoriality of the polyhedral smash product
and part 2 follows from the definition of ζ (23). Next, applying (30) from Lemma
6.2, we see that the map ψ, ((31)), of part 3, restricted to Ẑ

(
K; (SP(X), SP(A))

)
,

coincides with the map ζ . The diagram of part 3 follows by applying Lemma 6.2 to
the maps EK

(X,A)
and ζ in the diagram of part 2. �

This lemma admits further extensions for subspaces of polyhedral smash products.
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Lemma 6.4 Let K be as in Lemma 6.3, and (X, A) and (U,V) be families of pairs
of pointed, finite connected CW complexes. Assume further that there are maps of
pointed pairs

gi : (Ui,Vi) −→
(
SP(Xi), SP(Ai)

)
.

Then
1. There are induced maps

g : U[m] −→ SP(X1) ∧ SP(X2) ∧ · · · ∧ SP(Xm)

and
D̂(U,V )(ω)

g
ω

−−−−−→ D̂(SP(X),SP(A))(ω)

for ω ∈ K .

2. For σ ⊂ τ ∈ K , there is a strictly commutative diagram, obtained by restriction,
as follows:

D̂(U,V )(σ) SP
(
D̂(X,A)(σ)

)
D̂(U,V )(τ) SP

(
D̂(X,A)(τ)

)
λσ

` SP(`)

λτ

(32)

where i : τ ↪→ σ denotes the inclusion of faces and, for ω ∈ K , the map λω is
the composite

D̂(U,V )(ω)
g
ω

−−−−−→ D̂(SP(X),SP(A))(ω)
ζ
−−−−→ SP

(
D̂(X,A)(ω)

)
(33)

and ζ is constructed in Lemma 6.1.
Proof The map g arises from the m-fold smash product of maps gi in a natural way.
The commutativity of the diagram (32) is obtained by splitting it into two diagrams
corresponding to the factorization of the map λw as (33). The commutativity of the
first diagram, corresponding to g

ω
, is straightforward and the second, corresponding

to the map ζ , is (24). �

7 An extension from wedge decomposable pairs to the general
case

The purpose of this section is to begin the task of extending Theorem 1.1, the Cartan
formula for wedge decomposable pairs, to a homological Cartan formula for arbitrary
pointed path-connected pairs of finite CW-complexes (X, A).
Theorem 7.1 (Homological Cartan formula) Let K be an abstract simplicial com-
plex with m vertices. Assume that (X, A) are pointed, path-connected pairs of finite
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CW-complexes for all i. There exist spaces Bj,Cj, Ej , 1 ≤ j ≤ m, which are finite
wedges of spheres and mod-n Moore spaces together with a homotopy equivalence

SP(Ẑ(K; (B ∨ C, B ∨ E))) → SP(Ẑ(K; (X, A))).

Thus H∗(Ẑ(K; (X, A))) is isomorphic to H∗(Ẑ(K; (B ∨ C, B ∨ E))) over the integers.
This allows for a description of H∗(Ẑ(K; (X, A))) in terms of the decompositions of
Theorem 1.1 and Corollary 2.4.

Remark 7.2 In a forthcoming paper, the authors use this and Corollary 2.4 to de-
scribe products in the cohomology of a polyhedral product.

Preliminary results required for the proof of Theorem 7.1 will occupy the remain-
der of this section. We begin with a definition.

Definition 7.3 The pairs (U,V) and (X, A) are said to have strongly isomorphic
homology provided

1. there are isomorphisms of singular homology groups

αj : H∗(Uj) → H∗(Xj),

and
βj : H∗(Vj) → H∗(Aj),

2. there is a commutative diagram

H̄i(Vj)
λ j ∗
−−−−−−→ H̄i(Uj)

β j
y yαj

H̄i(Aj)
ι j ∗

−−−−−−→ H̄i(Xj),

where λj : Vj ⊂ Uj , and ιj : Aj ⊂ Xj are the natural inclusions, and

3. there is an induced morphism of exact sequences for which all vertical arrows
are isomorphisms:

0 //

��

ker(λj∗) //

β j

��

H̄i(Vj)
λ j ∗ //

β j ∗

��

H̄i(Uj) //

αj ∗

��

coker(λj∗) //

ᾱj

��

//

��

0

��

0 // ker(ιj∗) // H̄i(Aj)
ι j ∗ // H̄i(Xj) // coker(ιj∗) // 0

where ᾱj is induced by αj .

4. The maps of pairs (αj, βj) : (H∗(Uj),H∗(Vj)) → (H∗(Xj),H∗(Aj)) which satisfy
conditions 1 − 3 are said to induce a strong homology isomorphism.
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Remark 7.4 The feature of the pairs (U,V) and (X, A) having strongly isomorphic
homology groups implies, via the Künneth Theorem, that the spaces D̂(U,V )(σ) and
D̂(X,A)(σ) have isomorphic homology groups.

Lemma 7.5 Given pointed, path-connected pairs of finite CW-complexes (X, A), and
(U,V) with strongly isomorphic homology groups, and let σ ∈ K be any face of the
simplicial complex K , then there is an isomorphism of singular homology groups

H̄∗
(
D̂(X,A)(σ)

)
−→ H̄∗

(
D̂(U,V )(σ)

)
.

The rest of the section is devoted to showing that isomorphisms can be chosen to
be suitably compatible to pass to isomorphisms on homology for the full polyhedral
product.

Lemma 7.6 Given pointed, path-connected pairs of finite CW-complexes (X, A),
there exist wedges of spheres, and mod-pr Moore spaces (B ∨ C, B ∨ E) together
with isomorphisms of singular homology groups

αj : H∗(Bj ∨ Cj) → H∗(Xj)

and
βj : H∗(Bj ∨ Ej) → H∗(Aj),

which give strong homology isomorphisms, and the pairs (B ∨ C, B ∨ E) satisfy
condition of wedge decomposability in Definition 2.1 that the inclusion Ej → Cj is
null-homotopic.

Proof The proof of this lemma follows from the fact that Xj , and Aj are finite,
path-connected CW-complexes, and so all homology groups as well as kernels and
cokernels are finite direct sums of cyclic abelian groups. Thus Bj,Cj, Ej may be
chosen to be wedges of spheres, and mod-pr Moore spaces. Some details are given
for completeness.

Consider a pair of pointed path-connected CW-complexes (X, A) together with
the induced map in homology H∗A→ H∗X . Then for any fixed j ≥ 1, both Hj A and
HjX are finite direct sums of abelian groups. Any such finitely generated abelian
group is a direct sum of cyclic abelian groups either of the form Z or Z/prZ for
some choice of n. In the case Z, then Hj(S j) = Z. In the case of Z/prZ, then the
mod-pr Moore space given by P j+1(Z/prZ) satisfies Hj

(
P j+1(Z/prZ)

)
= Z/prZ.

At this level, it is direct to realize maps on homology. The hypotheses of strongly
isomorphic homology gives the naturality required. �

Our next goal is to establish a standard property of the infinite symmetric product.

Lemma 7.7 Let U and X be finite, pointed, path connected CW-complexes and

α : H̃∗(U) −→ H̃∗(X)

a homomorphism in singular homology. Then there is a multiplicative map
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g : SP(U) −→ SP(X)

which satisfies π∗(g) = α, and is a homotopy equivalence if the map α is an isomor-
phism.

Proof Recall that the reduced singular homology of SP(X) for any pointed, path-
connected CW complex X is isomorphic to⊕

1≤m≤∞
H̃∗ŜP

(m)
(X)

where ŜP
(m)
(X) denotes the m-fold symmetric smash product given by

ŜP
(m)
(X) = (X ∧ X ∧ · · · ∧ X)

/
Σm.

This result appears in the thesis of R. J. Milgram, implicitly in [11] and in
[10, Corollary 4.8]. Also, N. Steenrod proved, in unpublished notes, that there is
a homotopy equivalence

SP
(
SP(X)

)
→ SP

( ∨
1≤m<∞

ŜP
(m)
(X)

)
.

Since X and U are finite, path-connected, pointed CW complexes with isomorphic
singular homology groups, there is a homotopy equivalence

φn : SP(Σn(U)) −→ SP(Σn(X))

for every natural number n. Next, consider the composite

Σn(U)
E

−−−−−−→ SP(Σn(U))
φn

−−−−−−→ SP(Σn(X))

and denote the canonical multiplicative extension, (lemma 6.2), of φn ◦ E by

ψn : SP(Σn(U)) → SP(Σn(X)).

Remark 0.1 This map might not be homotopic to the map φn. �

The next step in the proof of Theorem 7.1 is a lemmawhich allows a direct translation
of algebraic properties concerning homology groups to geometric maps on the
level of symmetric products of polyhedral products. It follows from the Dold-Thom
theorem that the map ψn satisfies the formula

ψ∗(u) = α(u) + ∆u where ∆u ∈
⊕
2≤m

H∗
(
ŜP

m
(Σn(X)

)
.

Here the class ∆u projects to zero in H∗(ΣnX) = H∗(ŜP1(ΣnX)) on identifying the
reduced homology of a space Σn(X)with that of X . Thus the canonical multiplicative
extension ψn : SP(Σn(U)) → SP(Σn(X)) induces a surjection on homology.
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It follows that ψn induces a homology isomorphism since the homology groups
of source and target are finitely generated abelian groups in each degree which are
abstractly isomorphic where the map is a surjection. �

Lemma 7.8 Suppose that (U,V) and (X, A) are pointed, connected, pairs of finite
CW-complexes, with strongly isomorphic homology groups, then the map of pairs

g :
(
SP(U), SP(V)

)
−→

(
SP(X), SP(A)

)
arising from lemma 7.7, induces strongly isomorphic homology groups. That is, the
induced map on homology gives a commutative diagram

H̄i(SP(Vj))
λ∗

−−−−−−→ H̄i(SP(Uj))

g∗
y yg∗

H̄i(SP(Aj))
ι∗

−−−−−−→ H̄i(SP(Xj))

together with a second commutative diagram for which all vertical arrows are iso-
morphisms:

ker(λ∗) −−−−−−→ H̄i(SP(Vj))
λ∗

−−−−−−→ H̄i(SP(Uj)) −−−−−−→ coker(λ∗)

g∗
y g∗

y yg∗
yḡ∗

ker(ι∗) −−−−−−→ H̄i(SP(Aj))
ι∗

−−−−−−→ H̄i(SP(Xj)) −−−−−−→ coker(ι∗)

where ḡ∗ is induced by g∗.

The proof of this lemma follows from the fact that Xj, Aj,Uj , andVj are finite con-
nected CW-complexes, and so all homology groups as well as kernels and cokernels
are finite direct sums of cyclic abelian groups.

Finally, we shall need a version of the Projection Lemma due to D. Quillen.

Lemma 7.9 [21, Projection Lemma 1.6] Let D and E denote finite diagrams of
finite CW complexes over the same finite category C for which all inclusions in the
intersection poset are closed cofibrations. Furthermore assume that

U =
⋃
α∈C

Dα and X =
⋃
α∈C

Eα

and that there is a map
µ : SP(U) −→ SP(X)

which restricts to homotopy equivalences on

µ|SP(Dα ) : SP(Dα) −→ SP(Eα)

for all α ∈ C. Then µ is a homotopy equivalence.
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8 The proof of Theorem 7.1 completed

The proof of Theorem 7.1 uses Theorem 1.1 and the interplay between the Dold-
Thom construction and polyhedral products given in section 6.

Let K be an abstract simplicial complex with m vertices. Assume that (X, A) are
pointed, path-connected pairs of finite CW-complexes for all i. Then by Lemma 7.6
we have wedges of spheres, and mod-pr Moore spaces (B ∨ C, B ∨ E) together with
isomorphisms of singular homology groups

αj : H∗(Bj ∨ Cj) → H∗(Xj) and βj : H∗(Bj ∨ Ej) → H∗(Aj),

which give strong homology isomorphisms and the pairs (B ∨ C, B ∨ E) satisfy
condition of wedge decomposability in Definition 2.1 that the inclusion Ej → Cj is
null-homotopic.

Next, Lemma 7.8 gives a map of pointed pairs

g :
(
SP(B ∨ C), SP(B ∨ E)

)
−→ (SP(X), SP(A))

which induces a strong isomorphism in homology. Applying the functor D̂(−,−)(σ)
to this map, we get a map

D̂(σ; g) : D̂(SP(B∨C), SP(B∨E))(σ) −→ D̂(SP(X),SP(A))(σ)

and, for each τ ⊂ σ, a commutative diagram

D̂(SP(B∨C), SP(B∨E))(τ)
D̂(τ;g)
−−−−−−→ D̂(SP(X),SP(A))(τ)yβ β

y
D̂(SP(B∨C), SP(B∨E))(σ)

D̂(σ;g)
−−−−−−→ D̂(SP(X),SP(A))(σ)

where each horizontal arrow is a homotopy equivalence.
Further there are induced morphisms of commutative diagrams via the structure

map ζ of Lemma 6.1.

D̂(SP(B∨C), SP(B∨E))(σ) −−−−−−→ D̂(SP(X),SP(A))(σ)

ζ
y ζ

y
SP

(
D̂(B∨C, B∨E)(σ)

)
−−−−−−→ SP

(
D̂(X, A)(σ)

)
Here, the horizontal arrows are homotopy equivalences by the Dold-Thom theorem
and Lemma 7.5. Thus there is a map

SP
( ⋃
σ∈K

D̂B∨C, B∨E)(σ)
)
−→ SP

( ⋃
σ∈K

D̂(X, A)(σ)
)
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which is a homotopy equivalence by Lemma 7.9. Theorem 7.1 folllows from this.�

9 The Hilbert-Poincaré series for Z(K ; (X , A))

We begin by reviewing some of the elementary properties of Hilbert-Poincaré series.
Assume now that homology is taken with coefficients in a field k and all spaces are
pointed, path connected with the homotopy type of CW-complexes. The Hilbert-
Poincaré series

P(X, t) =
∑
n

(
dimkHn(X; k)

)
tn

and the reduced Hilbert-Poincaré series

P(X, t) = −1 + P(X, t)

satisfy the following properties.

1. P(X, t)P(Y, t) = P(X × Y ), t), and

2. P(X, t)P(Y, t) = P(X ∧ Y, t).

For a pair (X, A) satisfying the conditions of Theorem 7.1, we have

P
(
Ẑ(K; (X, A)), t

)
= P

(
Ẑ(K; (U,V)), t

)
(34)

where the pair (U,V) = B ∨ C, (B ∨ E)) is the pair determined by (X, A) and given
by Lemma 7.6. Next, Theorem 1.1 gives

P
(
Ẑ(K; (U,V)), t

)
=

∑
I≤[m]

[
P
(
Ẑ(KI ; (C, E)I ), t

) )
·

∏
j∈[m]−I

P(Bj, t)
]

(35)

We apply now Corollary 2.4 to refine this further and obtain the next theorem.

Theorem 9.1 The reduced Hilbert-Poincaré series for Ẑ(K; (U,V)), and hence for
Ẑ(K; (X, A)) is given as follows,

P
(
Ẑ(K; (U,V)), t

)
=

∑
I≤[m]

[ ∑
σ∈KI

[
t·P(|lkσ(KI )|, t)·P

(
D̂I
C,E (σ), t

) ]
·

∏
j∈[m]−I

P(Bj, t)
]

where here we use the convention that t · P(|∅|, t) = 1, and P
(
D̂I
C,E (σ), t

)
can be

read off from (3).

Finally, Theorem 1.1 gives now the Hilbert-Poincaré series for Z(L; (U,V)) and
for Z(L; (X, A), by applying (9.1) for each K = LJ, J ⊆ [m].
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10 Applications

We begin by illustrating the computation of a Poincaré series.

Example 10.1 Consider the composite

f : CP2 ↪→ CP3 → CP3/CP1. (36)

and denote the mapping cylinder of (36) by Mf . We consider H̃∗
(
Ẑ
(
K; (Mf ,CP3)

) )
and H̃∗

(
Z(K; (Mf ,CP3)

) )
, for any simplicial complex K on vertices [m] and describe

the Poincaré series for the special case

K =
{
{v1}, , {v2}, {v3}, {v1, v2}, {v1, v3}

}
. (37)

For (X, A) = (Mf ,CP2), we have

(U,V) =
(
S4 ∨ S6, S4 ∨ S2

)
. (38)

so that
B = S4, C = S6 and E = S2

Theorem 7.1 gives now

H̃∗
(
Ẑ
(
K; (Mf ,CP3)

) )
� H̃∗

(
Ẑ(K; (B ∨ C, B ∨ E))

)
.

Applying Theorem 1.1, we get

Ẑ(K; (B ∨ C, B ∨ E))
'
−→

∨
I≤[m]

Ẑ
(
KI ;

(
S6, S2) ) ∧ Ẑ

(
K[m]−I ; (S4, S4) )

=
∨

I≤[m]

Ẑ
(
KI ;

(
S6, S2) ) ∧ (S4)∧|[m]−I | |

where the last term represents the (|[m] − I)|-fold smash product. Finally, Corollary
2.4 determines completely

Ẑ
(
KI ;

(
S6, S2) )

by enumerating all the links |lkσ(KI )|.
Next, we describe the Poincaré series for K as in (37). According to (38) the

cohomology of (Mf ,CP2) satisfies

H∗(Mf ) = Z{b4, c6} and H∗(CP2)) = Z{e2, b4} (39)

where the dimensions of the classes are given by the subscripts.We denote the classes
{e2, b4, c6} supported on the vertex i by {ei2, b

i
4, c

i
6} and illustrate computation using

Theorem 9.1 by determining the summand corresponding to

I = {2, 3} and σ = ∅. (40)
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(i) In this case, we have

D̂I
C,E (σ) = E2 ∧ E3 = S2 ∧ S2 and H̃

(
D̂I
C,E (σ)

)
= k{e2

2 ⊗ e3
2}

and so we get P
(
D̂I
C,E (σ), t) = t4.

(ii) Next, since [m] − I = {1}, we have∏
j∈{1}

P(Bj, t) = P(B1, t) =⇒ P(b1
4, t) = t4.

(iii) Turning to the links, we have

|lk∅(KI )| = |{{2}, {3}}| = S0

so that t · P
(
|lk∅(KI ), t |

)
= t.

Finally, for the case at hand (40), Theorem 9.1 contributes t9 to the Poincaré series
for H∗

(
Ẑ(K; (X, A))

)
. Continuing in this way, we arrive at the (reduced) Poincaré

series
P
(
H∗(Ẑ(K; (Mf ,CP2)), t

)
= t9 + t11 + 3t12 + 5t14 + 2t16.

Theorem 1.1 applies particularly well in cases where spaces have unstable attaching
maps.

Example 10.2 The homotopy equivalence S1 ∧ Y ' Σ(Y ) implies homotopy equiv-
alences

Σ
mq (

Ẑ(K; (X, A))
)
−→ Ẑ

(
K;

(
Σ
q(X), Σq(A)

) )
(41)

where as usual, m is the number of vertices of K . Recall now that SO(3) � RP3 and
consider the pair

(X, A) =
(
SO(3),RP2),

for which there is a well known homotopy equivalence of pairs, [18, Section 1],(
Σ

2 (SO(3)
)
, Σ2 (RP2) ) −→ (

Σ2 (RP2) ∨ Σ2(S3), Σ2 (RP2) ), (42)

which makes the pair
(
SO(3),RP2) stably wedge decomposable. Next, combining

(41) and (42), we get a homotopy equivalence

Σ
2m (

Ẑ(K; (SO(3),RP2))
)
−→ Ẑ

(
K;

(
Σ2(RP2) ∨ Σ2(S3), Σ2(RP2)

)
. (43)

Finally, Theorem 7.1 allows us to conclude that Ẑ(K; (SO(3),RP2))
)
, and hence the

polyhedral product Z(K; (SO(3),RP2)), is stably a wedge of smash products of S3

and RP2.

Similar splitting results exist for the polyhedral product whenever the spaces X
and A split after finitely many suspensions. In particular, the fact that Ω2S3 splits
stably into a wedge of Brown–Gitler spectra implies that the polyhedral product
Z
(
K; (Ω2S3, ∗)

)
splits stably into awedge of smash products of Brown–Gitler spectra.
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Multiparameter persistent homology via
generalized Morse theory

Peter Bubenik and Michael J. Catanzaro

Abstract We define a class of multiparameter persistence modules that arise from
a one-parameter family of functions on a topological space and prove that these
persistence modules are stable. We show that this construction can produce inde-
composable persistence modules with arbitrarily large dimension. In the case of
smooth functions on a compact manifold, we apply cobordism theory and Cerf the-
ory to study the resulting persistence modules. We give examples in which we obtain
a complete description of the persistence module as a direct sum of indecomposable
summands and provide a corresponding visualization.

1 Introduction

Persistent homology is an important tool in topological data analysis, whose goal is
to use ideas from topology to understand the ‘shape of data’ [12, 7].

An important example of persistent homology starts with a smooth, compact
manifold M and a Morse function f : M → R. Classical Morse theory concerns
itself with the study of M via the critical points of f by analyzing the sublevel
sets F(a) = f −1(∞, a] and how their topology changes as a varies. The subspaces
{F(a)}a∈R and their inclusion maps may be used to define a functor F : R→ Top,
where R is the category given by the linear order on R and Top is the category
of topological spaces and continuous maps. Composing with singular homology in
some degree j and coefficients in a field k we obtain a functor HjF : R → Vectk
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with codomain the category of k-vector spaces and k-linear maps. Such a functor is
called a persistence module.

Let βj denote the j-th Betti number of M and let Mj denote the number of
critical points of index of j of f . Let M(t) =

∑
j Mj t j and β(t) =

∑
j βj t j . Morse

observed that M(t) − β(t) = (1+ t)D(t) for some polynomial D(t) with non-negative
coefficients [28]. That is, the excess of critical points of the Morse function come in
pairs that differ in index by one. A strengthening of this observation is a central result
in persistent homology. The persistence module HjF decomposes into a direct sum
of indecomposable summands given by one-dimensional vector spaces supported
on an interval. The end points of these intervals are exactly the critical values of the
paired critical points in Morse’s theorem. This pairing of critical values, called the
persistence diagram, is central to persistent homology.

While this setting has been very successful, in many applications the data are
best described not by a single function f : M → R but by a one-parameter family
of functions ft : M → R, where t ∈ I = [0, 1]. For example, one may handle noise
in the data with a procedure dependent on a parameter t. The resulting homological
data may be encoded in a multiparameter persistence module. However, in general
this module does not decompose into one-dimensional summands, and there is no
complete invariant analogous to the persistence diagram [8].

We approach multiparameter persistent homology using two distinct generaliza-
tions of Morse theory. The first is a parametrized approach to Morse theory, known
as Cerf theory. Cerf theory was initiated by J. Cerf in his celebrated proof of the
Pseudo-Isotopy Theorem [9]. One outcome of his work was a useful stratification
on the space of all smooth functions on a smooth compact manifold, stratified by
singularity type. The existence of this stratification implies that generic, 1-parameter
families of smooth functions are almost always Morse, except for finitely many
parameter values at which the function may have cubic, or ‘birth-death’ type, singu-
larities. Cerf developed a convenient framework for understanding how singularities
merge, split, and pass one another in families. This understanding is paramount for
our analysis.

The second variant is Morse theory adapted to the case of manifolds with bound-
ary. This was developed around the same time as Cerf theory but by several authors
independently [14, 2, 19]. Many statements in classical Morse theory can be adapted
to manifolds with boundary, so long as the gradient or gradient-like flow used is
tangent to the boundary. Critical points occurring on the interior behave as one ex-
pects, but on the boundary they come in two distinct flavors, either stable or unstable,
depending on the local flow. Altogether, Morse theory for manifolds with boundary
is a powerful extension of its classical analog. We have only touched the surface of
using this subject in multiparameter persistence.
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Our contributions

Given a topological space X and a one-parameter family of (not necessarily con-
tinuous) functions f̃ : I × X → R, we define a fibered version of f̃ by letting
f : I × X → I × R be given by f (t, x) = (t, f̃ (t, x)). The collection of subspaces

F(a, b, c) = f −1([a, b] × (−∞, c]) ⊂ I × X , (1)

for 0 ≤ a ≤ b ≤ 1 and c ∈ R, are our main objects of study. For [a, b] ⊂ [a′, b′] and
c ≤ c′ there is an inclusion of F(a, b, c) into F(a′, b′, c′). These topological spaces
and continuous maps describe a functor F : IntI × R→ Top, where IntI × R is the
category given by the product of the partial order on the closed intervals in I and
the linear order on R. Composing with singular homology in some degree j with
coefficients in a field k, we obtain a functor HjF : IntI × R→ Vectk. This functor
is a multiparameter persistence module.

We prove that this functor is stable with respect to the interleaving distance for
perturbations of the one-parameter family of smooth functions (Theorem 3.2).

We consider several examples of such one-parameter families of functions and
give complete descriptions of their multiparameter persistence modules (Sections
4.1, 4.3, 4.4, and 6). In particular, we give decompositions of these modules into their
indecomposable summands and provide corresponding visualizations (Figures 5, 7,
and 10). We also show that indecomposable persistent modules arising from one-
parameter families of functions may have arbitrarily large dimension (Section 4.2).

Now consider the case where X is a smooth compact manifold and f̃ is smooth.
Let F0(a, b, c) = f −1([a, b] × {c}). We prove (Theorem 5.2) that for generic a, b, and
c, (F(a, b, c), F0(a, b, c)) forms a cobordism between the manifolds with boundary
(F(a, a, c), F0(a, a, c)) and (F(b, b, c), F0(b, b, c). Furthermore, it is naturally equipped
with a Morse function

π[a,b] : F(a, b, c) → [a, b] ,

given by projection onto the interval [a, b]. ThisMorse function has no critical points
on F(a, b, c) \ F0(a, b, c) and the positive and negative critical points on F0(a, b, c)
(Definition 5.1) correspond to boundary stable and boundary unstable critical points,
respectively.

We remark that if we restrict our collection of subspaces in (1) to those with a = 0
then we obtain a multiparameter persistence module indexed by I × R ⊂ R2, with
the usual product partial order. However, this two-parameter persistence module is
a weaker invariant than our three-parameter persistence module. For example, if
X is the one-point space then our persistence module is a complete invariant of
1-parameter families of functions, but the weaker invariant is not.

We also remark that in applications computing the full set of critical values (the
Cerf diagram – Section 2.4) should not be considered to be a prerequisite. In the
classical situation of sublevel set persistent homology of a single smooth function
(e.g. a sum of a large number of Gaussians), instead of computing the set of critical
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values, one computes the sublevel set persistent homology of a piecewise linear
approximation.

Related work

Much of the recent work on multiparameter persistent homology focuses on either
its algebraic structure, for example [15, 4, 26, 5], or its computational challenges, for
example [24, 10, 22, 29]. Other authors have begun to take amore geometric approach
similar to our own, such as [25, 13]. There are two recent geometric approaches that
are related but still distinct. In [6], the authors use handlebody theory to understand
bi-filtrations arising from preimages of 2-Morse functions f : M → R2. In a simliar
vein, the authors of [21] use singularities of maps M → R2 to understand preimages
in M .

Motivation

While our framework is theoretical, we are motivated by applications. We highlight
two examples: kernel density estimation and kernel regression.

Kernel Density Estimation

Suppose {x1, x2, . . . , xn} ⊂ Rd are samples drawn independently from an unknown
density function f . An empirical estimator of the density is obtained by the average
of bump functions centered at each xi . The bump functions are translations of a
bump function, K , centered at the origin called a kernel. That is,

f̂α(x) =
1

nα

n∑
i=1

K
( x − xi

α

)
,

where the parameter α is called the bandwidth. A standard choice is the Gaussian
kernel, K(x) = 1

(2π)d/2 exp(−‖x‖2/2). Other examples include the Epanechnikov and
triangular kernels, which appear (up to rescaling) as the functions g(t) and g̃(t),
respectively, of Section 4.1.

Properties of the kernel density estimator f̂ , such as the number of modes (i.e.
local maxima), depend on the bandwidth α. In order to obtain a global understanding
of these properties for various of α and how they interact, we consider the one-
parameter family of functions g̃ = − f̂ : R × I → R, where g̃(t, x) = − f̂t (x)
and I is some bounded interval of parameter values. We obtain a collection of
spaces, G, given by (1) and its associated multiparameter persistence modules,
HjG : IntI×R→ VectK. Wemay use H0G for a functorial analysis of the estimation
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of the modes of f . In particular, the dimension of H0G(α, α,−c) equals number of
connected components of the superlevel set f −1

α ([c,∞)). Furthermore, the linearmaps
H0G(a, a,−c) → H0G(a, b,−c) ← H0G(b, b,−c) allow one to study the persistence
of these connected components.

Kernel regression

Closely related to kernel density estimation, is kernel regression. Suppose we are
given data {(x1, y1), . . . , (xn, yn)} ⊂ Rd×R sampled from the graph of some unknown
function f : Rd → R. Consider the Nadaraya-Watson estimator

f̂α(x) =
∑n

i=1 Kα(x − xi)yi∑n
i=1 Kα(x − xi)

.

In the same way as for kernel density estimation, we obtain a one-parameter family
of functions and associated persistence modules.

Outline

The paper is organized as follows. In Section 2, we recall definitions from geometric
topology and Cerf theory. We define our primary objects of study including our
multiparameter persistence modules in Section 3. In Section 4, we provide several
examples of one-parameter families of functions on manifolds, visualizations of the
relevant cobordisms, and analyze the multiparameter persistence modules. Finally in
Section 5, we prove our main theoretical result that F(a, b, c) is generically equipped
with a Morse function and analyze its critical points.

2 Background

We start with providing some background from geometric topology.

2.1 Manifolds with corners

There are several different, inequivalent notions of manifolds with corners and
smooth maps between them in the differential topology literature. The following
is a brief summary of [20]. Let Hn

k
= {(x1, x2, . . . , xn) | x1, x2, . . . , xk ≥ 0}. In

particular, Hn
0 = R

n and Hn
1 = [0,∞) × R

n−1.

Definition 2.1 ([20, Definition 2.1]) Let M be a second countable Hausdorff space.
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• An n-dimensional chart on M without boundary is a pair (U, ψ), where U is an
open subset of Rn and ψ : U → M is a homeomorphism onto a nonempty open
set ψ(U).

• An n-dimensional chart on M with boundary for n ≥ 1 is a pair (U, ψ), where
U is an open subset in Rn or Hn

1 , and ψ : U → M is a homeomorphism onto a
nonempty open set ψ(U).

• An n-dimensional chart of M with corners for n ≥ 1 is a pair (U, ψ), where U is
an open subset of Hn

k
for 0 ≤ k ≤ n, and ψ : U → M is a homeomorphism onto

a nonempty open subset ψ(U).

Definition 2.2 For X ⊂ Rn and Y ⊂ Rm, a map f : X → Y is smooth if it can be
extended to a smooth map between open neighborhoods of X and Y . If m = n and
f −1 is also smooth, then f is a diffeomorphism.

Definition 2.3 An n-dimensional atlas for M without boundary, with boundary, or
with corners is a collection of n-dimensional chartswithout boundary,with boundary,
or with corners {(Uj, ψj) | j ∈ J} on M such that M = ∪jψj(M) and are compatible
in the following sense: ψj ◦ψ

−1
k

: ψ−1
k
(ψj(Uj)∩ψk(Uk)) → ψ−1

j (ψj(Uj)∩ψk(Uk)) is
a diffeomorphism. An atlas is maximal if it is not a proper subset of any other atlas.

Definition 2.4 An n-dimensional manifold without boundary, with boundary, or
with corners is a second countable Hausdorff space M together with a maximal
n-dimensional atlas of charts without boundary, with boundary, or with corners.

Example 2.5 The space Ω of Figure 2 provides an example of a manifold with
corners. There are six corner points (with neighborhoods homeomorphic to H2

2 ) at
the intersections ofV0,V1, andY . The spacesV0,V1, andY are examples of manifolds
with boundary. Their interiors, as well as the interior ofΩ, are examples of manifolds
without boundary.

2.2 Generalized Morse functions

Morse theory provides powerful methods for understanding manifolds through the
lens of smooth functions. Classical Morse theory concerns the study of smooth,
compact manifolds without boundary and allows for a transformation from smooth,
continuous data (manifolds) to discrete data (critical points and values). An adap-
tation to Morse theory for manifolds with boundary extends this to the setting of
cobordisms. Another generalization we will consider, known as Cerf theory, gener-
alizes this to the study of one-parameter families of functions. The remainder of this
subsection is a summary and restatement of ideas from [11, §1] and [27].

Let M and Q be smooth, compact manifolds of dimension n and q, respectively,
and let f : M → Q be a smooth map. A point p ∈ M is a critical point or singular
point, if rank dp f = 0 or

rank dp f < min(n, q) .
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The set of all critical points of f is denoted Σ( f ).
Assume n ≥ q. A point p ∈ Σ( f ) is a fold singularity of index j (see Figure 1a)

if for some choice of local coordinates near p, the map f is given by

φ : Rq−1 × Rn−q+1 → Rq−1 × R

(t, x) 7→ ©«t,−
j∑

i=1
x2
i +

n−q+1∑
i=j+1

x2
i
ª®¬ , (2)

where t ∈ Rq−1 and x = (x1, x2, . . . , xn−q+1) ∈ R
n−q+1. Let Σ10( f ) be the set of all

fold singularities.
For q > 1, a point p ∈ Σ( f ) is a cusp singularity of index j + 1/2 (see Figure 1b)

if for some choice of local coordinates near p, the map f is given by

ψ : Rq−1 × R × Rn−q → Rq−1 × R

(t, z, x) 7→ ©«t, x3 + 3t1z −
j∑

i=1
x2
i +

n−q∑
i=j+1

x2
i
ª®¬ , (3)

where t = (t1, t2, . . . , tq−1) ∈ R
q−1, z ∈ R, and x = (x1, x2, . . . , xn−q) ∈ Rn−q . Set

Σ11( f ) to be the set of all cusp singularities. Finally let Σ1( f ) = Σ10( f ) ∪ Σ11( f ).

Remark 2.6 Consider the case q = 1 and Q ⊂ R, so that all terms of Eq. (2)
involving t vanish. In this case the fold singularities of f : M → Q coincide with
non-degenerate critical points as in usual Morse theory. If such an f has only fold
singularities, then f is known as a Morse function.

Remark 2.7 Both fold and cusp singularities are locally fibered over Rq−1 in the
sense that the following commute

Rq−1 × Rn−q+1 Rq−1 × R

Rq−1

φ

π
π

Rq−1 × R × Rn−q Rq−1 × R

Rq−1 ,

ψ

π
π

where π is the projection onto Rq−1. A single fibered function can be interpreted as a
family of functions φt : Rn−q+1 → R or ψt : R×Rn−q → R, indexed over t ∈ Rq−1.
In this language, the folds are constant families (see Figure 1a). The cusps consist of
families of functions with two non-degenerate critical points of index j and j + 1 for
t1 < 0, no critical points for t1 > 0, and a cubic or ‘birth-death’ singularity of index
j + 1/2 for t1 = 0 (see Figure 1b).
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(a) (b)

Fig. 1: Local models for (a) a fold singularity and (b) a cusp singularity. The middle
slice of the cusp singularity has a cubic singularity. This is often referred to as a
‘birth-death’ singularity, since the two critical points to the left can be viewed as
being “born” (moving right to left) or as “dying” (moving left to right).

2.3 Cobordisms

In this section, we recall some basic notions from Morse theory for manifolds with
boundary from the well-written summary of [1]. The reader may also consult some
of the original sources, such as [19, 2, 14]. We will assume that all manifolds (with
or without boundaries or corners) are smooth.

Let V0 and V1 denote two compact n-manifolds with boundaries ∂V0 and ∂V1,
respectively. Let Ω be a compact (n + 1)-manifold with corners, ∂Ω = Y ∪ V0 ∪ V1,
where V0 ∩ V1 = ∅, and Y ∩ V0 = ∂V0, Y ∩ V1 = ∂V1. In this case, we say (Ω,Y )
is a cobordism between (V0, ∂V0) and (V1, ∂V1). See Figure 2. Such a cobordism
is a left-product cobordism if Ω is diffeomorphic to V0 × [0, 1], or a right-product
cobordism if Ω is diffeomorphic to V1 × [0, 1].

Fixing a Riemannian metric on Ω allows us to consider the gradient ∇F of a
smooth function F : Ω→ [a, b]. A critical point z of F isMorse if the Hessian of F
at z is non-degenerate. The function F is aMorse function on the cobordism (Ω,Y ) if
F−1(a) = V0, F−1(b) = V1, there are no critical points on V0 ∪ V1, F only has Morse
critical points, and ∇F is everywhere tangent to Y .

The unstable manifold Wu
z of a critical point z is the set of all points which flow

out from z under ∇F:
Wu

z = {x | lim
t→−∞

Φt (x) = z} ,

where Φt is the flow generated by ∇F. With the same notation, the stable manifold
W s

z of a critical point z is given by

W s
z = {x | lim

t→∞
Φt (x) = z} .

The stable and unstable manifolds are locally embedded disks [18].
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V0
V1

Y

Ω

Fig. 2: A manifold with cornersΩ provides a cobordism between two manifolds with
boundary V0 and V1. The boundary ∂V0 consists of two points and ∂V1 consists of
four points. The manifold with boundary Y can be viewed as a cobordism between
∂V0 and ∂V1. Furthermore, Ω is a left-product cobordism.

Unlike usual Morse theory, the critical points for a Morse function on a manifold
with boundary come in a variety of types. If z is a critical point and z ∈ Y , then z
is called a boundary critical point. Otherwise, z is called an interior critical point.
We are primarily interested in boundary critical points, of which there are again two
types, determined by the gradient flow. A boundary critical point is boundary stable
if TzWu

z ⊂ TzY ; otherwise it is boundary unstable.
As usual, the index of a boundary critical point z is defined as the dimension of

the stable manifold W s
z . If z is boundary stable, then the index of z is the usual index

of F |Y plus one. On the other hand, if z is boundary unstable, then the index of z
coincides with the usual notion of index of the restriction F |Y . See Example 2.11.

Remark 2.8 Note that there are no boundary unstable critical points of index n + 1,
or boundary stable critical points of index 0.

Remark 2.9 We consider the flow generated by ∇F, as is frequently used in most
mathematics literature. In other areas such as dynamical systems and physics, the
flow generated by −∇F is commonly used. The two versions are equivalent, since
the stable and unstable manifolds swap after replacing the flow generated by ∇F
with that generated by −∇F.

Proposition 2.10 ([1, Lem 2.10, Thm 2.27, Prop 2.38])
Let (Ω,Y ) be a cobordism between (V0, ∂V0) and (V1, ∂V1).

• If (Ω,Y ) admits a Morse function whose critical points are all boundary stable,
then (Ω,Y ) is a left-product cobordism.
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• If (Ω,Y ) admits a Morse function whose critical points are all boundary unstable,
then (Ω,Y ) is a right-product cobordism.

• If (Ω,Y ) admits a Morse function with no critical points, then (Ω,Y ) is both a left-
and right-product cobordism.

Example 2.11 In Fig. 2, projection of Ω onto the horizontal axis yields a Morse
function F : Ω → [0, 1], in which F−1(0) = V0, F−1(1) = V1. This function has no
interior critical points and a single boundary critical point. The boundary critical
point is boundary stable, and located at the vertex of the parabola of Y in Ω. This is
an index 1 critical point. Proposition 2.10 implies Ω is a left-product cobordism, as
is evident from Figure 2.

If we post-compose F with the involution t 7→ 1 − t, then we again have a Morse
function with no interior critical points. This composition has the same boundary
critical point as before but now it is boundary unstable. The index of this critical
point is 1.

2.4 Cerf theory

Let X be a smooth, compact n-manifold and let I = [0, 1] denote the unit interval. A
one-parameter family of functions on X is a family of smooth functions f̃t : X → R,
where t ∈ I, and the family varies smoothly with respect to t. This is equivalent to
specifying a single smooth function f̃ : I × X → R. In either case, this data gives
rise to a map fibered over the interval

f : I × X → I × R , f (t, z) = (t, f̃ (t, z)) ,

in the sense that the following diagram commutes

I × X I × R

I

f

πI
πI (4)

where πI is projection onto the I factor.
Our primary tool for understanding such families of functions is the Cerf diagram.

Definition 2.12 The Cerf diagram (or Kirby diagram) of a family of functions f̃ :
I × X → R is given by ⋃

t∈I, x∈Σ( f̃t )

(t, f̃t (x)) ⊂ I × R .

We label each nondegenerate critical value of f̃t with its corresponding index.

The Cerf diagram encodes the critical value information of a family of functions
as the time parameter t varies [9, 16, 23]. A simple Cerf diagram is shown in Figure 3.
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Each (non-end) point on the curves corresponds to a nondegenerate critical value of
f̃t and the points where two such curves terminate is a cubic singularity of f̃t .

2

2

2

1
0 1

1

0

Fig. 3: A Cerf diagram for a certain generic family of smooth functions. Each
nondegenerate critical value is labeled by the index of its critical point. See also [17,
Section A.3, Figures E, F, G.].

We will assume that the family f̃ is generic, meaning that for all but finitely
many t, the fiber f̃t has finitely many nondegenerate critical points each of which
has a distinct critical value. Furthermore, we will assume that all remaining fibers
have either finitely many nondegenerate critical points exactly two of which have a
common critical value or a single cubic singularity and finitely many nondegenerate
critical points all of which have distinct critical values.

2.5 Wrinkled maps

We recall the notion of a wrinkle from [11]. Let

w : Rq−1 × Rn−1 × R1 → Rq−1 × R1

be given by

w(t, x, z) = ©«t, z3 + 3
(
|t |2 − 1

)
z −

j∑
i=1

x2
i +

n−q∑
i=j+1

x2
i
ª®¬ ,

where |t |2 =
∑q−1

i=1 t2
i . The set of critical points of w is

Σ(w) = {x = 0 , z2 + |t |2 = 1} ⊂ Rq−1 × Rn−q × R ,

and can be identified with a (q − 1) sphere Sq−1 ⊂ Rq−1 × {0} × R. This sphere has
equator

{x = 0 , z = 0 , |t | = 1} ⊂ Σ1(w) ,
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which we identify with Sq−2. This equator consists of cusp singularities of index
j + 1/2, its upper hemisphere Σ1(w) ∩ {z > 0} consists of fold singularities of index
j, and the lower hemisphere Σ1(w) ∩ {z < 0} consists of fold singularities of index
j + 1.

Definition 2.13 ([11])
For an open subset U ⊂ M , a map f : U → Q is called a wrinkle of index s+ 1/2

if it is equivalent to the restriction of w to an open neighborhood V ⊃ D, where D
is the q-dimensional disc {z2 + |y |2 ≤ 1, x = 0} bounded by Σ1(w).

A map f : M → Q is called wrinkled if there exist disjoint open subsets
U1,U2, . . . ,Ul ⊂ M such that

• for each i, f |Ui is a wrinkle, and
• if U = ∪l1Ui , then f |M\U is a submersion.

Definition 2.14 Amap f : M → Q is calledwrinkled with folds if there exist disjoint
open subsets U1,U2, . . . ,Ul ⊂ M such that

• for each i, f |Ui is a wrinkle, and
• if U = ∪l1Ui , then f |M\U has only fold singularities.

The singular locus of a wrinkled map decomposes into a union of wrinkles
Si = Σ1( f |Ui ) ⊂ Ui . As before, each Si has a (q − 2)-dimensional equator of cusps
which divides Si into 2 hemispheres of folds of adjacent indices. The singular locus
of a wrinkled map with folds decomposes into a union of wrinkles and folds.

3 Persistence modules for 1-parameter families of functions

In this sectionwedefinemultiparameter persistencemodules for 1-parameter families
of functions. The unit interval [0, 1] is denoted by I.

3.1 Indexing categories

Let IntI denote the category whose objects are closed intervals [a, b] ⊂ I, and whose
morphisms [a, b] → [c, d] are inclusions [a, b] ⊂ [c, d]. Let ∆2 = {(a, b) | 0 ≤ a ≤
b ≤ 1}. The category IntI is isomorphic to the category ∆2, whose objects are points
(a, b) ∈ ∆2 and has a unique morphism (a, b) → (c, d) if and only if c ≤ a ≤ b ≤ d.
Finally, let R denote the category corresponding to the poset of real numbers (R, ≤).
Then we have the isomorphic product categories IntI × R and ∆2 × R.

Note that there may not exist a map between two objects of ∆2 ×R, in contrast to
the (ordinary) sublevel-set persistence ofMorse functions. There does exist, however,
a zig-zag of maps between any two objects due to the fact that IntI � ∆2 is a join-
semilattice. In particular, [a, b] ⊂ [min(a, a′),max(b, b′)] ⊃ [a′, b′]; for example, see
the two arrows in the third triangular slice in Figure 5.
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For n ≥ 1, let (Rn, ≤) be the set Rn together with the product partial order.
That is (x1, . . . , xn) ≤ (y1, . . . , yn) if and only if xk ≤ yk for all 1 ≤ k ≤ n. Then
the poset ∆2 includes in the poset (R2, ≤) under the mapping (a, b) 7→ (−a, b). It
follows that the product poset ∆2×R includes in the poset (R3, ≤) under the mapping
(a, b, c) 7→ (−a, b, c). Thus we have an inclusion of categories ∆2 × R ↪→ R3 where
R3 denotes the category corresponding to the poset (R3, ≤). For a poset P and p ∈ P,
let Up = {q ∈ P | p ≤ q}, called the up-set of p. Then our persistence modules may
also be considered to be R3-graded modules over the monoid ring K[U0], where U0
is the up-set of 0 ∈ R3 (see [4, 26]).

3.2 Diagrams of spaces

Let Top denote the category of topological spaces and continuous maps. Let X be a
topological space and let f̃ : I × X → R be a (not necessarily continuous in either
variable) real-valued function on I×X , which corresponds to a one-parameter family
of real-valued functions on X , given by f̃t (x) = f̃ (t, x). Let f : I × X → I ×R be the
function given by f (t, z) = (t, f̃ (t, z)). Then we have a diagram of spaces of X given
by F : IntI × R → Top or equivalently F : ∆2 × R → Top given by F([a, b], c) =
f −1([a, b] × (−∞, c]) or F(a, b, c) = f −1([a, b] × (−∞, c]), and morphisms given by
inclusions of the corresponding inverse images. For any subcategory C of IntI ×R,
we can restrict a diagrams of space F to C, forming a sub-diagram of spaces indexed
on C; we omit C if it is clear from context. If the subcategory is finite, we say the
diagram of spaces if finite.

Remark 3.1 The target category of a diagram of spaces of X can be restricted to
Sub(I×X), the category whose objects are subspaces of I×X and whose morphisms
are given by inclusion.

3.3 Multiparameter persistence modules

Let Vectk denote the category of vector spaces over a field k and k-linear maps.
Given a one-parameter family f̃ of real-valued functions on a topological space

X as in Section 3.2, we have the corresponding diagram of topological spaces F.
For j ≥ 0, let Hj = Hj(−; k) denote the singular homology functor in degree j with
coefficients in the field k. The multiparameter persistence module corresponding to
f̃ is given by the functor HjF : IntI ×R→ Vectk or equivalently HjF : ∆2 ×R→
Vectk.



66 Peter Bubenik and Michael J. Catanzaro

3.4 Betti and Euler characteristic functions

For applied mathematicians, it is sometimes preferable to ignore persistence entirely
(i.e. the morphisms in the persistence module) and only compute the pointwise
Betti numbers, or cruder still, the pointwise Euler characteristic. While much of
the mathematical structure is lost, being able to complete computations on vastly
larger data sets may be more important. In this section we show how these coarser
invariants fit within our framework.

Whenever they are well defined, we have the following. For j ≥ 0, the j-th Betti
function βj : ∆2 × R→ Z is given by

βj(a, b, c) = rank(HjF(a, b, c)).

The Euler characteristic function χ : ∆2 × R→ Z is given by

χ(a, b, c) =
∑
j

(−1)j βj(a, b, c).

In cases where F is given by a cellular complex, the Euler characteristic equals the
alternating sum of the number of cells in each dimension.

3.5 Stability

We prove that our multiparameter persistence modules are stable with respect to
perturbations of the underlying one-parameter family of functions.

Let X be a topological space and consider two one-parameter families of (not
necessarily continuous) functions, f̃ , g̃ : I × X → R. Let F,G : ∆2 × R → Top
be the corresponding diagrams of spaces defined in Section 3.2 and for j ≥ 0, let
HjF,HjG : ∆2 × R → VectK be the corresponding multiparameter persistence
modules defined in Section 3.3. Let d∞( f̃ , g̃) = sup(t,x)∈I×X | f̃t (x) − g̃t (x)|.

We define a superlinear family of translations [3, Section 3.5] on ∆2 × R given
by Ωε(a, b, c) = (a, b, c + ε) for ε ≥ 0. The corresponding interleaving distance [3,
Definition 3.20], dI , is given by the infimum of all ε for which two diagrams or
persistence modules indexed by ∆2 × R are Ωε-interleaved [3, Definitions 3.4 and
3.5].

Theorem 3.2 dI (HjF,HjG) ≤ d∞( f̃ , g̃).

Proof Let ε = sup(t,x)∈I×X | f̃t (x)−g̃t (x)|. It follows from the definitions that F andG
are Ωε-interleaved. By [3, Theorem 3.23], HjF and HjG are also Ωε-interleaved.�
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4 Examples I: basic examples

In this Section, we illustrate our results with several examples. Recall that a one-
parameter family of functions on X is a function f̃ : I × X → R consisting of
functions f̃t : X → R, indexed by t ∈ I. This gives rise to a map fibered over the
interval I,

f : I × X → I × R , f (t, z) = (t, f̃ (t, z)) . (5)

We will replace smooth functions by piecewise linear approximations to make the
associated multiparameter persistence module easier to describe – for an example,
see Figure 4. This replacement does not affect the qualitative structure of the module
but does change the support of its indecomposable summands.

4.1 Persistence modules of graphs of functions

We begin by considering a one point space X = {∗}. A one-parameter family of
functions f̃t : X → R is equivalent to a function g : I → R, where g(t) = f̃t (∗).
Hence, the image of the corresponding fibered function f : I × X → I ×R is just the
graph of g. Furthermore, since ∗ is a critical point of f̃t for all t, the Cerf diagram of
f coincides with the graph of g.

For example, let g(t) = 4t(1 − t), plotted in Figure 4. For convenience we will
instead consider the piecewise linear function g̃(t) = 2 min(t, 1 − t). This function
is no longer smooth in t, but its simplicity will make it easier to give a complete
analysis (see the comment following Eq. (5)).

We have a diagram of topological spaces F : ∆2×R→ Top given by F(a, b, c) =
f −1([a, b] × (−∞, c]), where f : I × X → I × R is given by (t, ∗) 7→ (t, g̃(t)). The
space F(a, b, c) is empty if c < 2 min(a, 1 − b). That is, c

2 < a ≤ b < 1 − c
2 . The

space F(a, b, c) is contractible if c ≥ 1 or if 2 min(a, 1 − b) ≤ c < 2 max(a, 1 − b).
Equivalently, a ≤ c

2 and b < 1 − c
2 , or

c
2 < a and 1 − c

2 ≤ b. In the remaining
case, 2 max(a, 1 − b) ≤ c < 1, we find F(a, b, c) ' S0, two disjoint points. That is,
0 ≤ c < 1, 0 ≤ a ≤ c

2 and 1 − c
2 ≤ b ≤ 1.

The persistence module H0F : ∆2 × R→ Vectk satisfies

dim H0F =


1 if c ≥ 1
2 if 2 max(a, 1 − b) ≤ c < 1
1 if 2 min(a, 1 − b) ≤ c < 2 max(a, 1 − b)
0 if c < 2 min(a, 1 − b) ,

(6)

while the persistence modules HjF are the trivial K-vector space for all j > 0. See
Figure 5 for a visualization of β0.

The diagram of spaces F has the sub-diagram given in Figure 4, which has a
corresponding indecomposable persistencemodule, also in Figure 4. This submodule
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F(0, 1, 1)

F(0, 1, 1
2 )

F(0, 1
2,

1
2 ) F( 12, 1, 1

2 )

F( 12,
1
2, 0)

k

k2

k k

0

[1 1]

[1
0

] [0
1

]

Fig. 4: Left: the graph of g(t) = 4t(1 − t) for t ∈ [0, 1]. Middle left: the graph of
g̃(t) = 2 min(t, 1 − t) for t ∈ [0, 1]. This is also the image of the map f : I × {∗} →
I × R given by f (t, ∗) = (t, g̃(t)). Middle right: a subdiagram of the diagram of
spaces F : ∆2 × R → Top given by F(a, b, c) = f −1([a, b] × (−∞, c]). Right: the
corresponding subdiagram of the persistence module H0F : ∆2 × R→ Vectk.

a

c

b

0

1

k

k

k2

k

Fig. 5: The multiparameter persistence module H∗F : ∆2 × R → Vectk defined by
H∗F(a, b, c) = H∗( f −1([a, b] × (−∞, c])) where f : I × {∗} → I × R is given by
f (t, ∗) = (t, g̃(t)) from Figure 4. For j ≤ 0, Hj(F) = 0. We have β0 = 2 in the open
square pyramid given by 0 ≤ c < 1, 0 ≤ a ≤ c

2 and 1 − c
2 ≤ b ≤ 1. Furthermore,

β0 = 1 in the semi-infinite triangular cylinder given by 0 ≤ a ≤ b ≤ 1 and c ≥ 1. For
0 ≤ c < 1, we also have β0 = 1 in the region given by 0 ≤ a ≤ c

2 and a ≤ b < 1− c
2

and the region c
2 < a ≤ b and 1 − c

2 ≤ b ≤ 1. Everywhere else, β0 = 0. That is, for
c < 0 and 0 ≤ a ≤ b ≤ 1 and for 0 ≤ c < 1 and c

2 < a ≤ b < 1 − c
2 . The right

hand diagram in Figure 4 is embedded in H0F as indicated. It follows that H0F is
indecomposable.

of H0F is also visualized in Figure 5. It follows that H0F is an indecomposable
persistence module.
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4.2 Indecomposable persistence modules with arbitrary maximum
dimension

The example in the previous section can be generalized to produce an indecom-
posable persistence module arising from a one-parameter family of functions, with
arbitrarily large maximum dimension.

For n > 0, let g̃n : I → R be the piecewise linear function obtained by linear
interpolation between the values g̃n(

i
n ) = 0 for 0 ≤ i ≤ n and g̃n(

2i−1
2n ) = 1

for 1 ≤ i ≤ n (the example of Section 4.1 is the case n = 1). Then we have
the corresponding diagram of topological spaces F : ∆2 × R → Top given by
F(a, b, c) = f −1([a, b] × (−∞, c]), where f : I × {∗} → I × R is given by (t, ∗) 7→
(t, g̃(t)). Now F has a finite subdiagram F̂ given by F( in,

j
n,

1
2 ), where 0 ≤ i ≤ j ≤ n.

Applying H0 we obtain the persistence module H0F, which contains the following
persistence module H0F̂:

kn+1

. .
.

· · ·
. . .

k3 k3 · · · k3

k2 k2 k2 · · · k2

k k k · · · k

Each linear map km → km+1 pointing up and to the right is given by the inclusion
km → km ⊕ k � km+1. and each linear map km → km+1 pointing up and to the
left left is given by the inclusion km → k ⊕ km � km+1. This persistence module is
decomposable into (n + 1) one-dimensional summands, whose support is given by
the up-set of one of the (n + 1) minimal elements.

Now append the terminal element F(0, 1, 1) to the diagram F̂ to obtain the diagram
F̌, which is also a subdiagram of F. Then we have the persistence module H0F̌,

k

kn+1

. .
.

· · ·
. . .

k3 k3 · · · k3

k2 k2 k2 · · · k2

k k k · · · k



70 Peter Bubenik and Michael J. Catanzaro

where the linear map kn+1 → k is given by summing the coordinates. This persis-
tence module is indecomposable since the upset of every minimal element contains
the terminal element H0F(0, 1, 1) � k.

4.3 A class of indecomposable persistence modules

Let g : I → R be any (not necessarily continuous) bounded real-valued function
on the unit interval. Let f : I × {∗} → I × R be given by f (t, ∗) = (t, g(t)) and let
F : ∆2 × R→ Top be given by F(a, b, c) = f −1([a, b] × (−∞, c]).

Theorem 4.1 Let ft (∗) = g(t) be any uniformly bounded one-parameter family of
functions on a one point space {∗}. Then the corresponding persistence module HjF
is indecomposable for every j ≥ 0.

Proof For all (a, b, c)) ∈ ∆2 × R, F(a, b, c) deformation retracts to a subset of I, so
Hk(F) = 0 for k ≥ 1. Recall (Section 3.1) that for p ∈ ∆2 ×R, Up denotes the up-set
of p.

Assume that H0F � M ⊕ N is a nontrivial decomposition of H0F. Then there are
nonzero maps p : H0F → M , q : H0F → N , i : M → H0F, and j : N → H0F such
that ip+ jq = 1H0F . Choose B ∈ R such that g(t) ≤ B for all t ∈ I. Let T = (0, 1, B).
Then (H0F)T = k. It follows that either iT or jT is the zero map. Assume without
loss of generality that iT = 0.

By definition, we have that for all t ∈ I,

F(t, t, c) =

{
(t, c) if c ≥ g(t)
∅ if c < g(t).

So, in particular H0F(t, t, g(t)) = k. Furthermore, we have a surjection of persistence
modules ⊕

t∈I

k[U(t,t,g(t))]
ϕ
−→ H0F .

Since ϕ is surjective and p is nonzero, it follows that p ◦ ϕ is nonzero. Therefore
there exists an a = (t0, t0, g(t0)) such that k[Ua]

pϕ
−−→ M is nonzero, which forces

(pϕ)a : k[Ua]a → Ma to also be nonzero. Since k[Ua]a � k and (H0F)a � k, it
follows that pa : (H0F)a → Ma is injective. Therefore, qa = 0.

Since ip + jq = 1H0F , (H0F)a≤T = iT Ma≤T pa + jT Na≤T qa = 0, which is a
contradiction. �

4.4 The cylinder

Increasing the dimension of the manifold in our examples, consider X = S1. Let
f̃t : S1 → R be the constant family of height functions on the circle; f̃t (θ) = sin θ.
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The corresponding function fibered over the interval f : I × S1 → I ×R has domain
the cylinder, and is given by f (t, θ) = (t, sin θ). See Figure 6a. The corresponding
Cerf diagram is shown in Figure 6b. It consists of two horizontal lines, corresponding
to the fold singularities of f̃ given by the global minimum and global maximum of
the height function.

By definition, F(a, b, c) = f −1([a, b] × (−∞, c]) = [a, b] × {θ | sin θ ≤ c}.
Therefore F(a, b, c) is empty if c < 0, F(a, b, c) is contractible if 0 ≤ c < 1, and
F(a, b, c) is homotopy equivalent to S1 if c ≥ 1. Thus we find

dim H0F =

{
1 if c ≥ 0
0 if c < 0 ,

and dim H1F =

{
1 if c ≥ 1
0 if c < 1.

(a)

−1

1

(b)

Fig. 6: Left: The cylinder I × S1. Right: the Cerf diagram of the constant one-
parameter family of height functions on the circle.

This multiparameter persistence module can also be visualized as shown in Fig-
ure 7. The blue region is the support of H0F and the red region is the support of
H1F. These two regions are unbounded, analogous to sub-level set persistence of
the standard height function on S1. Since each of H0F and H1F are indecompos-
able and at most one-dimensional, this visualization also shows the structure of the
multiparameter persistence module H∗F.

5 Analyzing diagrams of spaces

Let X be a smooth, compact manifold. For generic 1-parameter families of smooth
functions f̃ : I × X → R, the nondegenerate critical points of the fibers f̃t occur in
families themselves, as can be seen in the arcs of the Cerf diagrams of Section 4.
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a

c

b

−1

1

Fig. 7: The multiparameter persistence module of the constant 1-parameter family
of height functions on the circle. The Betti functions are constant for 0 ≤ a ≤ b ≤ 1.
β0 = 0 for c < −1 and β0 = 1 for c ≥ −1 (blue). β1 = 0 for c < 1 and β1 = 1
for c ≥ 1 (red). For H0F, all linear maps within the blue region are the identity
map. Similarly, for H1F, all linear maps with the red region are the identity map.
That is, both H0F and H1F are one-dimensional persistence modules supported on
semi-infinite triangular prisms in which all non-trivial maps are identity maps.

Definition 5.1 We say that such a critical point is positive if the curve in the Cerf dia-
gram containing its value has positive slope (is locally strictly increasing). Similarly,
say that such a critical point is negative if the curve in the Cerf diagram containing
its value has negative slope (is locally decreasing). There can be points that are
neither positive nor negative, e.g., the maximum or minimum of the singular locus
of a wrinkle.

Recall that f : I × X → I × R is given by f (t, x) = (t, f̃ (t, x)) = (t, f̃t (x)) and F :
∆2 × R→ Top is given by F(a, b, c) = f −1([a, b] × (−∞, c]). For (a, b, c) ∈ ∆2 × R,
let F0(a, b, c) = f −1([a, b] × {c}).

Theorem 5.2 Suppose f̃ : I × X → R is a generic 1-parameter family of func-
tions on a smooth, compact manifold X . Let 0 ≤ a < b ≤ 1 and c ∈ R.
Then (F(a, b, c), F0(a, b, c)) is a cobordism between (F(a, a, c), F0(a, a, c)) and
(F(b, b, c), F0(b, b, c)). Assume that there are no critical points in F0(a, a, c) and
F0(b, b, c). Then the projection onto [a, b]

π[a,b] : F(a, b, c) → [a, b] (7)

is a Morse function on the cobordism (F(a, b, c), F0(a, b, c)). Furthermore, π[a,b]
has no interior critical points. In addition, positive and negative critical points
in F0(a, b, c) are boundary stable and boundary unstable critical points of π[a,b],
respectively.

Proof The projection π[a,b] : [a, b] × X → [a, b] is a submersion and hence has no
critical points. Therefore, all critical points of the restriction π[a,b] : F(a, b, c) →
[a, b] ⊂ I must lie on the boundary Y = F0(a, b, c).
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Consider a nondegenerate critical point z of f̃t with z ∈ Y . Near this point there
exists a coordinate system forwhich it is a fold singularity of f̃ given byEq. (2). In this
coordinate system, π[a,b](t, x) = t, so dπ[a,b] = [ 1 0 · · · 0 ]. For simplicity, assume
that (z, f (z)) is at the origin. Then the level set {0}×{x2

1+ · · ·+x2
j −x2

j+1−· · ·−x2
n−1 =

0} has tangent space contained in {0} × Rn−1 and hence lies ker dπ[a,b]. Therefore,
z is a critical point of π[a,b].

Suppose z is a negative critical point of f̃t and z ∈ Y . There exists a path
α : R → I × X whose image consists of points (t, x) where x is a critical point of
f̃t so that α(0) = z, f̃ (α(−t)) > c and f̃ (α(t)) < c for t > 0 (i.e., a parametrization
of the preimage of an arc in the Cerf diagram containing the image of z). Thus, α
restricted to [0,∞) provides a path in F(a, b, c) so that f (α(t)) < Y for t > 0, and
therefore, TzWu

z 1 TzY . Hence, z is a boundary unstable critical point for π[a,b].
On the other hand, suppose z is a positive critical point of f̃t and z ∈ Y . Near

z, there exists a coordinate system on I × X of the form prescribed by Eq. (2). In
this coordinate system, we find π[a,b](t, x) = t and thus dπ[a,b] = [ 1 0 · · · 0 ]. Since
z is a positive critical point, If we take a sufficiently small such neighborhood U,
then the f̃ function values will increase along the flow lines of ∇π[a,b]. Precisely,
if ξ : R × I × X → I × X denotes the flow generated by ∇π[a,b], then we have
f̃ (ξ(ε, t, x)) ≥ f̃ (t, x) for ε ≥ 0 and (t, x) ∈ U. This inequality holds in the restriction
to U ∩ F(a, b, c). Hence, points on Y ∩U = F0(a, b, c) ∩U must flow to other points
on Y under ξ. In particular, U ∩W s

z ⊂ Y and hence TzW s
z ⊂ TzY . �

Remark 5.3 Theorem 5.2 does not address the case when F0(a, b, c) contains nonde-
generate critical points that are neither positive nor negative or the case that F0(a, b, c)
contains cusp singularities.

The remainder of this section and the next section are dedicated to showing how
the theory developed thus far and in particular, Theorem 5.2, can be applied to
examples.

Example 5.4 Consider the function g̃(t) = 2 min(t, 1− t) in Section 4.1. Let X = {∗}
and define f̃ : I × X → R to be given by f̃ (t, ∗) = g̃(t) and define f : I × X → I ×R
to be given by f (t, ∗) = (t, g̃(t)). For f , we have the associated diagram of topological
spaces F : ∆2 × R→ Top.

By definition, ∗ is a critical point of g̃t for all t ∈ I. Let 0 ≤ a < b ≤ 1 and
let c ∈ R. In the case a < 1

2 and 2a < c < g̃(b), then F0(a, b, c) has a positive
critical point and Proposition 5.2 implies this intersection coincides with a boundary
stable critical point of π[a,b]. Proposition 2.10 implies F(a, b, c) is a left-product
cobordism. Note that F(b, b, c) is empty. Similarly, if b > 1

2 and 2(1− b) < c < g̃(a)
then we have a single boundary unstable critical point for π[a,b] and F(a, b, c) is a
right-product cobordism. In the case that a < 1

2 < b and 2a, 2(1 − b) < c < 1, we
have that F(a, b, c) is a cobordism between the singletons F(a, a, c) and F(b, b, c).
This is not a product cobordism, however, since the projection π[a,b] has both a
boundary stable and a boundary unstable critical point. Note that F( 12,

1
2, c) is empty.



74 Peter Bubenik and Michael J. Catanzaro

6 Examples II: the wrinkled cylinder

Wemodify the constant height function on the cylinder of Section 4.4 by introducing
a wrinkle (Section 2.5), as shown in Figure 8. The wrinkle creates two additional
critical points for all times strictly between t = p and t = q. As before, the two
horizontal lines of the Cerf diagram correspond to fold singularities of f̃ , which
are the global minimum and global maximum. The functions f̃p and f̃q have cubic
singularities, corresponding to birth and death singularities, respectively, of f̃ at
t = p and t = q (see Remark 2.7). The birth singularity at t = p gives rise to a pair
of critical points of index 0 and 1, and these two critical points merge together at
t = q. For all times t distinct from c and d, the function f̃t is a Morse function, with
either two or four critical points.

The associated diagram of spaces F : ∆2 ×R→ Top takes some care to analyze.
The input parameters a, b, and c define a semi-infinite strip [a, b]×(−∞, c]which can
be overlaid on the Cerf diagram (Figure 9. Call the component of the singular locus
containing cubic singularities the wrinkle envelope. If the top edge ([a, b] × {c}) of
the semi-infinite strip ([a, b] × (−∞, c]) lies in the interior of the wrinkle envelope
then F(a, b, c) is homotopy equivalent to S0 (Figure 9 left). If the top edge of the
semi-infinite strip intersects the wrinkle envelope once and c < m, then F(a, b, c)
is homotopy equivalent to S0 (Figure 9 middle). If the top edge of the semi-infinite
strip intersects the wrinkle envelope twice and c ≥ m then F(a, b, c) is homotopy
equivalent to S1 (Figure 9 right). In all other cases F(a, b, c) is homotopy equivalent
to the corresponding space for the cylinder (Section 4.4).

This topological analysis can be made precise using the language of Theorem 5.2.
Consider the three examples shown in Figure 9. In the leftmost display of Figure 9, the
Cerf diagram does not intersect [a, b]×{c} and according to Theorem 5.2, the projec-
tion π[a,b] : F(a, b, c) → [a, b] has no critical points. By Proposition 2.10, F(a, b, c)
is a product cobordism diffeomorphic to both F(a, a, c)×[a, b] and F(b, b, c)×[a, b].
In the middle display of Figure 9 there is a single negative critical point in F0(a, b, c).
Theorem 5.2 implies π[a,b] has a single boundary unstable critical point. By Propo-
sition 2.10, F(a, b, c) is a right-product cobordism, as is evident from the displayed
space. Finally, in the rightmost display of Figure 9 contains both a positive and a
negative critical point. Thus, π[a,b] has a boundary stable and boundary unstable
critical point, so we cannot conclude that F(a, b, c) is either a left- or right-product
cobordism.

To aid in visualization of the persistence module, we again linearize the wrinkle
(see the comment at the beginning Section 4). In Figure 10, the blue regions corre-
spond to H0F and the red regions correspond to H1F. Both H0F and H1F contain an
unbounded region, arising from the global maxima and minima (fold) singularities,
and a finite region, due to the wrinkle. Note that both H0F and H1F decompose
into one-dimensional persistence modules, in contrast to the persistence modules of
Theorem 4.1.

For precise formulas, assume p = 1
4 , q = 3

4 . Then the bounded component of H1F
has support m ≤ c < n, 0 ≤ a ≤ 1

2 −
1
4
n−c
n−m , and 1

2 +
1
4
n−c
n−m ≤ b ≤ 1. The bounded
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p q

Fig. 8: Left and middle: The wrinkled cylinder from two different angles. The left
graphic contains the image of f̃t for some t ∈ (p, q), a wrinkled circle, which has
four critical points. Right: The Cerf diagram for the wrinkled cylinder.

Fig. 9: Left, middle, right: three cases of the semi-infinite strip [a, b] × (−∞, c] are
shown in blue overlaid on the Cerf diagram from Figure 8. The corresponding spaces
F(a, b, c) are shown to the right of each.

component of H0F has support given by the union of (i) ` ≤ c < m, 0 ≤ a ≤
1
2 +

1
4
c−`
m−` ,

1
2 −

1
4
c−`
m−` ≤ b ≤ 1, and (ii) m ≤ c < n, 1

2 −
1
4
n−c
n−m < a ≤ b < 1

2 +
1
4
n−c
n−m .

a

c

b

u

v

`

m

n

Fig. 10: The persistence module for the wrinkled cylinder. Both H0F (blue) and H1F
(red) decompose into two one-dimensional persistence modules, one bounded and
one unbounded, in which all non-trivial maps are the identity map. The unbounded
components, 0 ≤ a ≤ b ≤ 1 together with c ≥ u and c ≥ v, respectively, are exactly
the persistence modules of the cylinder (Figure 6). The bounded components are due
to the wrinkle.
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Compact torus action on the complex
Grassmann manifolds

Victor M. Buchstaber and Svjetlana Terzić

Abstract We survey recent achievements in the theory of the canonical action of
the compact torus on the complex Grassmann manifolds. The fundamental problem
of this theory is to describe the equivariant topology of Grassmann manifolds and
combinatorial structure of their orbit spaces.We introduce new notions that we use to
solve this problem and give a series of seminal examples of corresponding construc-
tions. We discuss results from various areas of mathematics that are used to solve
the problem under consideration. This survey also contains a detailed description
of results that formed the basis of our theory of (2n, k)-manifolds. We formulate
several open problems which emerged as natural concretizations of problems from
the classical theory of compact torus actions on smooth manifolds.

1 Introduction

Complex Grassmann manifolds Gn,k are widely known mathematical objects con-
nected with many fundamental results in algebraic topology and complex, algebraic
and symplectic geometry. In this survey we present results concerning the canonical
torus action on complex Grassmann manifolds, classical as well as recently obtained
based on approaches from toric geometry and toric topology. The methods of toric
geometry use the action of algebraic torus (C∗)n on Gn,k . The approaches developed
in the framework of toric topology are based on the induced action of the standard
compact torus Tn and the moment map µ : Gn,k → ∆n,k , where ∆n,k is the standard
hypersimplex.
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By definition, a toric manifold is a smooth toric variety defined as an algebraic
manifold which can be obtained as the closure of an algebraic torus action orbit. Any
GrassmannmanifoldGn,k is a smooth complexKählermanifold, but for 1 < k < n−1
it is not a toric manifold since it is a union of family of toric varieties. Note that
this family contains toric varieties which are not smooth. Therefore, it is natural
to introduce the notion of the space of parameters of a family of toric varieties.
The objects mainly studied in toric topology are quasitoric manifolds M2n with
an effective action of a compact torus Tn and an important assumption that the
orbit space M2n/Tn is homeomorphic to a simple n-dimensional polytope Pn. For
both toric and quasitoric manifolds, a notable and fundamental property is that for
every one of them there exists a uniquely defined moment map whose image can be
identified with the aforementioned simple convex polytope. In the case of Grassmann
manifold Gn,k the image of the moment map is ∆n,k , which is not a simple polytope
for 1 < k < n − 1. The goal of our survey is to show that, nevertheless, the methods
and results of toric geometry and toric topology allow to obtain deep results on
equivariant topology of the Grassmann manifolds Gn,k , 1 ≤ k ≤ n − 1. It is known
that the equivariant structure of Grassmannians Gn,2 is more regular that in the case
of the manifolds Gn,k with n > 5, k > 2 (for details see Paragraph 1.11, Adjacency
of strata, in [20]). We show that, in the case of Gn,2, much stronger results can be
achieved by exploiting the special case k = 2.

In more general situation, one considers an effective Tk-action on a manifold
M2n endowed with the moment map µ : M2n → Pk for a k-dimensional polytope
Pk . An important feature of these actions is their complexity, which is equal to the
number d = n − k. The torus action in the case of toric and quasitoric manifolds
has zero complexity. In this case, the situation is in some sense quite simple, as
one can describe the equivariant topology of these manifolds M2n in terms of the
combinatorics of the polytope Pn. The equivariant topology of the Grassmannian
G4,2 with effective T3-action of complexity one is decribed in our paper [6]. This
result stimulated further exploration of complexity one torus actions on a wider
class of manifolds, see recent papers [2], [24]. It is natural that the complexity
of the algebraic topology of the orbit space M2n/Tk grows simultaneously with
the complexity of the torus action. As such, the exploration of torus actions of
complexity d ≥ 2 is recognized in the literature as quite a difficult problem. In our
relevant paper [7] we describe the equivariant topology of the orbit space G5,2 with
effective T4-action of complexity 2. We believe that the results of the paper [7] can
be adapted to study complexity two torus actions on a wider class of manifolds. Our
results on the equivariant topology of G5,2 stimulated further investigation of the
subject, such as the paper [34], which establishes deep connection between algebraic
topology problems of the orbit space G5,2/T

5 and well-known constructions and
results of algebraic geometry.

In the paper [8] we have developed the foundations of the theory of (2n, k)-
manifolds, whose axiomatics appeals to our results on Tn-equivariant structure of
Gn,k , obtained towards the classical open problem of an effective description of the
orbit space Gn,k/t

n. These results allowed us to introduce new notions: universal
space of parameters, complex of admissible polytopes and their virtual spaces of
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parameters, and, as the result, the notion of singular points of the action (for details
see Paragraph 2. 8 of the current survey).

The complexity of the effective Tn−1-action on Gn,k is d = (n − k − 1)(k − 1),
which rapidly grows as a function in n and k. The effective action of Tn−1 on Gn,2
gives a family of manifolds with the actions of growing complexity d = n − 3. For
Gn,2, we construct an explicit model of the equivariant topology and the orbit space
Gn,2/T

n. This model resolves the singular points of Tn-action on Gn,2 (see Section
3).

In the final Section 4, we establish the relation between the universal space
of parameters for Gn,2 and the Chow quotient Gn,2//(C

∗)n described by Kapranov
in [25]. We obtained this result using the technique of wonderful compactification,
see [31], [26]. Note that the notion of wonderful compactification first appeared in the
paper [15] of De Concini-Procesi in the context of an equivariant compactification
of the symmetric spaces G/H, see also [32] and [18] for a comprehensive overview
of the subject. This idea has been further developed and applied in many areas,
such as Fulton-MacPherson compactification in [18], De Concini-Procesi wonder-
ful models [15], [7], the wonderful compactification of Li [31] and, more recently,
the projective wonderful models of toric arrangements by De Concini-Gaiffi and
others [12], [13], [14]. Furthermore, our result from [10] shows the advantage of
wonderful compactification when it comes to the problem of describing the struc-
ture of Gn,2/T

n. More explicitly, it turns out that the wonderful compactification of
arrangements of subvarieties from [31] can be successfully applied for the compact-
ification of the space of parameters Fn = Wn/(C

∗)n of the main stratum Wn ⊂ Gn,2.
This compactification uses the points of the Chow variety of Gn,2 as the points of
the build-up components.

2 General results on Grassmannians Gn,k

The complex Grassmann manifold Gn,k = Gn,k(C) consists of all k-dimensional
complex subspaces in Cn. The manifolds Gn,k and Gn,n−k are diffeomorphic since
for the standard scalar product in Cn there exists a canonical diffeomorphism cnk :
Gn,k → Gn,n−k induced by the map which sends any k-dimensional subspace of Cn
to its orthogonal complement. The coordinate-wise action of the compact torusTn on
Cn given by (t1, . . . , tn) · (z1, . . . , zn) = (t1z1, . . . , tnzn) induces the canonical action
of Tn on Gn,k . The canonical diffeomorphism cnk is equivariant for this action. The
canonical action of Tn on Gn,k induces the effective action of Tn−1 = Tn/diag(Tn)
on Gn,k with

(n
k

)
fixed points.
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2.1 Plücker coordinates and Plücker embedding.

We recall the definition of Plücker coordinates, which are a classical notion in
complex Grassmann manifolds theory. From the canonical basis in Cn, induce a
basis in L ∈ Gn,k . In this basis, L can be represented by a (n × k)-matrix AL .
Given I ⊂ {1, . . . , n}, |I | = k, denote by PI (AL) the (k × k)-minor of AL formed
by the rows indexed by the elements of I. The complex numbers (PI (AL)), where
I runs through all subsets of {1, . . . n} such that |I | = k, are known as the Plücker
coordinates of the subspace L ⊂ Cn. The Plücker coordinates (PI (L)) are defined
uniquely up to common scalar, and therefore we can consider the Plücker embedding
Gn,k → CPN−1, N =

(n
k

)
, defined by

L → P(L) = (PI (AL)), I ⊂ {1, . . . n}, |I | = k . (1)

The Plücker embedding provides Gn,k with a structure of a k(n − k)-dimensional
complex Kähler manifold. This embedding satisfies the well-known Plücker rela-
tions [29], which are quadratic.

The image of the Plücker embedding of Gn,2, n ≥ 4, in CPN−1, N =
(n
2
)
, is the

intersection of the
(n
4
)
quadratic hypersurfaces

zi j zkl + zjk zil = zik zjl, 1 ≤ i < j < k < l ≤ n.,

The Grassmann manifold Gn,2 is a smooth algebraic variety embedded inCPN−1.
Note that the normal bundle of Gn,2 in CPN−1 is a complex vector bundle of the
dimension

(n−2
2

)
. For n > 4, we have

(n−2
2

)
<

(n
4
)
, and thereforeGn,2 is not a complete

intersection in CPN−1.
Moreover, since the Plücker relations are quadratic, we can effectively describe

the standard local structure of a Grassmann manifold Gn,2 as well as its normal
bundle.

Let us consider the representation ρn,k : Tn → TN , N =
(n
k

)
, given by the k-th

exterior power
(t1, . . . , tn) → (t1 · · · tk, . . . , tn−k+1 · · · tn).

The Plücker embedding is equivariant for this representation, that is

Tn y Gn,k → CPN−1 x TN

is ρn,k-equivariant.

2.2 Moment map and hypersimplex

The complex projective space CPN−1 is a toric manifold with the canonical action
of the standard compact torus TN and the corresponding moment map
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CPN−1 → ∆
N−1, z →

1
|z |2

N∑
i=1
|zi |2ei,

where {ei} is the standard basis in RN and ∆N−1 ⊂ RN is the regular simplex.
We enumerate the coordinates in RN by (zJ ), J ⊂ {1, . . . , n}, |J | = k, according

to the standard ordering of the set of all k-subsets of the set of n elements. For
example, for n = 4, k = 2 and N = 6, we consider the correspondence 1 ↔ (1, 2) ,
2↔ (1, 3), 3↔ (1, 4), 4↔ (2, 3), 5↔ (2, 4), 6↔ (3, 4). Then, one can rewrite the
moment map on CPN−1 as

z →
1
|z |2

∑
J

|zJ |2eJ . (2)

Let Rn be n-dimensional real vector space with the standard basis. The weight
vectors of the representation ρn,k are:

ΛI ∈ Z
n ⊂ Rn, (ΛI )j = 1 for j ∈ I, (ΛI )j = 0 for j < I,

where I ⊂ {1, . . . , n}, |I | = k. In other words, ΛI has k ones and n − k zeros.
The moment map µ : Gn,k → R

n, [28], [20], is defined by

µ(L) =
1

|P(L)|2
∑
|PI (AL)|

2
ΛI, |P(L)|2 =

∑
|PI (AL)|

2, (3)

where the sum goes over all subsets I ⊂ {1, . . . , n}, |I | = k.
The image of µ is the standard hypersimplex ∆n,k which is obtained as a convex

hull of the vectors ΛI . More precisely,

∆n,k = In ∩ {(x1, . . . , xn) ∈ Rn,
n∑
i=1

xi = k}.

It follows that ∆n,k belongs to the hyperplane x1 + · · · + xn = k in Rn, thus ∆n,k

is a (n − 1)-dimensional polytope. The hypersimplex ∆n,k has
(n
k

)
vertices and 2n

facets. Every one of its vertices has degree k(n − k). Its boundary consists of two
disjoint unions, one comprising n copies of the hypersimplex ∆n−1,k and the other
comprising n copies of the hypersimplex ∆n−1,k−1. The hypersimplex ∆n,k is simple
if and only if k = 1 or k = n − 1, that is, when it coincides with the simplex ∆n−1.

The edge-graph of the hypersimplex ∆n,.k is the Johnson graph. The Johnson
graph is well-known not only in graph theory, but also in coding theory, see [23].

Denote the coordinates of RN by zJ , J ⊂ {1, . . . , n}, |J | = k. Define the map

RN → Rn by eJ →
∑
j∈J

ej .
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It gives a bijection between the set of vertices of the simplex ∆N−1 and the set
of vertices of ∆n,k . Moreover, the composition Gn,k → CPN → ∆N−1 → ∆n,k

coincides with the moment map for the Grassmannian Gn,k .

2.3 Tn-equivariant automorphisms of Gn,k

It is known [11] that the group of holomorphic automorphisms Aut(Gn,k) is iso-
morphic to the projective group PU(n) if n , 2k, while for G2k,k it is isomor-
phic to Z2 × PU(2k). The group Z2 is defined by the duality diffeomorphism
cn,k : Gn,k → Gn,n−k . Note also that the symmetric group Sn acts on Cn by
permuting the coordinates, that is, Sn is a subgroup of Aut(Gn,k).

Taking into account the canonical Tn-action on Gn,k , one can prove [9]

• Let H be a subgroup of Aut(Gn,k) such that every element of it commutes
with the canonical Tn-action on Gn,k . Then H = Tn−1 o Sn for n , 2k and
H = Z2 × (T2k−1 o S2k) for n = 2k.

• Let H be a subgroup of Aut(Gn,k) such that the set of fixed points of the Tn-action
on Gn,k is invariant under the action of every element of H. Then H = Tn−1o Sn
for n , 2k and H = Z2 × (Tn−1 o Sn) for n = 2k.

Furthermore, the relationship between the group Aut(Gn,k) and the moment map
µ : Gn,k → ∆n,k is characterized as follows [9]:

Theorem 2.1 The subspaces µ−1
n,k
(x)/Tn and µ−1

n,k
(s(x))/Tn ⊂ Gn,k/T

n are homeo-
morphic for any x ∈ ∆n,k and any s ∈ Sn. In addition, for n = 2k, the subspaces
µ−1

2k,k(x)/T
2k and µ−1

2k,k( f̄ (x))/T
2k are homeomorphic for any x ∈ ∆2k,k , where

f̄ (x) = 1 − x.

2.4 Charts and strata

The Plücker coordinates define a smooth atlas on Gn,k . The charts are given by
MI = {L ∈ Gn,k : PI (L) , 0}, I ⊂ {1, . . . , n}, |I | = k, and the homeomorphisms
uI : MI → Ck(n−k)) are constructed as follows. Any L ∈ MI can be uniquely
represented by the (n × k)-matrix AL whose submatrix determined by the rows
indexed by I is the identity k × k-matrix. The matrix AL has k(n− k) nonzero entries
ai j(L), and the homeomorphism uI : MI → C

k(n−k) is given by uI (L) = (ai j(L)),
i < I. It can be easily seen that any chart MI contains exactly one fixed point given
by the element L such that ui(L) = 0 ∈ Ck(n−k). The number of charts is N =

(n
k

)
,

and it coincides with the number of fixed points for the canonical Tn-action on Gn,k .
The charts MI are open, Tn-invariant dense sets in Gn,k . It implies that the sets
YI = Gn,k \ MI are closed and Tn-invariant.

We enumerate the charts by (MI1, uI1 ), . . . , (MIN , uIN ). For σ = {I1, . . . , Il},
Ii ⊂ {1, . . . , n} such that |Ii | = k, 1 ≤ i ≤ l and 1 ≤ l ≤ N , define the spaces Wσ by
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Wσ = MI1 ∩ · · ·MIl ∩ YIl+1 ∩ · · ·YIN , (4)

where {Il+1, . . . , IN } = {I1, . . . , IN } \ {I1, . . . , Il}. More precisely,

Wσ = {L ∈ Gn,k : PI (L) , 0 for I ∈ σ and PI (L) = 0 for I < σ}, (5)

Definition 2.2 A non-empty space Wσ is called a stratum.

The stratum Wσ = MI1 ∩ · · · ∩ MIN , where σ = {I1, . . . , IN }, is called the main
stratum and denoted by W .
Example 2.3 For σ = {I}, Wσ is a fixed point.

The strata have the following properties [7]:

• They are disjoint, Tn-invariant subspaces and give the equivariant subdivision of
Gn,k , that is, Gn,k = ∪σWσ .

• µ(Wσ) =
◦

Pσ , where Pσ is the convex hull of the vertices ΛI1, . . . ,ΛIl and σ =
{I1, . . . , Il}. In particular, for σ = {I}, µ(Wσ) = ΛI .

Definition 2.4 A polytope Pσ is called an admissible polytope if
◦

Pσ= µ(Wσ) for
some stratum Wσ .

2.5 (C∗)n-action

Many important properties of the canonical Tn-action on Gn,k can be deduced from
the fact that the canonical Tn-action on Gn,k extends to the canonical action of the
algebraic torus (C∗)n.

When it comes to the relation between (C∗)n-orbits and the moment map, the
classical convexity theorem of [1], [22] states:
Theorem 2.5 Let OC(L) be the orbit of an element L ∈ Gn,k of the canonical (C∗)n-
action. Then µ(OC(L)) is a convex polytope in Rn whose vertex set is given by
{ΛI |PI (L) , 0}. The mapping µ gives a bijection between p-dimensional orbits of
the group (C∗)n in OC(L) and p-dimensional open faces of the polytope µ(OC(L)).

It is easy to verify that the strata Wσ are (C∗)n-invariant as well. Moreover, all
(C∗)n-orbits in a stratum Wσ map on

◦

Pσ by the moment map. Therefore, a stratum
Wσ can be considered as the collection of (C∗)n-orbits mapping to the same polytope
by the moment map.

Remark 2.6 Note that this is only one of the three equivalent ways the strata were
defined in [20], [19]. The other two approaches to the notion of strata are given by
the rank functions and by the refinement of the Schubert cell decompositions, see
also [6]. We emphasize here that our approach to the notion of strata given by (4) is
more general since it does not use the existence of (C∗)n-action on Gn,k such that it
extends the Tn-action. This approach turns out to be fundamental for developing our
theory of (2n, k)-manifolds [8].
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Definition 2.7 The orbit space Fσ = Wσ/(C
∗)n is reffered to as the space of param-

eters of the stratum Wσ .

The properties of the (C∗)n-action on a stratum Wσ are described by Theorem 2.10
below.

The space of parameters of the main stratum W is denoted by F.

Remark 2.8 The closure OC(L) is a toric variety for any L ∈ Gn,k . This toric variety
is smooth if and only if its corresponding admissible polytope is a simple polytope.
The following problems naturally arise:

1. Describe all admissible polytopes which are simple and describe the correspond-
ing smooth toric varieties.

2. Describe singularities of toric varieties for which the corresponding admissible
polytopes are not simple.

3. Describe singular toric varieties for which the corresponding polytopes are
simple in m-dimensional faces, 0 < m ≤ n − 2.

The solutions of the second problem for the manifolds G4,2 and G5,2 are given
in [6] and [7] respectively. The description of all smooth toric varieties for an arbitrary
Gn,k is given in [33], smooth algebraic torus orbit closures in Gn,k are proved to be
products of complex projective spaces.

In connection with the third problem, let us introduce a generalization of the
notion of a simple polytope. An n-dimensional polytope is said to be simple in m-
dimensional faces, 0 < m ≤ n − 2, if all its m-dimensional faces can be obtained as
intersections of n − m facets. For example, a polytope is simple if and only if it is
simple in vertices. Octahedron ∆4,2 is not simple, but it is simple in edges.

The (C∗)n-orbits on Gn,k are nicely described in [7] in terms of the Plücker charts.
For a subset J = { j1, . . . , jl} ⊆ {1, . . . , k(n − k)}, let

CJ = {(z1, . . . , zk(n−k)) ∈ Ck(n−k) |zj = 0, j < J}.

The coordinate subspaces CJ are (C∗)n-invariant and their union is Ck(n−k). Let
◦

CJ= {(z1, . . . , zk(n−k)) ∈ CJ |zj , 0, j ∈ J}.

Note that any
◦

CJ is also (C∗)n-invariant. It follows from the definition: all points

of
◦

CJ have the same stabilizer (C∗)J ⊂ (C∗)n. Thus,
◦

CJ is a collection of orbits of the
form (C∗)n/(C∗)J . We provide the description of this collection in local coordinates.

Depending on J,
◦

CJ can be one of the following:

• an entire (C∗)n-orbit;
• a collection of (C∗)n-orbits which are given by the preimages F−1

J (c), c =
(c1, . . . , cl−q) ∈ (C∗)l−q , where FJ : (C∗)J → (C∗)l−q is a (C∗)n-invariant al-

gebraic map given by (zj1, . . . , zjl ) → (z
ω1

1
j1
· · · z

ωl
1

jl
, . . . , z

ω1
l−q

j1
· · · z

ωl
l−q

jl
).

Here l = |J |, and q is the rank of the matrix VJ consisting of the weight vectors
Λj, j ∈ J, of the representation ρn,k . The numbersω j

i ∈ Z, 1 ≤ i ≤ l−q, 1 ≤ j ≤ l
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are determined as follows: the matrix VJ defines a linear map fJ : Rn → Rl such
that fJ (Zn) is a direct summand in Zl . Let L be a lattice in Zl spanned by
fJ (Λj), j ∈ J. There exists a unique integral lattice which is orthogonal to L. By
fixing a basis we obtain the matrix V̂J of dimension l × (l − q), the elements of
which we denote by ω j

i .

This leads us to the description of the strata in the Plücker charts. Any stratum
Wσ belongs, see (4), to the intersection of some set of charts. The cardinality of this
set is equal to the number of nonzero Plücker coordinates of the points in Wσ .

Let us consider a stratum Wσ , where |σ | = l and 1 ≤ l ≤
(n
k

)
− 1. It consists

of all points from Gn,k whose Plücker coordinates PI are non-zero if and only
if I ∈ σ. In an arbitrary chart, the Plücker coordinates give rise to polynomials
in the local coordinates z1, . . . , zk(n−k). Note that the local coordinates z1, . . . zk(n−k)

represent the corresponding Plücker coordinates. Therefore,Wσ ⊂
◦

(C)J , for J = { j ∈
1, k(n − k) | zj = PI (Wσ) for some I ∈

(n
k

)
\ σ}. Let J = { j1, . . . , jd}, d =

(n
k

)
− l

and let PI
J (zj1, . . . , zjd ) be the restriction of PI on CJ .

From the given description of
◦

CJ , we obtain that any stratum Wσ in a chart from
the set of charts that contain Wσ can only be one of the following:

• the whole
◦

CJ ,

• the intersection of the entire collection of (C∗)n-orbits in
◦

CJ with the family of
surfaces defined by the equations imposed by those Plücker coordinates which
are zero or must not be zero for the points form Wσ:

uI (Wσ) =


F−1
J (c), c = (c1, . . . , cl−q) ∈ (C∗)l−q

PI
J (zj1, . . . , zjd ) = 0, I ∈

(n
k

)
\ σ

PI
J (zj1, . . . , zjd ) , 0, I ∈ σ.

Example 2.9 Let us demonstrate these statements in case of G4,2. We consider the
chart M12 and take into account that its coordinates z1, z2, z3, z4 are enumerated by

1 ↔ (1, 3), 2 ↔ (1, 4), 3 ↔ (2, 3), 4 ↔ (2, 4). It follows from [6] that any
◦

CJ ,
J ⊂ {(1, 3), (1, 4), (2, 3), (2, 4)} such that |J | < 4 is an entire (C∗)4-orbit. For |J | = 4,
we consider the matrix VJ of the corresponding weight vectors Λj, j ∈ J. Its rank
is q = 3, it defines the map fJ : R4 → R4, and fJ (Λ(1,3)) = (2, 1, 1, 0), fJ (Λ(1,4)) =
(1, 2, 0, 1), fJ (Λ(2,3)) = (1, 0, 2, 1), fJ (Λ(2,4)) = (0, 1, 1, 2). We obtain the matrix
V̂J = (1,−1,−1, 1). Thus, the map F : (C∗)4 → C∗ is given by F(z1, z2, z3, z4) =

z1z−1
2 z−1

3 z4. It follows that any stratum in the chart M12 is the whole
◦

CJ for |J | < 4,
while for |J | = 4, it is given by the points of the family of surfaces F−1(c), c ∈ C∗.
This family contains two strata determined by the two possible conditions z1z4 = z2z3
or z1z4 , z2z3, depending if the Plücker coordinates P34 for the points of a stratum
are zero or not. In the first case it is given by the points in (C∗)4 of surfaces z1z4 = z2z3
, while in the second case it is given by the family which can be written as, compare
to [6],
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z1z4

z2z3
= c, c ∈ C \ {0, 1}.

Let µ̂ : Wσ/Tn →
◦

Pσ be the map induced by the moment map µ. Using the above
description of strata in a chart, [7] proves:

Theorem 2.10 1. All points of a stratum Wσ in Gn,k have the same stabilizer
C∗σ ⊂ (C

∗)n, thus the torus (C∗)σ = (C∗)n/C∗σ is the maximal one acting freely
on Wσ

2. The map µ̂ : Wσ/Tσ →
◦

Pσ is a locally trivial fiber bundle whose fiber is
an open algebraic manifold Fσ . Thus, there is a canonical trivialization hσ :
Wσ/Tn �

◦

Pσ ×Fσ .

It follows that, for the Grassmann manifolds, we have the Tn-invariant, moreover
(C∗)n-invariant, stratification Gn,k = ∪Wσ , which gives the stratification of the orbit
space Gn,k/T

n = ∪Wσ/T
n. From Theorem 2.10, we obtain the following bijection

Gn,k/T
n =

⋃
σ

◦

Pσ ×Fσ, (6)

where the union is the set-theoretical union. This bijection gives rise to a problem of
describing how the components of this union are glued. First note that the polytopes
◦

Pσ must be glued together along their common faces. It is clear that the way the
spaces of parameters Fσ are glued should be be in accordance with the topology of
the orbit space Gn,k/T

n. One of approaches to this problem is as follows: since the
main stratum W is a dense set in Gn,k , it follows that the orbit space Gn,k/T

n is a
compactification of

◦

∆n,k ×F. Therefore, we need to find a compactification F of the
space of parameters F such that it is compatible with (6).

This problem can be formulated more precisely as
Problem (F):

• Find a projection

πr : ∆n,k × F → ∆n,k × F � Gn,k/T
n, (7)

such that µ ◦ πr = π1 for the projection π1 : ∆n,k × F → ∆n,k .
• For a space F̃σ determined by

π−1
r (Wσ/T

n) �
◦

Pσ ×F̃σ, (8)

find the projection pσ : F̃σ → Fσ such that the composition

◦

Pσ ×F̃σ
πr
→ Wσ/Tσ

hσ
→
◦

Pσ ×Fσ

coincides with
◦

Pσ ×F̃σ
(Id,pσ )
→

◦

Pσ ×Fσ .
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The solution of this problem gives compactification F of F with the desired prop-
erties. This compactification is called the universal space of parameters for the
canonical Tn-action on Gn,k , and the spaces F̃σ are called the virtual spaces of
parameters for the strata Wσ .

2.6 Critical and singular points

Consider the moment map µ : Gn,k → R
n. It is a smooth map, and it has critical and

regular points and critical and regular values defined in a standard way. It is proved
in [7] that the following holds:

• The rank of the differential of the moment map µ : Gn,k → R
n at a point L is

given by
rk dµ(L) = dim Pσ,

where Pσ is an admissible polytope for the stratum Wσ such that L ∈ Wσ .
• A point L ∈ Gn,k is a regular point for the moment map µ : Gn,k → R

n if and
only if its stationary subgroup TL ⊂ T

n is trivial.
• A point x ∈

◦

∆n,k is a regular value for the moment map µ : Gn,k → R
n if and

only if the preimage µ−1(x) consists of regular points only.

The complement to the set of regular points in Gn,k is called the set of critical
points. This set is Tn-invariant, so one can introduce the notion of a critical point of
the orbit space Gn,k/T

n.
The regular values of the moment map µ are nicely characterized for general

(2n, k)-manifold in [8]. In the case of Grassmannians, these properties can be for-
mulated as follows:

• A point x is a regular value of the moment map µ : Gn,k → ∆n,k if dim Pσ = n−1
for any Pσ such that x ∈

◦

Pσ .
• Consider a point x ∈

◦

∆n,k such that, for any Pσ 3 x, dim Pσ = n − 1. Then
the preimage Qx = µ

−1(x) is a closed smooth submanifold in Gn,k of dimension
2k(n−k)−(n−1). Consider the torusTn−1 = Tn/diag(Tn).Qx/Tn−1 is a manifold
of dimension 2k(n − k) − 2(n − 1) and, moreover, it is a compactification Fx of
the space of parameters F of the main stratum. Furthermore, Qx � Fx × Tn−1.

• The set of regular values of the moment map µ : Gn,k → ∆n,k is a dense set in
∆n,k .

• The manifolds Qx and Qy and consequently Fx and Fy are diffeomorphic for any
x, y belonging to the same connected component of the set of regular values of
∆n,k .

These properties give rise to the following problems:

1. Describe all smooth submanifolds in Gn,k with the free Tn−1-action that can be
realized by Qx ;
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2. Describe all smooth submanifolds Qx/Tn−1 in Gn,k/T
n, and consequently de-

scribe all smooth compactifications Fx of F in Gn,k/T
n.

Remark 2.11 For the Grassmannian G4,2, the manifolds Fx do not depend on a point
x ∈
◦

∆4,2, while for the Grassmannian G5,2 they do depend on x ∈
◦

∆5,2, see [6], [7].

The tubular neighborhood theorem, see [3], makes it possible to describe the local
structure of the orbit space Gn,k/T

n. As explained in [9], any point of Gn,k/T
n that

corresponds to a point of Gn,k with the trivial stabilizer is a smooth point, while
any point of Gn,k/T

n that corresponds to a point of Gn,k with a non-trivial stabilizer
has a neighborhood with cone-like singularities. In this way, in [6], all smooth and
singular points of the orbit space G4,2/T

4 � S5 are described.
Assuming that the problem (F) is solved, to any point [L] of Gn,k/T

n for which
[L] ∈ Wσ/T

n, we can assign not only the space of parameters Fσ , but also a virtual
space of parameters F̃σ with a projection pσ : F̃σ → Fσ . In [9], the problem (F) is
solved for Gn,2/T

n, and the projection pσ is showed not to be a homeomorphism in
general. As a consequence, in [9], a new notion of a singular point for Gn,2/T

n was
introduced.

Definition 2.12 A point [L] = Tn · L ∈ Gn,2/T
n is said to be a singular point for the

standard Tn-action on Gn,2 if the space of parameters Fσ of the stratum Wσ 3 L is
not homeomorphic to the virtual space of parameters F̃σ .

In [9], the following results were proved:

• In the case n = 4, all singular points of G4,2/T
4 are critical points, but there

are critical points which are not singular. More precisely, all points in G4,2 that
have exactly two non-zero Plücker coordinates are critical points which are not
singular.

• For Gn,2/T
n with n ≥ 5 all crtitical points are singular.

• The set Gn,2/T
n \ Sing(Gn,2/T

n) is an open dense set in Gn,2/T
n and, moreover,

a manifold.

2.7 Orbit spaces G4,2/T 4 and G5.2/T 5

In this subsection, we explain how the notions introduced above can be used to
describe the structure of the orbit spaces G4,2/T

4 and G5,2/T
5.

2.7.1 G4,2/T 4

The standard action of T4 on G4,2 gives a seminal example of complexity one torus
action. The topology of the orbit space G4,2/T

4 is explicitly described in [6], where
the following result is proved:
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G4,2/T4 � S5.

More precisely, the image of the moment map is the octahedron ∆4,2, the admissible
polytopes are faces Q of octahedron (see the picture below) and six four-sided
pyramids Pi j , 1 ≤ i < j ≤ 4 based in three diagonal squares of the octahedron
Ki j,pq , {i, j} ∩ {p, q} = ∅, i, j, p, q ∈ {1, . . . 6}.

The space of parameters of the main stratum W is F = CP1 \ {(1 : 0), (0 : 1), (1 :
1)}, and the space of parameter of any other stratum is a point, so W/T4 �

◦

∆4,2

×(CP1 \ {(1 : 0), (0 : 1), (1 : 1)}), and Wσ/T
4 �

◦

Pσ for any such stratum Wσ . Thus,

G4,2/T
4 = (

◦

∆4,2 ×(C \ {0, 1})) ∪
⋃

Pσ,∆4,2

◦

Pσ . (9)

We have proved that the compactification of
◦

∆4,2 ×(C\{0, 1}) that is compatible with
the bijection (9) gives the universal space of parameters F � CP1. Furthermore, it
gives

G4,2/T
4 � (∆4,2 × CP1)/((x,c1)∼(y,c2)⇔x=y∈∂∆4,2)= S2 ∗ S2 � S5.

Now, it is easy to see that any point of
◦

∆4,2 \{
◦

K1,
◦

K2,
◦

K3}, where Ki are the
diagonal squares of the octahedron ∆4,2, is a regular value of the moment map. In
addition, the singular points of G4,2/T

4 are given by µ̂−1(∂∆4,2).

2.7.2 G5,2/T 5

The canonical action of the torus T5 on G5,2 is a seminal example of complexity two
torus action. The topology of the orbit space G5,2/T

5 is described up to homotopy
in [7], where this space is proved to be homotopy equivalent to the space X obtained
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by attaching the disc D8 to the spaceΣ4RP2 along a generator of the group π7(Σ
4RP2)

that is known to be isomorphic to Z4, [5].
The image of the moment map is∆5,2, and the family of strata and their admissible

polytopes is much wider in this case. The admissible polytopes of dimension 4
are ∆5,2 and 10 polytopes with 9 vertices, 15 polytopes with 8 vertices, and 10
polytopes with 7 vertices. In addition, there are 10 admissible polytopes inside ∆5,2
of dimension 3, each with 6 vertices; that is, triangle pyramids Pi . The remaining
admissible polytopes belong to ∂∆5,2, and they are given by 5 octahedra, 5 simplices,
and their admissible polytopes, which are determined by the fact that µ−1(∂∆5,2) =

5#G4,2∪5#CP3, i.e. a union of 5 disjoint copies ofG4,2 corresponding to 5 octahedra
∆4,2, and 5 disjoint copies of CP3 corresponding to 5 simplices ∆3 that form the
boundary of ∆5,2.

The space of parameters of the main stratum is

F = {((c1 : c
′

1), (c2 : c
′

2), (c3 : c
′

3)) ∈ (CP1)3 |c1c
′

2c3 = c
′

1c2c
′

3. ci, c
′

i , 0, 1, ci , c
′

i},

which is not a point. Unlike in the case ofG4,2, there exist other strata whose spaces of
parameters are not points. Precisely, for the strata whose admissible polytopes have
9 vertices, the spaces of parameters are homeomorphic to CP1 \ {(1 : 0), (0 : 1), (1 :
1)}. The strata whose admissible polytopes are the octahedra on the boundary of
∆5,2 have the same space of parameters. For any other strata, its space of parameters
is a point.

We proved in [7] that the compactification of
◦

∆5,2 ×F that is compatible with
the bijection (6) is the universal space of parameters F . It is, moreover, a smooth
surface obtained by the blow-up of the surface F̄ = {((c1 : c

′

1), (c2 : c
′

2), (c3 : c
′

3)) ∈

(CP1)3 |c1c
′

2c3 = c
′

1c2c
′

3} at the point ((1 : 1), (1 : 1), (1 : 1)). In birational geometry,
this surface is known as the Del Pezzo surface of degree 5, see [34] for details.

All points of
◦

∆5,2 \∪
10
i=1

◦

Pi , where Pi are triangle pyramids, see [7], are regular
values of the moment map µ : G5,2 → ∆5,2. The singular points of G5,2/T

5 in sense
of Definition 2.12 are given by µ̂−1(∂∆5,2) and by those points of the strata whose
admissible polytopes are the prisms Pi , 1 ≤ i ≤ 10.

2.8 Relation to the theory of (2n, k)-manifolds

The properties of Tn-action on Gn,k that are fundamental for the description of the
equivariant topology of the orbit space Gn,k/T

n mostly come from the fact that the
Tn-action has an extension to (C∗)n-action. These properties form the basis of the
theory of (2n, k)-manifolds, [8]. A (2n, k)-manifold is a smooth closed oriented
simply connected manifold M2n with

• Smooth effective action θ of the torus Tk on M2n, where 1 ≤ k ≤ n such that the
stabilizer of any point is connected;
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• Open smooth θ-equivariant map µ : M2n → Rk whose image is a k-dimensional
convex polytope (here we consider the action of Tk on Rk to be trivial);

such that it satisfies six axioms formulated in [8]. We emphasize that these axioms
actually arise from properties of the Tn-action on Gn,k that are crucial for the
description of the orbit space Gn,k/T

n:

• Axiom 1 is a generalization of the following property of Grassmann manifolds:
all charts in the Plücker atlas are Tn-invariant open dense sets each containing
exactly one fixed point.

• Axiom 2 is a generalization of the following property of Grassmann manifolds:
the moment map gives a bijection between the set of fixed points and the set of
vertices.

• Axiom 3 is a generalization of the following property of Grassmannmanifolds: all
points of a stratum Wσ have the same stabilizer Tσ ⊂ Tn (see the first statement
of Theorem 2.10).

• Axiom 4 is a generalization of the second statement of Theorem 2.10).
• Axiom 5 is a generalization of the properties of (C∗)n-orbits of a stratum given

by Theorem 2.5.
• Axiom 6 generalizes notions of the universal space of parameters F and virtual

spaces of parameters F̃σ of the strata, together with projections pσ : F̃σ → Fσ .

The class of (2n, k)-manifolds comprises, among the others, quasitoric manifolds,
which are (2n, n)manifolds, complex Grassmann manifolds Gn,k , which are (2k(n−
k), n−1)-manifolds, the complete complex flagmanifolds Fn, which are (n(n−1), n−
1)-manifolds, etc.

The notions of strata and admissible polytopes for a (2n, k)-manifold are defined
analogous to the case of Grassmannmanifolds. The notion of the space of parameters
of a stratum generalizes the notion of the space of parameters of a stratum in the case
ofGn,k and is defined byAxiom 3 since theTk-action on a (2n, k)-manifold in general
does not have an extension to (C∗)k-action. Examples of (2n, k)-manifolds for which
Tk-action is not in general induced by an (C∗)k-action are quasitoric manifolds M2n

and standard spheres S2n, which are (2n, 1)-manifolds.
Using these axioms from [8], one can construct a model for the orbit space

M2n/Tk for an arbitrary (2n, k)-manifold M2n. The complex of admissible polytopes
C(M2n, Pk) is defined as the formal union of all admissible polytopes. The canonical
map π̂ : C(M2n, Pk) → Pk defines the canonical map f : M2n → C(M2n, Pk) by
π̂ ◦ f = µ, so, with the help of the map f , we endow C(M2n, Pk) with the quotient
topology. We denote P

′

σ the relative interiors of the polytopes from the complex
C(M2n, Pk) to distinguisg them from their copies in Pk . Now, consider the space

E = ∪P
′

σ × F̃σ ⊂ C(M2n, Pk) × F .

There is a natural map H : E → M2n/Tk = ∪Wσ/Tσ = ∪
◦

Pσ ×Fσ defined by
H(xσ, c̃σ) = (xσ, pσ(c̃σ)), and Axiom 6 requires it to be a continuous map.

In [8], (E,H) is proved to be a model for M2n/Tk , that is,
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Theorem 2.13 The orbit space M2n/Tk is homeomorphic to the quotient space of
E, and the homeomorphism is given by the map H.

Example 2.14 Let us consider the space F3 of complete flags in C3. In [8], we have
applied methods of the theory of (2n, k)-manifolds to prove that F3/T

3 � S4. The
T3-action on F3 induces an effective action of T2 on F3, which is an example of
complexity one torus action. The ideas of the theory of (2n, k)-manifolds were also
exploited in [6] to describe the orbit space CP5/T4 � S2 ∗CP2, which is an example
of complexity two torus action. Here the action of the torus T4 on CP5 is given by
the second exterior power embedding of T4 into T6 and the canonical action of T6

on CP5.

3 Tn-action on Grassmann manifolds Gn,2

Among all Grassmann manifolds Gn,k , the manifolds Gn,2 stand out, first because
of their application in mathematics and mathematical physics, but also because
of regularity of their stratification, which we previously defined in subsection 2.4.
The word “regularity” here means the following: for a Grassmann manifold Gn,k ,
1 ≤ k ≤ n − 1, the boundary of any stratum Wσ is contained in the union of the
strata Wσ̄ such that σ̄ ⊂ σ, that is,

∂Wσ ⊆
⋃̄
σ

Wσ̄ . (10)

A critical property of this inclusion is that it is generally strict. Gel’fand and
Serganova [20] (see also [8]) showed that, in the case of the Grassmann manifold
G7,3, one can find and describe explicitly a stratum Wσ such that

• Its space of parameters is a point, meaning that it consists of exactly one (C∗)7-
orbit,

• There exists a stratum Wσ̄ for any σ̄ ⊂ σ whose space of parameters is not a
point.

• The boundary ∂Wσ has nonempty intersection with Wσ̄ .

For such a stratum inclusion 10 is strict.
As showed in [20], this does not happen to the strata in Grassmannians Gn,2,

n ≥ 2, that is, in this case inclusion (10) is an equality. It is it this sense that the
equivariant structure of any Grassmannian Gn,2 is regular.

The Tn-action on Grassmannians Gn,2 is studied in detail in [9], where we have
constructed a nice, almost smooth model for its orbit space.

The image of the moment map µ : Gn,2 → R
n is the hypersimplex ∆n,2, and its

boundary is the union of two families of polytopes, the first of which consists of n
copies of the hypesimplex ∆n−1,2, and the second one of n copies of the symplex
∆n−2. In other words,

µ−1(∂∆n,2) = n#Gn−1,2 ∪ n#CPn−2.
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Therefore, the equivariant topology of the Grassmann manifold Gn,2 can be in-
ductively described in the class of Gm,2-manifolds, 3 ≤ m ≤ n, by studying the
equivariant topology of µ−1(

◦

∆m,2) ⊂ Gn,2.
The induction step is based on describing all admissible polytopes that intersect

◦

∆n,2. In [9], we have proved that these admissible polytopes can be described using
nice arrangement of hyperplanes in Rn−1 = {(x1, . . . , xn) ∈ Rn |x1 + . . . + xn = 2}.
In [9], we have proven

• All admissible polytopes with dimension is ≤ n−3 belong to the boundary ∂∆n,2.
• The admissible polytopes of dimension n − 2 that have non-empty intersection

with
◦

∆n,2 are given by the intersection of ∆n,2 with the planes of the form:∑
i∈S, ‖S ‖=p

xi = 1, where S ⊂ {1, . . . , n}, 2 ≤ p ≤ [
n
2
]. (11)

• An admissible polytope Pσ such that dim Pσ = n − 1 is either ∆n,2 or the
intersection of ∆n,2 with the collection H = {HS1, . . . ,HSl } consiting of the
half-spaces of the form

HS :
∑
i∈S

xi ≤ 1, S ⊂ {1, . . . , n}, ‖S‖ = k, 2 ≤ k ≤ n − 2,

such that Si ∩ Sj = ∅ whenever HS1,HS2 ∈ H .

This shows that it is important here to consider the hyperplane arrangement Π that
consists of the planes given by the equation (11). Now, consider a hyperplane
arrangement in Rn−1 = {(x1, . . . , xn) ∈ Rn |x1 + . . . + xn = 2} given by

An = Π ∪ {xi = 0, 1 ≤ i ≤ n} ∪ {xi = 1, 1 ≤ i ≤ n}

and the face lattice L(An) of this arrangement. The intersection L(An,2) = L(An)∩

∆n,2 produces a decomposition of ∆n,2 into closed polytopes, whose faces belong to
the lattice L(An,2). The decomposition of ∆n,2 into interiors of these polytopes and
the interiors of their faces, we call a chamber decomposition and denote by

◦

L (An,2).
We call an element C ∈

◦

L (An,2) a chamber. In [9], we have proven:

• the chamber decomposition
◦

L (An,2) induces on
◦

∆n,2 the decomposition which
coincides with the decomposition given by the intersections of relative interiors
of all admissible polytopes in

◦

∆n,2.

We denote the chambers from
◦

L (An,2)∩
◦

∆n,2 by Cω , where ω consists of all σ such
that Cω ⊂

◦

Pσ . For the preimages of chambers Ĉω = µ−1(Cω), we have proven that

• there exists a canonical homeomorphism

hω : Ĉω → Cω × Fω,
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where Fω is a compactification of the space of parameters F of the main stratum,
which is given by the spaces Fσ such that Cω ⊂

◦

Pσ .

When dim Cω = n − 1, this follows from [7], where the spaces µ̂−1(x) =
∪σ∈ωFσ ⊂ Gn,2/T

n are showed to be smooth manifolds, diffeomorphic for all
x ∈ Cω , that is, diffeomorphic to some manifold Fω . For a chamber of an arbitrary
dimension, it follows from an observation from [21].

The main stratum is given by the following system of equations in the local
coordinates (z3, . . . , zn, w3, . . . , wn) of an arbitrary chart:

c
′

i j ziwj = ci j zjwi, 3 ≤ i < j ≤ n,

where the parameters are (ci j : c
′

i j) ∈ CP1, ci j, c
′

i j , 0, and ci j , c
′

i j . The number of
parameters is N =

(n−2
2

)
. The parameters satisfy the relations

ci jc
′

ilcjl = c
′

i jcilc
′

jl, 3 ≤ i < j < l ≤ n. (12)

We have obtained an embedding of the orbit space F = W/(C∗)n into (CP1)N .
Its image is an open algebraic manifold in (CP1)N given by the intersection of
cubic surfaces (12), and the conditions that (ci j ; c

′

i j) ∈ CP1
A = CP1 \ A , where

A = {(1 : 0), (0 : 1), (1 : 1)}.
For the space of parameters Fσ of an arbitrary stratum Wσ such that

◦

Pσ⊂
◦

∆n,2,

• If dim Pσ = n − 2, then Fσ is a point;
• If dim Pσ = n−1, and Fσ is not a point, then the space Fσ is obtained by restricting

the intersection of the cubic surfaces (12) to some q factors CP1
B = CP1 \ B in

(CP1)N , where B = {(1 : 0), (0 : 1)}, and 0 ≤ q ≤ l.

As for the universal space of parameters, we have proven [9] that the space Fn,
which is explicitly described in [10] by the techniques of the wonderful compactifi-
cation, is the universal space of parameters for the canonical Tn-action on Gn,2. To
elaborate, we start from the closure F̄ of the space F in (CP1)N , that is,

F̄ = {((ci j : c
′

i j)) ∈ (CP1)N |ci jc
′

ilcjl = c
′

i jcilc
′

jl, 3 ≤ i < j < l ≤ n}

, which is a smooth variety [10]. Consider the subvarieties given by

F̂I = F̄n ∩ {(cik : c
′

ik) = (cil : c
′

il) = (ckl : c
′

kl) = (1 : 1)}, (13)

for I = {i, k, l} ∈ {I ⊂ {1, . . . , n}, |I | = 3} and n ≥ 5.
In terminology of wonderful compactification [31], [10], one takes the building

set Gn to be

• Gn = ∅ for n = 4,
• Gn = {G =

⋂
I

F̂I ⊂ F̄n}, that is, all possible nonempty intersections of F̂I ’s.
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Following [10], denote by Fn a smooth, compact manifold which is obtained as
the wonderful compactification of F̄ with the building set Gn. In [9], we have proven
that Fn is a universal space of parameters for the canonical Tn-action on Gn,2.

Having a universal space of parameters Fn, to any stratum Wσ one can assign a
virtual space of parameters F̃σ ⊂ Fn. In [9], these virtual spaces of parameters are
proved to have the following very nice properties:

• For x ∈
◦

∆n,2, denote by
F̃x =

⋃
x∈
◦

Pσ

F̃σ .

Then
F̃x = Fn for any x ∈

◦

∆n,2 .

• For any chamber Cω , one has F̃σ ∩ F̃σ′ = ∅ whenever σ, σ
′

∈ ω.
• The union

Fn =
⋃

Cω ⊂
◦

Pσ

F̃σ, (14)

is a disjoint union for any chamber Cω .

Since, by definition, for any virtual space of parameters F̃σ there exists a projection
pσ : F̃σ → Fσ , it follows from (14) that for any chamberCω there exists a projection

pω : Fn → Fω defined by pω(y) = pσ(y) for y ∈ F̃σ . (15)

Denote by
◦

Gn,2= µ
−1(
◦

∆n,2). The following disjoint decomposition holds:

◦

Gn,2 /T
n �

⋃
ω

Ĉω �
⋃
ω

(Cω × Fω). (16)

where the topology on the right-hand side is given by the induced moment map
µ̂ : Gn,2/T

n → ∆n,2 and the natural projection Gn,2/T
n → Gn,2/(C

∗)n.
Altogether, we have

Gn,2/T
n �

◦

Gn,2 /T
n ∪ (

n⋃
q=1

Gn−1,2(q)/Tn−1) ∪ (

n⋃
q=1

∆
n−2(q)). (17)

The topology on the right-hand side of (17) is defined by the canonical embeddings
Gn−1,2(q) → Gn,2 and CPn−2(q) → Gn,2, 1 ≤ q ≤ n.

The universal space of parameters for CPn−2(q), 1 ≤ q ≤ n, is a point. The
canonical embeddings îq : Gn−1,2(q) → Gn,2 are defined by the inclusions iq :
Cn−1 → Cn, iq(z1, . . . , zn−1) = (z1, . . . zq−1, 0, zq, . . . zn−1), 1 ≤ q ≤ n. Therefore,
the relation between the universal spaces of parameters Fn for Gn,2 and Fn−1,q for
Gn−1,2(q), 1 ≤ q ≤ n, is given by

Fn−1,q = F |{(ci j :c
′

i j ),i, j,q }
, (18)
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which defines the restriction rq : Fn → Fn−1,q .
Thus, all previous constructions apply to Fn−1,q and ∆n−1,2(q) ⊂ ∂∆n,2 which is

defined by ∆n−1,2(q) = ∆n,2 ∩ {xq = 0}, 1 ≤ q ≤ n. Denote by pqω : Fn−1,q → Fω
the map given by (15) for the Grassmannian Gn−1,2(q), 1 ≤ q ≤ n. Altogether, we
obtain
• For any chamber Cω ⊂ ∂∆n,2, one can define the projection pω : Fn → Fω . If

Cω ⊂ ∆n−1(q), this projection maps Fn to a point, while for Cω ⊂ ∆n−1,2(q) this
projection is defined by pω(y) = (p

q
ω ◦ rq)(y).

Consider the space
Un = ∆n,2 × Fn. (19)

One can inductively define a projection

Un → (
◦

∆n,2 ×Fn) ∪ (

n⋃
q=1

Un−1,q) ∪ (

n⋃
q=1

∆
n−2(q)), (20)

for Un−1,q = ∆n−1,2(q) × Fn−1,q , which is given by (x, f ) → (x, rq( f )) if x ∈
∆n−1,2(q), and by (x, f ) → x if x ∈ ∆n−2(q), where 1 ≤ q ≤ n.

Altogether, we obtain

Theorem 3.1 The map

G : Un → Gn,2/T
n, G(x, y) = h−1

ω (x, pω(y)) if and only if x ∈ Cω, (21)

is correctly defined. Moreover, the map G is a continuous surjection, and the orbit
space Gn,2/T

n is homeomorphic to the quotient of the space Un by the map G.

4 Universal space of parameters for Gn,2 and the Chow quotient

In [10], using the techniques of wonderful compactification, an explicit construction
of the space Fn, coming purely from the equivariant topology of the Grassmann
manifolds Gn,2, is provided. The authors obtain a smooth, compact manifold dif-
feomorphic to the moduli spaceM(0, n) of genus zero stable curves with n-marked
distinct points, that is, to the Chow quotient Gn,2//(C

∗)n.
The idea for this construction comes from a problem we have already discussed:

knowing that W/Tn = Gn,2/T
n for the main stratum W and W/Tn �

◦

∆n,2 ×F, find a
compactification of the space of parameters F of the main stratum that is compatible
with the decomposition of the orbit space Gn,2/T

n = ∪
◦

Pσ ×Fσ . To do that, we first
note the following property. Consider a stratumWσ in a chart Mi j and assign to it the
space F̃σ,i j ⊂ Fn using the fact that Wσ/T

n is in the boundary of Wn/T
n �

◦

∆n,2 ×F.
Then the space F̃σ,i j must not depend on a chart Mi j ⊃ Wσ . Thus, in order to
describe Fn, we must start by considering F̄n ⊂ (CP1)N and all possible F̃σ,i j ⊂ F̄n,
and make corrections along those F̃σ,i j that are not independent of a chart Mi j .
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While realizing this approach in [10], the authors note that the main stratum W
belongs to any chart of the Plücker atlas for Gn,2, so the transition maps between the
charts induce the family A of automorphisms of the space of parameters F. This
family of automorphisms is explicitly described in [10]. The idea of how to overcome
the problem of dependence of the virtual spaces of parameters on the charts is the
following: find a compactification Fn for F such that any automorphism from A
extends to an automorphism of Fn. In that sense, subvarieties in the smooth variety
F̄ ⊂ (CP1)N given by

F̂I = F̄n ∩ {(cik : c
′

ik) = (cil : c
′

il) = (ckl : c
′

kl) = (1 : 1)}, (22)

for I = {i, k, l} ∈ {I ⊂ {1, . . . , n}, |I | = 3} and n ≥ 5, are showed [10] to represent
the singularities of the extension of the automorphisms from the family A.

In order to resolve these singularities, in [10] the authors apply the method
of wonderful compactification with the building set Gn, described in Section 3
of the present survey, and obtain a compact smooth manifold Fn, for which all
automorphisms of A are proved to extend to the automorphisms of Fn.

Further on, using the description of the space M(0, n) given by Keel [26], the
spaces Fn andM(0, n) are proved to be diffeomorphic.

On the other hand, there is, due to Kapranov [25], a well-known construction from
algebraic geometry known as the Chow quotient. The idea behind the definition of
the Chow quotient is the construction from algebraic geometry known as the Chow
variety, which is a compact variety whose points parametrize algebraic cycles in a
given variety of the same dimension and degree. The corresponding Chow variety
C2(n−1)(Gn,k, δ) of a Grassmann manifold Gn,k consists of all algebraic cycles in
Gn,k of dimension 2(n − 1) whose homology class is δ, where δ ∈ H2(n−1)(Gn,k,Z)
is the homology class of the closure of a generic (C∗)n-orbit in Gn,k .

By definition, the Chow quotient Gn,k//(C
∗)n is the closure of the image of the

natural map
W/(C∗)n → C2(n−1)(Gn,k, δ), x → (C∗)n · x,

where W is the main stratum in Gn,k .
The build-up components to W/(C∗)n in Gn,k//(C

∗)n are described in [25] using
that fact that

• The algebraic cycles forming Chow quotient Gn,k//(C
∗)n are of the form Z =∑

i Zi , where Zi are the closures of (C∗)n-orbits in Gn,k such that the matroid
polytopes µ(Zi) give a polyhedral decomposition of ∆n,k .

Here the matroid polytopes defined in [25] in the case of Gn,2 coincide with our
admissible polytopes. Recall that the admissible polytopes for Gn,2 can be described
as well in terms of hyperplane arrangement Π given by (11). In our terminology, the
Chow quotient actually gives a compactification of the space of parameters Fn of the
main stratum.

In [10], the authors establish a relation between a chamber Cω in ∆n,2 such that
dim Cω = n−1 and the Chow quotient Gn,2//(C

∗)n. Let Pσ = {Pσ,1, . . . ,Pσ,s} ⊂ P
be the set of al decompositions Pσ,i of ∆n,2 that contain Pσ . Let Z̃σ,i ⊂ Gn,2//(C

∗)n
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be the family of algebraic cycles determined by the decompositions Pσ,i . These
cycles are of the form

Zσi1
(cσi1
) + . . . + Zσ,iq (cσiq

)

for (cσi1
, . . . , cσiq

) ∈ Fσi1
×· · ·×Fσiq

, where Zσi j
(cσi j
) is the closure of an algebraic

torus orbit in Wσi j
, and this orbit is determined by cσi j

∈ Fσi j
= Wσi, j /(C

∗)n. Let
further

Z̃σ =
s⋃

i=1
Z̃σ,i .

In [10], we have proven that

• Any Cω , dim Cω = n − 1, defines a decomposition of Gn,2//(C
∗)n into a disjoint

union, that is, ⋃
σ∈ω

Z̃σ = Gn,2//(C
∗)n. (23)

Remark 4.1 Since we have proven that the universal space of parameters Fn and
M(0, n) are diffeomorphic, and the result of [25] gives that the manifoldsGn,2//(C

∗)n

and M(0, n) are isomorphic, it follows that our universal space of parameters Fn
describes the topology of the result of gluing of the build-up components to Fn in
Gn,2//(C

∗)n. Using the description of Fn by the techniques of wonderful compact-
ification, in [10] these build-up components are explicitly described for n = 4 and
n = 5.

Example 4.2 In the easiest case of n = 4, the build-up components of G4,2//(C
∗)4

consist of three points. These three points correspond to the three decompositions of
∆4,2 into two 4-sided pyrhamids, see 2.7.1. These points glue together to F4 � CP1

A in
G4,2//(C

∗)4 to give the universal space of parametersCP1. This case is also discussed
in [25], but this observation independently follows from [6] and the identification
between F4 and G4,2//(C

∗)4.
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On the enumeration of Fano Bott manifolds

Yunhyung Cho, Eunjeong Lee, Mikiya Masuda, and Seonjeong Park

Abstract Fano Bott manifolds bijectively correspond to signed rooted forests with
some equivalence relation. Using this bijective correspondence, we enumerate the
isomorphism classes of Fano Bott manifolds and the diffeomorphism classes of
indecomposable Fano Bott manifolds. We also observe that the signed rooted forests
with the equivalence relation bijectively correspond to rooted triangular cacti.

1 Introduction

A Bott manifold of complex dimension n is a smooth projective toric variety whose
fan is the normal fan of a polytope combinatorially equivalent to the n-dimensional
unit cube [0, 1]n. A family of Bott manifolds was first considered by Grossberg and
Karshon [8] in the context of toric degenerations of Bott–Samelson varieties. Since
then, topological or geometric properties of Bott manifolds have been intensively
studied in [7, 5, 2, 14]. Recently, motivated by Suyama’s work [16], we showed the
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c1-cohomological rigidity for Fano Bott manifolds, which means that two Fano Bott
manifolds are isomorphic if and only if there is a ring isomorphism between their
cohomology rings preserving their first Chern classes ([4]).

It is known that there are only finitely many smooth Fano toric varieties up
to isomorphism in each dimension (cf. [15]), and therefore there are also only
finitely many Fano Bott manifolds up to isomorphism in each dimension. Higashitani
and Kurimoto [11] associate signed rooted forests with Fano Bott manifolds to
classify Fano Bott manifolds up to diffeomorphism. In this paper, we enumerate
the isomorphism classes of Fano Bott manifolds and the diffeomorphism classes of
indecomposable Fano Bott manifolds using this correspondence.

To introduce our main result, we prepare some terminologies. Recall that a fan
associated to a Bott manifold of complex dimension n is the normal fan of a polytope
combinatorially equivalent to [0, 1]n and so it has 2n rays. We denote the primitive
ray generators by v1, . . . , vn,w1, . . . ,wn, where vi andwi are pairwise normal vectors
of opposite facets.

If a Bott manifold is Fano, then it is known that the sum vi +wi is either the zero
vector or another ray generator, say vϕ(i) or wϕ(i), where ϕ is a permutation on [n].
Accordingly, one may associate a signed rooted forest with a Fano Bott manifold as
follows:

• the set of vertices can be identified with [n] = {1, . . . , n},
• the vertex i is a root if and only if the sum vi + wi is the zero vector,
• for each vertex i and its parent, denoted by ϕ(i), the edge {i, ϕ(i)} is signed by +

if vi + wi = vϕ(i); and by − if vi + wi = wϕ(i).

See Section 2 for more precise definition.
For each vertex i of a signed rooted forest, we obtain another signed rooted forest

by changing the signs of all the edges connecting i and its children simultaneously.
By considering this operation for all vertices, we obtain an equivalence relation ∼
on the set SFn of isomorphism classes of signed rooted forests with vertices [n]. It is
observed in [11, Remark 5.8] that the isomorphism classes of Fano Bott manifolds
of complex dimension n bijectively correspond to the equivalence classes SFn/∼ of
signed rooted forests with n vertices. Now we state our main theorem.

Theorem 1.1 (Corollary 4.4) The generating function F(x) =
∑∞

n=0 |SFn/∼ | xn

satisfies

F(x) = exp

(
∞∑
k=1

xk

2k

(
F(x2k) + F(xk)2

))
.

This functional equation determines F(x). Indeed, a straightforward computation
shows

F(x) = 1 + x + 2x2 + 5x3 + 13x4 + 37x5 + 111x6 + 345x7 + 1105x8 + 3624x9 + · · ·

The generating function∆(x) = 1+
∑∞

n=1 ∆nxn for the number∆n of rooted triangular
cacti with 2n + 1 vertices and n triangles satisfies the same functional equation
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(see [9, 10]). It turns out that there is a bijective correspondence between SFn/∼ and
rooted triangular cacti with 2n + 1 vertices and n triangles.

The result [11] by Higashitani and Kurimoto implies that the diffeomorphism
classes of indecomposable Fano Bott manifolds of complex dimension n bijectively
correspond to SFn−1/∼. Here, we say a Fano Bott manifold is indecomposable if
it is not isomorphic to a product of lower dimensional Fano Bott manifolds. This
provides an enumeration of the diffeomorphism classes of indecomposable Fano
Bott manifolds.

This paper is organized as follows. In Section 2, we provide the definition of Bott
manifolds and their Fano conditions. Moreover, we recall the association of signed
rooted forests with Fano Bott manifolds. In Section 3, we show that the association
induces a bijection between the isomorphism classes in Fano Bott manifolds and
the equivalence classes SFn/∼ of signed rooted forests with n vertices. In Section 4,
we enumerate the equivalence classes SFn/∼ of signed rooted forests. In Section 5,
we give a bijective correspondence between SFn/∼ and rooted triangular cacti with
2n + 1 vertices and n triangles.
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2 Fano Bott manifolds and signed rooted forests

In this section, we review the definition of Bott manifolds and their fans. We also
recall the relation between Fano Bott manifolds and signed rooted forests from [11].

Definition 2.1 ([8, §2.1]) A Bott tower B• is an iterated CP1-bundle starting with a
point:

Bn Bn−1 · · · B1 B0,

P(C ⊕ ξn) CP1 {a point}
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where each Bi is the complex projectivization of the Whitney sum of a holomorphic
line bundle ξi and the trivial line bundle C over Bi−1. The total space Bn is called a
Bott manifold.

A Bott manifold Bn is a smooth projective toric variety by the construction. Its
fan Σ has 2n rays. We denote by {v1, . . . , vn,w1, . . . ,wn} the ray generators, where a
pair of vi and wi does not span a cone for each i. A subset S of ray generators having
n elements form a maximal cone of Σ if and only if

{vi,wi} 1 S for any i ∈ [n].

Because of this description, one may see that the fan Σ is the normal fan of a polytope
combinatorially equivalent to the cube [0, 1]n.

For a fan Σ, let Σ(1) be the set of all one-dimensional cones in Σ, i.e., the set of
rays. Then for each ρ ∈ Σ(1), we denote by uρ the generator of the ray ρ. We call a
subset P ⊂ {uρ | ρ ∈ Σ(1)} a primitive collection if

Cone(P) < Σ but Cone(P \ {x}) ∈ Σ for every x ∈ P.

We denote by PC(Σ) the set of primitive collections of Σ. We briefly reviewBatyrev’s
criterion [1, Proposition 2.3.6] determining whether a given toric variety is Fano or
not. Let Σ be a smooth complete fan. For each primitive collection P = {u1, . . . , ur },
there exists a unique cone σ such that u1 + · · · + ur is in the relative interior of σ.
Let v1, . . . , v` be the primitive generators of σ. Then

u1 + · · · + ur = a1v1 + · · · + a`v`

for some positive integers a1, . . . , a` . If the sum of primitive generators is the zero
vector, then the cone σ is of zero-dimensional and the set {v1, . . . , v`} is assumed to
be empty. We call this relation the primitive relation for P and we define the degree
of P by

|(|P) := r − (a1 + · · · + a`).

Here, we note that if the sum of primitive generators of P is the zero vector, then
|(|P) = r .

Proposition 2.2 ([1, Proposition 2.3.6]) Let XΣ be a nonsingular projective toric
variety and PC(Σ) be the primitive collection of the fan Σ. Then the toric variety XΣ
is Fano if and only if |(|P) > 0 for every P ∈ PC(Σ).

Now we apply Batyrev’s criterion to Bott manifolds. Let Σ be the fan of a Bott
manifold Bn. Then the set of primitive collections is

PC(Σ) = {{vi,wi} | i ∈ [n]}. (1)

Using Proposition 2.2, we can see that Bn is Fano if and only if each primitive
collection P = {vi,wi} satisfies one of the following:

1. vi + wi = 0 (that is, |(|P) = 2 > 0);
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2. vi + wi = vϕ(i) (that is, |(|P) = 2 − 1 = 1 > 0); or
3. vi + wi = wϕ(i) (that is, |(|P) = 2 − 1 = 1 > 0).

Here, ϕ : [n] \ Z → [n], where Z := {i | vi + wi = 0}. We also define a sign map
σ : [n] \ Z → {+,−} by

σ(i) =

{
+ if vi + wi = vϕ(i),
− if vi + wi = wϕ(i).

This leads us to the following definition.

Definition 2.3 ([11, Definition 4.1]) Let Σ be the fan of a Fano Bott manifold
having (ordered) ray generators S = (v1, . . . , vn,w1, . . . ,wn) with the primitive
collections as in (1). Let ϕ and σ be as above. We define the associated signed
rooted forest (T , s) = (T (Σ,S), s(Σ,S)) (i.e., rooted forest T with the sign map
s : E(T ) → {+,−}) to be

• V(T ) = [n];
• E(T ) = {{i, ϕ(i)} | i ∈ [n] \ Z} and s({i, ϕ(i)}) = σ(i).

From the definition, one can see that for a singed rooted forest (T , s), the set of roots
is Z and the parent of each vertex i ∈ [n] \ Z is ϕ(i). We denote the assignment
provided in Definition 2.3 byΦ, that is,Φ(Σ,S) = (T (Σ,S), s(Σ,S)) is the associated
signed rooted forest.

Remark 2.4 The association Φ is surjective, that is, for each signed rooted forest
(T , s) with n vertices, there exists a Fano Bott manifold of dimension n whose fan
defines (T , s).

Example 2.5 In this example, we present ray generators of the fan of a Bott manifold
using a matrix, i.e., the columns of an n× 2n matrix are ray generators. Consider the
following two matrices.

A =


1 0 0
1 1 0
0 0 1

������ −1 0 0
0 −1 −1
0 0 −1

 , A′ =


1 0 0
1 1 0
1 0 1

������ −1 0 0
0 −1 0
0 1 −1

 .
Let B be the Bott manifold such that the ray generators (v1, v2, v3,w1,w2,w3) of the
fan are the column vectors of A. Then, we have

v1 + w1 = v2,

v2 + w2 = 0,
v3 + w3 = w2.

Therefore, the Bott manifold B is Fano, and moreover, ϕ(1) = 2, ϕ(3) = 2, and
σ(1) = +, σ(3) = −. The associated signed rooted tree is given in Figure 1(6)
(without vertex labeling).
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Let B′ be the Bott manifold such that ray generators (v1, v2, v3,w1,w2,w3) of the
fan are the column vectors of A′. Consider a primitive collection P = {v1,w1}. The
sum of ray generators is

v1 + w1 = v2 + v3,

so |(|P) = 2 − 2 = 0 ≯ 0 and this primitive collection does not satisfy the Fano
condition. Therefore, the Bott manifold B′ is not Fano.

We provide all signed rooted forests having three vertices in Figure 1.

+

+

(1) (T1, s1)

+

−

(2) (T2, s2)

−

+

(3) (T3, s3)

−

−

(4) (T4, s4)

+ +

(5) (T5, s5)

+ −

(6) (T6, s6)

− −

(7) (T7, s7)

+

(8) (T8, s8)

−

(9) (T9, s9) (10) (T10, s10)

Fig. 1: Signed rooted forests with 3 vertices.

Remark 2.6 We say that a signed rooted forest is binary if each vertex has at most
two children and when the vertex has two children, the edges connecting the vertex
and its children have different signs. In Figure 1, all but (5) and (7) are binary. The set
of binary rooted forests provides a certain family of Fano toric Richardson varieties
(called of Catalan type) in the full flag variety ([12]).

3 Classification of Fano Bott manifolds

We say that signed rooted forests (T , s) and (T ′, s′) with vertices [n] are isomorphic
if there is a permutation π ∈ Sn which sends the roots of T to the roots of T ′
and induces a bijection between the edges preserving the signs. Let SFn be the
isomorphism classes of signed rooted forests with vertices [n]. For each vertex
i ∈ [n], we define an operation

ri : SFn → SFn

which changes the signs of all edges connecting the vertex i and its children simul-
taneously. Denote by ∼ the equivalence relation on SFn generated by the operations
ri for all i ∈ [n]. The following is mentioned in [11, Remark 5.8], but we include its
proof for readers’ convenience.
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Theorem 3.1 (cf. [11, Remark 5.8]) The isomorphism classes in Fano Bott mani-
folds of complex dimension n bijectively correspond to SFn/∼.

Proof Let B be a Fano Bott manifold of complex dimension n, Σ = ΣB a fan
defining B. We fix an ordering on ray generators S = (v1, . . . , vn,w1, . . . ,wn) of Σ.
For A ∈ GL(n,Z), we denote by A · Σ the fan consisting of cones A · σ’s for σ ∈ Σ
and denote by A · S the ordered ray generators of A · Σ given by

A · S := (Av1, . . . , Avn, Aw1, . . . , Awn).

By [4, Proposition 3.4], another pair (Σ′,S′) defines a Fano Bott manifold iso-
morphic to B if and only if Σ′ = A · ΣB for some A ∈ GL(n,Z) and the set S′ is
obtained from A · S by performing the following two operations on A · S:

(Op.1) swapping Avi with Awi , that is,

S′i :=(Av1, . . . , Avi−1, Awi, Avi+1, . . . , Avn,
Aw1, . . . , Awi−1, Avi, Awi+1, . . . , Awn);

(Op.2) reordering Avi (as well as Awi’s), that is, for a permutation π ∈ Sn,

S′π := (Avπ(1), . . . , Avπ(n), Awπ(1), . . . , Awπ(n)).

For the ordered ray generators S′i obtained by applying (Op.1), we have Φ(Σ′,S′i ) =
ri(Φ(ΣB,S)). For the ordered ray generators S′π obtained by applying (Op.2),
Φ(Σ′,S′π) is obtained from Φ(ΣB,S) by changing the labeling on the vertices by
the permutation π, so they are isomorphic as signed rooted forests. This finishes the
proof. �

Example 3.2 Consider SF3 described in Figure 1.We obtain five equivalence classes

(T1, s1) ∼ (T2, s2) ∼ (T3, s3) ∼ (T4, s4), (T5, s5) ∼ (T7, s7),

(T6, s6), (T8, s8) ∼ (T9, s9), (T10, s10).

All signed rooted forests in SF4 are illustrated in Figure 2. Roots of the forests are
the top vertices. We omit plus signs on edges and put a minus sign on an edge. We
also write ID numbers of the corresponding Fano Bott manifolds according to the
list of ‘Smooth toric Fano varieties’ [15] in the Graded Ring Database [3].

Higashitani and Kurimoto [11] provide another equivalence relation ≈ on the set
of signed rooted forests which is used to consider the diffeomorphism classes in
Fano Bott manifolds. The equivalence relation ≈ is induced from the relation ∼ by
neglecting signs on the edges incident on the roots. Using this relation, we recall the
following.

Theorem 3.3 ([11, Theorem 1.8 and Remark 6.4]) The diffeomorphism classes in
Fano Bott manifolds of complex dimension n bijectively correspond to SFn/≈.
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(1) ID #142 (2) ID #130 (3) ID #112 (4) ID #106

(5) ID #95

−

(6) ID #131 (7) ID #105 (8) ID #83

−

(9) ID #108

(10) ID #75

−

(11) ID #114 (12) ID #74

−

(13) ID #96

Fig. 2: Representatives of SF4/∼. Numbers are ID’s by Øbro.

We say that a Bott manifold B is indecomposable if it is not isomorphic to a
product of lower dimensional Bott manifolds (as toric varieties). Otherwise, we say
that B is decomposable.1

Corollary 3.4 The diffeomorphism classes of indecomposable Fano Bott manifolds
of complex dimension n bijectively correspond to SFn−1/∼.

Proof We first notice that by Theorem 3.1, a Fano Bott manifold is indecomposable
if and only if the corresponding signed rooted forest is a signed rooted tree, that
is, it has only one root vertex. Since the equivalence relation ≈ is induced from the
relation ∼ by neglecting the signs on the edges incident on the root, we obtain the
desired bijection by erasing the root vertex. �

Example 3.5 In Figure 2, three pairs {(5), (6)}, {(8), (9)}, {(12), 13)} are diffeomor-
phic to each other but (10) and (11) are not diffeomorphic to each other. Considering
signed rooted trees in Figure 2, we obtain the five equivalence classes

{(7), (8), (9), (10), (11), (12), (13)}/≈= {[(7)], [(8)], [(10)], [(11)], [(12)]}.

By erasing the root vertex, each of them is associated to an element in SF3/∼.

1 The notion of indecomposability can have different meanings in different contexts. Especially,
in [6], they consider another family of smooth manifolds, called real Bott manifolds, and say that a
real Bott manifold is indecomposable if it is not diffeomorphic to a product of lower dimensional
real Bott manifolds.
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[(7)] ↔ [(T1, s1)], [(8)] ↔ [(T8, s8)], [(10)] ↔ [(T5, s5)],

[(11)] ↔ [(T6, s6)], [(12)] ↔ [(T10, s10)].

4 Counting signed rooted forests in terms of signed rooted trees

We denote by STn/∼ the set of signed rooted trees in SFn/∼. We set tn = |STn/∼ |

and fn = |SFn/∼ |. Now we let T(x) and F(x) be the generating functions of the
sequences {tn} and { fn}, respectively, that is,

T(x) =
∞∑
n=1

tnxn and F(x) = 1 +
∞∑
n=1

fnxn.

In this section, we compute the generating functions T(x) and F(x), and study their
relations.

Proposition 4.1 The generating function F(x) satisfies

F(x) =
∞∏
k=1
(1 − xk)−tk .

Proof Note that from the generalized binomial theorem, for any positive integer m,
we have

(1 − x)−m =
∞∑
p=0

(
−m
p

)
(−x)p

=

∞∑
p=0

(−m)(−m − 1) · · · (−m − (p − 1))
p!

(−x)p

=

∞∑
p=0

(
m − 1 + p

p

)
xp .

Since

(1 − xk)−tk =
∞∑

pk=0

(
tk − 1 + pk

pk

)
xkpk , (2)

the coefficient of xn in the product
∞∏
k=1
(1 − xk)−tk is given by

∑
(p1,...,pn)

n∏
k=1

(
tk − 1 + pk

pk

)
, (3)
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where (p1, . . . , pn) runs over all n-tuples of nonnegative integers with
∑n

k=1 kpk = n.
Here

(tk−1+pk
pk

)
is the number of signed rooted forests with pk components such that

each component is a signed rooted tree with k vertices by (2) and the sum in (3)
counts all decompositions of elements in SFn/∼ into connected components, so the
proposition follows. �

The following is a consequence of the above proposition.

Corollary 4.2 The generating functions F(x) and T(x) satisfy

F(x) = exp

(
∞∑
n=1

T(xn)
n

)
.

Proof Taking logarithm on both sides of

F(x) =
∞∏
k=1
(1 − xk)−tk ,

we obtain

log F(x) = −
∞∑
k=1

tk log(1 − xk) =
n∑

k=1

∞∑
n=1

tk
xkn

n
=

∞∑
n=1

T(xn)
n

,

which implies the corollary. �

Lemma 4.3 (cf. (1) in [10]) The generating functions F(x) and T(x) satisfy

T(x) =
x
2

(
F(x2) + F(x)2

)
.

Proof We set

ST/∼ :=
∞⊔
n=1

STn/∼ and SF/∼ :=
∞⊔
n=0

SFn/∼,

where SF0/∼ is understood to be the empty set. Given an unordered pair {A, B} of
SF/∼, we obtain an element AB of ST/∼ by joining the roots of A and B to a new
root v and assign all the new edges joining the roots of A to v, say + sign, and all
the new edges joining the roots of B to v, say − sign. We may assign − sign to the
former and + sign to the latter. In any case, AB is well-defined in ST/∼. Conversely,
given an element T of ST/∼, there is a unique unordered pair {A, B} of SF/∼ such
that AB = T .

This implies the lemma. Indeed, F(x)2 counts unordered pairs {A, B} twice when
A and B are different but once when A = B. This is why we add F(x2) in the formula.
Multiplication by x corresponds to the new vertex v. �
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Combining Corollary 4.2 and Lemma 4.3, we obtain the following functional
equation mentioned in the introduction.

Corollary 4.4 (cf. (3) in [10]) The generating function F(x) satisfies

F(x) = exp

(
∞∑
n=1

xn

2n

(
F(x2n) + F(xn)2

))
.

This functional equation determines F(x). Using Lemma 4.3 and Corollary 4.4,
we obtain Table 1.

n 1 2 3 4 5 6 7 8 9 10

tn 1 1 3 7 21 60 189 595 1948 6455
fn 1 2 5 13 37 111 345 1105 3624 12099

Table 1: The numbers of equivalence classes of signed rooted trees and signed rooted forests

The numbers tn and fn in Table 1 satisfy fn < 2tn < 4 fn−1 for n ≤ 10 and the
sequences {tn/tn−1}

10
n=2 and { fn/ fn−1}

10
n=2 are both increasing.We leave the following

question.

Question 4.5 Are the sequences tn/tn−1 and fn/ fn−1 increasing and bounded above
by 4?

5 Rooted triangular cacti

The formula in Corollary 4.4 also holds for the generating function of the number of
rooted triangular cacti with 2n + 1 vertices and n triangles. In this section, we give
a bijective correspondence between the equivalence classes SFn/∼ of signed rooted
forests and rooted triangular cacti with 2n + 1 vertices and n triangles.

Definition 5.1 A cactus (or a cactus tree) is a connected graph in which any two
simple cycles have at most one vertex in common, equivalently, no line lies on more
than one cycle. A triangular cactus (or a 3-cactus) is a cactus such that every cycle
has length three. A rooted triangular cactus is a triangular cactus having a root
vertex.

We sometimes call a 3-cycle in a 3-cactus a triangle. In Figure 3, we present rooted
3-cacti having nine vertices and four triangles. The sequence of numbers of rooted
3-cacti with 2n + 1 vertices and n triangles is Sequence A003080 in [13]. Note that
a cactus is also called a Husimi tree (see [9, 10]).
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(1) (2) (3) (4)

(5) (6) (7) (8) (9)

(10) (11) (12) (13)

Fig. 3: Rooted triangular cacti

− −

Fig. 4: Construction of triangular cacti from signed rooted forests

Proposition 5.2 There is a bijective correspondence between SFn/∼ and the set of
rooted 3-cacti with 2n + 1 vertices and n triangles.

Proof Let (T , s) be a signed rooted forest. For each root vertex of (T , s), we draw a
triangle and decorate the top vertex of the triangle with a double circle to indicate
the root of the triangular cacti. For each child of the root of T , we draw a triangle
as follows. If the sign of the edge incident on the root is positive, we attach the new
triangle to the left bottom vertex; if the sign is negative, we attach the new triangle
to the right bottom vertex. Continuing this process to each child vertex, we get a
bunch of rooted triangular cacti. Finally, we merge all the root vertices of rooted
triangular cacti to one root vertex so we obtain one rooted triangular cacti. See
Figure 4. Obviously, the rooted triangular cacti corresponding to (T , s) and ri(T , s)
are isomorphic to each other. This proves the proposition. �
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Dga models for moment-angle complexes

Matthias Franz

AbstractAdgamodel for the integral singular cochains on amoment-angle complex
is given by the twisted tensor product of the corresponding Stanley–Reisner ring and
an exterior algebra.We present a short proof of this fact and extend it to real moment-
angle complexes. We also compare various descriptions of the cohomology rings of
these spaces, including one stated without proof by Gitler and López de Medrano.

1 Introduction

Let Σ be a simplicial complex on the set [m] = {1, . . . ,m}, containing the empty
simplex ∅ and possibly having ghost vertices, and let

Z(Σ) = ZΣ(D2, S1) =
⋃
σ∈Σ

(D2, S1)σ ⊂ (D2)m (1)

be the associated moment-angle complex, where

(D2, S1)σ =
{
(z1, . . . , zm) ∈ (D2)m

�� zi ∈ S1 if i < σ
}
. (2)

Moment-angle complexes play a central role in toric topology, see [8]. Replacing
(D2, S1) by (Dn, Sn−1) for any n ≥ 1 gives generalized moment-angle complexes.
Taking arbitrary CW pairs leads to polyhedral products, which have gained a lot of
attention in homotopy theory recently, see [1] for a survey.

The moment-angle complexZ(Σ) is homotopy-equivalent to the complement of
a complex coordinate subspace arrangement, which is a smooth toric variety. The
integral cohomology ring of Z(Σ) was computed by the author [11, Sec. 4] (using

Matthias Franz
Department of Mathematics, University of Western Ontario, London, Ont. N6A 5B7, Canada,
e-mail: mfranz@uwo.ca
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the language of toric varieties) and shortly afterwards by Baskakov–Buchstaber–
Panov [4].1 The result is an isomorphism of graded rings

H∗(Z(Σ)) = TorR(Z,Z[Σ]), (3)

where R = Z[t1, . . . , tm] and Z[Σ] is the Stanley–Reisner ring of Σ with genera-
tors t1, . . . , tm of degree 2. Taking the Koszul resolution of Z over R, one can
describe the ring (3) as the cohomology of the commutative differential graded
algebra (cdga)

A(Σ) = Z[Σ] ⊗
∧
(s1, . . . , sm), d si = ti, d ti = 0 (4)

for i ∈ [m], where each si has degree 1. Dividing out out all squares t2
i as well as all

terms si ti , one obtains a quasi-isomorphic dga B(Σ). As a cdga, B(Σ) is generated
by the si and ti = d si and has the relations si ti = ti ti = 0 for i ∈ [m] as well as
ti1 · · · tik = 0 whenever {i1, . . . , ik} < Σ.

Theorem 1.1 The singular cochain algebra C∗(Z(Σ)) is quasi-isomorphic to the
dgas A(Σ) and B(Σ), naturally with respect to inclusions of subcomplexes.

Recall that a dga A is called an (integral) dga model for a space X if A can
be connected to C∗(X) via a zigzag of dga quasi-isomorphisms. In this language,
Theorem 1.1 asserts that both A(Σ) and B(Σ) are dga models forZ(Σ).

That C∗(Z(Σ)) and A(Σ) are quasi-isomorphic is already implicit in the author’s
computation of H∗(Z(Σ)), see [11, Sec. 4]. A different proof has recently been
obtained by the author as a byproduct of his work on the cohomology rings of partial
quotients of moment-angle complexes [12, Prop. 6.1]. As remarked there, this result
answers a question posed by Berglund [5, Question 5], which was exactly whether
A(Σ) is a dga model forZ(Σ). The aim of the present note is to give a much shorter
proof for this model. Like Baskakov–Buchstaber–Panov’s calculation it is based on
the dga B(Σ). The rational versions of A(Σ) and B(Σ) are (analogously defined) cdga
models for the polynomial differential forms onZ(Σ) by a result of Panov–Ray [21,
Thm. 6.2].

The proof of Theorem 1.1 appears in the following section and an adaptation
to real moment-angle complexes in Section 3. In the final section we relate the
resulting cup product formulas for real and complex moment-angle complexes with
others appearing in the literature. We in particular provide a proof that has been
missing so far for a product formula stated by Gitler and López de Medrano [14].

Acknowledgements I thankDon Stanley for his questions about dgamodels and Santiago López de
Medrano for stimulating discussions. I also thank the organizers of the “Thematic Program on Toric
Topology and Polyhedral Products” at the Fields Institute for creating an environment favourable
to research and an anonymous referee for comments that helped to improve the presentation of the
paper.

The author was supported by an NSERC Discovery Grant.

1 The argument appearing in [7, Thm. 7.7] and earlier publications by the same authors is incorrect,
compare [12, Sec. 1].
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2 Proof of Theorem 1.1

We will obtain Theorem 1.1 by dualizing the analogous homological result. To
state the latter, we need to introduce some terminology. As already done in Theo-
rem 1.1, we write C(−) and C∗(−) for normalized singular (co)chains with integral
coefficients.

Recall that the normalized singular chain complex of a space X is obtained
from the usual non-normalized one by dividing out the subcomplex of degenerate
simplices. A singular n-simplex is called degenerated if it factors through an (n− 1)-
dimensional one via amap∆n → ∆n−1 between standard simplices that in barycentric
coordinates is given by (t0, . . . , tn) 7→ (t0, . . . , ti + ti+1, . . . , tn) for some 0 ≤ i < n.
Projecting non-normalized to normalized singular chains is a homotopy equivalence,
compare [17, Sec. VIII.6]. The normalized singular cochain complex C∗(X) is the
dual of C(X) with differential

(d γ)(x) = −(−1) |γ | γ(d x) (5)

for γ ∈ Cn(X) and a singular (n + 1)-simplex x.
The chain complex C(X) is a differential graded coalgebra (dgc) with diagonal

and augmentation given by

∆x =
n∑

k=0
x(0 . . . k) ⊗ x(k . . . n) and ε(x) =

{
1 if n = 0,
0 otherwise

(6)

for an n-simplex x. Here x(k1 . . . k2) denotes the face of x with vertices k1, . . . , k2.
We also recall part of the Eilenberg–Zilber theorem, compare [10, Sec. 17]. Given

two spaces X and Y , the shuffle map

∇ : C(X) ⊗ C(Y ) → C(X × Y ) (7)

is a homotopy equivalences of complexes, natural in X and Y . It moreover is asso-
ciative and a morphism of dgcs. Hence for any spaces X1, . . . , Xm we have a natural
quasi-isomorphism of dgcs

C(X1) ⊗ · · · ⊗ C(Xm) → C
(
X1 × · · · × Xm

)
, (8)

again denoted by ∇.
Let Z〈Σ〉 be the Stanley–Reisner coalgebra of Σ dual to Z[Σ], cf. [8, Sec. 8.2]. The

canonical basis for Z〈Σ〉, considered as a Z-module, are the monomials uα indexed
by allowed multi-indices α ∈ Nm. A multi-index α is allowed if it is supported on
some simplex in Σ, that is, if

suppα B { i ∈ [m] | αi > 0 } ∈ Σ. (9)

The degree of uα is 2(α1 + · · · + αm). The structure maps are given by
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∆uα =
∑
β+γ=α

uβ ⊗ uγ, ε(uα) =

{
1 if α = 0,
0 otherwise.

(10)

We consider the tensor product of graded coalgebras

K(Σ) = Z〈Σ〉 ⊗
∧
(v1, . . . , vm), (11)

where each vi is primitive of degree 1. We turn K(Σ) into a dgc by defining

d(uα ⊗ vτ) =
∑
αi>0

uα−i ⊗ vi ∧ vτ (12)

for allowed multi-indices α ∈ Nm and τ ⊂ [m]. Here we have written α − i for the
multi-index that is obtained from α by decreasing the i-th component by 1 as well as
vτ = vi1 ∧ · · · ∧ vik if τ = {i1 < · · · < ik}. For σ ∈ Σ we also write uσ = uα where
α is the indicator function of σ ⊂ [m],

αi =

{
1 if i ∈ σ,
0 if i < σ,

(13)

and we use the abbreviation u∅ = v∅ = u∅ ⊗ v∅ = 1.
Let L(Σ) be the sub-dgc of K(Σ) spanned by all elements uσ ⊗ vτ with disjoint

subsets σ ∈ Σ and τ ⊂ [m]. The dual of K(Σ) is the dga A(Σ), and that of L(Σ) is
B(Σ).

Theorem 2.1 The dgcs C(Z(Σ)), K(Σ) and L(Σ) are quasi-isomorphic, naturally
with respect to inclusions of subcomplexes.

The proof is given in the remainder of this section. Applying the universal coef-
ficient theorem for cohomology then establishes Theorem 1.1.

The following two observations are immediate. We write Σ |i for the restriction
of Σ to the single vertex i ∈ [m]. It contains either the empty simplex only or
additionally the 0-simplex {i}.

Lemma 2.2 For any σ ∈ Σ there are canonical isomorphisms of dgcs

K(σ) =
m⊗
i=1

K(σ|i), L(σ) =
m⊗
i=1

L(σ|i).

Lemma 2.3 Let Σ1, Σ2 be subcomplexes of Σ. There are short exact sequences

0 −→ K(Σ1 ∩ Σ2) −→ K(Σ1) ⊕ K(Σ2) −→ K(Σ1 ∪ Σ2) −→ 0,
0 −→ L(Σ1 ∩ Σ2) −→ L(Σ1) ⊕ L(Σ2) −→ L(Σ1 ∪ Σ2) −→ 0.

Let y be the usual parametrization of S1, considered as a singular 1-simplex.
Choose a singular 2-simplex x in D2 that restricts to y on the edge (12) and maps
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the other two edges (01) and (02) to the identity element e ∈ S1. Then

d y = 0, ∆y = y ⊗ e + e ⊗ y, (14)
d x = x(12) − x(02) + x(01) ∆x = x ⊗ e + x(01) ⊗ x(12) + e ⊗ x (15)
= y, = x ⊗ e + e ⊗ x.

Here x(01) and x(02) drop out because they are degenerate. For this to hold it is
crucial that we work with normalized chains.

We use the singular simplices x and y to define a dgc map

Ψ(Σ) : L(Σ) → C(Z(Σ)). (16)

For m = 1 we map u1 7→ x, v1 7→ y and 1 7→ e ∈ C(S1); this is well-defined by (14)
and (15). For m > 1 and σ ⊂ [m] we set

Ψ(σ) : L(σ) =
m⊗
i=1

L(σ|i)
⊗

Ψ(σ|i )
−−−−−−−→

m⊗
i=1

C(Z(σ|i))

∇
−−−→ C

(
Z(σ|1) × · · · × Z(σ|m)

)
= C(Z(σ)), (17)

using Lemma 2.2 and the fact that the shuffle map is a morphism of dgcs. In the
general case Ψ(Σ) is determined by imposing naturality with respect to inclusions
of subcomplexes. In other words, Ψ(Σ) agrees on L(σ) ⊂ L(Σ) with Ψ(σ), followed
by the inclusion C(Z(σ)) ↪→ C(Z(Σ)).

Lemma 2.4 The map Ψ(Σ) is a quasi-isomorphism of dgcs.

Proof The case m = 1 is settled by a direct verification; we therefore assume m > 1
and proceed by induction on the size of Σ. If Σ has a single maximal simplex σ,
then Ψ(Σ) = Ψ(σ) is a quasi-isomorphism because so are the shuffle map and, by
the Künneth theorem, the tensor product of the maps Ψ(σ|i).

Otherwise we can split Σ up into two smaller complexes Σ1 and Σ2 with inter-
section Σ12 = Σ1 ∩ Σ2. The naturality of Ψ gives us a map between the long exact
sequence corresponding to the short exact sequence for L from Lemma 2.3 and the
Mayer–Vietoris sequence for the CW complexZ(Σ) = Z(Σ1) ∪ Z(Σ2),

H∗+1(L(Σ)) H∗(L(Σ12)) H∗(L(Σ1)) ⊕ H∗(L(Σ2)) H∗(L(Σ))

H∗+1(Z(Σ)) H∗(Z(Σ12)) H∗(Z(Σ1)) ⊕ H∗(Z(Σ2)) H∗(Z(Σ)) ,

Ψ∗+1(Σ) Ψ∗(Σ12) (Ψ∗(Σ1),Ψ∗(Σ2)) Ψ∗(Σ) (18)

where we have written Ψ∗(Σ) instead of H∗(Ψ(Σ)) etc. The five lemma together with
induction implies that Ψ∗(Σ) is an isomorphism. �

An analogous argument shows that the inclusion map

L(Σ) ↪→ K(Σ) (19)
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is a quasi-isomorphism of dgcs.2 If Σ has a single maximal simplex, we combine
Lemma 2.2 with the Künneth theorem. Otherwise we again write Σ = Σ1 ∪ Σ2
and compare the long exact sequences associated to both short exact sequences in
Lemma 2.3.

This completes the proof of Theorem 2.1.

Remark 2.5 Theorems 1.1 and 2.1 remain valid for all generalized moment-angle
complexes ZΣ(Dn, Sn−1) with even n ≥ 2, up to the obvious degree shifts. In
particular, the generators si and ti in (4) are now of degrees |si | = n − 1 and |ti | = n.
The singular n-simplex x is obtained by collapsing all but the last facet of the standard
n-simplex to a point, and y is this last facet.

If n ≥ 3 is odd, then |y | is even and |x | is odd. Proceeding as before, we get a
quasi-isomorphism between C∗(ZΣ(Dn, Sn−1)) and the cdga B̃(Σ)with generators si
of degree n − 1 and ti = d si of degree n as well as relations

si si = si ti = 0, and ti1 · · · tik = 0 if {i1, . . . , ik} < Σ. (20)

Note that the Stanley–Reisner relations are monomial and therefore independent of
the order of the anticommuting variables ti .

In general, such a quasi-isomorphism does not hold for the case n = 1, which we
treat in the following section.

3 Real moment-angle complexes

It is not difficult to adapt our approach to real moment-angle complexes

ZR(Σ) = ZΣ(D1, S0) ⊂ (D1)m. (21)

We start with the homological setting. As a chain complex, we define the ana-
logue L(Σ) of L(Σ) as before, except that now the degrees are |ui | = 1 and |vi | = 0
for all i ∈ [m].

Let us consider the case m = 1 first. Writing u = u1 and v = v1, we turn L(Σ) into
a dgc via the augmentation ε(v) = ε(u) = 0 and the diagonal

∆v = v ⊗ 1 + 1 ⊗ v + v ⊗ v, (22)
∆u = u ⊗ 1 + 1 ⊗ u + u ⊗ v. (23)

Let x be the canonical path from e = 1 to g = −1 ∈ S0, considered as a singular
1-simplex in D1 = [−1, 1], and let y = g − e. Then

d x = y, d y = 0, (24)

2 It is also a homotopy equivalence of complexes. See [7, Lemma 7.10] or [8, Lemma 3.2.6] for an
explicit homotopy inverse.
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∆y = g ⊗ g − e ⊗ e = y ⊗ e + e ⊗ y + y ⊗ y, (25)
∆x = x ⊗ g + e ⊗ x = x ⊗ e + e ⊗ x + x ⊗ y. (26)

Given that for m = 1 we either have Σ = {∅} or Σ = {∅, {1}}, one verifies directly
that the map

ΨR(Σ) : L(Σ) → C(ZR(Σ)), 1 7→ e, v 7→ y, u 7→ x (27)

is a quasi-isomorphism of dgcs. (Since this map is injective, one can also use it to
justify that L(Σ) with the diagonal given above is indeed a dgc.)

For m > 1 we again proceed exactly as before. We use the isomorphism of
complexes

L(σ) =
m⊗
i=1

L(σ|i) (28)

analogous to Lemma 2.2 to define a dgc structure on L(σ) for each simplex σ ∈ Σ
as well as a dgc map L(σ) → C(ZR(σ)). Then we extend both the dgc structure
and the map to the colimit L(Σ) of the L(σ) over all σ ∈ Σ. The same proof as for
Lemma 2.4 shows that the resulting map

ΨR(Σ) : L(Σ) → C(ZR(Σ)) (29)

is a quasi-isomorphism. In this step one uses the obvious analogue of Lemma 2.3
for L instead of L.

We thus have established the following.

Lemma 3.1 The map ΨR(Σ) is a quasi-isomorphism of dgcs.

We now turn to cohomology. The dual of the dgc L(Σ) is the dga B(Σ) with
generators si of degree 0 and ti of degree 1 satisfying the relations

d si = −ti, d ti = 0, (30)

si si = si, ti si = ti, si ti = 0, ti ti = 0,
∏
j∈σ

tj = 0 (31)

for any i ∈ [m] and σ < Σ plus the rule that variables corresponding to distinct
subscripts commute in the graded sense.

The minus sign in d si = ti comes from the general definition of the differential
on the dual of a complex, cf. (5) and [17, eq. (II.3.1)]. For m = 1 we have

(d s)(x) = −(−1) |s | s(d x) = −s(y) = −1 = −t(x). (32)

The minus sign could be removed by replacing ti with −ti , that is, by mapping u
to −x. The minus sign does not appear in [9, p. 512] because of a different sign
convention for the dual complex.

We can sum up our discussion as follows.
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Theorem 3.2 There is a quasi-isomorphisms of dgas

C∗(ZR(Σ)) → B(Σ),

natural with respect to inclusions of subcomplexes.

We in particular recover Cai’s isomorphism of graded rings [9, Secs. 3 & 4]

H∗(ZR(Σ)) = H∗(B(Σ)). (33)

In fact, our proof shares some similarities with Cai’s. This would be even more so
if we worked with cubical singular chains, compare [19]. We also remark that in
the case of real moment-angle complexes it is not necessary to pass to normalized
(singular) chains. (The shuffle map is a morphism of dgcs for non-normalized chains
already, and the formulas (24)–(26) do not need normalization, either.)

We discuss the dga A(Σ) analogous to A(Σ) only for coefficients in Z2. General
coefficients are considered in [13] where Theorem 3.2 is furthermore extended to
real toric spaces, that is, to quotients ofZR(Σ) by freely acting subgroups of (Z2)

m.
In characteristic 2, the dga A(Σ) has the same generators si and ti as B(Σ) and the

relations

d si = ti, d ti = 0, (34)

si si = si, ti si = si ti + ti,
∏
j∈σ

tj = 0 (35)

for i ∈ [m] and σ < Σ, again with the additional rule that variables corresponding to
different subscripts commute. Observe that the ideal generated by the relations (35)
is closed under the differential, so that A(Σ) is a well-defined dga. The projection
map A(Σ) → B(Σ) ⊗ Z2 is again obtained by dividing out the ideal generated by the
products si ti and t2

i for all i ∈ [m], and it can be seen to be a quasi-isomorphism by
an argument analogous to the one given before or to [7, Lemma 7.10].

The Stanley–Reisner ring Z2[Σ], now with generators of degree 1, is contained
in A(Σ) as a sub-dga (with trivial differential). Moreover, if Σ = [m] is the full
simplex, then A(Σ) is the Koszul resolution of Z2 over R = Z2[t1, . . . , tm]. In general,
A(Σ) is the tensor product of this resolution and Z2[Σ] over R, which gives the
additive isomorphism

H∗(ZR(Σ);Z2) = TorR(Z2,Z2[Σ]). (36)

It is not multiplicative for the canonical product on the torsion product, as can be
seen for Σ = {∅} already, cf. [12, Sec. 10.3]: In this case we have Z2[Σ] = Z2, so that
the torsion product is a strictly exterior algebra. On the other hand,ZR(Σ) = (S0)m is
a finite set of points. Hence any cohomology class onZR(Σ) is a Z2-values function
on these points and therefore squares to itself.
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4 Comparison of several product formulas

The aim of this section is to relate the product formula in the cohomology of a (com-
plex) moment-angle complex with Baskakov’s formula [3] and also the formula for
realmoment-angle complexeswith one claimed byGitler andLópez deMedrano [14]
as well as the one given by Bahri–Bendersky–Cohen–Gitler [2] for arbitrary poly-
hedral products.3We note that another description for a class of polyhedral products
including allZΣ(Dn, Sn−1) has been given by Zheng [22, Example 7.12].

We start with a variant of the generalized smash moment-angle complexes intro-
duced in [2, Def. 2.2]. For a closed subset A of a compact Hausdorff space X and a
basepoint ∗ ∈ A we define the space

S(X, A) =
{

x ∈ Z(X, A)
�� xi = ∗ for some i ∈ [m]

}
(37)

and based on it the pair

ẐΣ(X, A) =
(
ZΣ(X, A),SΣ(X, A)

)
. (38)

We then have an isomorphism

H∗(ẐΣ(X, A)) = H∗c
(
ZΣ(X, A)r SΣ(X, A)

)
= H∗c

(
ZΣ(X r ∗, Ar ∗)

)
, (39)

where H∗c(−) denotes cohomology with compact supports, cf. [18, Part I].
We now specialize to

ẐR(Σ) = ẐΣ(D1, S0) (40)

(where the basepoint is e = 1 ∈ S0) and observe that

ZΣ(D1, S0)r SΣ(D1, S0) = ZΣ
(
D1 r {e}, S0 r {e}

)
= ZΣ

(
[−1, 1), {−1}

)
≈ ZΣ

(
[0,∞), {0}

)
= C Σ, (41)

where C Σ is the unbounded cone over the simplicial complex Σ. We think of Σ as
embedded into the hyperplane of Rm with coordinate sum equal to 1.

The analysis of ZR(Σ) in the preceding section carries over to the present case.
One simply ignores the element e ∈ S0 and the counit 1 in the cochain algebra. (Recall
that the cohomology with compact supports is a ring without unit in general.) The
result is as quasi-isomorphism between the relative cochain algebra C∗(ẐR(Σ)) and
the multiplicatively closed subcomplex B̂(Σ) ⊂ B(Σ) spanned by all m-fold products

a1 · · · am where each ai = si or ti . (42)

In particular, there is a multiplicative isomorphism

3 Another cup product formula has been given by de Longueville [15, Thm. 1.1] for complements
of real coordinate subspace arrangements. However, his formula is incorrect in general, see [14,
Sec. 3] for a counterexample.
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H∗c(C Σ) = H∗(C Σ, Σ) � H∗(B̂(Σ)) (43)

where C Σ denotes the bounded cone over Σ with base Σ. Not surprisingly, B̂(Σ)
does not have a unit unless Σ = {∅}.

We now compare B̂(Σ) to the dgas B(Σ) and B(Σ) for complex and real moment-
angle complexes, respectively. In the complex case, we have a direct sum decompo-
sition of complexes

B∗(Σ) =
⊕
α⊂[m]

B̂∗−|α |(Σα) (44)

where Σα is the full subcomplex of Σ on the vertex set α. This gives Hochster’s
formula

H∗(Z(Σ)) =
⊕
α⊂[m]

H∗−|α |c (C Σα) =
⊕
α⊂[m]

H̃∗−|α |−1(Σα), (45)

cf. [7, Thm. 3.2.7], where we have used the additive isomorphism

H∗c(C Σ) = H̃∗−1(Σ) (46)

between the reduced cohomology of the simplicial complex Σ and the cohomology
with compact supports of the unbounded cone over it. (Recall that H̃−1(∅) = Z.)

The additive isomorphism (45) can be made multiplicative in the following way:
For α ∩ β , ∅, the product

H∗c(C Σα) ⊗ H∗c(C Σβ) → H∗c(C Σα∪β), (47)

vanishes. For disjoint α, β we use the cross product via the composition

H∗c(C Σα) ⊗ H∗c(C Σβ)
×
−→ H∗c(C Σα × C Σβ)

ι∗

−→ H∗c(C Σα∪β), (48)

where ι : C Σα∪β ↪→ C Σα × C Σβ is the canonical inclusion. This is Baskakov’s
formula [3], expressed in terms of Cartesian products of cones and cohomology
with compact supports instead of joins of simplices and reduced cohomology.

For a real moment-angle complex we again have a direct sum decomposition

B(Σ) =
⊕
α⊂[m]

B̂∗(Σα), (49)

hence also a Hochster formula

H∗(ZR(Σ)) =
⊕
α⊂[m]

H∗c(C Σα) =
⊕
α⊂[m]

H̃∗−1(Σα). (50)

Note that there are no degree shifts by |α | this time. The isomorphism becomes
multiplicative if one uses the following generalization of the product (48).

Recall that for any open subsetsU = XrA andV = XrB of a compact Hausdorff
space X there is a cup product
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H∗c(U) ⊗ H∗c(V) = H∗(X, A) ⊗ H∗(X, B)
∪
−−→ H∗

(
X, A ∪ B

)
= H∗c(U ∩ V), (51)

cf. also [18, Sec. 7.4].
Now let πα : ZR(Σα∪β) → ZR(Σα) be the (proper) projection that sends the

coordinates zi with i < α to the basepoint e, and analogously for πβ : ZR(Σα∪β) →
ZR(Σβ). We define the ∗-product as the composition

H∗c(C Σα) ⊗ H∗c(C Σβ)
π∗α ⊗π

∗
β

−−−−−→ H∗c(π
−1
α (C Σα)) ⊗ H∗c(π

−1
β (C Σβ))

∪
−−−→ H∗c

(
π−1
α (C Σα) ∩ π

−1
β (C Σβ)

)
= H∗c(C Σα∪β). (52)

In term of the isomorphism (43), this exactly means to multiply representatives lying
in B̂(Σα) and B̂(Σβ) inside B(Σα∪β), which gives elements in B̂(Σα∪β). Note that this
construction reduces to the product (48) if α and β are disjoint.

The ∗-product is visibly graded commutative, something that was not obvious
from the multiplication rules (31). Looking back, we can see that these asymmetric
formulas arose from the non-commutativity of the Alexander–Whitney map and the
fact that only one of the two vertices of the singular 1-simplex x in X = D1 can be
the basepoint e.

The product (52) coincideswith the ∗-product given byBahri–Bendersky–Cohen–
Gitler [2, Thm. 1.4] because the former map can be thought of as induced by the
partial diagonal

∆̂
J,L
I : Ẑ(KI ) → Ẑ(KJ ) ∧ Ẑ(KL) (53)

defined in [2, eq. (1.5)] to construct the ∗-product. In our notation we have K = Σ,
J = α, L = β and I = J∪L = α∪ β. For the comparison one uses that the compactly
supported cohomology of

C Σ = ZΣ(X, A)r SΣ(X, A) (54)

with (X, A) = (D1, S0) is equal to the reduced cohomology of the quotient

Ẑ(K) = Ẑ(K(X, A)) = ZΣ(X, A)
/
SΣ(X, A). (55)

considered in [2].
As remarked earlier, the product formula in [2] is valid for general polyhedral

products. We can recover the version for complex moment-angle complexes if we
replace the pair ẐR(Σ) = ẐΣ(D1, S0) from (40) by ẐΣ(D2, S1). In this case, the
distinction between disjoint and non-disjoint index sets α and β in Baskakov’s
formula is not necessary for the corresponding ∗-product because two monomials of
the form (42) with overlapping index sets always multiply to 0 in B(Σ).

We finally consider another description of H∗(Z(Σ)) in the polytopal case. Let
P be a simple polytope with m facets, and let Σ be the boundary complex of the
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dual simplicial polytope. For any subset α ⊂ [m], let Pα ⊂ P be the union of the
corresponding facets.

Lemma 4.1 There is a ring isomorphism

Θα : H∗(P, Pα) → H∗c(C Σα)

for any α ⊂ [m]. Moreover, the diagram

H∗(P, Pα) ⊗ H∗(P, Pβ) H∗(P, Pα∪β)

H∗c(C Σα) ⊗ H∗c(C Σβ) H∗c(C Σα∪β)

Θα ⊗Θβ

∪

Θα∪β

∗

commutes for all α, β ⊂ [m].

Proof Let Σ′ be the barycentric subdivision of Σ, considered as a triangulation
of ∂P. As a topological space, Σα can be identified with a subcomplex of Σ′, hence
C Σα with a subcomplex of C Σ′ ≈ P. We can also identify Pα with the union of the
closed blocks (or cells) in Σ′ dual to the vertices in α, cf. [20, §64].

We claim that the canonical inclusion of pairs

(C Σα, Σα) → (C Σ
′, Pα) (56)

is a strong deformation retract. Similar to the proof of [20, Lemma 70.1], we can
define a strong deformation retraction that moves the vertex vσ ∈ C Σ′ corresponding
to a simplex σ ∈ Σ to the vertex vσ∩α ∈ C Σα along a straight line, which is inside σ
if σ ∩ α , ∅. If σ has no vertex in α, then vσ is moved to the apex v∅ of the cone,
and v∅ is mapped to itself. We extend the map linearly to each simplex τ ∈ C Σ′. If
τ is contained in σ ∈ Σ, then it is mapped to the cone over the simplex σ ∩ α ∈ Σα
(with the empty simplex ∅ giving the apex). The deformation retraction restricts to
one from Pα onto Σα. We therefore get an isomorphism

Θα : H∗(P, Pα) → H∗(C Σα, Σα) = H∗c(C Σα) (57)

in cohomology.
To show that the above diagram commutes, we work on the chain level. We use

simplicial chains for the left-hand side of (56), which canonically map to singular
chains on the right. We choose a vertex ordering for C Σα∪β such that all vertices
smaller than the apex v∅ are in α and all greater ones in β. (Some may be in both.)
To a simplex σ ∈ C Σα∪β we have to apply the Alexander–Whitney diagonal and
possibly the projections from C Σα∪β to C Σα and C Σβ , which send “superfluous”
vertices to v∅. Afterwards we evaluate the resulting tensor product on a ⊗ b where
a, b ∈ C(P) are cocycles vanishing on Pα and Pβ , respectively.

Because of the way we have ordered the simplices, the following happens: If σ
does not contain v∅, then the result is 0 for both ways of going through the diagram.
Otherwise we obtain (−1) |b | |σ′ | a(σ′) b(σ′′) for both ways where σ′ is the front face
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of σ ending in v∅ and σ′′ the back face starting there. Hence the diagram commutes
in either case. �

As a consequence, we get a ring isomorphism

H∗(ZR(P)) =
⊕
α⊂[m]

H∗(P, Pα) (58)

where the multiplication on the right-hand side is given by the cup products

H∗(P, Pα) ⊗ H∗(P, Pβ) → H∗(P, Pα∪β) (59)

for all α, β ⊂ [m]. This description of the cohomology ring of a real moment-angle
manifold was stated without proof by Gitler and López de Medrano [14, p. 1526].4

The Alexander-dual description for moment-angle manifolds,

H∗(Z(Σ)) =
⊕
α⊂[m]

H̃d+m−|α |−∗(Pα) (60)

where d = dim P−1, has been provided by Bosio–Meersseman [6, Thm. 10.1], with
the product given up to sign by the intersection products

H̃d−k(Pα) ⊗ H̃d−l(Pβ) → H̃d−(k+l)(Pα∩β) (61)

for α, β ⊂ [m] with α ∪ β = [m] and k, l ≥ 0.
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Jelena Grbić and Matthew Staniforth

Abstract We characterise integral Poincaré duality moment-angle complexes ZK
in combinatorial terms of the Alexander duality of the simplicial complex K, and
consequently in algebraic terms of the Gorenstein duality of the Stanley-Reisner
ring Z[K]. We extend Poincaré duality results to certain polyhedral products using
polyhedral join products of simplicial complexes.

1 Introduction

The polyhedral product (X,A)K of topological pairs (Xi, Ai) is a subspace of the
cartesian product

∏
Xi which is specified by the face category of a simplicial complex

K. The homotopy theory of polyhedral product spaces is a rapidly evolving area of
algebraic topology, and the tools of homotopy theory can often be enhanced using
both algebraic and combinatorial techniques when being brought to bear on the study
of polyhedral products.

A polyhedral product of particular interest in Toric Topology is the moment-angle
complex, where (Xi, Ai) = (D2, S1), which comes readily equipped with the action
of a torus. A study of moment-angle complexes and related polyhedral products not
only allows us to gain insight into these spaces themselves, but also provides us with
a framework within which we can investigate an interplay of homotopy theoretic,
algebraic and combinatorial phenomena. In this paper, we investigate the interaction
of duality phenomena in these areas.
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An integral Poincaré duality space X is one whose action of its integral cohomol-
ogy algebra on its integral homology satisfies Poincaré duality, that is, there exists
n ∈ N and [µ] ∈ Hn(X) such that the cap product

[µ]_ (−) : Hl(X) −→ Hn−l(X)

is an isomorphism for all l. Any manifold satisfies Poincaré duality, but not every
Poincaré duality space is a manifold. For example, an integral homology n-manifold,
a space with the same integral local homology groups as Rn, satisfies Poincaré
duality. We characterise Poincaré duality moment-angle complexesZK in terms of
a duality of the underlying simplicial complex K.

A generalised homology n-sphere (GHSn) is a homology n-manifold with the
homology of Sn. In 2015, Fan and Wang [6] characterised the simplicial complexes
K for which the geometric realisation |K | is a GHSn in terms of a duality condition
on the homology and cohomology groups of full subcomplexes ofK, which we refer
to as combinatorial Alexander duality. In Theorem 2.3, we show that the moment-
angle complex ZK being a Poincaré duality space is equivalent to the condition
that K exhibits combinatorial Alexander duality. As a corollary of our result and
Cai’s [5] classification of moment-angle manifolds, we obtain that there are no
Poincaré duality moment-angle complexes which are not manifolds.

Duality phenomena are ubiquitous across mathematics, and are not limited to
topology and combinatorics. A duality which appears in commutative algebra is
Gorenstein duality; a property for a d-dimensionalNoetherian ring R that ismeasured
by the functor Extd−t (−, R). The Avramov-Golod Theorem [3, Theorem 3.4.5],
equivocates Gorenstein duality of the Stanley-Reisner ring k[K], where k is a field,
with Poincaré of its Tor-algebra. The framework of Toric Topology allows us to
investigate an interplay of Gorenstein duality in the integral Stanley-Reisner ring
Z[K] with topological and combinatorial dualities, in the simplicial complex K
and the moment-angle complex ZK respectively. Paraphrasing Stanley’s result [7]
on Gorenstein Stanley-Reisner rings Z[K], in Theorem 2.5 we show that Poincaré
duality in ZK is equivalent to Gorenstein duality in Z[K], realising an interplay
of algebraic, combinatorial and topological dualities. The complements the result
proven by Buchstaber and Panov [4, Theorem 4.6.8] in the case of coefficients over
a field.

As a cartesian product of simplicial complexes is not a simplicial complex, a
polyhedral product (KKK i,LLLi)

K of simplicial pairs (Ki,Li) is not a simplicial com-
plex. A related notion to the polyhedral product exists, where a simplical complex,
known as the polyhedral join product [8], is constructed as a union of join products
of simplicial complexes. The special cases known as substitution complexes and
composition complexes were studied by Abramyan-Panov [1] and Ayzenberg [2],
respectively. In Theorem 2.7, using the polyhedral join product, we specify a family
of polyhedral products which satisfy Poincaré duality.



Duality in Toric Topology 133

2 Duality ofZK and Z[K]

2.1 Preliminaries: The cohomology ofZK

For a positive integer m, a simplicial complex on the vertex set [m] = {1, ...,m} is a
subset of 2[m] which is closed under taking subsets, and contains the empty set. We
allow a simplicial complex K to contain ghost vertices; that is, we allow that there
might exist i ∈ [m] such that {i} < K.

Definition 2.1 Let K be a simplicial complex on vertex set [m], and denote by
(X,A) = {(Xi, Ai)}

m
i=1 an m-tuple of CW-pairs. The polyhedral product is defined as

(X,A)K =
⋃
σ∈K

(X,A)σ ⊆
m∏
i=1

Xi, where (X,A)σ =
m∏
i=1

Yi, Yi =

{
Xi for i ∈ σ
Ai for i < σ.

If (Xi, Ai) = (X, A) for all i, we denote the polyhedral product by (X, A)K . When
(Xi, Ai) = (D2, S1) for all i, the polyhedral product is denoted by ZK , and referred
to as the moment-angle complex on K.

We begin with a description of the integral cellular cochain complex C∗(ZK ;Z)
due to Panov and Buchstaber [4, Section 4.4].

Let dm denote the m-dimensional unit ball in Cm. The disk d1 admits a decom-
position into 3 cells: the basepoint ∗, the boundary circle S, and the 2-cell D.

Taking products, we obtain a cellular decomposition of dm. A cell e of dm is a
product of cells of d of the form

∏m
i=1 Yi , where for each i,Yi is either the basepoint ∗,

the 1-cell S or the 2-cell D. This can be phrased in terms of subsets of [m]. Each cell
of dm corresponds to exactly one pair (J, I) of subsets J, I ⊆ [m], with J∩ I = ∅, and
this pair characterises unique a cell of dm. The subset J corresponds to the 1-cells,
I corresponds to the 2-cells, and [m]\(J ∪ I) corresponds to the 0-cells. We denote
the cell corresponding to the pair (J, I) by κ(J, I). The dimension of such a cell is

dim κ(J, I) = |J | + 2|I |.

This CW-structure on dm induces a sub CW-structure onZK ⊆ dm. For J ⊆ [m],
we denote by KJ = {σ ∈ K | σ ⊆ J} the full subcomplex of K on J. Then,
κ(J\σ, σ) ∈ ZK if and only if σ ∈ KJ .

We denote by C∗(K) and C∗(ZK ) the simplicial and cellular chain complexes
of K and ZK , respectively. Here and throughout, coefficients are taken to be in Z,
and we observe the convention that C−1(K) � C−1(K) � 〈∅∗〉 = Z. There is the
isomorphism of graded modules

h :
⊕
J⊆[m]

C∗(KJ )
�
−−→ C∗(ZK ), σ 7→ κ(J\σ, σ)

where the grading on the left hand side is given by |σ | = 2|σ | + |J | for σ ∈ KJ .
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By theorems of Hochster, Baskakov, Panov and Buchstaber, the map h induces
the isomorphism of cohomology rings [4, Theorem 4.5.7]

h∗ : H∗(ZK ) �
⊕
J⊆[m]

H̃∗(KJ ) (1)

where the ring structure on the right hand side is induced by the cochain-level
Baskakov product

Cp−1(KI ) ⊗ Cq−1(KJ ) → Cp+q−1(KI∪J ), σ
∗ ⊗ τ∗ 7→

{
(σ ∪ τ)∗ if I ∩ J = ∅
0 otherwise

where (σ ∪ τ)∗ is zero if σ ∪ τ < KI∪J , and otherwise denotes the cochain dual to
(σ ∪ τ) ∈ C∗(KI∪J ).

2.2 Poincaré duality ofZK

For d ∈ N, a CW-complex X is an n-Poincaré duality space if there exists a class
[µ] ∈ Hn(X) such that the cap product

[µ]_ (−) : Hl(X) → Hn−l(X)

is an isomorphism for all l. Here, n is referred to as the Poincaré duality-dimension
of X , and [µ] is referred to as the fundamental class.

The characterisation of the structure of the cellular chains and cochains of ZK
in terms of the simplicial chains of full sub-complexes of K allows us to reframe
statements about Poincaré duality ofZK as statements about duality of the simplicial
chains and cochains of full subcomplexes of K.

We start with a description of the cap product inZK , on the cellular level, in terms
of the combinatorics of the simplicial complexK. We then exploit this combinatorial
description to obtain a characterisation of Poincaré duality of ZK in terms of K,
and also in terms of the Stanley-Reisner ring Z[K].

Proposition 2.2 Let κ(J\σ, σ) ∈ C∗(ZK ) and κ(Ĵ\σ̂, σ̂)∗ ∈ C∗(ZK ), correspond-
ing to simplices σ ∈ KJ and σ̂ ∈ KĴ , respectively. Then the cap product is given
by

κ(J\σ, σ)_ κ(Ĵ\σ̂, σ̂)∗ =


0 Ĵ * J
0 σ̂ * σ

κ
(
(J\σ)\(Ĵ\σ̂), σ\σ̂

)
otherwise.

Proof For any CW-complex, the cellular chain-level cup ^ and cap _ products
satisfy
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〈α, φ ^ ψ〉 = 〈α _ φ, ψ〉

for α ∈ Ck+l(ZK ), φ ∈ Cl(ZK ), ψ ∈ Ck(ZK ), where 〈−,−〉 denotes the evaluation
pairing.

Let κ(J\σ, σ) ∈ C∗(ZK ) and κ(Ĵ\σ̂, σ̂)∗ ∈ C∗(ZK ). We write the cap product
κ(J\σ, σ)_ κ(Ĵ\σ̂, σ̂)∗ in terms of generators C∗(ZK ). For L ⊆ [m] and τ ∈ KL ,
the coefficient of a generator κ(L\τ, τ) ∈ C∗(ZK ) in κ(J\σ, σ) _ κ(Ĵ\σ̂, σ̂)∗ is
given by

〈(κ(J\σ, σ)_ κ(Ĵ\σ̂, σ̂)∗), κ(L\τ, τ)∗〉 = 〈(κ(J\σ, σ), κ(Ĵ\σ̂, σ̂)∗ ^ κ(L\τ, τ)∗〉.

Now,

〈(κ(J\σ, σ), κ(Ĵ\σ̂, σ̂)∗ ^ κ(L\τ, τ)∗〉 , 0

is equivalent to
(J\σ, σ) = ((Ĵ\σ̂) ∪ (L\τ), σ̂ ∪ τ).

Thus κ(J\σ, σ) _ κ(Ĵ\σ̂, σ̂)∗ is non-trivial if and only if Ĵ\σ̂ ⊆ J\σ and σ̂ ⊆ σ,
whence κ(J\σ, σ)_ κ(Ĵ\σ̂, σ̂)∗ = κ((J\σ)\(Ĵ\σ̂), σ\σ̂).

We show that n-Poincaré duality spaces ZK are characterised by a duality in
K referred to as combinatorial Alexander duality. A space X is a GHSn if it is a
homology n-manifold with the homology of Sn. Fan and Wang [6, Theorem 3.4]
showed that for K a simplicial complex of dimension n on vertex set [m], K is a
GHSn if and only if

H̃l(KJ ) � H̃n−l−1(K[m]\J )

for all J ⊆ [m], 0 ≤ l ≤ n. In this casewe say thatK has n-dimensional combinatorial
Alexander duality.

We are now ready to give our combinatorial classification of Poincaré duality
moment-angle complexes.

Theorem 2.3 Let K be a simplicial complex on [m] with non-trivial cohomology.
Then ZK is an (n + m)-Poincaré duality space if and only if K satisfies (n − 1)-
dimensional combinatorial Alexander duality.

Proof The sufficient implication is settled by a result of Cai [5, Corollary 2.10]; if
K satisfies (n− 1)-dimensional combinatorial Alexander duality and has non-trivial
cohomology, thenZK is an (n + m)-dimensional manifold.

We show the necessary implication. Let K be a simplicial complex on [m],
with non-trivial cohomology, and suppose that ZK is an (n + m)-Poincaré duality
space. We show first that K has the homology of Sn−1. We subsequently utilise
this fact in showing that a certain chain is a representative of the fundamental class
[µ] ∈ Hn+m(ZK ).

As the simplicial complex K has non-trivial cohomology, for some l, there
exists 0 , [τ] ∈ H̃l(K). Let τ =

∑
j αjτ

∗
j , where τ∗j ∈ Cl(K) are basis cochains,

corresponding to simplices τj . We show that l must equal n − 1.
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The image of [τ] under isomorphism (1) is the class

h∗([τ]) =

[∑
j

Aj κ([m]\τj, τj)∗
]
∈ Hl+m+1(ZK )

where Aj = sgn(τj, [m])αj .
Let 0 , [µ] ∈ Hn+m(ZK ) denote the fundamental class, represented by

µ =
∑

i aiκ(Ji\σi, σi). We evaluate the product

0 , [µ]_ h∗([τ]) =
[∑

i, j ai Aj

(
κ(Ji\σi, σi)_ κ([m]\τj, τj)∗

) ]
∈ Hn−(l+1)(ZK ).

By Proposition 2.2,

κ(Ji\σi, σi)_ κ([m]\τj, τj)∗ , 0

implies that
τj ⊆ σi, and [m]\τj ⊆ Ji\σi

and therefore
Ji = [m] and τj = σi .

Thus, the non-triviality of κ(Ji\σi, σi)_ κ([m]\τj, τj)∗ implies that

κ(Ji\σi, σi)_ κ([m]\τj, τj)∗ = κ(∅, ∅).

Therefore

[µ]_ h∗([τ]) =

[∑
i, j

sgn(τj, [m])aiατj
(
κ(Ji\σi, σi)_ κ([m]\τj, τj)∗

) ]
= [Aκ(∅, ∅)] ∈ H0(ZK )

where A , 0. It follows that h∗([τ]) ∈ Hn+m(ZK ), so that [τ] ∈ H̃n−1(K) by the
definition of the isomorphism h∗.

We have obtained that the (n−1)-st cohomology group ofK is the only non-trivial
cohomology group. It remains to show that H̃n−1(K) � Z. By Poincaré duality, we
have that Hn+m(ZK ) � H0(ZK ) � Z. By (1), H̃n−1(K) includes into Hn+m(ZK ) �
Z as a component of a direct sum. It follows that h∗ : Hn+m(ZK ) → H̃n−1(K) � Z
is an isomorphism. Therefore K has the homology of Sn−1, as claimed. It follows
that the fundamental class [µ] ∈ Hn+m(ZK ) can be represented by a cellular chain
of the form µ =

∑
i aiκ([m]\σi, σi).

We now show thatK has combinatorial Alexander duality, that is, for any J ⊆ [m],
and 0 ≤ l ≤ n + m,

H̃l(KJ ) � H̃n−l−2(K[m]\J ).

By Poincaré duality, we have the sequence of isomorphisms
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J⊆[m]

H̃ l̂−|J |−1(KJ ) � H l̂(ZK ) � Hn+m−l̂(ZK ) �
⊕
L⊆[m]

H̃
(n+m−l̂)−|L |−1(KL)

given by the composition (h∗)−1 ◦ ([µ]_ (−)) ◦ h∗, where [µ] ∈ Hn+m(ZK ) denotes
the fundamental class ofZK . Substituting l̂ = l + |J | + 1,⊕

J⊆[m] H̃
l(KJ ) � Hl+ |J |+1(ZK ) � Hn+m−(l+ |J |+1)(ZK ) �

⊕
L⊆[m] H̃n+m−l−|J |− |L |−2(KL).

Denoting the composite isomorphism by Φ, we show that Φ respects the direct
sum decompositions. In particular, for all J ⊆ [m],

Φ(H̃l(KJ )) ⊆ H̃n+m−l−|J |−([m]−|J |)−2(K[m]\J ) = H̃n−l−2(K[m]\J ).

Suppose that for J ⊆ [m], KJ has non-trivial cohomology. Otherwise, the
statement follows vacuously. Let 0 , [τ] ∈ H̃l(KJ ) with representative cochain
τ =

∑
j αjτ

∗
j . Then

h∗([τ]) =

[∑
j

sgn(τj, J)αj κ(J\τj, τj)∗
]
∈ Hl+ |J |+1(ZK ).

Let [µ] denote the fundamental class of ZK with representative chain µ =∑
i aiκ([m]\σi, σi). Evaluating the cap product gives

[µ]_ hc([τ]) =

[∑
i, j

sgn(τj, J)aiαj κ([m]\σi, σi)_ κ(J\τj, τj)∗
]

=


∑̂
i, ĵ

Aî, ĵ κ([m]\σî, σî)_ κ(J\τĵ, τĵ)
∗


=


∑̂
i, ĵ

Aî, ĵ κ(([m]\σî)\(J\τĵ), σî\τj)


=


∑̂
i, ĵ

Aî, ĵ κ(([m]\J)\(σî\τĵ), σî\τj)

 ∈ Hn+m−(l+ |J |+1)(ZK )

where î, ĵ are the pairs for which the cap product κ([m]\σî, σî) _ κ(J\τĵ, τĵ)
∗ is

non-trivial, and Aî, ĵ = sgn(τj, J)aiαj , 0. The last equality follows since both J and
σi contain τj , and J ∩ σi = τj since the cap product is non-trivial.

The image of [µ] _ h∗([τ]) under the inverse of the homology isomorphism of
(1) is

(h∗)−1([µ]_ hc([τ]) =

∑̂
i, ĵ

Aî, ĵσî\τĵ

 ∈ H̃n−l−2(K[m]\J ).
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We therefore have that under the composition of isomorphisms

(hh)−1 ◦ ([µ]_ (−)) ◦ hc :
⊕
J⊆[m]

H̃l−|J |−1(KJ ) →
⊕
L⊆[m]

H̃(n+m−l)−|L |−1(KL)

the image of each of the groups H̃l(KJ ) is contained in H̃n−l−2(K[m]\J ). These groups
are therefore isomorphic, andK therefore satisfies (n−1)-dimensional combinatorial
Alexander duality.

We obtain a relation between Poincaré duality of moment-angle complexes and
combinatorial Alexander duality of simplicial complexes, and conclude that there
are no Poincaré duality moment-angle complexes which are not manifolds.

Corollary 2.4 Let K be a simplicial complex on [m] with non-trivial cohomology.
Then the following are equivalent:

1. ZK is an (n + m)-Poincaré duality space over Z
2. K has (n − 1)-dimensional combinatorial Alexander duality
3. ZK is an (n + m)-dimension manifold.

2.3 Gorenstein duality of Z[K]

A Noetherian ring satisfies Gorenstein duality if its localisation at every maximal
ideal exhibits a certain form of self duality. In this paper, we relate the Goren-
stein duality of Stanley-Reisner rings of simplicial complexes to Poincare dulaity of
moment-angel complexesZK .

Let K be a simplicial complex on vertex set [m], and R a commutative ring. The
Stanley-Reisner ring is

R[K] = R[v1, ..., vm]/IK

where
IK = (vi1 ...vi j | {i1, ..., ij} < K)

is the Stanley-Reisner ideal, that is, the ideal generated by monomials corresponding
to missing faces of K.

By a result of Stanley [7, Theorem 5.1], the Stanley-Reisner ring Z[K] having
Gorenstein duality is equivalent to K∗ being an integral generalised homology d-
sphere, where K∗ = K{v∈[m] |stK (v),K} is the core of K, and d is the dimension of
K∗.

Notice that ifK has non-trivial cohomology, thenK = K∗. Theorem 2.3 together
with Stanley’s [7, Theorem 5.1] relates Poincaré duality ofmoment-angle complexes,
Gorenstein duality of Stanley-Reisner rings, and combinatorial Alexander duality of
simplicial complexes. We obtain an interplay between algebraic, combinatorial and
topological dualities.
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Theorem 2.5 Let K be a simplicial complex on [m] with non-trivial cohomology.
The following are equivalent:

1. ZK is an (n + m)-Poincaré duality space
2. K has (n − 1) dimensional combinatorial Alexander duality
3. Z[K] has Gorenstein duality.

2.4 The polyhedral join product

We extend our characterisation of Poincaré duality inZK by utilising the polyhedral
join product of simplicial complexes.

Definition 2.6 LetK be a simplicial complex on [m], and for 1 ≤ i ≤ m, let (Ki,Li)

be a simplicial pair on [li], where the sets [li] are pairwise disjoint. The polyhedral
join product is the simplicial complex on vertex set [l1] t ... t [lm], defined as

(KKK i,LLLi)
∗K =

⋃
σ∈K

(KKK i,LLLi)
∗σ where (KKK i,LLLi)

∗σ =
m
∗
i=1
Yi, Yi =

{
Ki i ∈ σ
Li otherwise.

Let l =
∑m

i=1 li where li ≥ 1 ∀i, and let (X,A) be an l-tuple of CW complexes,
partitioned into m distinct li tuples with Xi = {Xi j}

li
j=1 and Ai = {Ai j}

li
j=1. It

was proven by Vidaurre [8, Theorem 2.9] that the polyhedral join product and the
polyhedral product interact in the following way

(X,A)(KKK i,LLLi)
∗K

=
(
(Xi,Ai)

KKK i, (Xi,Ai)
LLLi

)K
. (2)

We make use of this fact in extending our classification of Poincaré duality
moment-angle complexes to polyhedral products whose entries are themselves
moment-angle complexes.

Proposition 2.7 Let K be a simplicial complex on [m], and for 1 ≤ i ≤ m, (Ki,Li)

a simplicial pair on [li]. Suppose that the polyhedral join (KKK i,LLLi)
∗K has non-trivial

cohomology. Then the following are equivalent.

1. The polyhedral product (ZZZKKK i,ZZZLLLi )
K is a Poincaré duality space.

2. The polyhedral join product (KKK i,LLLi)
∗K has combinatorial Alexander duality.

3. The Stanley-Reisner ring Z[(KKK i,LLLi)
∗K )] has Gorenstein duality.

Proof The equivalence of i) and ii) follows from (2) together with Theorem 2.5. The
equivalence of ii) and iii) follows from Theorem 2.5. �
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Example 2.8 1. Let K = ∂∆1, and let (K1,L1) = (K2,L2) = ( , ), where ◦
denotes a ghost vertex. Then (KKK i,LLLi)

∗K is a 6-vertex triangulation of S2, and in
particular is a generalised homology sphere, so that

(ZZZKKK i,ZZZLLLi )
K = (S3 × D2, S3 × S1)∂∆

1

is a Poincaré duality space. Indeed, applying (2), and realising this 6-vertex
triangulation of S2 as ∂∆1 ∗ ∂∆1 ∗ ∂∆1, we have

(S3 × D2, S3 × S1)∂∆
1
= Z∂∆1 ×Z∂∆1 ×Z∂∆1 = S3 × S3 × S3.

2. Generalising the previous example, letK = ∂∆1, and let (K1,L1) = (K2,L2) =

(∂∆n−1 ∗ {v}, ∂∆n ∗ {◦}), where ◦ denotes a ghost vertex. Then (KKK i,LLLi)
∗K is a

(2n + 2)-vertex triangulation of the (n + 1)-sphere, and thus

(ZZZKKK i,ZZZLLLi )
K = (S2n−1 × D2, S2n−1 × S1)∂∆

1

is a Poincaré duality space.

3. Let K = ∂∆1 ∗ { j}, (K1,L1) = (K2,L2) = ({v}, {∅}), and (Kj,L j) = ( , ∅).
Then (KKK i,LLLi)

∗K is a 7-vertex triangulation of S2. Here, (ZK1,ZL1 ) = (S
3,T2)

and (ZK2,ZL2 ) = ((S
3 × S4)#5,T5), so that(
(S3,T2), ((S3 × S4)#5,T5)

)∆1

is a Poincaré duality space.

These examples demonstrate that there are a variety of polyhedral join products
which give rise to Poincaré duality spacesZK . The classification of polyhedral join
products which are generalised homology spheres in the special case of composition
complexes enables us to extend our results on duality. Recall that composition
complexes are the special case of the polyhedral join product where for all i, Ki =

∆ni , ni ≥ 1. Ayzenberg [2, Theorem 6.6] proved that the composition complex
K(K1, ...,Km) = (∆

ni ,Ki)
∗K is a generalised homology sphere if and only if K is a

generalised homology sphere, for any non-ghost vertex i of K, Ki = ∂∆
li−1, and for

any ghost vertex i of K, Ki is a generalised homology sphere.
Utilising this result together with (2), and the fact that the polyhedral product is

a homotopy functor [4, Proposition 8.1.1], we obtain the following corollary.

Corollary 2.9 LetK be a complex on [m]with no ghost vertices, and letK1, ...,Km be
complexes on [l1], ..., [lm], respectively. Then, (CZZZKKK i,ZZZKKK i)

K is a Poincaré duality
space if and only if K is a generalised homology sphere, and for all i, Ki = ∂∆

[li ].

Example 2.10 1. Let K be a simplicial complex on [m]. For 1 ≤ i ≤ m, let li ≥ 2.
Then (CT li ,T li )K is a Poincaré duality space if and only if K consists solely of
ghost vertices.
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2. Let K be a simplicial complex on [m], and for 1 ≤ i ≤ m, let li ≥ 1. Then
(D2li , S2li−1)K is a Poincaré duality space if and only if K is a generalised
homology sphere.
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Bundles over Connected Sums

Lisa Jeffrey and Paul Selick

Abstract A principal bundle over the connected sum of two manifolds need not
be diffeomorphic or even homotopy equivalent to a non-trivial connected sum of
manifolds. We show however that the homology of the total space of a bundle formed
as a pullback of a bundle over one of the summands is the same as if it had that
bundle as a summand. See Theorem 3.3. An application appears in [2].
Examples are given, including one where the total space of the pullback is not
homotopy equivalent to a connected sum with that as a summand and some in which
it is.
Finally, we describe the homology of the total space of a principal U(1) bundle over
a 6-manifold of the type described by Wall’s theorem. It is a connected sum of an
even number of copies of S3 × S4 with a 7-manifold whose homology is Z/k in
degree 4 (and Z in degrees 0 and 7, and zero in all other degrees).

1 Introduction

Let A be a connected sum A � B#C of n-manifolds. See for example Hatcher [1] for
the definition of connected sum. Let F → L → C be a bundle over C where F is a
manifold.

Using the definition we get a map A→ C. Let F → M → A be the pullback of
the bundle F → L → C to A.

Letting B′ denote the complement of a chart in B and setting X ′ := (B′×F)/(∗×F)
we prove the following. There is a cofibration M → L → ΣX ′ for which the
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corresponding long exact homology/cohomology sequences split to give H∗(M) �
H∗(X ′) ⊕ H∗(L) and H∗(M) � H∗(X ′) ⊕ H∗(L). (See Theorems 3.1 and 3.3.)

These results suggest the possibility that M is the connected sum of L and some
manifold X whose (n − 1) skeleton is homotopy equivalent to X ′ but we give an
example to show that this is not necessarily the case. (See Example 3.4). As we shall
see, if M ' X#L then the cofibration sequence X ′→ M → L would have to split to
give M ' X ′ ∨ L, but this fails in Example 3.4.

In the final section, we consider bundles over some 6-manifolds including the
case where A is a symplectic manifold and the M is the total space of its associated
prequantum line bundle. We find that in that case M ' #2r (S3 × S4)#L where L is
a 7-manifold whose nonzero cohomology groups are Z in degrees 0, 7 and Z/k in
degree 4, where r and k are determined by the cohomology of A. (See Theorem 4.1.)

The authors would like to thank Sebastian Chenery who pointed out an error in
an earlier version of this paper.

For topological spaces X and Y , let X � Y denote “X is homeomorphic toY” and
let X ' Y denote “X is homotopy equivalent to Y”.

2 Connected Sums

Let Dn denote the closed disk Dn := {x ∈ Rn | ‖x‖ ≤ 1}.

Lemma 2.1 For any points a, b in the interior ofDn there exists a self-diffeomorphism
f : Dn → Dn such that f (a) = b and f |∂Dn is the identity.

Proof Set f (a) = b. For x , a, let Xx be the point at which the production of the
line segment joining a to x meets ∂Dn. Then x = ta + (1 − t)Xx for some t. Set
f (x) = tb + (1 − t)Xx . �

More generally, we have

Lemma 2.2 Let Up , Vq be subcharts of Dn. Then there exists a self-diffeomorphism
f : Dn → Dn such that the restriction of f to Up is the standard diffeomorphism on
open balls and such that f |∂Dn is the identity.

For a point p in an n-manifold X , define a subchart around p to be an open
neighbourhood Up of p which is diffeomorphic to an open ball in Rn within some
chart of X .

For a connected n-manifold X , let X ′ = X \ Dn denote the complement of a
subchart of X .

Lemma 2.3 Up to diffeomorphism, X ′ is independent of the choice of the subchart
removed.

Proof LetUp ,Uq be subcharts of X . In the special case where there exists a chartW
containing both Ūp and Ūq this follows from the earlier lemma. Then for arbitrary
Up , Uq , find a finite (by compactness) chain of charts connecting Up to Vq , using
connectivity.
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After removal of the subchart there is a deformation retraction X ′ ' X (n−1) to the
(n − 1)-skeleton of X . Let fX : Sn−1 → X ′ denote the attaching map of the top cell
of X .

Suppose that X , Y are simply connected oriented n-manifolds.
In a connected sum, X#Y = X ′ ∪Sn−1×I Y ′ (where the orientation on one of

the inclusions Sn−1 × {0} ↪→ X ′ or Sn−1 × {1} is reversed so that X#Y inherits an
orientation), there is a canonical projection X#Y → X . Similarly we have X#Y → Y .
The canonical projections X#Y → X and X#Y → Y preserve the orientation class.
That is, they induce isomorphisms on Hn( ).

Collapsing the centre of the tube Sn−1× I within X#Y gives amap X#Y → X ′∨Y ′.
If we form (X#Y )′ by choosing the subchart to be removed to be within the centre
of the tube then collapsing to produce X ′ ∨ Y ′ has collapsed a contractible subset
of (X#Y )′ giving a homotopy equivalence (X#Y )′

'
−→ X ′ ∨ Y ′.

By writing Sn = Sn#Sn and considering naturality of the pinch we see that the
homotopy class of the attachingmap of the top cell in X#Y is given by fX#Y = fX+ fY
within πn(X) ⊕ πn(Y ) ⊂ πn(X ′ ∨ Y ′).

Choosing the subchart to be removed from X#Y to be within Y ′ gives a (non-
canonical) inclusion X ′ ↪→ (X#Y )′ with (X#Y )′/X ′ � Y ′. The composite X ′ ↪→
(X#Y )′ → X with the canonical projection is an injective map from a compact
Hausdorff space, so it is a homeomorphism to its image. Composing with the inverse
of this homeomorphism is a left splitting of the inclusion X ′ ↪→ (X#Y )′. Similarly
there is a left splitting of the inclusion Y ′ ↪→ (X#Y )′.

Lemma 2.4 Let M be a closed n-manifold and let A ⊂ M ′ be a closed n-dim
subset of M with ∂ Ā � Sn−1. Then M � N#X for some manifolds N and X with
N ′ = A. Furthermore the canonical projection M ′ → N ′ = A is a left splitting of
the inclusion A ↪→ M ′.

Proof Set X̂ := M \ A. Then X̂ is a manifold-with-boundary with ∂ X̂ = ∂ Ā. Let
T � Sn−1 × I be a tubular neighbourhood of ∂ X̂ in X̂ and set X ′ := X̂ \ T . Then

M = Ā ∪Sn−1×{0} T ∪Sn−1×{1} X ′

so M = N#X where N = A ∪(T×{0}) Dn and X = X ′ ∪(T×{1}) Dn. By construction
A ↪→ M ′→ N ′ = A is the identity on A. �

3 The cofibration sequence associated to a bundle over a
connected sum

For definitions and properties of principal cofibrations used in this section see pp.
56–61 of [3].

Let B, C be closed n-manifolds and let A := B#C. Suppose

F → L → C
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is a (locally trivial) fibre bundle whose fibre F is a manifold. Then L is a manifold
of dimension n + dim(F), which we will denote by m.

Let F → M → A be the pullback of the bundle under the canonical projection
A→ C. The total space M is a manifold of dimension m.

Let L̂ be the total space of the restriction of the bundle to C ′ := C \ chart.
By definition,

A = B′ ∪Sn−1×I C ′

where by construction, the restriction of the bundle to B′ is trivial.
Taking inverse images under the bundle projection M � A gives

M = (B′ × F) ∪(Sn−1×I×F) L̂.

In other words, we have

Sn−1 × I × F �
�

//

��

(B′ × F) //

��

(B′ × F)/(Sn−1 × I × F)

L̂ �
�

// M // M/L̂

where the left square is a pushout.
The space

M/L̂ = (B′ × F)/(Sn−1 × I × F)
=

(
B′/(Sn−1 × I) × F

)
/(∗ × F)

= (B × F)/(∗ × F).

has the same homology as B∨(B∧F). In fact, if F is a suspension then (B×F)/(∗×
F) ' B ∨ (B ∧ F). (Selick, [3] Prop 7.7.8)

Set X ′ := (B′ × F)/(∗ × F).

Theorem 3.1 There is a cofibration diagram

M ′ //

��

L ′ //

��

ΣX ′

M // L // ΣX ′

(i.e. the rows are cofibrations and the right square is a pushout.)

Proof We had
M/L̂ = (B′ × F)/(Sn−1 × I × F)

Also, since L = L̂ ∪Sn−1×I×F F we have

L/L̂ = (Sn × F)/(∗ × F)

(which can be regarded as the special case of the preceding with B = Sn). Thus we
have a diagram



Bundles over Connected Sums 147

X ′

��

L̂ // M //

��

M/L̂ = (B × F)/(∗ × F)

��

L̂ // L //

��

L/L̂ = (Sn × F)/(∗ × F)

��

ΣX ′ ΣX ′

in which the bottom right square is a pushout, the rows and right columns are
cofibrations and which yields the cofibration M → L → ΣX ′. Deleting a chart from
L and deleting its preimage from M gives the first row of the theorem. �

From the long exact homology sequence of the cofibration we get

Corollary 3.2 The lift M → L of the canonical projection preserves the orientation
class. That is, it induces isomorphisms on Hm( ), where m = dim L − dim M .

This Corollary can be proved in other ways such as naturality of the Serre spectral
sequence.

Let f : X → Y be a differentiable map between compact oriented m-manifolds.
Let DX : Hk(X) � Hn−k(X) and DY : Hk(Y ) � Hn−k(Y ) be the Poincaré Duality
isomorphisms. Suppose f has degree λ (multiplies by λ on Hn( )). Then f∗◦DX◦ f ∗ =
λDY . In particular, if f preserves the orientation class (that is, has degree 1) then f ∗

is injective and f∗ is surjective. Applying this to M → L shows

Theorem 3.3 (Decomposition Theorem)
In the long exact homology sequence of the cofibration, the connecting map

∂ : Hq(L) → Hq−1(X ′) is zero. Likewise, in the long exact cohomology sequence,
the map δ : Hq−1(X ′) → Hq(L) is zero. Thus for 0 < q < m we have Hq(M) �
Hq(X ′) ⊕ Hq(L) and Hq(M) � Hq(X ′) ⊕ Hq(L).

This suggests that perhaps there is a manifold X such that M ' X#L where
X is homotopy equivalent to the one-point compactification of X ′, but this is not
necessarily true.

Example 3.4 Consider A = CP2 and write A = B#C where B = CP2 and C = S4

Consider the trivial bundle S7 × S4 → S4. Then M = S7 × CP2; B′ = S2; C ′ = ∗;
A′ = B′ ∨ C ′ = S2 while

M ′ = (F × A)′ = (F × A′) ∪F′×A′ (F ′ × A)

= (S7 × S2) ∪∗×S2 (∗ × CP2) = CP2 ∨ S7 ∨ S9

and L = S4 × S7 so L ′ = S4 ∨ S7. Our cofibration is

(S2 × S7)/(∗ × S7) → M ′→ S4 ∨ S7
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which becomes S2 ∨ S9 → CP2 ∨ S7 ∨ S9 → S4 ∨ S7. This does not split so in this
example M does not become homotopy equivalent to X#L for any X .

4 Bundles over 6-manifolds

Let A be a 6-manifold such that H∗(A) is simply connected and torsion-free. Suppose
H2(A) = Z.

Let x ∈ H2(A) be a generator and let V ∈ H6(A) be the volume form. Then
x3 = kV for some integer k.

By Wall [4], we can write A = B#C where B = (S3 × S3)#r for some r and C is a
simply connected torsion-free 6-manifold with H3(C) = 0 and H2(C) = Z.

Although M is a S1 bundle over A, it does not immediately follow from Wall’s
result that M also admits a decomposition as a connected sum. We shall see that this
is in fact true. This is the content of our Theorem 4.1 below.

Associated to x there are complex line bundles over A and C classified by x. Let
M and L denote the sphere bundles of these line bundles. Then there are S1-bundles
S1 → M → A and S1 → L → C. Note that the long exact homotopy sequence tells
us that π1(M) = Z and πq(M) = πq(A) for q , 1.

As in Ho-Jeffrey-Selick-Xia [2] we calculate that the cohomology of the 7-

manifold L is given by Hq(L) =


Z q = 0, 7;
Z/k q = 4.
0 otherwise.

Theorem 4.1 We have
M ' #2r (S3 × S4)#L,

where the homology of the space L is specified above.

Proof In the notation of the preceding section applied to S1 → M → A we have
B′ = ∨2rS3, L ′ = P4(k) and

X ′ := (B′ × S1)/(∗ × S1) ' B′ ∨ (B′ ∧ S1) ∨2r (S3 ∨ Σ3S1)

where Pn(k) denotes the Moore space Sn−1 ∪k en. Thus our cofibration sequence
becomes

∨2r (S3 ∨ Σ3S1) → M ′→ P4(k)

or equivalently
∨2r (S3 ∨ S4) → M ′→ P4(k).

The composition of the bundle map M ′ → A′ with the canonical projection
A′→ B′ provides a splitting of the restriction of

∨2r (S3 ∨ S4) → M ′

to ∨2rS3.
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For degree reasons, the cofibration

∨2r (S3 ∨ S4) → M ′→ P4(k)

is principal, induced from some attaching map P3(k) → ∨2r (S3 ∨ S4) whose image
(for degree reasons) lands in ∨2rS3. Since the restriction of ∨2r (S3 ∨ S4) → M ′

to ∨2rS3 splits, this implies that this attaching map is trivial. Thus the cofibration
splits to give

M ′ ' ∨2r (S3 ∨ S4) ∨2r P4(k).

To obtain M from M ′ we attach the top cell giving

Hq(M) = Hq(M ′) ⊕ Hq(S7) =


Z q = 0, 7
Z2r q = 3
Z2r ⊕ Z/k q = 4
0 otherwise.

Letting Ṽ denote the generator of H7(M), using Poincaré duality we can pair the
generators 〈u1, u2, . . . u2r 〉 of Z in degrees 3 with the generators 〈v1, v2, . . . v2r 〉 of
Z in degrees 4 so that uivj = δi jṼ . If we reduce to Z/k coefficients, there is also a
nonzero cup product ab where a, b are generators of H3(M;Z/k) and H4(M;Z/k)
respectively.

Examining the cohomology of M , we see that

H∗(M) = H∗
(
#2r (S3 × S4)#L

)
where Hq(L) =


Z q = 0, 7
Z/k q = 4
0 otherwise.

The attaching maps fM and f#2r (S3×S4)#L are both

[ι31, ι
4
1] + [ι

3
2, ι

4
2] + . . . + [ι

3
r, ι

4
r ] + fL

where the Whitehead product [ι3, ι4] is the attaching map

fS3×S4,

and so
M ' #2r (S3 × S4)#L.
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The SO(4) Verlinde formula using real
polarizations

Lisa Jeffrey and Kaidi Ye

Abstract We adapt the construction of Jeffrey and Weitsman [5] to interpret the
SO(4) Verlinde formula through a real polarization.

1 Introduction

TheVerlinde formula [9] is a formula for the dimension of the geometric quantization
of the spaceMg(G) of conjugacy classes of representations of the fundamental group
of an oriented compact, closed 2-manifold of genus g into a compact Lie group G.
The quantization is the dimension of the space of holomorphic sections of the k-th
power of a holomorphic line bundle L overMg(G). This formula may be expressed
as a trigonometric polynomial (see [12] and [13]), but may also be defined as the
number of integer labellings of a collection of non-intersecting simple closed curves
on Σg. The Verlinde formula is important because a basis for the quantization is the
major ingredient in any physical calculations.

A system of integer labellings of curves corresponds to integer values of the
moment maps for torus actions on the spaceMg(G). In toric geometry the integer
values of the moment map for the torus action enumerate a basis for the holomorphic
sections of the prequantum line bundle. A prequantum line bundle L is a complex
line bundle over a symplectic manifold (M, ω) with a connection whose curvature is
2πiω. For the definition of a prequantum line bundle, see for example Chapter 11 of
[3].
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The paper of Jeffrey andWeitsman [5] exhibited a real polarization on the moduli
space Mg(SU(2)) of gauge equivalence classes of flat SU(2) connections on a
compact oriented 2-manifoldΣg without boundary. If k is a nonnegative integer, these
authors then used this real polarization to interpret the SU(2) Verlinde formula (a
formula specifying the dimension of the level k quantization) using a real polarization
(for example, as described by Sniatycki [8]). A basis for the level k quantization
(which for a complex polarization is defined as the space of holomorphic sections
of Lk , where L is the prequantum line bundle overMg(SU(2)) is parametrized by
labelling the closed curves in a trinion decomposition for the surface by integers
between 0 and k subject to certain conditions. The construction of [5] interprets the
geometric quantization of the SU(2) moduli space as an analogue of the geometric
quantization of a toric manifold.

In this article we give a similar interpretation for the Verlinde formula for SO(4).
Our construction below extends the analogy with toric geometry to this case. We
make use of the fact that SU(2) × SU(2) is a double cover of SO(4).

Suppose G is a compact Lie group with maximal torus T . For a closed surface of
genus g, the choice of a trinion decomposition1 provides (3g−3)dim(T) independent
variables. The dimension of the moduli space is (2g − 2)dim(G). This means the
number of independent variables is equal to half the dimension of the moduli space
of gauge equivalence classes of flat connections if and only if dim(G) = 3 dim(T).
This is true for G = SU(2) or SU(2) × SU(2), and also SO(4). These are examples
of semisimple groups for which this relation holds.

Goldman [4] proved that if two simple closed curves in the surface Σg do not
intersect, then the functions determined by the holonomies around these curves
Poisson commute. See section 5 for detailed discussion. Hence the variables given
by the holonomies along these curves provide the structure of a toric manifold. The
Hamiltonian flows of these functions are only well defined on an open dense set,
namely the set where none of the simple closed curves in the trinion decomposition
are sent to the center Z(G) under the representation. On this open dense set, the
integrable system specified by the holonomies around the curves in the trinion
decomposition has the structure of a toric manifold.

For every circleCj ( j = 1, . . . , 3g−3) in the trinion decomposition of Σg, we label
it with two nonnegative integers lj, l ′j where lj, l ′j ∈ {0, 1, . . . , k} for k a nonnegative
integer which is the power of the prequantum line bundle over the moduli space.

For a complex polarization, this characterization of the SO(4) Verlinde formula
was already known – see for example [2] (p. 711) and [6] for the SO(3) case. Our
contribution is to recover this formula using a real polarization.

Definition 1.1 A trinion (also called a pair of pants) is a two-dimensional disc with
two holes. We can denote a pair of pants as

D = {z ∈ C : |z | ≤ 2} − ({z : |z − 1| <
1
2
} ∪ {z : |z + 1| <

1
2
}).

1 The terms “trinion” and “trinion decomposition” are defined at the end of this section.
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Definition 1.2 A trinion decomposition of Σg is the choice of 3g − 3 disjoint simple
closed curves γ1, . . . , γ3g−3 in Σg so that Σg is formed as the union of a collection
of trinions with pairs of boundary components joined along the γj .

Fig. 1: Trinion decomposition and its integer labelling, with the corresponding labelled dual graph

The Verlinde formula for SO(4) tells us that these labellings must satisfy the
following conditions. Choose an ordering of all the boundary circles of the trinion
decomposition (in other words parametrize these by integers between 1 and 3g − 3).
Suppose m, n, p are the values of this index for the boundary components of one of
the trinions in the trinion decomposition. Then

lm + l ′m ∈ 2Z

ln + l ′n ∈ 2Z

lp + l ′p ∈ 2Z

|lm − ln | ≤ lp ≤ min{2k − lm − ln, lm + ln},
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|l ′m − l ′n | ≤ l ′p ≤ min{2k − l ′m − l ′n, l
′
m + l ′n},

lm + ln + lp ∈ 2Z,

l ′m + l ′n + l ′p ∈ 2Z.

A choice of trinion decomposition for Σg may be represented by a trivalent graph,
where each vertex represents a trinion. Two vertices are joined by an edge if the cor-
responding trinions share a common boundary circle. A labelling is an assignment of
an integer in [0, k] to each boundary circle of the trinion decomposition, equivalently
to each edge in the trivalent graph. We impose a collection of inequalities for each
trinion. Equivalently we impose inequalities on the labellings of any three edges of
the trivalent graph which have a common vertex.

For example, consider the case g = 3. Figure 1 shows the integer labelling. The
integer labelling of the boundary loops of every trinion Di, i = 1, 2, 3, 4 must satisfy
the above constraints.

This paper is organized as follows. In Section 2 we describe real polarizations.
In Section 3 we describe relations between several moduli spaces. In Section 4 we
describe the moduli space of a trinion. In Section 5 we describe the period of a
Hamiltonian function. In Section 6 we describe the Verlinde formula.

Acknowledgements This question was originally suggested to the authors by Jonathan Weitsman,
and he provided key suggestions during the project. The authors would like to acknowledge their
gratitude to Jonathan Weitsman for his guidance and insight. The first author is partially supported
by an NSERC Discovery Grant.

2 Real Polarization

Let G = SO(4) and let Σg be a compact, oriented two-manifold with genus g. Let
P = Σg×G be a fixed trivial G-bundle on Σg.We express the space of flat connections
as

AF = {A ∈ Ω1(Σg) ⊗ so(4)|FA = 0}

where the curvature of the connection A is defined as

FA = dA + A ∧ A.

This is a subspace of the space of all connections, denoted

A = {(a, b)} = Ω1(Σg) ⊗ su(2) ⊕ Ω1(Σg) ⊗ su(2)

We are using the fact so(4) � su(2) ⊕ su(2) for the above, where a and b are Lie
algebra valued 1-forms.
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Definition 2.1 Let Ci ⊂ Σ
g be a closed, oriented simple curve. Define

f̃ : AF −→ R2

f̃ : (a, b) 7→ ( f̃ aCi
, f̃ bCi
)

where
f̃ aCi
=

1
2

tr(HolCi (a)) (1)

f̃ bCi
=

1
2

tr(HolCi (b)). (2)

These functions denote the holonomies of the connection a and b about the closed
curve Ci .

Then we may define the polarization map based on [5] and [10] via the double
covering map Φ : SU(2) × SU(2) → SO(4) as follows.

F̃ : AF → R
6g−6

F̃ : (a, b) 7→ ( f̃ aC1
, f̃ bC1

, ...., f̃ aC3g−g
, f̃ bC3g−3

).

F̃ descends to

F :Mg(SO(4)) → R6g−6

F : [(a, b)] 7→ ( f aC1
, f bC1

, ...., f aC3g−3
, f bC3g−3

). (3)

Here a and b are su(2) valued 1-forms on Σg, and [(a, b)] denotes the equivalence
class of (a, b) in Mg(SO(4)) (the equivalence class under the action of the gauge
group).

Here

1. Both f a
Ci

and f b
Ci

descend from f̃ a
Ci

and f̃ b
Ci

and we define f̃ a
Ci
, f̃ b
Ci

in equations
(1) and (2). This is because the trace of the holonomy of a flat connection is
unchanged under a gauge transformation.

2. We define the map by

Φ : SU(2) × SU(2) −→ SO(4)

Φ : (u, v) 7→ Ru,v(·)

where u, v ∈ SU(2) and

Ru,v : q 7→ u · q · v−1, q ∈ H. (4)

Note that we identify SU(2) as the collection of unit quaternions, in other words
SU(2) = {q : ‖q‖ = 1, q ∈ H}. Here H denotes the space of quaternions, which
is isomorphic to R4.
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We have the following properties.

a. The map Ru,v(·) represents all possible rotations in the space H. If we
identify H = {a+ bî + c ĵ + dk̂} with R4, then Ru,v(·) represents all possible
rotations in R4.

b. ThemapΦ is a group homomorphism from the product group SU(2)×SU(2)
to SO(4) with kernel {(1, 1), (−1 − 1)}.

c. The first group isomorphism theorem implies that SU(2)×SU(2)
{(1,1),(−1−1)} � SO(4).

d. By knowing the kernel of Φ, we may represent G as the following:

G = {[u : v]} (5)

where u, v ∈ SU(2) and the notation [u : v] denotes the equivalence class of
the ordered pair (u, v) under the equivalence relation

(u, v) ∼ (−u,−v). (6)

(The notation is analogous to the usual notation for real projective space
RPn as a quotient of Sn by the diagonal action of multiplication by −1.)

3. The set {Ci}
i=3g−3
i=1 is a collection of closed oriented curves in Σg which specifies

a trinion decomposition of Σg (or equivalently a trivalent graph, as we explained
above).

1. From now on, let G = SO(4) and let Σg be a compact, oriented two-manifold
with genus g. Let P = Σg ×G be a fixed trivial G-bundle on Σg. We express the
moduli space of flat SO(4) connections on Σg by

Mg(SO(4)) = AF/G

where G = C∞(Σg,G) and G acts onAF by Ag = g−1 Ag+ g−1dg, g ∈ G. Since
the bundle is trivial, the connection A may be written as a Lie algebra valued
1-form on Σg so that the curvature FA vanishes.

2. We can also representMg(SO(4)) as

Hom(π1(Σ
g),G)/G

where Hom(π1(Σ
g),G) =

{
(a1, b1, ..., ag, bg) ∈ G2g :

∏g
i=1 aibiai−1bi−1 = 1

}
and G acts on Hom(π1(Σ

g),G) by simultaneous conjugation. Here the 1 on the
right denotes the rank 4 identity matrix. We can use Φ and the notation in (5) to
rewrite Hom(π1(Σ

g),G)/G as follows.
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Mg(SO(4)) =
{(
[u1 : v1], [p1 : q1], . . . , [ug : vg], [pg : qg]

)
∈ G2g |

g∏
j=1
[u j : vj][pj : qj][u j : vj]−1[pj : qj]

−1 = 1
}
/G. (7)

If we use the descriptionMg(SO(4)) = Hom(π1(Σ
g),G)/G, then we can rewrite

the map F̃ as

F̃ : Hom(π1(Σ
g),G) −→ R6g−6

F̃ = (θ̃1, θ̃
′

1...θ̃3g−3, θ̃
′

3g−3)

where the pair

(θ̃i, θ̃
′

i) : Hom(π1(Σ
g),G) −→ R2

(θ̃i, θ̃
′

i) : ρ([Ci]) 7→ (
1
2

Tr(ui),
1
2

Tr(vi))

and
ρ([Ci]) ∼

[
ui 0
0 vi .

]
,

Here ∼ means “is conjugate to”. Here u j, vj ∈ SU(2).

The map (θ̃i, θ̃
′

i) descends to (θi, θ
′

i) : Mg(SO(4)) −→ R2 and F̃ descends to
F :Mg(SO(4)) −→ R6g−6.

Now we can define the holonomy angle as

Definition 2.2 The holonomy angle pair (θi, θ
′

i) of curve Ci from a trinion decom-
position is

θi = cos−1(
1
2

tr(ui))

and
θ
′

i = cos−1 (
1
2

tr(vi))

where [ui : vi] ∈ G and we make cos−1(x) to take values in [0, π] with x ∈ [−1, 1].
This is the choice made in the paper [5]. It is the choice of a connected interval U
for which the function cos : θ 7→ cos(θ) gives a bijection from U to [−1, 1].

cos(π − θi) = − cos(θi)

and
cos(π − θ

′

i) = − cos(θ
′

i)

with condition θi + θ
′

i ≤ π.
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We can define a map Θ̄ by using the holonomy angle pairs.

Definition 2.3 The map Θ̄ :Mg(SO(4)) → R6g−6 is defined by

Θ̄ = (θ1, θ
′

1, ..., θ3g−3, θ
′

3g−g) :Mg(SO(4)) → R6g−6. (8)

The components of this map have Hamiltonian flows with constant periods. In
other words these components form moment maps for circle actions. They are only
defined where the component functions are differentiable (so that their Hamiltonian
flows can be defined).

3 The Relation Among Moduli Spaces for
G = SU(2), SU(2) × SU(2), SO(4) over Σg

Let the moduli space of conjugacy classes of representations of the fundamental
group of Σg be

Mg(SU(2)) =
{
(u1, v1, . . . , ug, vg) ∈ SU(2)2g |Πg

i=1uiviui−1vi
−1 = 1

}
/SU(2),

and for G = SU(2) × SU(2) we define

Mg(SU(2) × SU(2)) =

{
(

[
u1 0
0 v1

]
,

[
u′1 0
0 v ′1

]
, . . . ,

[
ug 0
0 vg

]
,

[
u′g 0
0 v ′g

]
) |[

Π
g
i=1uiu′iui

−1u′i
−1 = 1 0

0 Π
g
i=1viv

′
i vi
−1v ′i

−1 = 1

]
ui, vi, u′i, v

′
i ∈ SU(2)

}
/(SU(2) × SU(2))

Recall that for G = SO(4) we can define the moduli space in terms of SU(2) by
using the double covering map Φ and (5) as follows

Mg(SO(4)) =

{(
[u1 : v1], [p1 : q1], . . . , [ug : vg], [pg : qg]

)
:

Π
g
i=1uipiui−1pi−1 = Π

g
i=1viqivi

−1qi−1 = 1

}
/G.

It is clear that

Mg(SU(2) × SU(2)) =Mg(SU(2)) ×Mg(SU(2))

and the relation betweenMg(SU(2)×SU(2)) andMg(SO(4)) is described as follows.



The SO(4) Verlinde formula using real polarizations 159

Proposition 3.1 There is a surjective map φ from the moduli space Mg(SU(2) ×
SU(2))(ε = 1)

∐
Mg(SU(2) × SU(2))(ε = −1) to Mg(SO(4)). In other words,

the map φ : Mg(SU(2) × SU(2))(ε = 1)
∐
Mg(SU(2) × SU(2))(ε = −1) −→

Mg(SO(4)) is surjective.

Proof: Let P = SU(2) × SU(2) and G = SO(4). Let Φ again be the double covering
map from P to G. By the first isomorphism theorem, we know P/ker(Φ) � G. We
use P,G to rewriteMg(SU(2) × SU(2)) as follows.

Mg(SU(2) × SU(2)) = Hom(π1(Σ
g),P)/P. (9)

Let ε = ±1. Let M̃g(SU(2) × SU(2))(ε) = {ρ ∈ Hom(F2g,P)|ρ(c) = εI}. Here
c is the product of commutators of a chosen collection of generators {aj, bj, j =
1, . . . , g} for the free group F2g on 2g generators, which is the fundamental group of
Σg \ {pt}. Also I denotes the identity element of SU(2) × SU(2). Let M̃g(SO(4)) =
Hom(π1(Σg),G), and x be a point in M̃g(SO(4)). For every g ∈ G, there is q ∈ P
such that Φ(q) = g, since Φ is a surjective map.

g · x = gxg−1 = Φ(q)xΦ(q)−1.

Now, we want to define the following maps. LJ 22/6

φ̃ : M̃g(SU(2) × SU(2))(ε) → M̃g(SO(4))

by
φ̃ : ψ 7→ Φ

2g(ψ) (10)

where Φ2g(ψ) = (Φ(a1),Φ(b1), ...,Φ(ag),Φ(bg)).
The image of this map is in M̃g(SO(4)), since

(a1, b1, ..., ag, bg) → (Φ(a1),Φ(b1), ...,Φ(ag),Φ(bg))

so that

Π
g
i=1Φ(ai)Φ(bi)Φ(ai)

−1
Φ(bi)−1 = Φ(Π

g
i=1aibiai−1bi−1) = Φ(ε) = 1. (11)

We have

φ : M̃g(SU(2) × SU(2))(ε)/P→ M̃g(SO(4))/{P/ker(Φ)} (12)

φ : [ψ] 7→ [φ̃(ψ)]

where [ψ], [φ̃(ψ)] are the orbits with representative elements ψ, φ̃(ψ).

Note that

φ̃−1(M̃g

(
SO(4)

)
) = M̃g(SU(2) × SU(2))(1) t M̃g(SU(2) × SU(2))(−1).
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If we use φ̃(ψ) = Φ2g(ψ) for the map in (12), we can rewrite (12) as:

φ : [ψ] 7→ [Φ2g(ψ)]. (13)

We want to show (a) φ is well defined and (b) it is a surjective map.
Part (a): Proof that φ is well-defined.

Let [ψ] ∈ Mg(SU(2) × SU(2))(ε) and ψ, ψ ′ are both in the orbit [ψ]. In other
words, ∃q ∈ P, such that qψq−1 = ψ ′.We want to show φ([ψ]) = φ([ψ ′]).

The fact that φ([ψ]) = φ([ψ ′]) means they are in the same orbit inMg(SO(4)).
We will show that ∃δ ∈ G such that δφ̃(ψ)δ−1 = φ̃(ψ ′)

Let δ = Φ(q).We check the following.

δφ̃(ψ)δ−1 = Φ(q)φ̃(ψ)Φ(q)−1 = Φ(q)φ̃(ψ)Φ(q−1). (14)

Recall that φ̃(ψ) = Φ2g(ψ), then we have that the RHS of (14) is

Φ(q)Φ2g(ψ)Φ(q−1)

or

Φ
2g(qψq−1)

(14) shows
Φ

2g(qψq−1) = Φ2g(ψ ′) = φ̃(ψ ′).

Now we can confirm that φ([ψ]), φ([ψ ′]) are in the same orbit.
Part (b): Proof of surjectivity:
DefineMg(SU(2)×SU(2))(ε) to be the quotient of ˜Mg(SU(2) × SU(2))(ε) under

the action of G by conjugation. The equation (11) shows that the product of commu-
tators is I as long as the product of the preimages of commutators is equal to ε I where
ε ∈ {±1} and I is the identity element. Hence the map φ̃ is surjective. We know
Φ2g is surjective as well. We have clearly defined the map φ, and we have proved
φ is well-defined. Thus, the surjectivity of φ can be seen as follows. Pick any orbit
inMg(SO(4)) with representative element h (in other words [h] ∈ Mg(SO(4)). By
the surjectivity of φ̃, we know ∃ψ ∈ ∐

ε M̃g(SU(2) × SU(2))(ε) such that φ̃(ψ) = h,
where ε = ±1. So the orbit of ψ will be mapped to the orbit of h under the map φ. �

4 Moduli Space of a Trinion for G = SO(4)

Let (θi, θ
′

i) be the holonomy angle pair that corresponds to the boundary circle Ci of
a trinion D, where i = 1, 2, 3.

The moduli space of representations of the fundamental group of a trinion D can
be represented as follows.
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M(D) = Hom(π1(D),G)/G =
{
(s1, s2, s3)|si ∈ G, s1s2s3 = 1

}
/G,

where G acts on Hom(π,G) by simultaneous conjugation.
The map Θ :M(D) → [0, π]6 ⊂ R6 can be expressed as

Θ = (θ1, θ1
′

, θ2, θ2
′

, θ3, θ3
′

) :M(D) → [0, π]6 ⊂ R6.

Theorem 4.1 Let θ j, θ ′j ∈ [0, π]. The map Θ is a surjective map fromM(D) to its
image. Its image is the product of two polytopes

∆1 = {θ2, θ2, θ3 : |θ1 − θ2 | ≤ θ3 ≤ min(θ1 + θ2, 2π − (θ1 + θ2)), θi ∈ [0, π]} (15)

and

∆2 = {θ
′
1, θ
′
2, θ
′
3 : |θ ′1 − θ

′
2 | ≤ θ

′
3 ≤ min(θ ′1 + θ

′
2, 2π − (θ

′
1 + θ

′
2)), θ

′
i ∈ [0, π]}. (16)

Proof: For the image of Θ, we need to find the conditions on conjugacy classes [si]
so that [s1][s2][s3] = 1 where si ∈ G. We can represent s1s2s3 = 1 as

R(u1, v1)R(u2, v2)R(u3, v3) = 1

where R was defined in (4) above and ui=1,2,3, vi=1,2,3 ∈ SU(2). We denote the rank
4 identity matrix by 1 . This implies

u1u2u3 = 1 = v1v2v3 (17)

or
u1u2u3 = −1 = v1v2v3. (18)

For equation (17), the situation is exactly the same as in the SU(2) case in [5], which
gives us (15). The proof of equation (15) in [5] applies to prove equation (17). It also
proves equation (18) by replacing θ3 by π − θ3 (in the notation of that article).

This means the solutions of equation (17) are in bijective correspondence with
(15), while those of (18) are also in bijective correspondence with (15) via θ3 7→

π − θ3.
These inequalities define a tetrahedron with the following 4 vertices.

V1 = (0, 0, π),V2 = (π, 0, 0)

V3 = (π, π, π),V4 = (0, π, 0).

Compare the tetrahedron ∆2 defined by V1,V2,V3,V4 with the tetrahedron ∆1
defined by proposition 3.1 in [JW] with vertices

Q1 = (0, 0, 0),Q2 = (0, π, π),
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Q3 = (π, 0, π),Q4 = (π, π, 0).

We found they are clearly isomorphic as one can transform into the other by a
composition of rotations and translations, in other words, a rigid motion.

Fig. 2: The green tetrahedron is ∆1 ,the red tetrahedron is ∆′′′1 ,and the orange tetrahedron is ∆2.
We created this diagram by using https://www.geogebra.org/3d

We can always obtain ∆2 by applying a sequence of cubic lattice preserving
isometries on ∆1 as follows.

1. Reflecting ∆1 with respect to the θ1θu2 plane to get ∆′1
2. Reflecting ∆′1 with respect to the θ1θu3 plane to get ∆′′1
3. Reflecting ∆′′1 with respect to the θ1θu2 plane to get ∆′′′1

4. Translating ∆′′′1 along the θu2 axis toward the positive direction by π unit to get
∆′′′′1

Then ∆′′′′1 is the same as ∆2.
If we re-scale everything by k

π and k ∈ Z>0, then isometry (d) is just translation
by k units and it preserves our lattice points. After this scaling, our lattice points are
Z3.

The above equation gives one V1,V2,V3,V4.
After the quotient, equation (18) gives us (15) and (16) as well. �
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5 Period of the Hamiltonian flow

The period of the Hamiltonian flow associated to each loop C (in other words C is
a simple closed curve) can be obtained by studying the period of the Goldman flow
for each loop C.
We may define the Goldman flow for Hom(π1(Σg), SO(4)) as follows.
In the paper [4], section 1.1 Goldman assumes we have an invariant function f :
G→ R where f is a C1 function such that f (gAg−1) = f (A) for all g, A ∈ G and G
is a matrix Lie group with finitely many components. An associated function F for
f is a function F : G −→ g with the following properties. For X in the Lie algebra
of G, and < ·, · > an inner product on this Lie algebra invariant under the adjoint
action, we have

< X, F(A) >= dfA(X) =
d
dt
|t=0 f (A exp(tX))

It follows that if f (g) = tr(g), then

F(A) =
1
4
(A − A−1).

The computation of the above F is in [4] Cor 1.9.
For our case, we use cos−1 composed with the trace function for the holonomy angle
pair instead of just the trace function for our invariant function. The details are as
follows. Let θC

G
: G → R denote the invariant function that is associated with the

loop C. Let Γ : [−1, 1] × [−1, 1] → [0, π] × [0, π] be the map

Γ(x, y) =
(
cos−1(x), cos−1(y)

)
,

and
δ : R2 → R

δ : (x, y) 7→ x + y

We pick S ∈ T (where T is the maximal torus of G) and denote S in the same
fashion as we did in (5). That is

S = [s : s′] ∈ G

and s =
[
eiθi 0
0 e−iθi

]
, s
′

=

[
eiθ

′

i 0
0 e−iθ

′

i

]
∈ T ⊂ SU(2).

We can write θC
G
as follows.
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θCG(S) = δ ◦ Γ([
1
2

tr(s),
1
2

tr(s
′

)])

= δ ◦ Γ ◦ (cos(θi), cos(θ
′

i))

= θi + θ
′

i

(19)

As a result, we should modify its associated function accordingly.

< X, Fc(S) > =
d
dt
|t=0(cos(θi(s)), cos(θ

′

i(s
′

)))

=

[
− sin(θi(s)) 0

0 − sin(θ′i(s
′

))

] [
d
dt |t=0(θi(s)) 0

0 d
dt |t=0(θ

′

i(s
′

))

] (20)

This implies

FθC
G
=

[
Λ 0
0 Λ′

]
Fc(S) (21)

where Λ acts on a 2 × 2 diagonal block matrix as

Λ

[
a 0
0 b

]
=
−1

sin(θi)

[
a 0
0 b

]
and

Λ
′

[
a′ 0
0 b′

]
=
−1

sin(θ ′i)

[
a′ 0
0 b′

]
.

So
[
Λ 0
0 Λ′

]
acts on


a 0 0 0
0 b 0 0
0 0 a′ 0
0 0 0 b′

 as
−1

sin(θi )

[
a 0
0 b

]
O

O −1
sin(θ′i )

[
a′ 0
0 b′

] .
We compute FθC

G
below.
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FθC
SO(4)
(S) =

[
Λ 0
0 Λ′

]
1
4
(S − S−1)

=

[
Λ 0
0 Λ′

] [ 1
4 (s − s−1) 0

0 1
4 (s

′

− (s
′

)−1)

]
=

1
4

[
Λ 0
0 Λ′

] [
diag(eiθi − e−iθi , e−iθi − eiθi ) 0

0 diag(eiθ
′

i − e−iθ
′

i , e−iθ
′

i − eiθ
′

i )

]
=

i
2

[
Λ 0
0 Λ′

] [
diag(sin(θi),− sin(θi)) 0

0 diag(sin(θ′i),− sin(θ′i))

]
=

1
2


−i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 i

 .
(22)

(Above, diag(a1, . . . , an) is the n × n diagonal matrix where the j-th entry is aj .)
Now we are ready to construct the flow as follows:

Ξ̃
C
t : ŨC → ŨC

Here the subset ŨC of M̃g(SO(4)) is defined as

ŨC = {φ ∈ Hom(π1(Σ)
g,G)|φ[C] , ±1}.

These flows were constructed in [4].

1. If the curve C is a non-separating curve (i.e., Σg \ C is connected):
Let B ⊂ Σg be another oriented simple closed curve which intersects C once
transversely. Here < [B] > and π1(Σ

g − C) are two subgroups of π1(Σ
g).

If α ∈ π1(Σ
g − C), then

Ξ̃
C
t (φ)(α) = φ(α)

Ξ̃
C
t ([B]) = φ([B])ζt

C(φ) (23)

Here the element ζCt is defined in (24) below.

Definition 5.1 The map ζtC : ŨC → G can be defined as follows.

ζt
C(φ) = exp(4π2tFθC

G
(φ([C])))

=


e−2π2ti 0 0 0

0 e2π2ti 0 0
0 0 e−2π2ti 0
0 0 0 e2π2ti


.

(24)

2. If the curveC is a separating curve (supposeC separates Σg into two components
Σ1 and Σ2): For α ∈ π1(Σ1), we have
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Ξ̃
C
t (φ)(α) = φ(α)

For α ∈ π1(Σ2), we have

Ξ̃
C
t (φ)(α) = ζt

C(φ)φ(α)ζt
C(φ)

−1 (25)

Recall that in G, we have the following equivalence relation. The element [u : u′]
of G denotes the equivalence class of (u, u′) ∈ SU(2) × SU(2) under the equivalence
relation (u, u′) ∼ (−u,−u′). It follows that

eiθ∗ v −eiθ∗

and
⇒ eiθ∗ v ei(θ∗+π).

This implies the period of ζtC(φ) is 1
2π . Note that the period of ζt

C is the same as
the period of the corresponding Goldman flow Ξ̃t

C if C is a non-separating curve.
Its period will be 2 times the period of the corresponding Goldman flow Ξ̃t

C if it is
a separating curve.
Now we can confirm that:

1. For the non-separating case, the period of Ξ̃C
t is 1

2π .
2. For the separating case, the period of Ξ̃C

t is 1
4π .

Theorem 5.2 LetUC = (θi
−1(0, π), θ ′i

−1(0, π)). The flow Ξ̃C
t on ŨC covers the Hamil-

tonian flow on Uc associated to the function θC
G
.

Here UC is the region inMg(SO(4)) such that the Goldman flow is properly defined
(i.e: sin(θ ′i) , 0 and sin(θi) , 0) ,and (θi, θ ′i) is the holonomy angle pair for curve
c ⊂ Σg .

As a consequence of the above, the period of Ξ̃C
t determines the period of the

Hamiltonian flow on Uc associated to the function θC
G
. It has period 1

2π if C is a
non-separating curve, and 1

4π if C is a separating curve. As the result of [5], all the
Hamiltonian flows are periodic with constant period, and so induce a torus action on
an open dense set of (Mg(SO(4)), ω). If we define

Hi =
k
π
θCG (26)

where k comes from the symplectic variety (Mg(SO(4)), kω), then the period of Hi

is the following:

1. k
2 if C is a non-separating curve.

2. k
4 if C is a separating curve.

Remarks:

1. For C a non-separating curve:
If we require the value of θC

G
to be a non-negative even integer, then Hi gives a
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period 1 Hamiltonian flow.
For C a separating curve:
If we require the value of θC

G
to be a non-negative integer divisible by 4, then Hi

gives a period 1 Hamiltonian flow.
2. The Hamiltonian flow associated with a holonomy angle pair is two times faster

than the G = SU(2) case in [5]. Therefore, for G = SO(4) case, the period 1
flow requires 2 as its additional factor with respect to the G = SU(2) case in [5].

6 Verlinde Formula

From Theorem 4.4, Proposition 5.5 of [5], and the flow speed associated with Hi ,
we deduce the following result.
Let x ∈ Bind

g , where Bind
g is the set of points x in the image ofMg(SO(4)) under the

moment map for which each holonomy angle pair gives us two linearly independent
Hamiltonian vector fields. Then x is a Bohr-Sommerfeld point (defined in [5]), if and
only if for any y ∈ F −1(x) where F defined in (3) satisfies the below conditions.

Hi(y) ∈ 2Z.

Here Hi was defined in (26).
Let (θi, θ

′

i) be a holonomy angle pair of the i-th boundary circle Ci of one trinion.
We define

li =
kθi
π

(27)

and

li
′

=
kθi

′

π
(28)

where k ∈ Z is a chosen constant,and li, li
′

are also required to be integers. The
equation (19) implies that

li + li
′

= Hi ∈ 2Z, (29)

where Hi was introduced in the previous section. From Theorem 4.4 [5] and the
remark in section 4, we know the value of Hi needs to be an even number.
The definition (2.2) gives you the following condition regarding the relation between
li and li

′

.
li + li

′

≤ k (30)

LetH(M) be the Hilbert space that is obtained from quantization of space M via
real polarization. Use notations from (3.1), we have

dim(H( ˜Mg(SU(2) × SU(2))(ε = −1))) + dim(H( ˜Mg(SU(2) × SU(2))(ε = 1))) =

23g−3dim(H(Mg(SO(4)))).
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We impose equation (30) for i = 1, ..., 3g − 3 to count representations of the fun-
damental group into SO(4) instead of into SU(2) × SU(2). This follows because of
properties (b,c) (p. 6 and the equivalence relation stated in (6).

We may also apply (27) and (28) to (15) and (16) for each trinion. Then we have
the following:

|l1 − l2 | ≤ l3 ≤ min{2k − l1 − l2, l1 + l2} (31)

and
|l1
′

− l2
′

| ≤ l
′

3 ≤ min{2k − l1
′

− l2
′

, l1
′

+ l2
′

}. (32)

From [5], Proposition 5.4, we know there exists another set of period 1 generators
of the period lattice. (See [5] Definition 4.1)

γ =
k
π
(θ1 + θ2 + θ3)

γ′ =
k
π
(θ ′1 + θ

′
2 + θ

′
3)

We apply Theorem 4.4 and Proposition 5.5 of [5] for γ, γ′ . We will have the
following for each trinion.

l1 + l2 + l3 ∈ 2Z (33)

and

l
′

1 + l
′

2 + l
′

3 ∈ 2Z (34)

The equations (29), (31), (32), (33) and (34) give us the Verlinde formula for
G = SO(4). These equations must be imposed for every 3-tuples of indices (l1, l2, l3),
(l ′1, l

′
2, l
′
3), which correspond to the three edges coming from a vertex in the trivalent

graph dual to a trinion decomposition. Let us consider the following example when
genus g = 2. We can find the number of Bohr-Sommerfeld fibers as follows.

1. We first apply a trinion decomposition for the surface Σg=2 as figure 2. It should
give 2 trinions D1,D2,and a trivalent graph.

2. Each edge of the trivalent graph corresponds to the boundary circles C1,C2, and
C3(D1∩D2 = {C1,C2,C3}). We should label each edge Ei with a pair of integers
li, l

′

i ∈ [0, k]. By (33), (34), (32), (31), (29), we have the following system of
equations.

|l1 − l2 | ≤ l3 ≤ l1 + l2,

l1 + l2 + l3 ≤ 2k,

|l
′

1 − l
′

2 | ≤ l
′

3 ≤ l
′

1 + l
′

2,

l
′

1 + l
′

2 + l
′

3 ≤ 2k .
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Together with the following conditions

l1 + l2 + l3 ∈ 2Z,

l
′

1 + l
′

2 + l
′

3 ∈ 2Z,

li + li
′

∈ 2Z, i = 1, 2, 3.

li + li
′

≤ k

These labellinges enumerate representations of the free group on 2g genera-
tors into SU(2) × SU(2) which come from homomorphisms into SO(4). Each
representation of the free group on 2g generators into SO(4) gives rise to two ho-
momorphisms into SU(2)×SU(2) (because if one multiplies the image elements
by −1, the equation will still hold).

The integer solutions that are from the above equations and satisfy the above
conditions are located in the polyhedra as well as on its surface inscribed in the cube
with side length k . Section 4 gives us the details about this polyhedron. The number
of desired solutions, as described above, will give us the number of Bohr-Sommerfeld
fibers.

The image of the moment map forMg(SU(2) × SU(2)) is obtained by imposing
equations (15), (16) at every trinion arising from a trinion decomposition or every
vertex of the trivalent graph. By equation (27) and (28), they will give us a collection
of integer labels (li, l

′

i ) for each edge Ei of the trivalent graph. The set of Bohr-
Sommerfeld points is in bijective correspondence with the set of integer labels (li, l

′

i )

that meet the conditions (31),(32) and (33).
ForMg(SO(4)) case, we need to consider the following.

Let TSU(2)×SU(2) and TSO(4) be fixed maximal tori of SU(2) × SU(2) and SO(4)
respectively. The double covering map restricts on these maximal tori to a map from
TSU(2)×SU(2) to TSO(4). This map is also surjective with kernel {I,−I}. Thus, the
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restriction to the covering map gives us the following.

Φ : (u, v) 7→ Ru,v(·) = uqv−1

=

[
e−2(π)2(ts )i 0

0 e2(π)2(ts )i

]
(q)

[
e−2(π)2(th )i 0

0 e2(π)2(th )i

]
=

[
e−2(π)2(ts )i 0

0 e2(π)2(ts )i

] [
Zq 0
0 Z̄q

] [
e−2(π)2(th )i 0

0 e(2π)
2(th )i

]−1

=

[
Zqe−2(π)2(ts−th )i 0

0 ¯−Zqe2(π)2(th−ts )i

]
.

(35)

Here u, v, q ∈ TSU(2)×SU(2). We represent them by quaternionic notation.

The period of the flow depends on the period of

[
Zqe−2(π)2(ts−th )i 0

0 ¯−Zqe2(π)2(th−ts )i

]
.

Because of the kernel{I,−I}of the covering map, the period is half of the period of
the corresponding flow in the SU(2) case in [5]. So, for integer lattices we require

k(ts − th)
2π

∈ Z. (36)

If let ls =
k(ts )
π and lh =

k(th )
π , (36) is equivalent with

ls + lh ∈ 2Z.

This is exactly the condition listed in (29). This explains why, in the Mg(SO(4))
case, we need to impose one additional condition (29).
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GKM graph locally modeled by T n × S1-action
on T ∗Cn and its graph equivariant cohomology

Shintarô Kuroki and Vikraman Uma

Abstract We introduce a class of labeled graphs (with legs) which contains two
classes of GKM graphs of 4n-dimensional manifolds with Tn × S1-actions, i.e.,
GKM graphs of the toric hyperKähler manifolds and of the cotangent bundles of
toric manifolds. Under some conditions, the graph equivariant cohomology ring
of such a labeled graph is computed. We also give a module basis of the graph
equivariant cohomology by using a shelling structure of such a labeled graph, and
study their multiplicative structure.

1 Introduction

A GKM graph is a labeled graph defined by the special but wide class of manifolds
with torus actions, called GKM manifolds. From the torus action on a GKM mani-
fold, a GKM graph is defined by its zero and one dimensional orbits together with
the labels on edges defined by the tangential representations around fixed points.
Goresky-Kottwicz-MacPherson in [GKM98] show that if a GKM manifold satisfies
a certain condition, called equivariant formality, then its equivariant cohomology is
isomorphic to an algebra defined from its GKM graph. We call this algebra a graph
equivariant cohomology in this paper. Motivated by the work of Goresky-Kottwicz-
MacPherson, Guillemin-Zara in [GZ01] introduce the abstract GKM graph without
considering any GKM manifolds, and they translate some geometric properties
of GKM manifolds into combinatorial ones of GKM graphs. After the works of
Guillemin-Zara, a GKM graph can be regarded as a combinatorial approximation of
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space with torus action, and it has been studied by some mathematicians, e.g. see
[MMP07, GHZ06, GSZ13, FIM14, FY19, K19, DKS20]. In this paper, we introduce
a certain class of GKM graphs with legs and attempt to unify two slightly different
classes of manifolds from the GKM theoretical point of view, i.e., toric hyperKähler
manifolds and cotangent bundles of toric manifolds, where a leg is a half-line whose
boundary corresponds to the initial vertex. We briefly recall toric hyperKähler mani-
folds and introduce the motivation of the present paper. We shall then state our main
results and outline the organization of this paper.

A toric hyperKähler variety is defined by the hyperKähler quotient of a torus
action on the cotangent bundle T∗Cm. This space is introduced by Goto and
Bielwasky-Dancer in [G92, BD00] as the hyperKähler analogue of the symplec-
tic toric manifolds. The non-singular toric hyperKähler varieties are 4n-dimensional
non-compact manifolds with Tn-action. They are completely determined by some
class of hyperplane arrangements inRn (see [BD00]) like symplectic toric manifolds
are completely determined by Delzant polytopes in Rn (see [D88]). The equivariant
topology and geometry of toric hyperKähler manifolds are studied by some math-
ematicians, e.g. [K99, K00, K03, HP04, 17, K11]. In particular, Harada-Proudfoot
show that every toric hyperKähler manifold admits the residual S1-action and the
equivariant cohomology of a toric hyperKähler manifold with Tn × S1-action is
determined by the half-space arrangements in Rn. They also show that the toric
hyperKähler manifolds with Tn × S1-actions satisfy the GKM condition, i.e., its zero
and one dimensional orbits have the structure of a graph. Note that the Tn-action
on a toric hyperKähler manifold does not satisfy the GKM condition. Therefore,
we can define the labeled graph (with legs) from toric hyperKähler manifolds with
Tn × S1-actions. The GKM graph of a toric hyperKähler manifold is obtained from
the one-dimensional intersections of hyperplanes like the GKM graph of a sym-
plectic toric manifold is obtained from the one-skeleton of a moment-polytope. By
definition, the tangential representations of Tn × S1-actions on the fixed points are
isomorphic (up to automorphism on Tn × S1) to the standard Tn-action on T∗Cn

together with the scalar multiplication of S1 on the fiber, i.e.,

(t1, . . . , tn, r) · (z1, . . . , zn, w1, . . . , wn) 7→ (t1z1, . . . , tnzn, rt−1
1 w1, . . . , rt−1

n wn), (1)

where

(t1, . . . , tn) ∈ Tn, r ∈ S1, (z1, . . . , zn, w1, . . . , wn) ∈ T∗Cn(' Cn × Cn).

We call the action defined by (1) is the standard Tn × S1-action on T∗Cn.
On the other hand, the cotangent bundle T∗M of a 2n-dimensional toric manifold

M also has the Tn × S1-action. More precisely, because T acts on M smoothly,
each element t ∈ T induces the diffeomorphism t : M → M , say t : p 7→ t · p
for p ∈ M . By taking its differential dt : T M → T M , we have the lift of the
T-action on the tangent bundle T M . Note that (dt)p : TpM → Tt ·pM is the linear
isomorphism. Because the cotangent bundle T∗M is defined by the bundle over M
whose fibres are T∗pM := Hom(TpM,R). Therefore, for an element f ∈ T∗pM , we
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can define the t ∈ T action by t · f := f ◦ (dt)−1
p : Tt ·pM → R. Together with

the scalar multiplication by S1 on each fibre T∗pM , we have the Tn × S1-action on
T∗M . It follows from the definition that this also satisfies the GKM conditions and
the tangential representation around every fixed point in T∗M is isomorphic to the
standard Tn × S1-action on T∗Cn.

Note thatT∗M of a toric manifold M is not a toric hyperKähler manifold except in
the casewhen M is a product of some projective spaces, see [BD00]. So the cotangent
bundles of toric manifolds and the toric hyperKähler manifolds are different classes
of manifolds. However, it is known that their equivariant cohomologies are quite
similar. The equivariant cohomology H∗T n (M) of a symplectic toric manifold M
with Tn-action is isomorphic to the Stanley-Reisner ring of the moment-polytope
(see e.g. [4, Lemma 7.4.34] for more general class of manifolds with Tn-actions).
Because there is an equivariant deformation retract from T∗M to M , we see that
H∗T n (T∗M) is also isomorphic to the Stanley-Reisner ring of a polytope. On the other
hand, by Konno’s theorem [K99], the equivariant cohomology of a toric hyperKähler
manifold with Tn-action is isomorphic to the Stanley-Reisner ring of hyperplane
arrangements. Therefore, these distinct classes of manifolds have similar equivariant
cohomology ring structures. So it may be natural to ask whether we can unify these
classes of manifolds. One answer is that there exists an embedding from a symplectic
toric manifold M to a toric hyperKähler manifold (see [BD00, HP04]). In this paper,
we answer this question from a different direction, namely, we unify the equivariant
cohomologies of these classes by using GKM graphs.

To achieve that, we introduce the class of GKM graphs whose axial functions
around vertices are modeled by the standard Tn × S1-action on T∗Cn, called a GKM
graph locally modeled by Tn × S1-action on T∗Cn or T∗Cn-modeled GKM graph for
short in Definition 2.4. This GKM graph behaves like the hyperplane arrangements
but does not always come from the hyperplane arrangements, see Section 3. We
study the graph equivariant cohomology of T∗Cn-modeled GKM graphs. The first
main theorem of this paper is as follows (the technical notions will be introduced in
Section 3 and Section 4):

Theorem 1.1 (Theorem 4.1) Let G be a 2n-valent T∗Cn-modeled GKM graph and
L = {L1, · · · , Lm} be the set of all hyperplanes in G. Assume that G satisfies the
following two assumptions:

1. For each L ∈ L, there exist the unique pair of the halfspace H and its opposite
side H such that H ∩ H = L;

2. For every subset L′ ⊂ L, its intersection
⋂
L∈L′

L is empty or connected.

Then the following ring isomorphism holds:

H∗(G) ' Z[G].

To prove this, we introduce an x-forgetful graph G̃ from a T∗Cn-modeled GKM
graph G in Section 5. An x-forgetful graph G̃ is a labeled graph but not a GKM
graph, and it may be regarded as the combinatorial counterpart of the Tn-actions
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on toric hyperKähler manifolds and cotangent bundles over toric manifolds. We
define its graph equivariant cohomology H∗(G̃), and prove its ring structure in
Theorem 5.1. In Section 6, we give a proof of Theorem 4.1 by using Theorem 5.1.
In Section 7, we also study the H∗(BTn)-module structure of H∗(G̃). As the second
main result of this paper, in Theorem 7.6, we exhibit an H∗(BTn)-module basis
of H∗(G̃) by using the shellablility of a simplicial complex ∆L associated to L.
Dividing H∗(G̃) by H>0(BTn), we also introduce H∗

ord
(G̃), which corresponds to

the ordinary cohomology of the usual equivariant cohomology. Then, we show that
the H∗(BTn)-module basis of H∗(G̃) induces a Z-module basis for H∗

ord
(G̃). Finally,

in the case when G̃ corresponds to the line arrangements in R2 (which corresponds
geometrically to the 8-dimensional toric hyperKähler manifolds), we describe the
structure constants of H∗

ord
(G̃) with respect to this basis.

2 GKM graph locally modeled by T n × S1-action on T ∗Cn

This section aims to define a GKM graph with legs and its graph equivariant coho-
mology. In particular, we introduce GKM graphs locally modeled by Tn × S1-action
on T∗Cn as the special class of GKM graphs with legs.

2.1 Notations

We first prepare some notations. In this paper Γ is a connected graph which possibly
has legs, where a legmeans an outgoing half-line from one vertex (see the left graph
in the Figure 1).

Fig. 1: These are examples of regular graphs with legs and orientations. The left 2-valent graph
has two legs, on the other hand the right 3-valent graph has no legs. Note that all edges have two
orientations and all legs have only one orientation.

We define a graph with legs more precisely. LetV be a set of vertices, E be a set
of edges and Leg be a set of legs in Γ, and E = E ∪ Leg. The graph Γ is denoted by
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Γ = (V, E).

In this paper, we assume that V and E are finite sets. We also assume that Γ is
an oriented graph. For ε ∈ E , we denote by i(ε) and t(ε) the initial vertex and the
terminal vertex of ε , respectively. We denote the opposite directed edge of ε as ε ,
i.e., i(ε) = t(ε) and t(ε) = i(ε). For ` ∈ Leg, there is no terminal vertex but there
exists an initial vertex i(`). Note that the leg in Γ can be characterized by the element
ε in E such that there is no ε . For a vertex p ∈ V, we put the set of all outgoing
edges and legs from p ∈ V by

Ep = {ε ∈ E | i(ε) = p}.

Assume that |Ep | = m for all p ∈ V, where the symbol |X | represents the cardinality
of the finite set X . We call such a graph a (regular) m-valent graph, see Figure 1.

Let Γ = (V, E) be a graph with legs. We denote a subgraph of Γ by G =
(VG, EG), that is, G satisfies VG ⊂ V and EG ⊂ E. We use the following
symbols.

• EGp : the set of all outgoing edges and legs in EG from p ∈ VG .
• EG ⊂ EG (resp. EG

p ⊂ E
G
p ): the set of all edges (resp. out going from p) in G,

i.e., if ε ∈ EG , then the both i(ε), t(ε) ∈ VG .
• LegG ⊂ EG (resp. (Leg)Gp ⊂ E

G
p ): the set of all legs (resp. out going from p) in

G.

Note the following remark about legs in G.

Remark 2.1 Because Γ is an oriented graph, we may consider the subgraph G =
(VG, EG) of Γ = (V, E) such that there exists a leg ε ∈ LegG in G which is an
edge ε ∈ E in Γ. In other words, t(ε) < VG but t(ε) ∈ V; or ε < EG but ε ∈ E.

2.2 GKM graph with legs and its graph equivariant cohomology

In this section, we shall define a GKM graph ((possibly) with legs) and its graph
equivariant cohomology.

Let Γ = (V, E) be an m-valent graph. We first prepare the following notations.
Let ∇ = {∇ε | ε ∈ E} be a collection of bijective maps

∇ε : Ei(ε ) → Et(ε )

for all edges ε ∈ E . A connection on Γ is a set ∇ = {∇ε | ε ∈ E} which satisfies the
following two conditions:

• ∇ε̄ = ∇−1
ε ;

• ∇ε (ε) = ε̄ .

We can easily check that anm-valent graph Γ admits different ((m−1)!)g connections,
where g is the number of (unoriented) edges E .
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Let Tn be an n-dimensional torus. In particular, we often denote a 1-dimensional
torus by S1. If we do not emphasis the dimension of Tn, then we denote it by T . Let
t be a Lie algebra of T , tZ be the lattice of t and t∗ (resp. t∗Z) be the dual of t (resp.
tZ). The symbol Hom(T, S1) represents a set of all homomorphisms from the torus
T to S1. It is well-known that Hom(Tn, S1) ' Zn. Moreover, it may be regarded as
t∗Z and H1(T) ' H2(BT), where BT is the classifying space of T . In this paper, if we
omit the coefficient of the cohomology, then it means the cohomology with integer
coefficients. Therefore, we have the identification

Hom(T, S1) ' t∗Z ' H2(BT).

Define an axial function by the function

α : E −→ H2(BT)

such that it satisfies the following three conditions:

• α(ε̄) = ±α(ε) for all edges ε ∈ E;
• α(Ep) = {α(ε) | ε ∈ Ep} are pairwise linearly independent for all p ∈ V, that is,

for every two distinct elements ε1, ε2 ∈ Ep , α(ε1), α(ε2) are linearly independent
in H2(BT);

• there is a connection ∇ which satisfies the following congruence relation for all
edges ε ∈ E:

α(ε ′) − α(∇ε (ε
′)) ≡ 0(mod α(ε))

for all ε ′ ∈ Ei(ε ).

Definition 2.2 (GKM graph with legs) Let G = (Γ, α, ∇) be a collection of an
m-valent graph Γ = (V, E), where the map

α : E −→ H2(BTn),

is an axial function (n ≤ m), and ∇ is a connection on Γ. We call G = (Γ, α, ∇) a
GKM graph (with legs).

Remark 2.3 Suppose that Ep satisfies the 3-linearly independent condition for all
p ∈ V, i.e., for every distinct three elements ε1, ε2, ε3 ∈ Ep the axial function
α(ε1), α(ε2), α(ε3) are linearly independent. Then, by the similar proof for the cases
of GKM graphs without legs in [GZ01], if there exists a connection ∇, then the
connection ∇ is unique. In particular, if the GKM graph G satisfies the 3-linearly
independent condition, then for any two edges (or legs) ε, ε ′ in Ep we can determine
the 2-valent GKM subgraph which contains ε, ε ′. Hence, we often omit the connec-
tion ∇ in the GKM graph G. Namely, we often denote the GKM graph by G = (Γ, α)
if the connection is obviously determined by the context.

Due to the theory of toric hyperKähler varieties (see [BD00, HP04, K99]), the
tangential representation on each fixed point is isomorphic to the Tn-action on T∗Cn
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(' Hn, i.e., the n-dimensional quaternionic space) which is defined by the strandard
Tn-action on Cn, i.e.,

(t1, . . . , tn) · (z1, . . . , zn, w1, . . . , wn) := (t1z1, . . . , tnzn, t−1
1 w1, . . . , t−1

n wn),

where (t1, . . . , tn) ∈ Tn, z = (z1, . . . , zn) ∈ Cn and (w1, . . . , wn) ∈ T∗z (C
n). On the

other hand, Harada-Proudfoot [HP04] found that there exists the residual S1-action
on the toric hyperKähler varieties and this action fits into the GKM theory. In
this case, the tangential representation on each fixed point may be regarded as the
Tn × S1-action on T∗Cn, i.e.,

(t1, . . . , tn, r) · (z1, . . . , zn, w1, . . . , wn) := (t1z1, . . . , tnzn, rt−1
1 w1, . . . , rt−1

n wn),

where r ∈ S1. Therefore, the toric hyperKähler manifolds with Tn × S1-actions
induce the GKM graphs with legs whose axial functions around every vertex are
isomorphic to

{e∗1, . . . , e
∗
n,−e∗1 + x, . . . ,−e∗n + x},

where e∗1, . . . , e
∗
n is a generator of a rank n subspace in H2(BTn × BS1) ' Zn ⊕ Z

and x is a generator of H2(BS1) ' Z. By defining this abstractly, we introduce the
following notion:

Definition 2.4 (GKM graph locally modeled by Tn × S1-action on T∗Cn)
Let G = (Γ, α, ∇) be a 2n-valent GKM graph with legs with an axial function

α : E −→ H2(BTn × BS1) ' t∗Z ⊕ Zx,

where x is a generator of the dual of the Lie algebra of S1. We call G = (Γ, α, ∇)
a GKM graph modeled by the Tn × S1-action on T∗Cn (or simply a T∗Cn-modeled
GKM graph) if it satisfies the following conditions for all p ∈ V:

1. We can divide Ep into {ε+1 , · · · , ε
+
n , ε

−
1 , · · · , ε

−
n } such that

α(ε+j ) + α(ε
−
j ) = x

for all j = 1, · · · , n;
2. The set {α(ε+j ), x | j = 1, · · · , n} spans t∗Z ⊕ Zx, i.e.,

〈α(ε+1 ), · · · , α(ε
+
n ), x〉 = t∗Z ⊕ Zx.

We call {ε+j , ε
−
j } such that α(ε+j ) + α(ε

−
j ) = x a 1-dimensional pair in Ep . Further-

more, we call an element x a residual basis.

Figure 2 shows some examples of T∗Cn-modeled GKM graphs.

Remark 2.5 Note that the axial function on T∗Cn-modeled GKM graphs satisfies
the 3-linearly independent condition for all vertices. Therefore, the connection on a
T∗Cn-modeled GKM graph G is uniquely determined and we may denote it by



180 Shintarô Kuroki and Vikraman Uma

e∗2

e∗1
x − e∗2

x − e∗1

−e∗2

e∗2 + x

e∗2 − e
∗
1 + x

e∗1 − e
∗
2

−e∗1

e∗1 + xe∗1 − e
∗
2 + x

e∗2 − e
∗
1

e∗2 + 2x

−e∗2 − x
e∗1

x − e∗1

e∗2 + 2x

e∗1 + x

−e∗1

e∗2

x − e∗2
e∗1

x − e∗1

e∗1 − x

2x − e∗1
e∗2 + 2x

Fig. 2: T ∗C2-modeled GKM graphs, where 〈e∗1, e∗2 〉 ' (t
2)∗Z. In the left and the right figures, we

assume α(ε ) = −α(ε ) and omit some axial functions which are automatically determined by the
definition.

G = (Γ, α).

We also have the following lemma for the 1-dimensional pair {ε+, ε−}.

Lemma 2.6 Let {ε+, ε−} be a 1-dimensional pair in Ei(ε ′) for some edge ε ′ ∈ E .
Then {∇ε ′(ε+), ∇ε ′(ε−)} is also a 1-dimensional pair in Et(ε ′).

Proof We first divide the edges and legs Ei(ε ′) by the 1-dimensional pairs as follows:

Ei(ε ′) = {ε
+
1 , ε

−
1 } ∪ · · · ∪ {ε

+
n , ε

−
n }

Because the axial function α satisfies the congruence relation, there are integers k+j
and k−j , j = 1, . . . , n, such that

α(∇ε ′(ε
+
j )) − α(ε

+
j ) = k+j α(ε

′),

α(∇ε ′(ε
−
j )) − α(ε

−
j ) = k−j α(ε

′).

Since {ε+j , ε
−
j } is a 1-dimensional pair, we also have

(α(∇ε ′(ε
+
j )) − α(ε

+
j )) + (α(∇ε ′(ε

−
j )) − α(ε

−
j )) (2)

=α(∇ε ′(ε
+
j )) + α(∇ε ′(ε

−
j )) − x

=(k+j + k−j )α(ε
′).

In order to show the statement, it is enough to show that the following equation
holds:

k−j = −k+j .

Suppose on the contrary that k−j , −k+j . Then, by (2), we have
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α(∇ε ′(ε
−
j )) = −α(∇ε ′(ε

+
j )) + x + (k+j + k−j )α(ε

′) , −α(∇ε ′(ε
+
j )) + x.

This implies that {∇ε ′(ε+j ), ∇ε ′(ε
−
j )} is not a 1-dimensional pair. Therefore, there is

another element ε(, ∇ε ′(ε−j )) in Et(ε ′) such that

α(ε) = −α(∇ε ′(ε
+
j )) + x.

This gives that

α(∇ε ′(ε
−
j )) = α(ε) + (k

+
j + k−j )α(ε

′).

However, since {∇ε ′(ε−j ), ε, ε ′} ⊂ Et(ε ′), this is a contradiction to the fact that T∗Cn-
modeled GKM graph is always 3-linearly independent. Hence, we must have k−j =
−k+j . This establishes the statement. �

Finally, in this section, we also define the notion of graph equivariant cohomology.
Let G = (Γ, α, ∇) be a GKM graph (with legs) such that α : E → H2(BT). With
the definition similar to that of the GKM graph without legs, the graph equivariant
cohomology is defined as follows.

Definition 2.7 (graph equivariant cohomology)
The following ring is called a graph equivariant cohomology of G:

H∗(G) = {ϕ : V → H∗(BT) | ϕ(i(ε)) − ϕ(t(ε)) ≡ 0 (mod α(ε))},

We call the relation ϕ(i(ε)) − ϕ(t(ε)) ≡ 0 (mod α(ε)) a congruence relation of ϕ on
an edge ε ∈ E .

3 Some notions of T ∗Cn-modeled GKM graphs

Let G = (Γ, α,∇) be a 2n-valent T∗Cn-modeled GKM graph such that α : E →
H2(BTn) ⊕ Zx, where x is a residual basis. The goal of this paper is to compute
H∗(G) for a certain class of T∗Cn-modeled GKM graphs. To do that we prepare
some notions and properties of T∗Cn-modeled GKM graphs. We first introduce the
following notion.

We define a GKM subgraph H = (H, αH,∇H ) by a k-valent subgraph H of Γ
such that the axial function is defined by

αH := α |EH ,

and the connection is defined by

∇H := {∇ε |EH | ε ∈ EH }.

We also denote ∇Hε := ∇ε |EH for an edge ε ∈ EH .
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3.1 Hyperplane

In this section, we introduce the notion of a hyperplane in G and show a key property
Lemma 3.3 which will be used to show the main theorem of this paper.

Definition 3.1 (hyperplane)
Let G be a T∗Cn-modeled GKM graph. Assume that a GKM subgraph L =

(L, αL,∇L) of G is a (2n−2)-valent subgraph of Γ and it is a T∗Cn−1-modeled GKM
graph with the residual basis x, i.e., there are 1-dimensional pairs {ε+j , ε

−
j } ⊂ E

L
p ,

j = 1, . . . , n − 1, on each vertex such that

αL(ε+j ) + α
L(ε−j ) = x.

Such a GKM subgraph L is said to be a hyperplane if L is a maximal (2n−2)-valent
connected subgraph in Γ, i.e., if L ′ is a (2n−2)-valent connected subgraph in Γ such
that L ⊂ L ′ then L = L ′.

Example 3.2 The following two figures show an example and a non-example of
hyperplanes.

e∗1

x − e∗1

−e∗1

e∗1 + x

e∗2

e∗1

−e∗2

e∗1 − e
∗
2

−e∗1
e∗2 − e

∗
1

Fig. 3: The left figure shows a hyperplane of the left GKM graph in Figure 2. The right figure is a
2-valent GKM subgraph of the left GKM graph in Figure 2 but it is not a hyperplane.

For the hyperplane L we have the following property (this may be regarded as
the analogue of the property of facets in a torus graph [MMP07]).

Lemma 3.3 Let G = (Γ, α, ∇) be a 2n-valent T∗Cn-modeled GKM graph. Take
a vertex p ∈ V. Then, for every 1-dimensional pair {ε+, ε−} ⊂ Ep , there exists a
unique hyperplane L = (L, αL,∇L) such that EL

p = Ep \ {ε
+, ε−}.

Proof We first prove the existence of the hyperplane which satisfies the statement.
Put EL

p = Ep \ {ε
+, ε−}. Then we can write EL

p = {ε
+
1 , · · · , ε

+
n−1, ε

−
1 , · · · , ε

−
n−1}

the (n − 1) 1-dimensional pairs in Ep which are different from {ε+, ε−}. Let
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R := 〈α(ε+1 ), · · · , α(ε
+
n−1), x〉.

By Definition 2.4 (2) we may assume that 〈α(ε+1 ), . . . , α(ε
+
n−1)〉 ⊂ t∗Z ⊕ Zx is a

submodule of rank (n − 1). Thus we have

R ' H2(BTn−1) ⊕ Zx.

Take an element ε ∈ EL
p which becomes an edge in Γ, i.e., i(ε) = p and there

exists t(ε) ∈ V. In other words, ε ∈ EL
p ∩ Ep (Note that this will be EL

p of L). By
Lemma 2.6, the subset∇ε (EL

p ) in Et(ε ) consists of exactly (n−1) 1-dimensional pairs.
Moreover, because α satisfies the congruence relation on the edge ε ∈ EL

p ∩ Ep ,
α(∇ε (E

L
p )) and x span the same subspace R as above. This property holds for all

edges ε ∈ EL
p ∩ Ep . Hence, we can define the following (2n − 2)-valent subgraph in

Γ = (V, E):

L1 = (V
L1, EL1 )

such that

VL1 := {p, t(ε) | ε ∈ EL
p ∩ Ep};

EL1 :=
⋃

ε ∈EL
p∩Ep

∇ε (E
L
p ) ∪ E

L
p .

If we restrict α and ∇ onto L1, then this becomes a (2n − 2)-valent T∗Cn−1-modeled
GKM subgraph, sayL1, in G. If L1 is maximal, i.e., if there is a (2n−2)-valent graph
L ′ such that L1 ⊂ L ′ then L1 = L ′, then L1 is a hyperplane. Assume that L1 is not
maximal. In this case, for every vertex q ∈ VL1 and every edge ε ∈ EL1

q ∩Eq , we can
apply the similar method stated as above. Then we can construct the (2n − 2)-valent
T∗Cn−1-modeled GKM subgraph L2 which contains L1. If L2 is maximal, then this
is a hyperplane which we want to have. Otherwise, by repeating similar arguments,
we get the hyperplane L which contains EL

p .
Suppose that there are two hyperplanes L = (L, αL,∇L) and L ′ = (L ′, αL′,∇L

′

)

such that EL
p = E

L′
p . Because EL

p = EL′
p and two connections are restricted from the

connection ∇ of G, we see that the following two subgraphs are the same graph:⋃
ε ∈EL

p

∇ε (E
L
p ) ∪ E

L
p =

⋃
ε ∈EL′

p

∇ε (E
L′

p ) ∪ E
L′

p .

By iterating this construction along all edges in L and L ′, finally, we know that
L = L ′. Therefore, such a hyperplane is unique. �
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3.2 Pre-halfspace and its Thom class

In this section, we introduce a pre-halfspace and its Thom class.
Take a subgraph H = (VH, EH ) of Γ such that |EH

p | = 2n − 1 or 2n for all
p ∈ VH . We assume that there always exists a vertex p ∈ VH with |EH

p | = 2n − 1.
Moreover, we assume that H is closed under the connection ∇ of G = (Γ, α, ∇),
that is,

(C1) ∇Hε := ∇ε |EH
i(ε )

: EH
i(ε )
→ EH

t(ε )
is bijective, if |EH

i(ε )
| = |EH

t(ε )
| = 2n − 1 or 2n;

(C2) ∇Hε : EH
i(ε )
→ EH

t(ε )
is injective, if |EH

i(ε )
| = 2n − 1 < |EH

t(ε )
| = 2n.

In addition, we also assume that if |EH
i(ε )
|(= 2n−1) < |EH

t(ε )
|(= 2n) then ∇Hε satisfies

the following congruence relation for {nH (i(ε))} = EΓ
i(ε )
− EH

i(ε )
(we call such an

nH (p) a normal edge or a normal leg of H at p):

α(nH (p)) − x ≡ 0 (mod α(ε)). (3)

Now we may define the pre-halfspace.

Definition 3.4 (pre-halfspace)
LetH := (H, αH,∇H ) be the triple as above, i.e.,

• H = (VH, EH ) is a subgraph Γ such that |EH
p | = 2n − 1 or 2n for all p ∈ VH ,

where there exists a vertex p ∈ VH with |EH
p | = 2n − 1;

• αH := α |EH : EH → H2(BTn) ⊕ Zx is the axial function restricted onto H;
• ∇H := {∇Hε | ε ∈ EH } is the restrected connection of ∇ onto H which satisfies

the conditions (C1), (C2), (3) as above,

then we callH a pre-halfspace of G = (Γ, α, ∇).

Example 3.5 The following left figure (Figure 4) shows an example of pre-halfspace
of the left graph in Figure 2. On the other hand, the following right figure (Figure 5)
is an abstract subgraph of the left graph in Figure 2. However, this is not closed under
the connection ∇, because the congruence relation does not hold on the diagonal
edge. Therefore, this is not a pre-halfspace.

Let H = (H, αH, ∇H ) be a pre-halfspace of a T∗Cn-modeled GKM graph
G = (Γ, α, ∇). We can define the notion of a Thom class for the pre-halfspace (also
see [MMP07]).

Definition 3.6 (Thom class)
A Thom class ofH is defined by the map τH : V → H2(BTn) ⊕ Zx such that

τH (p) =


0 if p < VH

x if |EH
p | = 2n

α(nH (p)) if |EH
p | = 2n − 1,
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e∗2

e∗1

x − e∗1

−e∗2

e∗2 + x

e∗2 − e
∗
1 + x

e∗1 − e
∗
2

−e∗1

e∗1 + x

e∗2 − e
∗
1

Fig. 4

e∗2

e∗1

x − e∗1

−e∗2 e∗2 − e
∗
1 + x

e∗1 − e
∗
2

−e∗1

e∗1 + x

e∗2 − e
∗
1

Fig. 5

We also call a vertex p ∈ V with τH (p) = 0 (resp. τH (p) = x, τH (p) = α(nH (p)))
an exterior (resp. interior, boundary) vertex of H.

For the Thom class τH of a pre-halfspace H, we have the following lemma.

Lemma 3.7 The Thom class τH of a pre-halfspaceH is an element of H∗(G).

Proof Take an edge ε ∈ E . We claim that τH satisfies the congruence relation on ε ,
that is, τH (i(ε)) − τH (t(ε)) ≡ 0 (mod α(ε)).

We first assume that i(ε), t(ε) < VH or |EH
i(ε )
| = 2n = |EH

t(ε )
|. Namely, both of

i(ε) and t(ε) are exterior vertices or interior vertices of H. Then, by definition of the
Thom class,

τH (i(ε)) − τH (t(ε)) = 0 ≡ 0 mod α(ε).

So the congruence relation holds for these cases.
We next consider the other cases, i.e., the case when both of i(ε) and t(ε) are

boundary vertices or the case when i(ε) is a boundary vertex but t(ε) is an exterior
or an interior vertex. Put p = i(ε). Assume that t(ε)(=: q) is also a boundary vertex.
Because the pre-halfspace is closed by the connection ∇, we have that ∇ε (nH (p)) =
nH (q). By the definition of Thom classes, we have that

τH (i(ε)) − τH (t(ε)) = α(nH (p)) − α(nH (q))

= α(nH (p)) − α(∇ε (nH (p))) ≡ 0 mod α(ε).

Assume that t(ε) is an exterior vertex, Then ε = nH (p) and

τH (i(ε)) − τH (t(ε)) = α(nH (p)) − 0 ≡ 0 mod α(ε) = α(nH (p)).

Assume that t(ε)(=: q) is an interior vertex. Namely, τH (q) = x. In this case, we
have

τH (p) − τH (q) = α(nH (p)) − x.

It follows from (3) that
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α(nH (p)) − x ≡ 0 mod α(ε).

So the congruence relation also holds for these cases. Consequently, we have τH ∈
H∗(G). �

Example 3.8 The following figure (Figure 6) shows an example of the Thom class
of the pre-halfspace in Figure 4.

x − e∗2
x

e∗1 − e
∗
2 + x

Fig. 6

3.3 Opposite side of a pre-halfspace

Next we define the opposite side of the pre-halfspace. In order to define it, we need
to prove Lemma 3.9

In order to prove it, we define a boundary of a pre-halfspace. Let H be
a pre-halfspace. By the definition of a pre-halfspace, there is a vertex p ∈
VH such that |EH

p | = 2n − 1. Then EH
p has (n − 1) 1-dimensional pairs, say

{ε+1 , · · · , ε
+
n−1, ε

−
1 , · · · , ε

−
n−1}. Because of Lemma 3.3, there exists a unique hyper-

plane L = (L, αL,∇L) in G such that

αL := α |EL , ∇L := {∇ε |EL
i(ε )
| ε ∈ EL}.

Moreover, L satisfies that

p ∈ VL

and

EL
p = {ε

+
1 , · · · , ε

+
n−1, ε

−
1 , · · · , ε

−
n−1}.

We call the union of all such hyperplanes L a boundary of the pre-halfspace H ,
and we denote it by ∂H = (∂H, α∂H,∇∂H ). Note that a boundary ofH may not be
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connected (see Figure 8). To define the opposite side of H , we need the following
lemma:

Lemma 3.9 Let H = (H, αH,∇H ) be a pre-halfspace in G = (Γ, α, ∇) and x be a
residual basis. Then there is a unique pre-halfspace I = (I, αI,∇I ) such that

• H ∪ I = Γ;
• τH + τI = χ ∈ H∗(G),

where χ is an element of H∗(G) defined by χ(p) = x for all p ∈ V.

Proof Set H = (VH, EH ) and Î = (VΓ −VH, EΓ − EH ). Define

I = Î ∪ ∂H.

Namely,

I = (V I, E I ) = ((VΓ −VH ) ∪ V∂H, (EΓ − EH ) ∪ E∂H ).

Then we can easily see that H ∪ I = Γ and H ∩ I = ∂H.
We next prove I is a pre-halfspace. Take p ∈ V I . If p ∈ V Î = VΓ − VH , then

EH
p = ∅; therefore, E I

p = E
Γ
p − ∅ = E

Γ
p and |E Ip | = |EΓp | = 2n. If p ∈ V∂H , then

E Ip = E
∂H
p ∪ {nH (p)}, that is, |E Ip | = 2n − 1. Here nH (p) is a normal edge (leg) of

H on p. Therefore, for an edge ε ∈ E I and the restricted connection ∇Iε := ∇ε |E I
i(ε )

,
it follows from the definition of ∇ on Γ that we have

• ∇Iε : E I
i(ε )
→ E I

t(ε )
is bijective, if |E I

i(ε )
| = |E I

t(ε )
|,

• ∇Iε : E I
i(ε )
→ E I

t(ε )
is injective, if |E I

i(ε )
| = 2n − 1 < |E I

t(ε )
| = 2n.

Take an edge ε ∈ E I in I such that |E I
i(ε )
| = 2n−1 < |E I

t(ε )
| = 2n. Put i(ε) = p ∈ V∂H

and nH (p) = ε+(= ε). Then the normal edge (leg) of I on p can be taken as ε− = nI (p),
where {ε+, ε−} = Ep −E∂Hp is a 1-dimensional pair in Ep . So we have the following
equation:

α(nI (p)) + α(nH (p)) = α(ε−) + α(ε+) = (−α(ε+) + x) + α(ε+) = x. (4)

Therefore, we have that

α(nI (p)) − x = − α(nH (p))

= − α(ε) ≡ 0 (mod α(nH (p)) = α(ε)).

Consequently, we have I = (I, αI,∇I ) is a pre-halfspace such that H ∪ I = Γ, where
αI := α |E I and∇I := {∇ε |E I | ε ∈ E I }.Moreover, we have that τH+τI = χ, because
of the above equation and the definition of the Thom class of the pre-halfspace.

Wefinally claim the uniqueness of I. By two conditions H∪I = Γ, τH+τI = χ and
the definition of the Thom class, we see ∂I = ∂H and I = (VΓ−VH, EΓ−EH )∪∂I.
From Lemma 3.3, the boundary ∂H = ∂I is uniquely determined (though it may not
be connected). So we know the uniqueness of I. �
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We callI in Lemma 3.9 an opposite side ofH and denote it byH = (H, αH,∇H ).
Note that

H ∩ H = ∂H

by the proof of Lemma 3.9.

3.4 Halfspace and Ring Z[G]

Under the above preparations, we may define the halfspace.

Definition 3.10 (halfspace) A pre-halfspace H is said to be a halfspace, if H is a
connected subgraph and its opposite side is also connected.

0
e∗2

e∗2 − e
∗
1

x
x − e∗2

e∗1 − e
∗
2 + x

Fig. 7: The above figures are a halfspace and its opposite side of the left GKM graph in Figure 2.
The labels on vertices mean the values of their Thom classes on vertices, where 0 means the value
of the Thom class τH on the exterior vertex of a halfspace H . We call such a vertex a fake vertex
when we consider the Thom class τH of H . Note that the boundary ∂H = H ∩ H is connected.

Let H be the set of all halfspaces in G. Because the graph Γ is finite and the
opposite side of the halfspace is also a halfspace, we may write the set of all
halfspaces by

H = {H1, · · · , Hm, H1, · · · , Hm}.

Put

Z[X, H] = Z[X, H1, · · · , Hm, H1, · · · , Hm]

where Z[X, H1, · · · , Hm, H1, · · · , Hm] is a polynomial ring which is generated by
X and all elements in H, and put

I =
〈
Hi + Hi − X,

∏
H ∈H′

H
��� i = 1, · · · , m, H′ ∈ I(H)

〉
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e∗2 + x

e∗2 + x

0

0

0

x

x

x

−e∗2

−e∗2

x

x

x

0

0

0

Fig. 8: The above figures are a halfspace and its opposite side of the right GKM graph in Figure 2,
where 0’s are the fake vertices. Note that the boundary ∂H = H ∩ H is not connected.

e∗1

x − e∗1

−e∗1

e∗1 + x

e∗1

−e∗1

x − e∗1

e∗1 + x

Fig. 9: The middle graph (edge) H is a pre-halfspace of the left GKM graph. However, its opposite
side is the right graph (two legs). This is not connected; therefore, H is not a halfspace.

which is the ideal in Z[X, H] generated by Hi + Hi − X (i = 1, · · · , m) and the
product ∏

H ∈H′∈I(H)
H,

where

I(H) = {H′ ⊂ H |
⋂
H ∈H′

H = ∅}.

We define the following ring Z[G]:

Z[G] := Z[X, H]
/
I.

From the next section, we shall prove this ring Z[G] is isomorphic to the graph
equivariant cohomology ring H∗(G) under some conditions.
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4 Ring structure of the graph equivariant cohomology of a
T ∗Cn-modeled GKM graph

The first goal of this paper is to prove the following theorem.

Theorem 4.1 Let G be a 2n-valent T∗Cn-modeled GKM graph and let L =

{L1, · · · , Lm} be the set of all hyperplanes in G. Assume that G satisfies the
following two assumptions:

1. For each L ∈ L, there exist the unique pair of the halfspace H and its opposite
side H such that H ∩ H = L;

2. For every subset L′ ⊂ L, its intersection
⋂
L∈L′

L is empty or connected.

Then the following ring isomorphism holds:

H∗(G) ' Z[G].

Henceforth in this section the T∗Cn-modeled GKM graph G = (Γ, α, ∇) satisfies
assumptions (1), (2) of Theorem 4.1. For example, the left GKM graph in Figure 2
satisfies these assumptions; however, the right GKM graph does not satisfy the
assumption (1) (also see Figure 8). We also note that the following example satisfies
the assumptions in Theorem 4.1.

Example 4.2 The GKM graph in Figure 10 can be obtained from the cotangent
bundle of a 4-dimensional toric manifold with five fixed points. Note that this can not
be realized as a hyperplane arrangement in R2, because there must be 8 intersection
points (i.e., 8 vertices) if all straight lines (five lines) extend to infinity but there are
only 5 vertices in Figure 10. Therefore, there is no corresponding toric hyperKähler
manifold because of the fundamental theorem of toric hyperKähler manifolds in
[BD00].

Let χ : V → H2(BT) ⊕ Zx be the function such that χ(p) = x for all p ∈ V, and
τH be the Thom class of the halfspace H. In order to prove Theorem 4.1, we will
prove that the following map is an isomorphism:

Ψ : Z[G] → H∗(G)

where this map is the induced homomorphism from Ψ(H) := τH and Ψ(X) := χ.
We first claim that the map Ψ is well-defined (also see the definition of Z[G]).

By Lemma 3.9, we have

τH + τH = χ.

Let H be the set of all halfspaces in G. If a subset H′ ⊂ H satisfies that
⋂
H ∈H′

H = ∅,

then it follows from the definition of the Thom class that
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e∗2

e∗1
e∗2 + e

∗
1

e∗2 + e
∗
1 e∗1

Fig. 10: The T ∗C2-modeled GKM graph defined from the cotangent bundle of a toric manifold.
Note that we assume that the axial functions satisfy α(e) = −α(e) for all edges. We omit the axial
functions on legs because it is automatically determined by the definition.

∏
H ∈H′

τH = 0.

Therefore, the map Ψ is a well-defined homomorphism.
From the next section, we start to prove the bijectivity of Ψ. The proof will be

divided into two steps:

(I) To study an equivariant graph cohomology of an x-forgetful graph G̃ and to
prove H∗(G̃) ' Z[G̃];

(II) To prove Ψ is surjective and injective.

In the first step, we will use the technique of [MMP07] (or [MP06]) which was used
to show the ring structure of the graph equivariant cohomology of a certain GKM
graph called a torus graph. In the second step, we will use the technique of [HP04]
which was applied to show the ring structure of the equivariant cohomology of a
toric hyperKähler variety (also referred to as hypertoric variety).
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5 An x-forgetful graph ˜G

Let G = (Γ, α, ∇) be a T∗Cn-modeled graph. We assume that G satisfies the
conditions in Theorem 4.1. In this section, as a preparation to prove Theorem 4.1,
we introduce an x-forgetful graph G̃ and its graph equivariant cohomology H∗(G̃),
and prove the ring structure of H∗(G̃).

5.1 x-forgetful graph ˜G and its graph equivariant cohomology

For every G, we may define an x-forgetful graph G̃ = (Γ, α̃, ∇) as follows: Γ and ∇
is the same graph and connection with G, but the function α̃ is defined as

α̃ = F ◦ α : E → H2(BTn)

where F : H2(BTn) ⊕ Zx → H2(BTn)(' (tn)∗Z) is the the x-forgetful map. We call
α̃ an x-forgetful axial function.

e∗2

e∗1

−e∗2

−e∗1

−e∗2

e∗2

e∗2 − e
∗
1

e∗1 − e
∗
2

−e∗2

e∗1e∗1 − e
∗
2

e∗2 − e
∗
1

Fig. 11: An example of the x-forgetful graph for the left GKM graph in Figure 2.

Moreover we define a graph equivariant cohomology of G̃ as follows:

H∗(G̃) = { f : V → H∗(BTn) | f (i(ε)) − f (t(ε)) ≡ 0 (mod α̃(ε))}.

Let L ∈ L be a hyperplane in G. Fix the halfsapce H such that ∂H = L. Define the
Thom class of L by

τL = F ◦ τH : V → H2(BTn),

where F is the x-forgetful map. Note that for the opposite side H of H, the following
relation:



GKM graph locally modeled by T n × S1-action on T ∗Cn 193

F ◦ τH = −τL;

therefore, the Thom class of L depends on the choice of a halfspace H with ∂H = L.
Sowefix {H1, · · · , Hm} in the set of all halfspacesH = {H1, · · · , Hm, H1, · · · , Hm}.
By the assumption (1) of Theorem 4.1, there is a one to one corresponding be-
tween H and L = H ∩ H. Therefore, we may put the set of all hyperplanes by
L = {L1, · · · , Lm} where Li = Hi ∩ Hi for all i = 1, · · · , m. LetVL be the set of
all vertices on L. Then, we have

τL(p) =
{

0 p < VL

α̃(nH (p)) p ∈ VL

by the definitions of τH and the x-forgetful map F, where nH (p) is a normal edge
(or leg) of H on p. Since τH ∈ H∗(G) (see Lemma 3.7), it is easy to check that

τL ∈ H∗(G̃).

5.2 The ring structure of H∗( ˜G)

Next we define the following ring:

Z[G̃] = Z[L1, · · · , Lm]

/〈 ∏
L∈L′

L
��� L′ ∈ I(L)

〉
,

where I(L) = {L′ ⊂ L |
⋂
L∈L′

L = ∅} and 〈
∏

L∈L′ L | L′ ∈ I(L)〉 is an ideal which is

generated by the product
∏

L∈L′ L for all L′ ∈ I(L).
The goal of this section (the first step (I) of the proof of Theorem 4.1) is to prove

the following theorem:

Theorem 5.1 LetG be a 2n-valentT∗Cn-modeledGKMgraphandL = {L1, · · · , Lm}

be the set of all hyperplanes in G. Assume that G satisfies the two assumptions in
Theorem 4.1. If G̃ is the x-forgetful graph, then the following ring isomorphism
holds:

H∗(G̃) ' Z[G̃].

Define the induced homomorphism

Ψ
′ : Z[G̃] → H∗(G̃)

by Ψ′(L) = τL . Obviously, Ψ′ is a well-defined homomorphism. In order to show
Theorem 5.1, it is enough to prove that this homomorphism is bijective.
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5.3 The localization map and the injectivity of Ψ′

We first prove the injectivity ofΨ′. In order to prove it, we introduce the map ρwhich
is the analogue of the localization of the equivariant cohomology of a T-manifold to
its fixed points.

Let us define the following ring:

Z[G̃]p = Z[L1, · · · , Lm]/〈L | p < VL〉,

where 〈L | p < VL〉 is an ideal which is generated by L such that p < VL . As a
beginning, we prove the following lemma.

Lemma 5.2 For the x-forgetful graph G̃ = (Γ, α̃, ∇), we have

Ip : Z[G̃]p ' Z[L | p ∈ VL] = Z[Lp,1, · · · , Lp,n]
ιp
' H∗(BTn),

where the last isomorphism ιp is defined by ιp : L 7→ τL(p).

Proof By the definition of Z[G̃]p , the first equivalence Z[G̃]p ' Z[L | p ∈ VL] is
obvious. We claim Z[L | p ∈ VL] = Z[Lp,1, · · · , Lp,n]

ιp
' H∗T n (pt).

Because Γ is a 2n-valent graph, we may put

Ep = {ε
+
1 (p), · · · , ε

+
n (p), ε

−
1 (p), · · · , ε

−
n (p)}

for all p ∈ V. There is a unique Li such that

τLi (p) = α̃(ε
+
i (p)) = −α̃(ε

−
i (p))

for all i = 1, · · · , n by Lemma 3.3. Hence, we have

Z[L | p ∈ VL] = Z[Lp,1, · · · , Lp,n].

Next, by the definition of the axial function of a T∗Cn-modeled GKM graph,

Zα(ε+1 (p)) ⊕ · · · ⊕ Zα(ε
+
n (p)) ⊕ Zx ' H2(BTn) ⊕ Zx.

Hence, because α̃ := F ◦ α is defined by the x-forgetful map F : H2(BTn) ⊕ Zx →
H2(BTn), we have that

Z[α̃(ε+1 (p)), · · · , α̃(ε
+
n (p))] ' H∗(BTn).

Therefore, ιp is an isomorphism. �

Next we shall define a localization map ρ : Z[G̃] →
⊕

p∈V Z[G̃]p and prove
that it is injective in Lemma 5.3. Since the set L′ ∈ I(L) satisfies that ∩L∈L′L = ∅,
for every p ∈ V there is an L ∈ L′ such that p < VL . Therefore, there exists the
following relation for two ideals in Z[L1, . . . , Lm]:
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〈L | p < VL〉 ⊃ 〈
∏
L∈L′

L | L′ ∈ I(L)〉.

Hence, the following natural homomorphism is well-defined:

ρp : Z[G̃] := Z[L1, · · · , Lm]

/〈 ∏
L∈L′

L
��� L′ ∈ I(L)

〉
−→

Z[G̃]p := Z[L1, · · · , Lm]/〈L | p < VL〉.

For this projection ρp , we can easily show that its kernel is as follows:

Ker ρp = 〈L | p < VL〉/〈
∏
L∈L′

L | L′ ∈ I(L)〉.

Now we may define the homomorphism ρ as follows:

ρ =
⊕
p∈V

ρp : Z[G̃] −→
⊕
p∈V

Z[G̃]p,

such that

ρ(Y ) =
⊕
p∈V

ρp(Y )

for Y ∈ Z[G̃]. We call ρ a localization map. The following lemma holds.

Lemma 5.3 ρ is injective.

Proof Obviously we have

Ker ρ =
⋂
p∈V

Ker ρp =
©«
⋂
p∈V

〈L | p < VL〉
ª®¬
/ 〈∏

L∈L′
L

����� L′ ∈ I(L)

〉
.

Hence, to prove ρ is injective, it is enough to show that Ker ρ = {0}, i.e., we shall
prove the following relation:⋂

p∈V

〈L | p < VL〉 ⊂

〈∏
L∈L′

L | L′ ∈ I(L)

〉
(⊂ Z[L1, · · · , Lm]). (5)

Take a non-zero polynomial

A =
∑

a1, · · · ,am ∈N∪{0}

k(a1, · · · , am)L
a1
1 · · · L

am
m

∈
⋂
p∈V

〈L | p < VL〉 ⊂ Z[L1, · · · , Lm],
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where we only consider the case when k(a1, · · · , am) ∈ Z − {0}. Because A is an
element of the monomial ideal 〈L | p < VL〉 for all p ∈ V, we have that for each
term

k(a1, · · · , am)L
a1
1 · · · L

am
m ∈ 〈L | p < VL〉.

This shows that for each term k(a1, · · · , am)L
a1
1 · · · L

am
m of a non-zero element A

there exists r(= r(p)) ∈ {1, · · · , m} such that p < VLr and ar , 0. Because this
satisfies for all p ∈ V, we have that each term can be written by

k(a1, · · · , am)L
a1
1 · · · L

am
m = B

∏
p∈V

L
ar (p)
r(p)

,

where B is some monomial in Z[L1, · · · , Lm] and ar(p) , 0. Since p < VLr (p) , we
have that ⋂

p∈V

Lr(p) = ∅.

This shows that for each term of A

k(a1, · · · , am)L
a1
1 · · · L

am
m = B

∏
p∈V

L
ar (p)
r(p)

∈ 〈
∏
L∈L′

L | L′ ∈ I(L)〉.

Therefore, A ∈ 〈
∏

L∈L′ L | L′ ∈ I(L)〉. This establishes the relation (5). �

By using Lemma 5.2 and 5.3, we can prove the following lemma for the homo-
morphism Ψ′ : Z[G̃] → H∗(G̃) which is defined from Ψ′(L) := τL .

Lemma 5.4 Ψ′ is injective.

Proof We first define

ρ′ : H∗(G̃) →
⊕
p∈V

H∗(BTn)

by the homomorphism

ρ′( f ) =
⊕
p∈V

f (p).

Then it is easy to check that the following diagram is commutative:

Z[G̃]
ρ
//

Ψ′

��

⊕
p∈V Z[G̃]p

⊕p Ip

��

H∗(G̃)
ρ′
//
⊕

p∈V H∗(BTn)
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where Ip : Z[G̃]p → H∗(BTn) is the isomorphism defined by Ip(L) := τL(p) in
Lemma 5.2. Because of Lemma 5.3, ρ is injective. Therefore, the composition map
⊕p Ip◦ρ is injective. Because of the commutativity of the diagram, ρ′◦Ψ′ = ⊕p Ip◦ρ
is also injective. Consequently, Ψ′ is injective. �

5.4 The surjectivity of Ψ′

We next prove the surjectivity of Ψ′. In order to prove it, we will define an ideal
I(K) of H∗(BTn), where K is the non-empty intersection of some hyperplanes,
say K = L1 ∩ · · · ∩ Lk(, ∅). Note that the graph K is connected because of the
assumption (2) of Theorem 4.1. Because L1, . . . , Lk defines hyperplanes L1, . . . ,Lk

(respectively) of G = (Γ, α, ∇), the subgraph K is also defines a (2n − 2k)-valent
(T∗Cn−k-modeled) GKM subgraph of G, sayK := (K, αK,∇K ). Nowwemay define
its x-forgetful graph, i.e., for α̃K := F ◦ αK , the labeled graph

K̃ := (K, α̃K,∇K ).

We define an ideal I(K) (in H∗(BTn)) on K as follows:

I(K) = 〈α̃K (ε)(= α̃(ε)) | ε ∈ EK 〉,

that is, this ideal is generated by all x-forgetful axial functions of edges and legs in
K . The following lemma, which will be used to prove the surjectivity of Ψ′, holds
for I(K).

Lemma 5.5 Let f be an element in H∗(G̃). If f (p) < I(K) for some p ∈ VK , then
f (q) < I(K) for all q ∈ VK .

Proof Let K := (VK, EK ). For f ∈ H∗(G̃), we assume that f (p) < I(K) for some
p ∈ VK . We also assume that there exists a vertex q ∈ VK such that f (q) ∈ I(K).
Since K is connected, there is a path in K from q to p, which consists of edges

qr1, r1r2, · · · , rs−1rs, rsp ∈ EK ⊂ EK .

Because of the congruence relations in H∗(G̃), there are A1, . . . , As+1 ∈ H∗(BTn)

such that

f (q) − f (p)

=( f (q) − f (r1)) + ( f (r1) − f (r2)) + · · · + ( f (rs−1) − f (rs)) + ( f (rs) − f (p))

=A1α̃(qr1) + A2α̃(r1r2) · · · + Asα̃(rs−1rs) + As+1α̃(rsp).

Therefore, by the definition of I(K), we have

f (q) − f (p) ∈ I(K).
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However, since f (q), A1α̃(qr1), · · · , As+1α̃(rsp) ∈ I(K), we have f (p) ∈ I(K). This
gives a contradiction. This established that if f (p) < I(K) then f (q) < I(K) for all
q ∈ VK . �

By using this lemma, we can prove the surjectivity of Ψ′ : Z[G̃] → H∗(G̃).

Lemma 5.6 Ψ′ is surjective.

Proof Let f ∈ H∗(G̃). For some p ∈ V, we assume that f (p) ∈ H∗(BTn) has a
non-zero constant term k ∈ Z − {0}, i.e.,

f (p) = k + g(p)

where g(p) ∈ H>0(BTn) ∪ {0}. Note that H∗(BTn) ' Z[x1, . . . , xn], where |x |i = 2
for all i = 1, . . . n. Because f ∈ H∗(G̃) satisfies the congruence relation, there exists
g ∈ H>0(G̃) ∪ {0} such that for all q ∈ V we may write

f (q) = k + g(q),

where H>0(G̃) ∪ {0} is the set of g ∈ H∗(G̃) whose constant term is 0, i.e., for all
p ∈ V the constant term of the polynomial g(p) ∈ Z[x1, . . . , xn] is 0. This shows
that for all f ∈ H∗(G̃) there exists the constant term k and g ∈ H>0(G̃) ∪ {0} such
that

f = k + g.

Therefore, we can take k ∈ Z ⊂ Z[G̃] such that

f = Ψ′(k) + g.

Take g = f − Ψ′(k). Then g(p) ∈ H>0(BTn) ∪ {0} for all p ∈ V. Now we may
put

Z(g) = {p ∈ V | g(p) = 0}.

We first assume that Z(g) = ∅. Then g(p) , 0 for all p ∈ V. Note that by Lemma
5.2 we have

g(p)(, 0) ∈ H∗(BTn) = Z[τLp,1 (p), · · · , τLp,n (p)],

where Lp,i , i = 1, . . . , n, are the hyperplanes such that p ∈ VLp, i . This also shows
that for the fixed vertex p ∈ V, we may take an element

A ∈ Z[G̃]

such that

Ψ
′(A)(p) = g(p).
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Because g − Ψ′(A) ∈ H∗(G̃) and g(p) − Ψ′(A)(p) = 0, we have that

p ∈ Z(g − Ψ′(A)).

Next, by taking h = g − Ψ′(A) = f − Ψ′(k + A), we may assume that Z(h) , ∅.
Take p ∈ V\Z(h), i.e., h(p) , 0. Let aτap,1

L1
· · · τ

ap,n

Ln
(p) be a monomial appearing

in h(p), where a is a non-zero integer, p ∈ VLp, i and ai ≥ 0 (i = 1, · · · , n). Since
h(p) ∈ H>0(BTn), we may assume that

a1, · · · , ab , 0, ab+1 = · · · = an = 0.

Put K = ∩b
i=1Lp,i . Then we have

h(p) < I(K) = 〈α̃K (ε) | ε ∈ EK 〉 ⊂ H∗(BTn)

because h(p) contains the non-zero monomial aτa1
Lp,1
· · · τab

Lp,b
(p) such that τLp, i (p)

(i = 1, · · · , b) is defined by the axial function of the normal edge or leg of K on p
(which are not the edges or legs in EK ). Therefore, by Lemma 5.5, we have that for
all q ∈ VK ,

h(q) < I(K).

In particular, h(q) , 0 for all q ∈ VK . Let r < VK . Because K = Lp,1 ∩ · · · ∩ Lp,b ,
we see that

aτa1
Lp,1
· · · τab

Lp,b
(r) = 0.

Therefore, if we put

h′ = h − aτa1
Lp,1
· · · τab

Lp,b
= h − Ψ′(aLa1

p,1 · · · L
ab

p,b
) = f − Ψ′(k + A + aLa1

p,1 · · · L
ab

p,b
),

then h′(r) = h(r) for all r < VK . Namely, h(q) , 0 for all q ∈ VK and h′(r) = h(r)
for all r < VK . This shows that

Z(h′) ⊃ Z(h).

Note that by the definition of h′, the number of monomials in h′(p) is strictly smaller
than that in h(p). If h′(p) = 0, then we have Z(h′) ) Z(h). If h′(p) , 0, then we
may apply the same argument as above for h′ ∈ H∗(G̃) and the vertex p ∈ V again
because Z(h′) , ∅. Then we have that there exists hyperplanes Lp,i1, . . . , Lp,ic in
{Lp,1, . . . , Lp,n} and a non-zero integer a′ such that

h′′ = h′ − Ψ′(a′L
a′1
p,i1
· · · La′c

p,ic
)

which satisfies that
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Z(h′′) ⊃ Z(h′)

and the number of monomials in h′′(p) is strictly smaller than that in h′(p), where
a′1, . . . , a

′
c are positive integers. If h′′(p) , 0, then we repeat the same argument

again. Because the number of monomials in h(p) is strictly smaller than smaller in
each step, finally we have an element

B ∈ Z[G̃]

such that

Z(h − Ψ′(B)) ) Z(h).

Moreover repeating this procedure, we can find an element C ∈ Z[G̃] such that
Z(h − Ψ′(C)) = V. This shows that

h − Ψ′(C) = f − Ψ′(k + A + C) = 0.

Therefore, for all f ∈ H∗(G̃) there exists an element k + A + C ∈ Z[G̃] such that
f = Ψ′(k + A + C). This establishes that Ψ′ is surjective. �

Consequently Ψ′ is an isomorphic map by Lemma 5.4 and 5.6, and we have

H∗(G̃) ' Z[G̃].

This establishes Theorem 5.1.

Remark 5.7 From the above argument, we know that the assumption (2) of Theo-
rem 4.1 is not needed to prove the “injectivity” of Ψ′; however, it is needed to prove
the “surjectivity” ofΨ′. Hence, the assumption (2) of Theorem 4.1means that H∗(G̃)
(resp. H∗(G)) is generated by elements of H2(G̃) (resp. H2(G)), that is, τL ∈ H2(G̃)

(resp. τH, χ ∈ H2(G)). For example, the Figure 12 shows the T∗C2-modeled GKM
graph which does not satisfy the assumption (2) of Theorem 4.1 and its x-forgetful
graph. In this case, we need a generator which is not in H2(G̃).

6 Proof of Theorem 4.1

In this section, we prove Theorem 4.1. We first recall the statement of Theorem 4.1.
Let G be a 2n-valent T∗Cn-modeled GKM graph and L = {L1, · · · , Lm} be the set
of all hyperplanes in G. Assume the following two assumptions for G:

1. For each L ∈ L, there exist the unique pair of the halfspace H and its opposite
side H such that H ∩ H = L;

2. For every subset L′ ⊂ L, its intersection
⋂
L∈L′

L is empty or connected.
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e∗2 e∗1

x − e∗1 x − e∗2

e∗2 e∗1

x − e∗1 x − e∗2

e∗2 e∗1

−e∗1 −e∗2

e∗2 e∗1

−e∗1 −e∗2

Fig. 12: An example of the T ∗C2-modeled graph and its x-forgetful graph which does not satisfy
the assumption (2) in Theorem 4.1. Geometrically, this graph can be defined from T ∗S4 with the
T 2 × S1-action
.

Then, we will prove the following isomorphism:

Z[G] ' H∗(G).

Recall the ring homomorphism in Section 4

Ψ : Z[G] → H∗(G)

is defined by

Ψ(X) = χ, Ψ(H) = τH . (6)

To prove Theorem 4.1, we claim that Ψ is an isomorphism.
By the assumption (1) of Theorem 4.1, we can put the set of all halfspaces in G

by

H = {H1, · · · , Hm, H1, · · · , Hm},

where Li = Hi ∩ Hi . We prepare the following diagram:

Z[X,H1, · · · ,Hm,H1, · · · ,Hm]
π̂ //

φ′

��

Z[G]

Ψ

��

Z[X,H1, · · · ,Hm]
π //

φ

��

H∗(G)

F̃
��

Z[L1, · · · , Lm]
π′ // H∗(G̃)

(7)

where the maps in the diagram is defined as follows:
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• π̂ is the natural projection;
• Ψ is defined by (6) as before;
• φ′ is the surjective homomorphism induced from

φ′(X) = X, φ′(Hi) = Hi, φ′(Hi) = X − Hi, i = 1, . . . ,m;

• π is the homomorphism induced from

π(X) = χ, π(Hi) = τHi , i = 1, . . . ,m;

• F̃ is the homomorphism defined by

F̃( f )(p) := F ◦ f (p)

for f ∈ H∗(G) and p ∈ V, where F : H∗(BTn × BS1) → H∗(BTn) is the
x-forgetful map for the fixed generator x of H2(BS1) ' Zx;

• φ is the surjective homomorphism induced from

φ(X) = 0, φ(Hi) = Li, i = 1, . . . ,m;

• π′ is the homomorphism induced from

π′(Li) = τLi , i = 1, . . . ,m.

It easily follows from the definitions of homomorphisms as above and Lemma 3.9
that the top diagram is commutative. By Section 5.1, we may choose H1, . . . ,Hm as
τLi = F ◦ τHi for i = 1, . . . ,m. Therefore, we may assume that the bottom diagram
is also commutative. Therefore, this diagram is commutative.

By the proof of Theorem 5.1, i.e., Z[G̃] ' H∗(G̃), we have that π′ is surjective.
This shows that π′ ◦ φ = F̃ ◦ π is surjective; therefore, F̃ is also surjective.

6.1 Surjectivity of Ψ

We first prove the surjectivity of Ψ. By the commutativity of the top diagram, it is
enough to prove that the homomorphism

π : Z[X,H1, . . . ,Hm] → H∗(G)

is surjective (see Lemma 6.4). To do that, we will prove the following three lemmas.
The following first lemma is about the kernel of F̃ : H∗(G) → H∗(G̃).

Lemma 6.1 Let χ be the element in H∗(G) such that χ(p) = x for all p ∈ V, where
x is the residual basis. Then we have Ker F̃ = 〈χ〉, i.e., the ideal generated by χ.

Proof Let f ∈ Ker F̃. By the definition of F̃, we have F̃( f )(p) = F ◦ f (p) = 0 for all
p ∈ V. Since F : H∗(BTn×BS1) = Z[α1, · · · , αn, x] → Z[β1, · · · , βn] = H∗(BTn)
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is defined by F(x) = 0 and F(αi) = βi for all i = 1, · · · , n, we have

f (p) ∈ Ker F = 〈x〉 ⊂ H∗(BTn × BS1).

Therefore, for every p ∈ V, there exists a polynomial g(p) ∈ H∗(BTn × BS1) such
that

f (p) = g(p)x.

Because f ∈ H∗(G), it satisfies the congruence relation

f (i(ε)) − f (t(ε)) = g(i(ε))x − g(t(ε))x = (g(i(ε)) − g(t(ε)))x ≡ 0 (mod α(ε))

for every edge ε . Because x is the residual basis, by definition of T∗Cn-modeled
GKM graph (see Definition 2.4), we see that α(ε) , x for every edge ε ∈ E . Hence,
because the polynomial ring is an integral domain, we have

g(i(ε)) − g(t(ε)) ≡ 0 (mod α(ε))

for every edge ε . This implies that g ∈ H∗(G). Therefore for all f ∈ Ker F̃, there
exists an element g ∈ H∗(G) such that f = gχ. Hence, Ker F̃ ⊂ 〈χ〉. On the other
hand, we can easily check that Ker F̃ ⊃ 〈χ〉. This establishes that Ker F̃ = 〈χ〉. �

The following second lemma is about the degree-wise decomposition of an ele-
ment in H∗(G).

Lemma 6.2 For every f ∈ H∗(G), there exists a non-negative integer l and an
element f2i ∈ H2i(G) for each 0 ≤ i ≤ l which satisfy

f = f0 + f2 + · · · + f2l,

where H2i(G) consists of the element, say h2i , which satisfies h2i(p) ∈ H2i(BTn ×

BS1) for all p ∈ V.

Proof Since f (p) ∈ H∗(BTn × BS1), for every p ∈ V there exists a non-negative
integer l(p) and an element f2i(p) ∈ H2i(BTn × BS1) such that

f (p) = f0(p) + · · · + f2l(p)(p).

If we take the maximal integer l = max{l(p) | p ∈ V}, then we may write

f (p) = f0(p) + · · · + f2l(p).

for all p ∈ V. Therefore, we can define the map f2i : V → H2i(BTn × BS1) by
p 7→ f2i(p) for all 0 ≤ i ≤ l. We claim that f2i ∈ H∗(G). Because f satisfies the
congruence relation for all edges ε , we see that

f (i(ε)) − f (t(ε)) = ( f0(i(ε)) − f0(t(ε))) + · · · + ( f2l(i(ε)) − f2l(t(ε))) = Aα(ε) (8)
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for some A ∈ H∗(BTn×BS1). Moreover, there is a monomial A2i ∈ H2i(BTn×BS1)

for each 0 ≤ i ≤ l − 1 such that

A = A0 + · · · + A2l−2.

Comparing the same degree monomials of both sides in (8), we have

f2i(i(ε)) − f2i(t(ε)) = A2i−2α(ε) ≡ 0 mod α(ε).

Because this relation satisfies for all ε ∈ E , we have f2i ∈ H∗(G) for all i = 0, · · · , l.
This establishes the statement. �

Wecall each f2i in Lemma 6.2 a 2i degree homogeneous term of f for i = 0, · · · , l.
We denote deg f2i = 2i. Of course, f2i ∈ H2i(G).

The following third lemma is about the map π : Z[X,H1, . . . ,Hm] → H∗(G).
This will be a technical part to show that π is surjective (Lemma 6.4).

Lemma 6.3 Assume that there exists an element f ∈ H∗(G) such that f < Im π.
Then there are A ∈ Z[X,H1, · · · ,Hm] and some integer jk such that

π(A) − f = χ
∑
k

g2jk ,

where g2jk ∈ H2jk (G) but g2jk < Im π with j0 < j1 < · · · < jk < · · · .

Proof Assume f < Im π. Recall that the following two homomorphisms in (7) are
surjective by the assumption (1) of Theorem 4.1 and Theorem 5.1:

φ : Z[X,H1, . . . ,Hm] −→ Z[L1, . . . , Lm];

π′ : Z[L1, . . . , Lm] −→ H∗(G̃).

Therefore, there exists a non-zero polynomial

B ∈ Z[X,H1, · · · ,Hm]

such that for F̃ : H∗(G) → H∗(G̃),

F̃( f ) = π′ ◦ φ(B).

Because π′ ◦ φ = F̃ ◦ π in the diagram (7), we have

π′ ◦ φ(B) = F̃ ◦ π(B) = F̃( f ).

Hence π(B) − f ∈ Ker F̃. Because of Lemma 6.1, i.e., KerF̃ = 〈χ〉, there is a
g′ ∈ H∗(G) such that

π(B) − f = g′χ. (9)

Since f < Im π and π(X) = χ, we have
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g′ < Im π.

Because of Lemma 6.2, this element g′ can be divided into

g′ = g0 + · · · + g2l,

where g2i is a 2i degree homogeneous term, for 0 ≤ i ≤ l. If g2i ∈ Im π, then
g′ − g2i < Im π. Therefore, g′ can be divided into two terms (0 ,)g =

∑
k g2jk for

all g2jk < Im π and h =
∑

k′ g2ik′ for all g2ik′ ∈ Im π such that

g′ = g + h.

Since

g′χ = gχ + hχ = gχ + π(CX)

for some C ∈ Z[X,H1, · · · ,Hm], together with (9), we see that there is an element
A = B − CX ∈ Z[X,H1, · · · ,Hm] such that π(A) − f = gχ. �

Now we may prove Lemma 6.4.

Lemma 6.4 The homomorphism π : Z[X,H1, · · · ,Hm] → H∗(G) is surjective.

Proof By Lemma 6.3, it is enough to show that every homogeneous term of f ∈
H∗(G) is an element of Im π.

Assume that H∗(G)\Im π , ∅. Let f be a minimal degree homogeneous el-
ement in H∗(G)\Im π. Because of Lemma 6.3, there exists a polynomial A ∈
Z[X,H1, · · · ,Hm] and an element g ∈ H∗(G)\Im π such that

f = π(A) − gχ.

By using Lemma 6.3 again, we also have that g is a sum of homogeneous elements
in H∗(G)\Im π.

We claim that π(A)(∈ Im π) and gχ(∈ H∗(G)\Im π) are also homogeneous
elements in H∗(G) whose degrees are the same with the degree of f . Assume
that π(A) =

∑
k h2ik and gχ =

∑
k g2jk χ, where h2ik ∈ H2ik (G) ∩ Im π for all

i0 < i1 < · · · and g2jk ∈ H2jk (G) \ Im π for all j0 < j1 < · · · . Because f is
a minimal homogeneous element in H∗(G)\Im π, we see that |g |2j0 χ = | f | and
|h|2i0 ≥ | f |; moreover, the higher terms of π(A) ∈ Im π and gχ < Im π are the same,
i.e., they must be 0. Hence, both of π(A) and g are also homogeneous elements.

However, in this case, we have

|g | = |g |χ − |χ | = | f | − 2 < | f |.

This gives a contradiction to that f is a minimal homogeneous element in
H∗(G)\Im π. Hence, there does not exist any homogeneous elements in H∗(G)\Im π.
Consequently, by Lemma 6.3, we have that H∗(G)\Im π = ∅, i.e., π is surjective. �
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Therefore, by the commutativity of the top diagram in (7), the following lemma
holds:

Lemma 6.5 Ψ is surjective.

6.2 Injectivity of Ψ

Finally, in this section, we will prove the injectivity of Ψ. In this section we use the
following notation:

Ij = {1, · · · , l} − { j}

for j = 1, · · · , l. We first prove Lemma 6.7. In order to prove Lemma 6.7, we
prepare the following lemma.

Lemma 6.6 Assume that ∩l
k=1Lk = ∅ and Lk = Hk ∩ Hk (k = 1, · · · , l). Then for

all j = 1, . . . , l, one of the following holds:

• Hj ∩ (∩k∈Ij Lk) = ∅;
• Hj ∩ (∩k∈Ij Lk) = ∅.

Proof Assume ∩l
k=1Lk = ∅. For j ∈ {1, · · · , l}, if the following relation holds:

Lj ∩ (∩k∈Ij Lk) = ∩k∈Ij Lk = ∅,

then it follows from ∩k∈Ij Lk = ∅ that for each Hj and Hj we have

Hj ∩ (∩k∈Ij Lk) = Hj ∩ (∩k∈Ij Lk) = ∅.

So we may take j ∈ {1, · · · , l} such that⋂
k∈Ij

Lk , ∅.

In this case, there exists a vertex p ∈ V∩k∈I j Lk . Since Lj ∩(∩k∈Ij Lk) = ∩
l
k=1Lk = ∅,

we have that p < VLi . Therefore, for all vertices p ∈ V∩k∈I j Lk , the following
equation holds:

τHj (p) =
{

0 (if p < VHj )

x (if p ∈ VHj )

where τHj is the Thom class of Hj .
If there are two vertices p, q ∈ V∩k∈I j Lk such that

τHj (p) = 0; τHj (q) = x.
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By the assumption (2) in Theorem 4.1, there exists a path from p to q in ∩k∈Ij Lk ,
i.e., we may take the following sequence in E∩k∈I j Lk :

ε1, · · · , εs ∈ E∩k∈I j Lk

such that i(ε1) = p and t(εs) = q. By the definition of the T∗Cn-modeled GKM
graph, the axial function satisfies that α(ε) , x for all ε ∈ E . Moreover, τHj satisfies
the congruence relation. Therefore, there exists an edge ε ∈ {ε1, . . . , εs} such that
r = i(εt ) satisfies that

τHj (r) , 0, x.

By the definition of the Thom class of the halfspace Hj , the vertex r ∈ ∂Hj = Lj .
However, this gives that r ∈ Lj ∩ (∩k∈Ij Lk) = ∩

l
k=1Lk . This gives a contradiction to

that ∩l
k=1Lk = ∅.

Therefore, we may assume τHj (p) = 0 (resp. x) for all p ∈ V∩k∈I j Lk . Then, by
definition of the halfspace, we have Hj ∩V

∩k∈I j Lk = ∅ (resp. Hj ∩V
∩k∈I j Lk = ∅).

This establishes the statement of this lemma. �

From Lemma 6.6, we have the following key fact.

Lemma 6.7 Assume theT∗Cn-modeled GKM graph G satisfies two assumptions (1),
(2) of Theorem 4.1. If ∩l

k=1Lk = ∅ and Lk = Hk ∩ Hk (k = 1, · · · , l), then we can
take a halfspace Hk such that ∩lk=1Hk = ∅.

Proof If ∩l
k=1Lk = ∅ and Lk = Hk ∩ Hk (k = 1, · · · , l), we can take Hj as

Hj ∩ (∩k∈Ij Lk) = ∅ for all j = 1, · · · , l from Lemma 6.6. Now we may set

H′ =
{
H1, · · · , Hl | Hj ∩ (∩k∈Ij Lk) = ∅, j = 1, . . . , l

}
.

We claim that ∩H ∈H′H = ∩lj=1Hj = ∅. If there exists a vertex p ∈ V∩
l
j=1Hj , it

follows from the assumption∩l
k=1Lk = ∅ that we have τHj (p) = x for all j = 1, . . . , l;

therefore,

l∏
j=1

τHj (p) = xl .

Because
∏l

j=1 τHj ∈ H∗(G),
∏l

j=1 τHj satisfies the congruence relations for all
edges ε ∈ E . By definition ofT∗Cn-modeled GKM graph, the axial function satisfies
α(ε) , x for all edges ε ∈ E . This shows that for all edge ε ∈ Ep the following
equation holds:

l∏
j=1

τHj (t(ε)) = xl .
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Because the graph Γ is connected, we can apply the same argument for all vertices;
therefore, we have

l∏
j=1

τHj (q) = xl

for all q ∈ V. This shows thatV = V∩
l
j=1Hj . However, by definition of the halfspace,

it is obvious that V , V
∩l
j=1Hj and this gives a contradiction. Hence, we have

∩l
j=1Hj = ∩H ∈H′H = ∅. �

We next will prove Lemma 6.10. In order to prove it, we prepare some notations
and two lemmas: Lemma 6.8 and 6.9.

Let π̃ : Z[X, H1, · · · , Hm] → Z[G] be the natural homomorphism such that
π̃(X) = X , π̃(Hi) = Hi for i = 1, · · · , m. Because Hi = X − Hi in Z[G], we have

π̃ ◦ φ′ = π̂ : Z[X, H1, · · · ,Hm,H1, · · · ,Hm] → Z[G].

Since π̂ is surjective, π̃ is also surjective. Moreover we have

Ψ ◦ π̃ = π : Z[X, H1, · · · , Hm] → H∗(G)

by definitions of Ψ and π. Hence we have the following commutative diagram:

Z[X,H1, · · · ,Hm,H1, · · · ,Hm]
π̂ //

φ′

��

Z[G]

Ψ

��

Z[X,H1, · · · ,Hm]
π //

φ

��

π̃

55

H∗(G)

F̃
��

Z[L1, · · · , Lm]
π′ // H∗(G̃)

Define the following ideal in Z[X,H1, · · · ,Hm,H1, · · · ,Hm]:

I =
〈
Hi + Hi − X,

∏
H ∈H′

H
��� i = 1, · · · , m, H′ ∈ I(H)

〉
,

where I(H) = {H′ ⊂ H | ∩H ∈H′ H = ∅}. For this ideal, the following property holds.

Lemma 6.8 For the ideal I ⊂ Z[X,H1, · · · ,Hm,H1, · · · ,Hm], the following two
properties hold:

(i) Ker π̃ = φ′(I);
(ii) Ker π′ = φ ◦ φ′(I).

Proof Since π̂ is the natural projection, it follows from the definition of Z[G] that
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I = Ker π̂.

So, by the commutativity of the diagram, we have that

π̃(φ′(I)) = π̂(I) = π̂(Ker π̂) = {0}.

Hence φ′(I) ⊂ Ker π̃. Let A be an element in Ker π̃. Because φ′ is surjective, there
is an element B ∈ Z[X, H1, · · · ,Hm,H1, · · · ,Hm] such that φ′(B) = A. By the
commutativity of the diagram, we also have

π̂(B) = π̃ ◦ φ′(B) = π̃(A) = 0.

So B ∈ Ker π̂ = I. Hence A = φ′(B) ∈ φ′(I), that is, Ker π̃ ⊂ φ′(I). Therefore, we
establish the first property: Ker π̃ = φ′(I).

By Theorem 5.1, we know

Ker π′ = 〈
∏
L∈L′

L | L′ ∈ I(L)〉,

where I(L) = {L′ ⊂ L | ∩L∈L′ L = ∅}. Take a generator
∏

L∈L′ L ∈ Ker π′.
From Lemma 6.7, for L′ = {L1, · · · , Ll} ∈ I(L), there exists a set of halfspaces
H′ = {H1, · · · , Hl} ∈ I(H) such that Hk ∩ Hk = Lk . By the definition of the ideal
I, a product

∏l
k=1 Hk is one of the generators of I. Moreover, by the definitions of

φ′ and φ, we see that

φ ◦ φ′(I) 3 φ ◦ φ′(

l∏
k=1

Hk) = ±

l∏
k=1

Lk .

Because this satisfies for all generators
∏

L∈L′ L in Ker π′, we have that

Ker π′ ⊂ φ ◦ φ′(I).

On the other hand, because φ′(H+H−X) = 0 and φ◦φ′(
∏

H ∈H′ H) = ±
∏

L∈L′ L ∈
Ker π′, for all A ∈ I we have

π′ ◦ φ ◦ φ′(A) = {0}.

So we have Ker π′ ⊃ φ◦φ′(I). Therefore we conclude the second property: Ker π′ =
φ ◦ φ′(I). �

In order to prove Lemma 6.10, we also prepare the following technical lemma for
general polynomial rings.

Lemma 6.9 Let I ⊂ Z[x1, · · · , xl] be an ideal generated by homogeneous poly-
nomials, that is, I = 〈p1, · · · , pm〉 where pi is a homogeneous polynomial of
Z[x1, · · · , xl] such that deg pi ≤ deg pj for i < j. For every element A ∈ I, if we
denote A = A1 + · · · + An, where Ai is a homogeneous term (i = 1, · · · , n) and
deg Ai < deg Aj for i < j, then Ai ∈ I for all i = 1, · · · , n.
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Proof Because A ∈ I = 〈p1, · · · , pm〉, there exists Xk ∈ Z[x1, · · · , xl], k =
1, . . . ,m, such that

A = X1p1 + · · · + Xmpm.

Then we can put Xk = Xk1 + Xk2 + · · · + Xksk where Xki is a homogeneous term
(i = 1, · · · , sk) and deg Xki < deg Xk j for i < j. Hence, by changing the order of
monomials, we may rewrite

A = (X11 + · · · + X1s1 )p1 + · · · + (Xm1 + · · · + Xmsm )pm
= X11p1 + · · · Xmsm pm

as

A = A1 + · · · + An,

where |A|i < |A|j if i < j. Because Ai is a homogeneous term, we have

Ai =
∑
j∈Di

Xjh j pj

where Di = { j | |X |jh j + |p|j = |A|i}. Therefore, Ai ∈ I for all i = 1, · · · , n. �

Using two lemmas as above, we have the following lemma.

Lemma 6.10 Ker π̃ = Ker π.

Proof By Lemma 6.8 (i), Ker π̃ = φ′(I). Therefore, by using the commutativity of
the diagram and Ker π̂ = I, we have

π(Ker π̃) = π ◦ φ′(I) = Ψ ◦ π̂(I) = 0.

Hence,

Ker π̃ = φ′(I) ⊂ Ker π.

We claim thatKer π ⊂ Ker π̃(⊂ Z[X, H1, · · · , Hm]). Assume thatKer π\φ′(I) ,
∅. Let A ∈ Ker π\φ′(I) ⊂ Z[X, H1, · · · , Hm] be a minimal degree homogeneous
polynomial. By the previous diagram,

π′ ◦ φ(A) = F̃ ◦ π(A) = 0.

Hence, by Lemma 6.8 (ii),

φ(A) ∈ Ker π′ = φ ◦ φ′(I).

Therefore, we can take B ∈ φ′(I)(⊂ Ker π) such that φ(A) = φ(B). Because φ′(I)
is an ideal in Z[X,H1, . . . ,Hm] and A is a homogeneous polynomial, it follows from
Lemma 6.9 that we may also take B as the homogeneous polynomial in φ′(I) such
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that

|A| = |B |.

By the definition of φ, it is easy to check that Ker φ = 〈X〉 ⊂ Z[X,H1, . . . ,Hm];
therefore, we have

A − B ∈ Ker φ = 〈X〉.

This means that there exists a polynomial C ∈ Z[X, H1, · · · , Hm] such that

A − B = CX .

Because A = B + CX < φ′(I) and B ∈ φ′(I), we have CX < φ′(I). Moreover,
because we take |A| = |B |, CX is also a homogeneous polynomial with |A| = |B | =
|C |X . Therefore, because A, B ∈ Ker π, we have CX is a homogeneous polynomial
in Ker π \φ′(I). Then, we have |A| = |C |X = |C |+ |X | = |C |+2. Moreover, because
A is a minimal homogeneous polynomial in Ker π \ φ′(I), we have that

C ∈ φ′(I)(⊂ Ker π).

However, because φ′(I) is an ideal in Z[X,H1, . . . ,Hm], we see that

CX ∈ φ′(I).

This shows that A = B + CX ∈ φ′(I) and this gives the contradiction to that
there is an element in Ker π\φ′(I). Hence, we have Ker π\φ′(I) = ∅, that is,
Ker π = φ′(I) = Ker π̃ by Lemma 6.8 (i). �

So we can prove the injectivity of Ψ.

Lemma 6.11 Ψ is injective.

Proof Let A be in Ker Ψ. Since π̃ is surjective, there is an element B ∈

Z[X, H1, · · · , Hm] such that π̃(B) = A. So we have π(B) = Ψ ◦ π̃(B) = Ψ(A) = 0.
Hence B ∈ Ker π = Ker π̃ by Lemma 6.10. Therefore, we have A = π̃(B) = 0. This
concludes that Ψ is injective. �

Because of Lemma 6.5 and 6.11,we have thatΨ is the isomorphism.Consequently
the proof of Theorem 4.1 is complete, that is, we get

H∗(G) ' Z[G].
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7 Generators of Z[ ˜G] as H∗(BT n)-module

Let G = (Γ, α,∇) be a 2n-valent T∗Cn-modeled GKM graph and L = {L1, . . . , Lm}

be the set of all hyperplanes in G. Assume that G satisfies the two assumptions of
Theorem 4.1 so that H∗(G) ' Z[G].

7.1 Simplicial complex associated to L

.
Let L = {L1, . . . , Lm}. Let ∆L denote the simplicial complex associated to L

defined as follows. There is a vertex vi in ∆L corresponding to the hyperplane Li

such that whenever Li1 ∩ · · ·∩ Lik , ∅ in G, the vertices {vi1, . . . , vik } span a simplex
in ∆L. In particular, for 1 ≤ i ≤ d, let σi = 〈vi1, . . . , vin 〉 be the (n − 1)-dimensional
simplex of ∆L corresponding to a vertex pσi := Li1 ∩ · · · ∩ Lin of G.

Note that ∆L is pure i.e., all maximal faces (also called facets) are of the same
dimension n − 1. Let ∆L(n − 1) denote the set of facets of ∆L. Then d = |∆L(n − 1)|
which is also equal to |VΓ | the number of vertices of Γ. For simplices τ and σ in
∆L, by τ � σ we mean that τ is a face of σ.

We say that ∆L is a shellable simplicial complex if the following holds: There
is an ordering σ1, σ2, . . . , σd of ∆L(n − 1) such that if ∆j denotes the subcomplex
generated by σ1, . . . , σj for each 1 ≤ j ≤ d, then ∆i \ ∆i−1 has a unique minimal
face µi for each 2 ≤ i ≤ d. We further let µ1 := ∅ to be the unique minimal face
of ∆1 \ ∆0 where ∆0 = ∅ (see [S96, Section 2.1 p.79]). (Also see [BH93, Definition
5.1.11] for other equivalent definitions of shellability of a pure simplicial complex.)

Example 7.1 In the case when n = 1, G is a 2-valent T∗C-modelled GKM graph
and the set of hyperplanes L = {L1, . . . , Lm} of G coincides with the set of vertices
of G (see Figure 13). Here G corresponds to the hyperplane arrangement of a
4-dimensional toric hyperKähler manifold. Furthermore, since Li ∩ Lj = ∅ for
every i , j, 1 ≤ i, j ≤ m, the associated simplicial complex ∆L is a pure 0-
dimensional simplicial complex consisting of a vertex (or 0-dimensional simplex) vi
corresponding to Li for every 1 ≤ i ≤ m. Then ∆L is seen to be trivially shellable
for any ordering of the set of vertices {v1, . . . , vm} which are also the facets of ∆L in
this case.

L1 L2 L3 L4 L5

e∗1x − e∗1

Fig. 13: The T ∗C-modeled GKM graph G defined from a five vertices (hyperplanes) arrangement
on the line. In this case, the hyperplane Li in G corresponds to the 0-dimensional simplex vi in ∆L
for i = 1, . . . , 5. This is defined from a 4-dimensional toric hyperKähler manifold. Note that we
omit the axial functions which are automatically determined.
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Example 7.2 Consider the simplicial complex ∆L corresponding to the T∗C2-
modelled GKM graph given in Figure 10. We label the set of 5 hyperplanes as
L1, . . . , L5 where Li ∩ Li+1 , ∅ for 1 ≤ i ≤ 4 and L5 ∩ L1 , ∅ (see Figure 14). Then
∆L consists respectively of the corresponding vertices v1, . . . , v5 and the 1-simplices
[v1, v2], [v2, v3], [v3, v4], [v4, v5], [v5, v1] which are its facets. For the ordering

σ1 = [v1, v2], σ2 = [v2, v3], σ3 = [v3, v4], σ4 = [v4, v5], σ5 = [v5, v1]

of ∆L(1), we see that ∆1 \ ∆0 = {∅, {v1}, {v2}, [v1, v2]} has the minimal element
µ1 = ∅, ∆2 \ ∆1 = {{v3}, [v2, v3]} has the minimal element µ2 = {v3}, ∆3 \ ∆2 =

{{v4}, [v3, v4]} has the minimal element µ3 = {v4}, ∆4 \ ∆3 = {{v5}, [v4, v5]} has
the minimal element µ4 = {v5} and ∆5 \ ∆4 = {[v5, v1]} has the minimal element
µ5 = [v5, v1]. Thus ∆L is a shellable simplicial complex.

p2

p5p1

p4

p3

L1

L2 L5

L3 L4

Fig. 14: The GKM graph G in Figure 10. In this case, the hyperplane Li (resp. vertex pi ) in G
corresponds to the 0 (resp. 1)-dimensional simplex vi (resp. σi ) in ∆L for i = 1, . . . , 5.

In subsection 7.5, we shall show the shellability of ∆L for a T∗C2-modelled GKM
graph G that is induced from the 8-dimensional toric hyperKähler manifold.

For γ ∈ ∆L, let j be the smallest 1 ≤ j ≤ d such that γ � σj . Then γ ∈ ∆j \∆j−1.
Thus it follows that µj � γ � σj . Hence there exists a unique j, 1 ≤ j ≤ d such that
γ ∈ [µj, σj] where [µj, σj] := {γ | µj � γ � σj}. In other words we can write

∆L = [µ1, σ1] t · · · t [µd, σd]. (10)
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If a simplicial complex ∆L satisfies (10) then it is called partitionable (see [S96,
p.80, Section 2.1]). In particular, shellable simplicial complexes are partitionable.

Moreover,
µi � σj ⇒ j ≥ i. (11)

Let
Epσi

= {ε+i1, . . . , ε
+
in
, ε−i1, . . . , ε

−
in
}

for 1 ≤ i ≤ d. Recall from Definition 2.4 that the set {α(ε+i j ), x | j = 1, . . . , n} spans
t∗Z ⊕ Zx i.e.,

〈α(ε+i1 ), . . . , α(ε
+
in
), x〉 = t∗Z ⊕ Zx. (12)

Let G̃ denote the x-forgetful graph associated to G where G̃ = (Γ, α̃,∇) having
Γ and ∇ same as G and α̃ is the x-forgetful axial function defined as α̃ = F ◦ α :
E −→ H2(BTn) where F : H2(BTn)

⊕
Zx −→ H2(BTn) is the x-forgetful map

(see Section 5.2). Recall that

Z[G̃] :=
Z[L1, . . . , Lm]

〈
∏

L∈L′ L | L′ ∈ I(L)〉

where I(L) = {L′ ⊆ L |
⋂
L∈L′

L = ∅}.

Let xγ denote the monomial

xγ :=
p∏
j=1

Li j

where γ = 〈vi1, . . . , vip 〉 ∈ ∆L.

7.2 The characteristic function associated to the hyperplane L

Definition 7.3 Let L be a connected (2n − 2)-valent hyperplane in G. Let H and H
be the unique halfspace such that L = H ∩ H.

For p ∈ VL ,
EL
p = {ε

+
1 , . . . , ε

+
n−1, ε

−
1 , . . . , ε

−
n−1}

is the (n − 1)-pairs and

EΓp = {ε
+
1 , . . . , ε

+
n , ε
−
1 , . . . , ε

−
n }

is the n-pairs so that nH (p) = ε+n and nH (p) = ε
−
n .

By (12), the axial functions α̃(ε+1 ), α̃(ε
+
2 ), . . . , α̃(ε

+
n ) form a basis for (tnZ)

∗. The
characteristic function associated to L is defined as the unique element λ(L) ∈ tnZ
such that
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〈α̃(ε+i ), λ(L)〉 = δi,n.

Lemma 7.4 The definition of λ(L) is independent of the choice of a vertex p ∈ VL .

Proof Let ε = pq ∈ EL , in particular let ε = ε+j for some 1 ≤ j ≤ n−1. Here i(ε) = p
and t(ε) = q. Then under the connection ∇ε , EΓp , the set of edges around p, maps
bijectively onto EΓq , the set of edges around q. Since the hyperplane L is closed under
the connection ∇, EL

p maps bijectively onto EL
q . Moreover, since a halfspace H is

closed under ∇, it follows that ∇ε (nH (p)) = nH (q) so that α̃(∇ε (nH (p))) ≡ α̃(nH (q))
mod α̃(ε). Moreover, since ε ∈ EL and ∇ε (ε) = ε by definition of ∇ε it follows
that the elements α̃(ε+1 ), . . . , α̃(ε

+
n−1) and α̃(∇ε (ε

+
1 )), . . . , α̃(∇ε (ε

+
n−1)) span the same

subspace of (tnZ)
∗. Further, since ε ∈ EL and 〈α̃(ε), λ(L)〉 = 0, by the congruence

relation we have
〈α̃(∇ε (ε

+
n )), λ(L)〉 = 〈α̃(ε

+
n ), λ(L)〉.

Thus for the n-pairs EΓq = {∇ε (ε+1 ), . . . ,∇ε (ε
+
n ),∇ε (ε

−
1 ), . . . ,∇ε (ε

−
n )} we have

〈λ(L), α̃(∇ε (ε+i ))〉 = δi,n.

Hence without loss of generality we could have started with the vertex q ∈ VL to
define λ(L). Moreover, since L is connected, by repeating the above procedure for
an edge ε ′ such that i(ε ′) = q, it follows that the definition of λ(L) is independent of
the choice of p ∈ VL . �

7.3 The H∗(BTn)-algebra structure of H∗( ˜G)

Since H∗(G̃) ⊂
⊕
p∈V

H∗T (p) '
⊕
p∈V

H∗(BTn), the ring H∗(G̃) may be regarded as the

H∗(BTn)-submodule of
⊕
p∈V

H∗(BTn). In Theorem 7.6 of this section, which is the

second main theorem of this paper, we determine module generators of H∗(G̃) as
a H∗(BTn)-module. For this purpose, we begin with the following lemma (also see
[MMP07] for the corresponding statement on torus graphs).

Lemma 7.5 (i) The H∗(BTn)-module structure on H∗(G̃) is obtained from the fol-
lowing map from H2(BTn) to H∗(G̃):

H2(BTn) 3 u 7→
m∑
i=1
〈u, λ(Li)〉 · τLi ∈ H∗(G̃).

Moreover, Ψ′ : H∗(G̃) → Z[G̃] is an isomorphism of H∗(BTn)-algebras where
the algebra structure on Z[G̃] is obtained by sending u ∈ H2(BTn) to the element
m∑
i=1
〈u, λ(Li)〉 · Li ∈ Z[G̃].
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(ii) We therefore have the following presentation for H∗(G̃) as an H∗(BTn)-
algebra:

H∗(G̃) '
H∗(BTn)[L1, . . . , Lm]

〈
∏

L∈L′ L | L′ ∈ I(L) ;
∑m

i=1〈u, λ(Li)〉 · Li − u, ∀ u ∈ H2(BTn)〉

Proof Let p ∈ VL where p = Li1 ∩ · · · ∩ Lin . Then by Section 5.1 we have

m∑
i=1
〈u, λ(Li)〉 · τLi (p) =

n∑
j=1
〈u, λ(Li j )〉 · α̃(nHi j

(p)). (13)

Note that nHi j
(p) = ε+j (p) for 1 ≤ j ≤ n so that α̃(nHi j

(p)) for 1 ≤ j ≤ n form a
basis of t∗Z. Since λ(Li j ) ∈ tZ for 1 ≤ j ≤ n is the corresponding dual basis, the right
hand side of (13) is nothing but u. Thus

(

m∑
i=1
〈u, λ(Li)〉 · τLi )(p) = u for every p ∈ V . (14)

Since p ∈ V was arbitrary from Section 5.3 it follows that the H∗(BTn)-algebra
structure defined above is canonical corresponding to the diagonal inclusion of
H∗(BTn) in

⊕d
i=1 H∗(BTn) = (H∗(BTn))d .

Finally, by definition of Ψ′ in Section 5.2, we also have that the H∗(BTn)-algebra
structure on Z[G̃] is obtained as in the statement. �

The following theorem is the second main theorem in this paper.

Theorem 7.6 Let∆L be the simplicial complex defined by the hyperplanes {L1, . . . , Lm}

of G̃. Suppose that ∆L is a shellable simplicial complex with respect to ordering
σ1, . . . , σd of ∆L(n). In particular, ∆L is partitionable with partition (10) and (11)
holds. Then the following statements hold:

(i) For γ ∈ ∆L, let xγ = Lj1 · · · Ljp ∈ Z[G̃] where γ = 〈vj1, . . . , vjp 〉. Then there
exists an element u ∈ H2(BTn) such that

Lj1 · xγ = −
∑
k

〈u, λ(Ljk )〉 · xγk + u · xγ

where k runs through 1 ≤ k ≤ m such that k < { j1, . . . , jn} and γk =
〈vk, vj1, . . . , vjp 〉.

(ii) Let η � γ � θ be simplices in ∆L. Then we can write

xγ =
∑
k

ck · xηk + c · xη

for ck, c ∈ H∗(BTn) and ηk � θ.
(iii) The monomials xµi for 1 ≤ i ≤ d form a basis of Z[G̃] as H∗(BTn)-module.
(iv) Let f ∈ Z[G̃] and
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f =
d∑
j=1

aj · xµ j (15)

for unique aj ∈ H∗(BTn). Let i = i( f ) be the smallest 1 ≤ i ≤ d such that ai , 0.
Then we can determine the coefficients aj , j ≥ i iteratively as follows: We have
ai =

ρpσi ( f )

ρpσi
(xµi )

. Suppose ai, ai+1, . . . , aj−1 are determined by induction then

aj =
ρpσ j
( f −

∑j−1
k=i

ak · xµk )

ρpσ j
(xµ j )

.

Proof (i) Let σ = 〈vj1, . . . , vjn 〉 be an (n − 1)-simplex containing γ and let pσ =
Lj1 ∩ · · · ∩ Ljn be the corresponding vertex in G̃. Consider λ(Lj1 ) = ej1 ∈ t

n
Z which

is dual to u := α̃(ε+j1 ). In this case, by Lemma 7.5, we have that

u =
m∑
i=1
〈u, λ(Li)〉 · Li .

Since 〈u, eji 〉 = δi,1 for i = 1, . . . , n, we have the relation

Lj1 = −
∑
k

〈u, λ(Lk)〉 · Lk + u (16)

as an H∗(BTn)-module, where the sum on the right hand side is over those 1 ≤ k ≤ m
such that k < { j1, . . . , jn}. Multiplying (16) by xγ we get

Lj1 · xγ = −
∑
〈u, λ(Lk)〉 · xγk + u · xγ (17)

where γk ∈ ∆L is spanned by the vertices vk, vj1, . . . , vjp and xγk = Lk · Lj1 · · · Ljp .
This proves (i)

(ii) Let η ≺ γ � θ be simplices in ∆L. Let γ = 〈vj1, . . . , vjp 〉, η = 〈vj1, . . . , vjr 〉 ∈
∆L and θ = 〈vj1, . . . , vjl 〉 and r < p ≤ l. Because the following argument can also
apply for any such l, we can assume that l = n i.e., θ is (n − 1)-dimensional. Thus
λ(Lj1 ), . . . , λ(Ljn ) is the basis of tZ dual to the basis α̃(εj1 ), . . . , α̃(εjn ) of t∗Z. Let
u := α̃(εjp ) ∈ H∗(BTn). Thus, with the similar reason to obtain (16) as in the proof
of (i), we have the following relation in Z[G̃]:

Ljp +
∑
k

〈u, λ(Lk)〉 · Lk − u = 0 (18)

where k runs through {1, . . . ,m} \ { j1, . . . , jn} in the equation. Multiplying (18) by
Lj1 · · · Ljp−1 , we get

xγ +
∑
k

〈u, λ(Lk)〉 · xηk − u · xγ′ = 0 (19)
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where ηk = 〈vk, vj1, . . . , vjp−1〉, γ′ = 〈vj1, . . . , vjp−1〉 ∈ ∆L. Note that ηk � θ since
k < { j1, . . . , jn}. Also η � ηk and η � γ′, since r ≤ p−1. Therefore, η � γ′ ≺ γ � θ.
Now, proceeding by downward induction on p and repeating the above arguments
for γ′ we arrive at (ii).

(iii) By the ring structure ofZ[G̃] defined in Section 5.2, for every element inZ[G̃]
can be written by the sum of xγ’s for γ ∈ ∆L with H∗(BTn)-coefficients. Therefore,
for every γ ∈ ∆L, it suffices to show that xγ lies in the H∗(BTn)-submodule of
Z[G̃] spanned by xµi for 1 ≤ i ≤ d, where µi is the minimal face which appears in
∆L = [µ1, σ1] t · · · t [µd, σd]. Since ∆L is a shellable simplicial complex, for every
γ ∈ ∆L there exists the unique 1 ≤ i ≤ d such that µi � γ � σi (see (11)). We prove
(iii) by downward induction on i.

If γ ∈ [µd, σd], we are done since µd = σd = γ, i.e., xγ = xµd and hence lies in
the H∗(BTn)-span of xµd . Assume that for every γ ∈ [µi+1, σi+1] t · · · t [µd, σd],
xγ ∈ H∗(BTn)xµi+1 ⊕ · · · ⊕ H∗(BTn)xµd . If γ ∈ [µi, σi], then by (ii) we can write

xγ =
∑

µi ≺γj⊀σi

cj · xγj + c · xµi (20)

for cj, c ∈ H∗(BTn). Now there is the unique r such that µr � γj � σr . This implies
by (11) that r > i.

Thus by induction assumption xγj lies in the H∗(BTn)-span of xµq for q ≥ r . This
together with (20) implies that xγ lies in the H∗(BTn)-span of xµq for q ≥ i.

It remains now to show that xµi for 1 ≤ i ≤ d are linearly independent. Suppose
that there exist ai ∈ H∗(BTn) for 1 ≤ i ≤ d such that

d∑
i=1

ai · xµi = 0 (21)

in Z[G̃]. Let i ∈ {1, . . . , n} be the smallest integer such that ai , 0.
Recall that σi = 〈vi1, . . . , vin 〉 where pσi = Li1 ∩ · · · ∩ Lin in G. Consider the

localization map ρ = (ρpσ j
)d
j=1 defined in Section 5.3. By (11) and the definition

of ρpσi
it follows that ρpσi

(xµ j ) = 0 for j > i (since µj � σi there exists Lk in L
such that the corresponding vertex vk ∈ µj and vk < σi in ∆L. Thus ρpσi

(Lk) = 0 in
Z[G̃]pσi

). Thus applying ρpσi
on (21) we get

ρpσi
(

n∑
j=1

aj · xµ j ) = ρpσi
(
∑
j≥i

aj · xµ j ) = ρpσi
(ai · xµi ) = ρpσi

(ai) · ρpσi
(xµi ) = 0

in the integral domain Z[G̃]pσi
' Z[Li1, . . . , Lin ]. Since ρpσi

(xµi ) is the mono-
mial Li j1

, . . . , Li jp , where µi = 〈vi j1 , . . . , vi jp 〉, and hence a non-zero element of
Z[Li1, . . . , Lin ], we get that ρpσi

(ai) = 0. Moreover, ρ can be seen to be the diagonal
embedding when restricted to the subalgebra H∗(BTn) of Z[G̃] (u ∈ H∗(BTn) is
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equal to
m∑
j=1
〈u, λ(Lj)〉 · Lj ∈ Z[G̃] maps to

n∑
j=1
〈u, λ(Li j )〉 · Li j ∈ Z[Li1, . . . , Lin ]

which is identified with
n∑
j=1
〈u, λ(Li j )〉 · τLi j

in H∗(BTn) (see Lemma 5.2) which is

equal to u see (14)) and ρ is injective by Lemma 5.3, which implies that ai = 0.
This contradicts our original assumption that ai , 0. Thus we cannot have a relation
of the type (21) in Z[G̃] unless ai = 0 in H∗(BTn) for each 1 ≤ i ≤ d. Hence we
conclude that xµi for 1 ≤ i ≤ d are linearly independent in Z[G̃]. This proves (iii).

(iv) As for the proof of linear independence of xµi 1 ≤ i ≤ d our idea is to again

use the localization map ρ = (ρpσi
) : Z[G̃] −→

d⊕
i=1
Z[G̃]pσi

('

d⊕
i=1

H∗(BTn))

defined in Section 5.3. We know that ρ is injective and by (11) and the definition of
ρpσi

we have ρpσi
(xµ j ) = 0 for j > i. Also ρ is the diagonal map when restricted to

the subalgebra H∗(BTn) of Z[G̃]. In particular, this implies that ρpσ j
(ak) = ak for

1 ≤ j, k ≤ d.
Applying ρpσi

on (15) we get

ρpσi
( f ) = ρpσi

(

d∑
j=1

aj · xµ j ) = ρpσi
(
∑
j≥i

aj · xµ j ) = ai · ρpσi
(xµi )

in the unique factorization domain Z[Li1, . . . , Lin ] where pσi = Li1 ∩ · · · ∩ Lin .
Thus ρpσi

( f ) is divisible by the irreducible elements Li j1
, . . . , Li jp and hence by

the monomial ρpσi
(xµi ) = Li j1

· · · Li jp in Z[Li1, . . . , Lin ]. Thus ai =
ρpσi

( f )

ρpσi
(xµi )

∈

Z[Li1, . . . , Lin ]. Now, let

f1 := f − ai( f ) · xµi( f ) ∈ Z[G̃].

Then f1 =
∑
j>i( f )

aj · xµ j . Moreover, now putting i = i( f1) and repeating the above

argument given for determining ai( f ) we get

ai( f1) =
ρpσi( f1)

( f1)

ρpσi( f1)
(xµi( f1) )

in Z[G̃]pσi( f1)
' H∗(BTn). Proceeding similarly after k steps we get

fk = f −
∑

i( f1)≤ j<i( fk )

aj · xµ j =
∑

j>i( fk−1)

aj · xµ j .

Putting i = i( fk) to be the smallest index in {i( fk−1), i( fk−1) + 1, . . . , d} such that
ai( fk ) , 0 and following similar arguments as above we get
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ai( fk ) =
ρpσi( fk )

( fk)

ρpσi( fk )
(xµi( fk ) )

in Z[G̃]pσi( fk )
' H∗(BTn). This proves (iv). �

7.4 The ordinary cohomology ring of ˜G and an example

In geometry, if the equivariant cohomology H∗T (M;Z) has the structure of a free
H∗(BT)-algebra, then we can compute its ordinary cohomology H∗(M;Z) by
H∗T (M;Z)⊗H∗(BT )Z. By Theorem 7.6, we know that H∗(G̃) is a free H∗(BT)-algebra
of rank d. Sowemay define the “ordinary” cohomology of G̃ by H∗(G̃)⊗H∗(BT )Z; we
denote it by H∗

ord
(G̃). The precise computation of H∗

ord
(G̃) is given as the following

corollary.

Corollary 7.7 (i) The following is the presentation

H∗ord(G̃) '
Z[L1, . . . , Lm]

〈
∏

L∈L′ L | L′ ∈ I(L) ;
∑m

i=1〈u, λ(Li)〉 · Li, ∀ u ∈ H2(BTn)〉

for the ordinary cohomology ring H∗
ord
(G̃) as a Z-algebra.

(ii) The monomials xµi , 1 ≤ i ≤ d form a Z-basis for H∗
ord
(G̃).

Proof (i) The H∗(BTn)-algebra structure on H∗(G̃) is given by Lemma 7.5 and Z has
H∗(BT)-algebra structure given by augmentation which sends each u ∈ H2(BTn)

to 0. Since H∗(G̃) is free, the corollary now follows from Lemma 7.5 due to the
H∗(BT)-algebra isomorphism Ψ′ of Z[G̃] with H∗(G̃).

(ii) This follows by Theorem 7.6 (iii) and by the isomorphism

H∗ord(G̃) ' Z[G̃] ⊗H∗(BT n) Z.

7.5 H∗( ˜G) for G induced from the 8-dimensional toric hyperKähler
manifold.

By using the fundamental theorem of toric hyperKähler manifolds in [BD00], the
8 dimensional toric hyperKähler manifold M is completely classified up to equiv-
ariant diffeomorphism by the hyperplane arrangement Lk,l,m in R2 consisting of
k horizontal lines {Hor1, . . . ,Hork} which is ordered from the bottom, l vir-
tical lines {Vir1, . . . ,Virl} which is ordered from the left and m diagonal lines
{Dia1, . . . ,Diam} which is ordered from the left in R2 (also see Figure 16).
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It is easy to check that every set of hyperplanes in Lk,l,m have the non-empty
intersections except the following cases:

Horr ∩ Virs ∩ Diat = ∅ for 1 ≤ r ≤ k, 1 ≤ s ≤ l and 1 ≤ t ≤ m;

and

Hori ∩ Horj = ∅ for 1 ≤ i, j ≤ k;
Virr ∩ Virs = ∅ for 1 ≤ r, s ≤ l;
Diap ∩ Diaq = ∅ for 1 ≤ p, q ≤ m.

This hyperplane arrangement Lk,l,m induces the T∗C2-modeled GKM graph G. We
can see that the characteristic functions associated to the hyperplanes are given by
λ(Horr ) = e1 for all 1 ≤ r ≤ k, λ(Virs) = e2 for all 1 ≤ s ≤ l and λ(Diap) = −e1−e2
for all 1 ≤ p ≤ m where H2(BT2) = Z · e1

⊕
Z · e2. Therefore, the x-forgetful graph

G̃ is given by Figure 15.

m
l

k

e∗2

−e∗2

e∗2 − e
∗
1

e∗1 − e
∗
2

e∗1

−e∗1

Fig. 15: The x-forgetful graph induced from Lk, l,m . The axial functions on four edges around each
vertex (each intersection of two lines) are defined by choosing the labels in the right figure for each
direction, where {e∗1, e

∗
2 } ⊂ t

∗
Z is the dual basis of {e1, e2 } ⊂ tZ. For example, Figure 11 is the

x-forgetfull graph of L1,1,1.

Consider the polynomial ring

R := Z[X1, . . . , Xk,Y1, . . . ,Yl, Z1, . . . , Zm]

in k + l +m variables. Let I be the ideal in R generated by the following monomials:

XrYsZt for 1 ≤ r ≤ k, 1 ≤ s ≤ l and 1 ≤ t ≤ m;
XiXj for 1 ≤ i , j ≤ k;
YrYs for 1 ≤ r , s ≤ l;
ZpZq for 1 ≤ p , q ≤ m.
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It follows from Theorem 5.1 that R/I is isomorphic to H∗(G̃) under the map
which is defined by the following correspondences:

Xr 7→ τHorr for 1 ≤ r ≤ k;
Ys 7→ τVirs for 1 ≤ s ≤ l;
Zt 7→ τDiat for 1 ≤ t ≤ m.

Now we determine the structure of H∗(G̃) as an H∗(BT2)-algebra.
Let u ∈ H2(BT2) = Z · e∗1

⊕
Z · e∗2 and u = a · e∗1 + b · e∗2. Then under the

H∗(BT2)-algebra structure on Z[G̃], u corresponds to the element

k∑
r=1

a · Xr +

l∑
s=1

b · Ys −
m∑
t=1
(a + b) · Zt

= a · (X1 + · · · + Xk − Z1 − · · · − Zm) + b · (Y1 + · · · + Yl − Z1 − · · · − Zm).

Let R := H∗(BT2)[X1, . . . , Xk,Y1, . . . ,Yl, Z1, . . . , Zm] and I be the ideal in R gener-
ated by the monomials generating the ideal I in R, together with the following two
linear polynomials:

X1 + · · · + Xk − Z1 − · · · − Zm − e∗1; Y1 + · · · + Yl − Z1 − · · · − Zm − e∗2.

Then it follows from Lemma 7.5 that the ring R/I is isomorphic to H∗(G̃) as an
H∗(BT2)-algebra.

Wenownote that the simplicial complex∆L dual to the hyperplane arrangementL
has vertices u1, . . . , uk corresponding to the hyperplanes Hor1, . . . ,Hork , v1, . . . , vl
corresponding to the hyperplanes Vir1, . . . ,Virl and w1, . . . , wm corresponding to
the hyperplanes Dia1, . . . Diam.

Moreover, ∆L is a 1-dimensional simplicial complex where the number of 1-
simplices, i.e., the vertices of the x-forgetful graph, in ∆L is kl + km + lm. We
can see that ∆L is shellable with the following shelling order of the 1-dimensional
simplices:

σ1 = [u1, v1] < σ2 = [u1, v2] < · · · < σl = [u1, vl ]

< σl+1 = [u1, w1] < σl+2 = [u1, w2] < · · · < σl+m = [u1, wm]

< σl+m+1 = [u2, v1] < σl+m+2 = [u2, v2] < · · · < σ2l+m = [u2, vl ]

< σ2l+m+1 = [u2, w1] < σ2l+m+2 = [u2, w2] < · · · < σ2l+2m = [u2, wm]

...

< σ(k−1)·l+(k−1)·m+1 = [uk, v1] < σ(k−1)·l+(k−1)·m+2 = [uk, v2] < · · · < σkl+(k−1)·m = [uk, vl ]

< σkl+(k−1)·m+1 = [uk, w1] < σkl+(k−1)·m+2 = [uk, w2] < · · · < σkl+km = [uk, wm]

< σkl+km+1 = [v1, w1] < σkl+km+2 = [v1, w2] < · · · < σkl+km+m = [v1, wm]

...

< σkl+km+(l−1)·m+1 = [vl, w1] < σkl+km+(l−1)·m+2 = [vl, w2] < · · · < σkl+km+lm = [vl, wm].
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For example, we give the order on vertices in G̃ induced from L2,1,2, i.e., 1-
simplicies in ∆L as in Figure 16.

w1 w2
v1

u1

u2

σ1 σ2 σ3

σ4 σ5 σ6

σ7

σ8

Fig. 16: Ordering the vertices of the x-forgetful graph induced from L2,1,2. This is equivalent to
choose shelling of ∆L .

In order to find the module generators of H∗(G̃), it is enough to find the minimal
vertices of ∆i \ ∆i−1, where ∆i is the subcomplex generated by σ1, . . . , σi in ∆L .
For example, as a set ∆1 = [u1, v1] = {u1, v1, σ1} and ∆2 = [u1, v1] ∪ [u1, v2] =

{u1, v1, v2, σ1, σ2}; therefore, ∆2 \ ∆1 = {v2, σ2} such that v2 ≺ σ2 and the minimal
face is µ2 := v2. Similarly, we obtain the following shelling:

µ1 = ∅, µ2 = {v2}, µ3 = {v3}, . . . , µl = {vl},

µl+1 = {w1}, µl+2 = {w2}, . . . , µl+m = {wm},

µl+m+1 = {u2}, µl+m+2 = [u2, v2] . . . , µ2l+m = [u2, vl],

µ2l+m+1 = [u2, w1], µ2l+m+2 = [u2, w2] . . . , µ2l+2m = [u2, wm],

µ2l+2m+1 = {u3}, µ2l+2m+2 = [u3, v2], . . . , µ3l+2m = [u3, vl],

µ3l+2m+1 = [u3, w1], µ3l+2m+2 = [u3, w2], . . . , µ3l+3m = [u3, wm],

...

µ(k−1)·l+(k−1)·m+1 = {uk}, µ(k−1)·l+(k−1)·m+2 = [uk, v2], . . . , µkl+(k−1)·m = [uk, vl],

µkl+(k−1)·m+1 = [uk, w1], µkl+(k−1)·m+2 = [uk, w2] . . . , µkl+km = [uk, wm]

µkl+km+1 = [v1, w1], µkl+km+2 = [v1, w2], . . . , µkl+km+m = [v1, wm],

...

µkl+km+(l−1)·m+1 = [vl, w1], µkl+km+(l−1)·m+2 = [vl, w2], . . . , µkl+km+lm = [vl, wm].

By Theorem 7.6 the monomial basis for R/I as a H∗(BT2)-module is as follows
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1,Y2, . . . ,Yl, Z1, . . . , Zm, X2, . . . , Xk,

X2Y2, . . . , X2Yl, X2Z1, . . . , X2Zm,

...

XkY2, . . . , XkYl, XkZ1, . . . , XkZm,

Y1Z1, . . . ,Y1Zm, . . . ,YlZ1, . . . ,YlZm

For example, in the casewhen k = 2, l = 1 andm = 2, the equivariant cohomology
ring H∗(G̃) of G̃ in Figure 16 is isomorphic as H∗(BT2)-algebra to

H∗(BT 2)[X1, X2,Y1, Z1, Z2]

〈X1X2, Z1Z2, X1Y1Z1, X1Y1Z2, X2Y1Z1, X2Y1Z2; X1 + X2 − Z1 − Z2 − e
∗
1,Y1 − Z1 − Z2 − e

∗
2.〉

The shelling order of ∆L2,1,2 is given by

σ1 = [u1, v1] < σ2 = [u1, w1] < σ3 = [u1, w2] < σ4 = [u2, v1]

< σ5 = [u2, w1] < σ6 = [u2, w2] < σ7 = [v1, w1] < σ8 = [v1, w2].

Here we have

µ1 = ∅, µ2 = {w1}, µ3 = {w2}, µ4 = {u2},

µ5 = [u2, w1], µ6 = [u2, w2], µ7 = [v1, w1], µ8 = [v1, w2].

From Theorem 7.6(iii) we have the following basis of H∗(G̃) ' Z[G̃] ' R/I as
a free H∗(BT2)-module:

xµ1 = 1, xµ2 = Z1, xµ3 = Z2, xµ4 = X2,

xµ5 = X2Z1, xµ6 = X2Z2, xµ7 = Y1Z1, xµ8 = Y1Z2.
(22)

We shall now apply Theorem 7.6 (iv) to determine some of the multiplicative

structure constants of the basis (22). We first consider Z2
1 . Let Z2

1 =

8∑
i=1

ai · xµi .

Note first that ρpσi
(Z2

1 ) = 0 for i = 1, 3, 4, 6, 8 so that a1 = a3 = a4 = a6 = a8 = 0.
We further see that ρpσ2

(Z2
1 ) = Z2

1 in H∗
T 2 (xσ2 ) ' Z[X1, Z1]. Also xµ2 = Z1 and

ρpσ2
(Z1) = Z1. Thus a2 =

ρpσ2
(Z2

1 )

ρpσ1
(Z1)
= Z1 which corresponds to the element−e∗2 under

the isomorphism H∗
T 2 (xσ1 ) ' H∗(BT2). Thus a2 = −e∗2. Proceeding as in Theorem

7.6(iv)we next consider Z2
1+e∗2 ·Z1. Using the relation e∗2 = Y1−Z1−Z2 and Z1 ·Z2 = 0

in R/I we get Z2
1 + e∗2 · Z1 = Z2

1 + (Y1 − Z1 − Z2) · Z1 = Y1Z1 − Z1Z2 = Y1Z1 = xµ7 .
Thus Z2

1 = −e∗2 · Z1 + Y1Z1 = −e∗2 · xµ2 + xµ7 .
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Next we consider X2
2 . If X2

2 =

8∑
i=1

ai · xµi then ρpσi
(X2

2 ) = 0 for i = 1, 2, 3, 7, 8.

Thus by Theorem 7.6(iv) we get ai = 0 for i = 1, 2, 3, 7, 8. To find a4, a5, a6 we
first apply ρpσ4

(X2
2 ) = X2

2 in H∗
T 2 (xσ4 ) = Z[X2,Y1]. Since xµ4 = X2 we get a4 =

ρpσ4
(X2

2 )

ρpσ4
(X2)
= X2 = e∗1 under the isomorphism H∗

T 2 (xσ4 ) ' H∗(BT2). We then consider

X2
2 − e∗1 · X2 = X2

2 − (X1 + X2 − Z1 − Z2) · X2 = Z1X2 + Z2X2 using the relations
e∗1 = X1 + X2 − Z1 − Z2 and X1X2 = 0 in R/I. This implies from Theorem 7.6 that
a5 = a6 = 1 so that X2

2 = e∗1 · xµ4 + xµ5 + xµ6 .
Using similar arguments we have the following in the H∗(BT2)-algebra, R/I:

X2
2 = e∗1 · X2 + 1 · X2Z1 + 1 · X2Z2;

X2Z1 = 1 · X2Z1;
X2Z2 = 1 · X2Z2;

Z2
1 = −e∗2 · Z1 + 1 · Y1Z1;

Z1Z2 = 0;

Z2
2 = −e∗2 · Z2 + 1 · Y1Z2.

By Corollary 7.7 the ordinary cohomology ring H∗
ord
(G̃) is isomorphic to

R′/I ′ ' R/I ⊗H∗(BT 2) Z

where Z is viewed as a H∗(BT2) = Z[e∗1, e
∗
2]-module via the augmentation map

which sends e∗i to 0 for i = 1, 2. Hence R′ = Z[X1, X2,Y1, Z1, Z2] and

I ′ = 〈X1X2, Z1Z2, X1Y1Z1, X1Y1Z2, X2Y1Z1, X2Y1Z2, X1 + X2 − Z1 − Z2,Y1 − Z1 − Z2〉.

By Corollary 7.7(ii) and (22) we see that H∗
ord
(G̃) is isomorphic as a graded Z-

module to

Z ⊕ ZZ1 ⊕ ZZ2 ⊕ ZX2 ⊕ ZX2Z1 ⊕ ZX2Z2 ⊕ ZY1Z1 ⊕ ZY1Z2.

It therefore follows that the Euler characteristic of M is kl + km + lm = 8 which
is the number of elements in the monomial basis. Also the rank of H2

ord
(M;Z) is

k + l + m − 2 = 3 which are the number of monomials of degree 1 in the basis.
By Theorem 7.6, using the fact that every u ∈ H∗(BT2) is equated to zero in the
graded ring R′/I ′ it follows that every monomial of degree r is a linear combination
of the monomials xµi of degree greater than or equal to r (see 19). Since there are
no monomials xµi of degree greater than or equal to 3 we get that H2n

ord
(G) = 0 for

all n ≥ 3. This also implies in particular that H6
ord
(M;Z) = 0 and H8

ord
(M;Z) = 0.

Using this fact or directly observing that there are 4 monomial basis elements of
degree 2 it follows that rank((H4

ord
(M;Z)) = kl + km+ lm− (k + l +m− 2) − 1 = 4.

Further, the multiplicative structure constants for the basis
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1, Z1, Z2, X2, X2Z1, X2Z2,Y1Z1,Y1Z2

of R′/I ′ can be derived to be as follows:

X2
2 = 1 · X2Z1 + 1 · X2Z2;

X2Z1 = 1 · X2Z1;
X2Z2 = 1 · X2Z2;

Z2
1 = 1 · Y1Z1;

Z1Z2 = 0;

Z2
2 = 1 · Y1Z2.

More generally, we can compute the multiplicative structure constants of the
Z-algebra H∗

ord
(G̃) ' R′/I ′ for the x-forgetful graph G̃ induced from Lk,l,m with

repect to the basis

1,Y2, . . . ,Yl, Z1, . . . , Zm, X2, . . . , Xk,

X2Y2, . . . , X2Yl, X2Z1, . . . , X2Zm,

... (23)
XkY2, . . . , XkYl, XkZ1, . . . , XkZm,

Y1Z1, . . . ,Y1Zm, . . . ,YlZ1, . . . ,YlZm.

Here again we note that the Euler characteristic of M is kl + km + lm which is the
number of elements in themonomial basis. Also the rank of H2

ord
(M;Z) is k+l+m−2

which are the number of monomials of degree 1 in the basis. By Theorem 7.6, using
the fact that every u ∈ H∗(BT2) is equated to zero in the graded ring R′/I ′ it follows
that every monomial of degree r is a linear combination of the monomials xµi of
degree greater than or equal to r (see (19)). Since there are no monomials xµi of
degree greater than or equal to 3 we get that H2n

ord
(G) = 0 for all n ≥ 3. This implies

in particular that H6
ord
(M;Z) = 0 and H8

ord
(M;Z) = 0. Thus it suffices to compute

the structure constants when we multiply two monomial basis elements of degree 1
which gives us a degree 2 monomial. This can be done as follows.

To compute the structure constants of H∗
ord
(Lk,l,m)with respect to the basis (23),

firstly we observe by the following steps given in Theorem 7.6(iv) (as explained in
detail above for the case when k = 2 l = 1 and m = 2) that in R/I we have the
following relations for 2 ≤ r ≤ k, 2 ≤ s ≤ l and 1 ≤ t ≤ m:
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X2
r = e∗1 · Xr +

m∑
t=1

1 · Xr Zt ;

Y2
s = e∗2 · Ys +

m∑
t=1

1 · YsZt ;

Z2
t = −e∗2 · Zt +

l∑
s=1

1 · YsZt .

Other products of degree 1monomials inR/Imultiply to give square freemonomials
of degree 2, XrYs or Xr Zt or YsZt which are already part of the basis. Note also that
Xr Xr′ = 0, YsYs′ = 0 and Zt Zt′ = 0 for r , r ′, s , s′ and t , t ′.

We therefore arrive at the following relations in R′/I ′ ' H∗
ord
(G̃):

X2
r =

m∑
t=1

1 · Xr Zt ;

Y2
s =

m∑
t=1

1 · YsZt ;

Z2
t =

l∑
s=1

1 · YsZt ;

XrYs = 1 · XrYs;
Xr Zt = 1 · Xr Zt ;
YsZt = 1 · YsZt,

where 2 ≤ r ≤ k, 2 ≤ s ≤ l and 1 ≤ t ≤ m.
We have the following corollary of Theorem 7.6 for the hyperplane arrangements

Lk,l,m classifying the 8-dimensional toric hyperKähler manifolds.

Corollary 7.8 The ordinary cohomology H∗
ord
(Lk,l,m) is isomorphic to a free Z-

module generated by the elements (23). Furthermore, all structure constants of their
multiplications are 1 except for the case when they are equal to 0.
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On the genera of moment-angle manifolds
associated to dual-neighborly polytopes:
combinatorial formulas and sequences∗

Santiago López de Medrano

Abstract For a family of polytopes of even dimension 2p, known as dual-neighborly,
it has been shown for p , 2 that the associated intersection of quadrics is a connected
sum of sphere products Sp × Sp . In this article we give formulas for the number
of terms in that connected sum. Certain combinatorial operations produce new
polytopes whose associated intersections are also connected sums of sphere products
and we give also formulas for their number. These include a large amount of simple
polytopes, including many odd-dimensional ones.

Introduction

To every simple polytope P there is associated amanifold Z(P) of the same dimension
known in differentworks as its (real)moment-anglemanifold, universal abelian cover
([D-J]), polyhedral product ([B-B-C-G]) or intersection of quadrics (more precisely,
of coaxial ellipsoids) ([LdM], [LdM3]).

The topology of Z(P) cannot be described in full generality, but it has been
described for some large families of polytopes P. One of them is the family of dual-
neighborly polytopes P of even dimension 2p for which it was conjectured in [B-M]
that they are connected sums of copies of the sphere product Sp × Sp . This has been
shown to be true if p > 2 ([Gi-LdM]), for a sub-family of those polytopes if p = 2
([Go]) and is evident for p = 1. For P of odd dimension 2p + 1 it was proved for
p > 2 (under a certain additional hypothesis, probably unnecessary) that they are
connected sums of copies of the sphere product Sp × Sp+1 ([Gi-LdM]).
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Together with them, for each such polytope P of dimension at least 5 there is an
infinite lattice of polytopes obtained by applying iteratively in all possible ways a
well-known operation P 7→ P′, known as the book2 construction for which it was
shown that the associated manifold is a connected sum of sphere products Sa × Sb

with factors of different dimensions. The number of combinatorially different dual-
neighborly polytopes of even dimension grows enormously fast with their dimension
and number of facets ([P]) and all their corresponding infinite lattices are disjoint, so
we know that a huge part of the simple polytopes have associated manifolds which
are connected sums of sphere products.

However, only when p = 1 or when the number of facets of the polytope is at
most 2p+3 did we know the exact number of summands and precisely which sphere
products appear. For p = 1 and P the n-gon the number of those summands (i.e.,
the genus of the surface Z(P)) is known to be 2n−3(n − 4) + 1. The same sequence
of numbers appears in many other geometric and combinatorial questions, see [Sl]
and [Go-LdM]. It appeared for the first time (to our knowledge) in a 1935 paper by
Coxeter as the genera of surfaces obtained by a certain construction of his ([Co]) and
was found independently around 1980 by Hirzebruch (unpublished, but see [Hi])
as the genera of a certain family of real surfaces that are intersections of quadrics.
Only much later was Coxeter’s construction recognized as a precursor of what is
now called a polyhedral product and that intersections of quadrics of the type that
Hirzebruch had considered are another instance of the same construction. I have seen
no evidence that these two great geometers were ever conscious of that coincidence.

We will give now a generalization of this formula for all even dimensions that
gives the number of terms in the connected sum, which is natural to call the genus of
Z(P). The formula is actually valid homologically even in those cases where it can
be conjectured (but not yet proved) that Z is a connected sum of sphere products and
can be extended to all the polytopes obtained from P through the book construction.
It is still not understood how the combinatorics of P determines the precise products
that appear in the connected sum after several applications of the book construction
and not only their number.

The genus formula follows, in the case of a dual-neighborly polytope of dimension
d = 2p and n facets, from known combinatorial formulas for the number of the faces
of a neighborly polytope in each dimension. One can obtain from them the Euler
characteristic of Z(P) and therefore its genus.

This direct result is useful for computations, but very messy and not too useful.
The realwork consisted in the search of a better formula. After several failed attempts,
two elements opened the road for a solution. First, the appearance of the sequences
of genera for a few small values of p in the Sloane Encyclopedia of Sequences ([Sl]),
which included generating functions for them that suggested immediately a nice
and simple conjecture for all dimensions. Secondly, a specific direct formula for the
number of faces of a dual-neighborly polytope in the book by Brøndsted ([Br]) that
was more suited for our computations. From these facts, a long computation led us
to a proof of the conjecture (Theorems 2.1 and 3.1).

2 This name has been used for many years in the theory of intersection of quadrics. In the literature
on polytopes this construction is called the wedge on P.
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This gave a collateral proof of various combinatorial identities that we had tried
to prove in our first attempts. Other by-products are a new interpretation and some
new formulas for the cases appearing in the Sloane Encyclopedia of Sequences, as
well as an infinite generalization of them. One could search for extensions of the
various interpretations of those few cases.

Additionally, it was shown in [Gi-LdM] that other geometric operations on the
polytopes, such as truncation of vertices, induce in the associated manifolds opera-
tions that preserve connected sums of sphere products. We give the genus also for all
P obtained from the ones above by iterated vertex truncations and book constructions
in any order.

So thiswork is a quantitative continuation of [Gi-LdM], giving the explicit number
of sphere products in the connected sums. Alas, this time Samuel Gitler was no more
among us to participate and enjoy this extension of our work.

1 Background

The construction of Z(P) for a simple d-polytope P with n facets can be described
as follows: one can assume that P is embedded in a d-dimensional affine subspace A
of Rn in such a way that A ∩ Rn+ = P and A intersects transversely every coordinate
subspace ofRn+. Then Z(P) is the union of all the images of P under all compositions
of reflections of Rn on its coordinate subspaces {xi = 0}. Z(P) is a combinatorial
d-manifold that can be easily smoothed as a transversal intersection of ellipsoids
([LdM], [Go-LdM2]). Z(P) can also be constructed abstractly as a quotient of P×Zn2
under the identifications in the facets of P corresponding to the fixed points under
the reflections on the coordinate subspaces ([LdM],[D-J]).

The book construction consists in taking the product P × [0, 1] and one of its
facets F and, for each given point x ∈ F, identifying all points (x, t) for t ∈ [0, 1]
into a single point. Under this operation, the dimension and the number of facets of
the polytope increases by 1 and we denote by P′ the polytope so obtained and by
Z ′ the corresponding manifold. A geometric construction of Z ′ and manipulations
with homology exact sequences shows that the total homology (i.e., the direct sum
of the homology groups) of Z and Z ′ is the same.

One can consider compositions of an arbitrary number of book constructions
along different facets. Following [B-B-C-G2] we denote by PJ , ZJ , where J =
( j1, j2, . . . , jn), the result of applying ji times the book construction on the i-th facet
of P for i = 1, . . . , n. See [B-B-C-G2] for details of a more general construction and
a combinatorial description of PJ in the dual context of simplicial complexes.

The simple polytope P is called dual-neighborly if every collection of k facets of
P has a non-empty intersection, for all k ≤ d/2 (Cf. [Br, p.92] and [B-M, p.114]).
They are dual to the much studied neighborly ones. It can be proved that Z(P) is
[d/2 − 1]-connected if, and only if, P is dual-neighborly. So, for a 2p-dimensional
(respectively, (2p + 1)-dimensional dual-neighborly P), Z(P) has homology only
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in dimension p (respectively, in dimensions p and p + 1), other than the 0 and top
dimensional ones.

It is known that if two dual-neighborly polytopes have the same dimension d and
the same number of facets n, then they have the same number of k-dimensional faces
for all k from 0 to d (see [Br, p.113] and [Gr, p.124], for the neighborly polytopes).
Various explicit formulas are known for this number of k−faces as a function of
(d, n), one of which will be more suited to our purposes. We will give this formula
in the next section.

Now suppose that P is dual-neighborly polytope and of even dimension d = 2p
and n facets. Then the homology of Z(P) is free and is non-trivial only in the middle
dimension p, so it has the homology3 of a connected sum of copies of the sphere
product Sp × Sp . It was shown in [Gi-LdM] that it is actually diffeomorphic to such
a connected sum if d > 4 (but the number of those products was not given) and that
the book construction preserves connected sums of sphere products. Applied once
gives also a dual-neighborly polytope P′ of dimension 2p+1 and the manifold Z(P′)
is a connected sum of copies of Sd × Sd+1 (even in the case d = 4) and after any
number of further applications of it one obtains again manifolds that are connected
sums of products Sa × Sb for various pairs of dimensions (a, b).

2 The Euler characteristic χ(Z(P)) for dual-neighborly
polytopes P of even dimension

Let P be a dual-neighborly polytope of even dimension d = 2p with n facets. Since
n ≥ d + 1 (with equality only for the simplex) it is better to use the parameters
p = d/2 and m defined as

m = n − d − 1 = n − 2p − 1

that starts with m = 0. The number fk of k-faces of P (for k = 0, . . . , d) are
determined only by the numbers p,m. Explicit formulas for them can be deduced
from the formulas for the number of k-faces of a neighborly d-polytope with n
vertices in [Gr, section 9.2]. A direct explicit formula for fk is given in [Br, p.113],
which in our notation becomes:

fk =
p∑
j=0

(
j
k

) (
m + j

j

)
+

p−1∑
j=0

(
2p − j

k

) (
m + j

j

)

3 The homology of Z(P) can be computed by splitting it in terms of the combinatorics of P. The
proof in [LdM] for those with d + 3 facets is equally valid in general (see also [LdM2]). Several
proofs of this splitting have been given in the more general context of moment-angle complexes,
culminating in the geometric splitting of the their suspension proved in [B-B-C-G], giving a splitting
for any generalized homology theory.
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Now, the polytope P is reflected on the coordinate hyperplanes of Rn to give a
cell decomposition of Z(P) formed by 2n cells of dimension d which are all copies
of P. A face of dimension k has d − k coordinates equal to zero so it is reflected only
on n − d + k hyperplanes and therefore produces 2n−d+k = 2m+k+1 cells.

Thus, the total number of k-cells of Z(P) is fk × 2m+k+1 and therefore, the Euler
characteristic of Z(P), which we denote by χ(p,m)), is the alternating sum

χ(p,m) =
2p∑
k=0
(−1)k2m+k+1 ©«

p∑
j=0

(
j
k

) (
m + j

j

)
+

p−1∑
j=0

(
2p − j

k

) (
m + j

j

)ª®¬
This formula is useful for computations, even for d,m in the thousands, since

it can be easily programmed in the computer. It also shows that, for any fixed p,
χ(p,m) is of the form 2m+1 times a polynomial in m of degree p. But otherwise it is
quite messy and opaque. For example, it is easy to see directly that χ(p, 0) = 2 (P is
the simplex ∆2p and Z(P) is the sphere S2p), χ(p, 1) = 2(1 + (−1)p) (P is ∆p × ∆p

and Z(P) = Sp × Sp) and it is known that χ(p, 2) = 2 + (−1)p(4p + 6) ([LdM]). But
these facts are not clear from the formula.

In any case, it is convenient to simplify it: factoring 2m+1, our formula can be
re-arranged as follows:

χ(p,m) = 2m+1 ©«
p∑
j=0

2p∑
k=0
(−2)k

(
j
k

) (
m + j

j

)
+

p−1∑
j=0

2p∑
k=0
(−2)k

(
2p − j

k

) (
m + j

j

)ª®¬
Now, since

(
j
k

)
= 0 if k > j, we have:

2p∑
k=0
(−2)k

(
j
k

)
=

j∑
k=0
(−2)k

(
j
k

)
= (−2 + 1)j = (−1)j

And, since
(
2p − j

k

)
= 0 if k > 2p − j, we have:

2p∑
k=0
(−2)k

(
2p − j

k

)
=

2p−j∑
k=0
(−2)k

(
2p − j

k

)
= (−2 + 1)2p−j = (−1)2p−j = (−1)j

And therefore we obtain a better formula

χ(p,m) = 2m+1 ©«
p∑
j=0
(−1)j

(
m + j

j

)
+

p−1∑
j=0
(−1)j

(
m + j

j

)ª®¬
An even simpler formula can be obtained by computing the generating function

of the above expression parametrized by m for a fixed p:
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m≥0

χ(p,m)zm

Since the formula for χ(p,m) involves two sums which differ only in their length,
we can cover both cases with the general sequence

S(r,m) = 2
r∑
j=0
(−1)j2m

(
m + j

j

)
and its corresponding generating function∑

m≥0
S(r,m)zm

which is the sum for j = 0, . . . r , of the generating functions

2
∑
m≥0
(−1)j2m

(
m + j

j

)
zm = 2(−1)j

∑
m≥0

(
m + j

j

)
(2z)m .

Now, it is well known (and easy to prove) that∑
m≥0

(
m + j

j

)
ym =

1
(1 − y)j+1 (*)

which gives∑
m≥0

S(r,m)zm = 2
r∑
j=0
(−1)j

1
(1 − 2z)j+1 = −2

r∑
j=0

1
(2z − 1)j+1

This is a geometric progression with sum

−2
1

(2z−1)r+2 −
1

2z−1
1

2z−1 − 1
= −2

1
(2z−1)r+1 − 1

1 − (2z − 1)
= −2

1
(2z−1)r+1 − 1

2 − 2z

=
1

(1 − z)
+

1
(z − 1)(2z − 1)r+1

The generating function for χ(p,m) is the sum of two instances of the above
expression evaluated a r = p and r = p − 1, which add up to

2
1 − z

+
1

(z − 1)

(
1

(2z − 1)p+1 +
1

(2z − 1)p

)
=

2
1 − z

+
2z

(z − 1)(2z − 1)p+1

We can obtain another expression for the general term of this series, by working
each part separately:
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The first term 2
1−z is

∑
m≥0

2zm.

And the second term has two factors: 2z/(z − 1) and 1/(2z − 1)p+1. The first one
is simply 2z

z−1 so in its series the coefficient of zi is −2 for i > 1 and for the second
factor (using formula (*) again):

1
(2z − 1)p+1 =

(−1)p+1

(1 − 2z)p+1 = (−1)p+1
∑
j≥0

(
j + p

p

)
(2z)j

so the coefficient of z j is (−1)p+1
(
j + p

p

)
2j

So, in the product, the coefficient of zm is

m−1∑
j=0
(−1)p2j+1

(
j + p

p

)
since for j ≥ m the coefficient of the first factor is 0.

To which we still have to add the first term. So, finally, the coefficient of zm, which
is χ(p,m), is

χ(p,m) = 2 + (−1)p
m−1∑
j=0

2j+1
(
j + p

p

)
.

We have proved:

Theorem 2.1 If P is a dual-neighborly polytope of even dimension d = 2p and
n = d+m+1 facets, then χ(p,m), the Euler characteristic of Z(P), can be expressed
in any of the following equivalent forms:

(i) χ(p,m) = 2m+1 ©«
p∑
j=0
(−1)j

(
m + j

j

)
+

p−1∑
j=0
(−1)j

(
m + j

j

)ª®¬
(ii) χ(p,m) = (−1)p

m−1∑
j=0

2j+1
(

j + p
p

)
+ 2

(iii) χ(p,m), as a sequence parametrized by m, has generating function

2
1 − z

+
2z

(z − 1)(2z − 1)p+1

These formulas are valid for any p and m, and in the cases where we know that
Z(P) is a connected sum of sphere products Sp × Sp , we can derive the number of
products in the connected sum from the formulas.

But these formulas do not extend to the manifolds obtained by the book construc-
tion on P: already the first application gives an odd dimensional manifoldwith χ = 0.
And also, the even dimensional ones obtained by iteration of the book construction
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on P may include products of two odd-dimensional spheres that contribute negative
terms to χ, so χ will not depend only on the dimension and number of facets of the
corresponding polytope.

We will solve these problems by the introduction of the concept of genus of such
a connected sum.

3 The genus g(Z(P)) for dual-neighborly polytopes P of even
dimension and associated polytopes

For a connected sum of sphere products M , we can naturally define its genus g(M),
as the number of products in the sum, as in the case of surfaces.

Let β(M) the sum of the Betti numbers βi(M), then β(M) = 2g(M) + 2, or

g(M) =
β(M)

2
− 1 .

This definition can be extended to any manifold or even any topological space
with finite β by the above formula. In some cases this may not be an integer (if X is
a point then g(X) = −1/2). Some properties of this generalized genus (for example,
that it is additive with respect to the connected sum of manifolds) will be considered
elsewhere.

In the case that all the summands are of the form Sp×Sp , there is a simple relation
between g(M) and the Euler characteristic of M:

χ(M) = 2 + (−1)p2g(M)

or

g(p,m) = (−1)p χ(p,m)/2 − (−1)p

and again, this relation is valid for any manifold with the same homology groups.
This includes the manifolds Z(P) where P is a dual-neighborly polytope and for
which the formulas for the Euler characteristic are still valid. So with this extension
of the concept of genus we can state:

Theorem 3.1 If P is a dual-neighborly polytope of even dimension d = 2p and
n = d +m + 1 facets, then g(p,m), the genus of Z(P), can be expressed in any of the
following equivalent forms:

(i) g(p,m) = (−1)p2m ©«
p∑
j=0
(−1)j

(
m + j

j

)
+

p−1∑
j=0
(−1)j

(
m + j

j

)ª®¬ − (−1)p

(ii) g(p,m) =
m−1∑
j=0

(
j + p

p

)
2j



Genera of moment-angle manifolds associated to dual-neighborly polytopes. 237

(iii) g(p,m), as a sequence parametrized by m, has generating function

z
(1 − z)(1 − 2z)p+1

The same expressions are valid for any polytope PJ obtained from P by iterated
book operations, where J is any n-tuple of non-negative integers.

The last part of the theorem follows from the fact that the book construction
preserves the total homology of the manifold Z . In particular, in the first application
P′ is a dual-neighborly polytope of dimension 2p + 1 the homology of Z(P′) is
concentrated in dimensions p and p + 1 and the above formula also gives its genus.
This includes many odd-dimensional dual-neighborly polytopes, including all the
cyclic ones.

Probably this is true also for any dual-neighborly polytope of odd dimension
greater than 3, but we do not know yet how the genus of Z(P) depends only on the
combinatorics of P.

For a 3-dimensional simple polytope P the genus of Z(P) is not determined
by the number of facets (the simplest examples are the cube and the pentagonal
book), but this is a particularity of this dimension where every simple polyhedron is
dual-neighborly.

It must be mentioned that the experts in the field consider that, viewed from
different angles, a large proportion of the simple polytopes are dual-neighborly. See
[Gr, pp.129, 129a, 129b], [Z, section 4] and [P, section 1]. And these are only the
roots of infinite lattices of polytopes PJ stemming from them, latices that can be
shown to be disjoint for two non-combinatorially equivalent roots P.

The formula for the genus of other polytopes obtained from P and its derivates by
applying other operations, such as the truncation of vertices or edges (see [Gi-LdM]),
can be derived from the same formulas. So the result applies to a large number of
simple polytopes. We illustrate this with the case of the operation of truncating a
vertex:

If P with associated manifold Z(P) is any simple d-polytope with n facets, and
P∨ the result of truncating one of its vertices, then ([Gi-LdM])

Z(P∨) = 2Z(P)#(2n−d − 1)(S1 × Sd−1)

so the genus is duplicated and then increased by 2n−d − 1.
A simple induction shows that if the number of vertex truncations is t then the

genus of the resulting Z is

2t (g(Z(P)) − 1) + t2n+t−d−1 + 1

or, in terms of the parameter m = n − d − 1 used in section 2:

2t (g(Z(P)) − 1) + t2m+t + 1

showing that the result depends only on the parameters m and t.
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Observe that P′ is a (d + 1)-polytope with n + 1 facets, so truncating one of its
vertices duplicates the genus and increases it by 2n−1−(d−1) − 1. So it produces the
same effect on the genus of Z(P′) as the truncation of a vertex of P on the genus of
Z(P). Since the book construction P′ does not affect the genus of Z(P) it follows
that the effect of compositions of both operations in any order has the same effect
on the genus of Z(P) as the application of the truncations only. The combinatorial
type of the result of such a chain of operations on P depends on the choice of facets
for the book constructions, the choice of vertices to be truncated and the order of
their application. The dimension of the associated manifold depends only on the
number of book constructions while its genus depends only on the number of vertex
truncations.

We illustrate this with some examples: when P is a d-simplex, the result of t
vertex truncations and any number of book constructions in any order is

Z(P′) = (2t (t − 1) + 1)(S1 × Sd−1)

which gives the same sequence of genera g(1,m) of surfaces (which can all be
obtained by vertex truncation of the triangle) as well as that of many 3-dimensional
polytopes for which Z(P) is connected sums of copies of S1 × S2. The fact that the
topology of the manifold obtained as the result of several vertex truncations does not
depend on the vertices chosen, while in dimension greater than 2 one can get many
combinatorially different polytopes, was first observed (in the context of intersection
of real quadrics in complex space) in [B-M].

When P is the square, Z(P) is the torus, and applying to P the book construction
any number of times one gets a product of simplices whose corresponding manifold
is a product of spheres Sa × Sb , so in a given dimension we get many combinatorial
types of polyhedra and many topological types of manifolds with one truncation
of the triangle and the same number of book constructions. If we start with the
pentagon we get many different connected sums of five sphere products and in
this case it may happen that combinatorially different polytopes give topologically
equivalent manifolds (cf. [LdM]).

Cutting off an edge of the polytope is a more complicated operation and the
resulting manifold may depend on which edge is chosen. A simple example is
when P is a triangular prism (a vertex truncation of the tetrahedron and therefore
Z(P) = S1 × S2): if we slice a vertical edge of P (i.e., one joining the top and bottom
triangles), we obtain a polyhedron combinatorially equivalent to the cube and the
corresponding manifold is S1 × S1 × S1. If we slice one of the sides of a triangle
one sees easily that combinatorially we get the same result as if we had truncated a
vertex, so the corresponding manifold is the connected sum of five copies of S1× S2,
by our previous formula (cf. remark (2) before Theorem 2.4 in [Gi-LdM]). The first
one is not a connected sum and its genus (in the generalized sense defined above)
is different from that of the second one. In [Gi-LdM] we showed that if Z(P) is
simply connected then this operation does preserve connected sums, the topology
of the result does not depend on the edge chosen and the genus of the result can be
computed from that of Z(P). Also that, combined carefully with book constructions
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and vertex truncations, it gives many more examples of connected sums of sphere
products, including many whose genus we can now compute explicitly, starting from
even-dimensional dual-neighborly polytopes using Theorem 3.1. The same must be
true in the non-simply connected case if the edge generates a trivial homology class
of Z(P) when reflected on the coordinate hyperplanes containing its boundary, and
one can envisage similar results for deeper truncations (with more hypotheses), but
all of this has not been studied.

4 On the sequences of genera

Formula (i) for the sequence of genera in Theorem 3.1 shows that g(p,m) is of the
form 2m times a polynomial Rp(m) of degree p minus (−1)p . For any value of p this
polynomial can be computed easily. Formulas (ii) and (iii) are more compact, but do
not immediately reflect this property.

For p = 1, P is a polygon and formula (i) gives g(1,m) = 2m(m − 1) + 1,
which in terms of the number of sides n of P (n = m + 3) gives the usual formula
2n−3(n − 4) + 1 for the genus of Z(P) ([Go-LdM]). Formula (ii) gives the sum
g(1,m) = Σm−1

j=0 ( j + 1)2j . Both formulas and the generating function appear in the
Sloane Encyclopedia of Sequences ([Sl, https://oeis.org/A000337]) together with a
long list of appearances of this sequence in questions of Topology, Combinatorics,
Polytope Theory and Algebraic Geometry.

For p = 2, 3, 4 and 5 the corresponding sequences also appear as entries /A055580,
/A027608, /A211386 and /A21138, of [Sl] with their generating sequences, some
formulas and various appearances in combinatorial problems.

Sequences for higher values of p do not seem to appear. It is a curious fact that
the sequences of the Euler characteristics that we have obtained above, do not seem
to appear at all in the Sloane Encyclopedia of Sequences.

The generating functions given in the Sloane Encyclopedia of Sequences for those
few cases gave us the clue to solve our problem. Our debt to the Encyclopedia is
partially covered by giving new formulas and a new topological interpretation to
some of its sequences, as well as an infinite family of sequences generalizing them
and, hopefully, by suggesting generalizations of their interpretations.

As a by-product of our computations we have also obtained some combinato-
rial identities. For example, from the formula for the number of faces of a given
dimension of a neighborly polytope in [Gr, p.166], after dualizing and taking their
alternating sum we get the following formula for the Euler characteristic of the
manifold associated to the dual-neighborly one:

2p∑
k=0
(−1)k2m+k+1

p∑
j=0

m + 2p + 1
m + k + 1

(
m + 2p − j
2p − k − j

) (
m + k + 1

2 j − 2p + k

)



240 Santiago López de Medrano

So this expression is equal to any of the three versions of χ(p,m) given in
Theorem 2.1 above. Perhaps this is easy to see for the experts on combinatorial
identities, which is not the case of this author.

The article [O-S], which solved a topological problem by daring to deal with
complicated combinatorial identities, was very stimulating for not giving up in our
struggle with them.
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Homeomorphic Model for the Polyhedral Smash
Product of Disks and Spheres

Arnaud Ngopnang Ngompé

Abstract In this paper we present unpublished work by David Stone on polyhe-
dral smash products. He proved that the polyhedral smash product of the CW-pair
(D2, S1) over a simplicial complex K is homeomorphic to an iterated suspension
of the geometric realization of K . Here we generalize his technique to the CW-pair
(Dk+1, Sk), for an arbitrary k. We generalize the result further to a set of disks and
spheres of different dimensions.

1 Introduction

In all the following, m ∈ N is any natural number and [m] = {1, · · · ,m}. Also, we
set K to be an abstract simplicial complex whose vertex set is contained in [m], that
is K is a family of subsets σ ⊆ [m], called simplices, such that whenever σ ∈ K and
τ ⊆ σ, then τ ∈ K .

Definition 1.1 (Polyhedral smash product) [3, Construction 8.3.1] Let
(X, A) = {(Xi, Ai)}i∈[m] be a family of pointed CW-pairs, that is, the Xi are CW-
complexes and Ai ↪→ Xi are subcomplexes, for all i ∈ [m]. The polyhedral smash
product of (X, A) over K , denoted Ẑ(K; (X, A)) ⊆

∧m
i=1 Xi , is the space given by

Ẑ(K; (X, A)) =
⋃
σ∈K

D̂(σ),where

D̂(σ) =
m∧
i=1

Yi, (1)
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with Yi =

{
Xi if i ∈ σ,
Ai otherwise

, ∀σ ∈ K . (2)

Using categorical language, consider Cat(K) to be the face category of K , that is,
objects are simplices and morphisms are inclusions. Define the Cat(K)-diagram
given by

D̂ : Cat(K) → Top
σ 7→ D̂(σ), (3)

where D̂(σ) is given by (1) and the functor D̂ maps the morphism ρ ⊆ σ to the
inclusion D̂(ρ) ⊆ D̂(σ). Then

Ẑ(K; (X, A)) = colim
σ∈K

D̂(σ). (4)

Below we recall some well-known operations on spaces.

Definition 1.2 [4, §0] For n ∈ N, let (X, x0) and (Y, y0) be two pointed topological
spaces.

• The join X ∗Y of X and Y is the quotient space defined by X ∗Y = X ×Y × I/∼,
where I = [0, 1] and ∼ is the equivalence relation generated by

(x, y, 0) ∼ (x, y′, 0), ∀x ∈ X and ∀y, y′ ∈ Y,

(x, y, 1) ∼ (x ′, y, 1), ∀x, x ′ ∈ X and ∀y ∈ Y .

• The wedge sum X ∨ Y of X and Y is the quotient space defined by

X ∨ Y = X q Y/(x0 ∼ y0).

• The smash product X ∧ Y of X and Y is the quotient space defined by

X ∧ Y = X × Y/X ∨ Y .

• The (unreduced) suspension ΣX of X is the space defined by ΣX = S0 ∗ X ,
where S0 denotes the 0-sphere.

• The (unreduced) cone CX of X is the space defined by CX = c ∗ X , where c is
a single point.

David stone made the following conjecture.

Conjecture 1.3 If F is a compact subspace of Rn, then there is a homeomorphism

Ẑ(K; (c ∗ ΣF, ΣF)) � Σ (>mF) ∗ |K |,

where >mF is defined as the m-fold join of m copies of F.
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As it is mentioned in [1,Remark 2.20], David Stone used a geometrical argument
to prove a particular case of his conjecture by taking F = S0. Hence he proved the
following [5].

Theorem 1.4 There is a homeomorphism

Ẑ(K; (D2, S1)) � Σm+1 |K |.

In this paper we apply the same technique to a more general case. For k ∈ N, we
consider F = Sk−1, which is compact (as a closed and bounded subspace of Rk),
and we have ΣF � Sk , c ∗ ΣF � Dk+1 and >mF � Skm−1 (since Si ∗ S j � Si+j+1).
Hence

(>mF) ∗ |K | � Skm−1 ∗ |K |

�
(
>kmS0

)
∗ |K |

� Σkm |K |.

So we can state a generalization of Stone’s result.

Theorem 1.5 For any k ∈ N ∪ {0}, there is a homeomorphism

Ẑ(K; (Dk+1, Sk)) � Σkm+1 |K |.

The goal of this paper is first to generalize David Stone’s technique for the proof
of Theorem 1.5 and secondly to provide a further generalization (see Theorem 6.6)
of the latter result for a set of disks and spheres of different dimensions.

Theorem 1.6 For any m-tuple J = ( j1, · · · , jm) in (N∪ {0})m, there is a homeomor-
phism

Ẑ(K; (DJ+1, SJ )) � Σ j1+· · ·+jm+1 |K |,

where
(
DJ+1, SJ

)
=

{(
D j1+1, S j1

)
, · · · ,

(
D jm+1, S jm

)}
.

In order to prove Theorem 1.5 we need to put together some topological and
combinatorial tools, hence the rest of the paper is organized as follows. In Sections
2 and 3, we describe respectively the necessary topological and combinatorial tools.
Section 4 is devoted to the proof of Theorem 1.5, for k ≥ 1. The case k = 0, namely
Theorem 5.1, is treated in Section 5 using a more categorical argument. Finally,
in Section 6 we prove the main result, Theorem 6.6, using an inductive argument
based on the case k = 0.
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2 Topological tools

Among the tools we use in the proof of Theorem 1.5, the homeomorphisms
Ψ : C∆n−1 → Cn and Ψ : Σ∆n−1 → D̃n, described below, are both playing an
important role. They were defined by David Stone in [5] and we recycle them here to
prove this more general case. Before we introduce them, let us first recall the usual
homeomorphism Θ̃ : CX/X → ΣX .

Given a space X , we identify X with the base c × X × {1} of CX = c ∗ X . Set
S0 = {s1, s2} to be the 0-sphere and consider the map

Θ : CX → ΣX

[c, x, λ] 7→ Θ[c, x, λ] =


(s1, x, 2λ), if 0 ≤ λ ≤

1
2

(s2, x, 2 − 2λ), if
1
2
≤ λ ≤ 1.

(5)

Then Θ factors through a map Θ̃ : CX/X → ΣX; see Figure 1.

CX

q

��

Θ // ΣX

D

�

Θ̃

<<

Lemma 2.1 The map Θ̃ is a homeomorphism.

Notation 2.2 In Rn,

• let ei be the ith standard basis vector. Let c denote the origin and let t1, · · · , tn
denote the coordinates of a point x ∈ Rn. We identify x ∼ −→cx and so x =

∑n
i=1 tiei .

• Set C = [0, 2], with based point 2 and consider
Cn = [0, 2]n =

{∑n
i=1 tiei ∈ Rn : 0 ≤ ti ≤ 2

}
, the n-cube of side 2.

∂+Cn =
{∑n

i=1 tiei ∈ Cn : max ti = 2
}
, the outer boundary of Cn.

∂−Cn =
{∑n

i=1 tiei ∈ Cn : min ti = 0
}
, the inner boundary of Cn.

∂Cn = ∂+Cn ∪ ∂−Cn, the boundary of Cn.
D̃n = Cn/∂+Cn, with the quotient map ω : Cn → D̃n.
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Fig. 1: Factorization of Θ through Θ̃.

Lemma 2.3 The quotient space D̃n is a topological disk.

Proof Considering the CW-pair (Cn, ∂+Cn), we have

(Cn, ∂+Cn) � (c ∗ ∂+Cn, ∂+Cn)

� (c ∗ Dn−1,Dn−1),

where the latter pair is the inclusion of the base of the cone

c × Dn−1 × {1} � Dn−1 ⊆ (c ∗ Dn−1).

Hence collapsing the respective subspaces yields a homeomorphism

D̃n = Cn/∂+Cn � (c ∗ Dn−1)/Dn−1

� ΣDn−1

� Dn.

Therefore D̃n is a topological disk. �

Notation 2.4 Let us consider the following setup.

• For any set X = {x1, · · · , xp} ⊆ Rn, let cx(X) denote the convex hull of X , that is

cx(X) =

{
p∑
i=1

ti xi ∈ Rn : ti ≥ 0,
p∑
i=1

ti = 1

}
.

• Set ∆n−1 = cx{e1, · · · , en} to be the standard (n − 1)-simplex.
• For any J ⊆ [n], set ∆(J) = cx ({ei : i ∈ J}) � ∆ |J |−1, where |J | denotes the

cardinality of J.
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Remark 2.5 The abstract coneC∆n−1 can be realized as a subspace ofRn, a subspace
which is homeomorphic to the n-cube Cn by reparametrization as we can observe in
Figure 2. This motivates the existence of a bijection Ψ : C∆n−1 → Cn, defined by
equation (6).

Fig. 2: Illustration of the map Ψ : C∆1 → C2, that is for n = 2.

For x =
∑n

i=1 tiei ∈ ∆n−1, set t = max{ti}, so t > 0. Define the map

Ψ : C∆n−1 → Cn

[c, x, λ] 7→ Ψ[c, x, λ] =


2λx, if 0 ≤ λ ≤

1
2(

(2 − 2λ) + (2λ − 1)
2
t

)
x, if

1
2
≤ λ ≤ 1,

(6)

where Cn = [0, 2]n is the n-cube of side 2 set in Notation 2.2.

Remark 2.6 As mentioned in Notation 2.2, the basepoint of C = [0, 2] is 2. The
above defined map Ψ does not send the cone point to the basepoint (2, · · · , 2) of the
n-cube Cn, as one might expect, but to the origin c of Rn for convenience.

By Lemma 2.1, we have C∆n−1/∆n−1 � Σ∆n−1 � ∆n. Also
Ψ(c × ∆n−1 × {1}) = ∂+Cn and hence, Ψ factors through the map
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Ψ : Σ∆n−1 → D̃n,

where D̃n = Cn/∂+Cn is the topological disk introduced in Notation 2.2.

C∆n−1

q

��

Ψ // Cn

ω
��

Σ∆n−1
Ψ

// D̃n

Lemma 2.7 The maps Ψ and Ψ are both homeomorphisms.

Proof As a continuous bijection from the compact space C∆n−1 to the Hausdorff
space Cn, Ψ is a homeomorphism. Hence, Ψ gives us the homeomorphism of the
pairs (C∆n−1,∆n−1) � (Cn, ∂+Cn), so that the induced map Ψ : Σ∆n−1 → D̃n is a
homeomorphism. �

Remark 2.8 If we consider ([0, 2], 2) to be a pointed space, then collapsing ∂+C2(k+1)

in C2(k+1) � Ck+1 × Ck+1, we get

D̃k+1
∧

D̃k+1 � Dk+1
∧

Dk+1

� D2(k+1).

This can be generalized to the case ofCp(k+1) � Ck+1 × · · · × Ck+1︸                 ︷︷                 ︸
p times

and so collapsing

∂+Cp(k+1) corresponds to
∧p D̃k+1 �

∧p Dk+1 � Dp(k+1). Hence

ω

(
p∏

Ck+1

)
�

p∧
D̃k+1 �

p∧
Dk+1 and

ω

(
p∏
∂−Ck+1

)
�

p∧
∂D̃k �

p∧
Sk, where ∂D̃k denotes the boundary of D̃k+1.

(∏p Ck+1) /∂+Cp(k+1)� //

�

��

∧p Dk+1

∧p D̃k+1

�

66

Lemma 2.9 For any compact and Hausdorff spaces X and Y , there is a homeomor-
phism

ϕ : C(X ∗ Y ) → CX × CY .

Proof We follow the proof of [2, Lemma 8.1]. We can represent a point in C(X ∗Y )
by [c, [x, y, t], λ]. We define the homeomorphism ϕ by
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ϕ([c, [x, y, t], λ]) = ([c, x, 2λ ·min{t, 1/2}], [c, y, 2λ ·min{1 − t, 1/2}]) ∈ CX × CY,

where the cone point is at λ = 0. At λ = 1, ϕ reduces to the usual homeomorphism

X ∗ Y � (CX × Y ) ∪ (X × CY ).

The map ϕ is a homeomorphism as a continuous bijection from the compact space
C(X ∗ Y ) to the Hausdorff space CX × CY . �

3 Combinatorial tools

One of the main goals of this section is to embed the simplicial complex K in a bigger
simplex with vertex set [(k + 1)m]. We start by introducing a linearized version of
the join of spaces.

Definition 3.1 (Geometrically joinable)

• Two compact subspaces X and Y of Rn are said to be geometrically joinable if
whenever x, x ′ ∈ X , y, y′ ∈ Y and λ, λ′ ∈ I are such that
λx + (1 − λ)y = λ′x ′ + (1 − λ′)y′, then we have one of the three following
possibilities

– λ = λ′ = 0, and so y = y′;
– λ = λ′ = 1, and so x = x ′;
– 0 , λ = λ′ , 1, x = x ′ and y = y′.

• More generally, p compact subspaces X1, · · · , Xp ⊆ R
n are geometrically join-

able if whenever we have an equality between two convex combinations of points
of X1, · · · , Xp , that is, whenever

p∑
i=1

λi xi =
p∑
i=1

λ′i x
′
i,

for some xi, x ′i ∈ Xi and λi, λ′i ∈ I with
∑p

i=1 λi = 1 =
∑p

i=1 λ
′
i , then for all

i = 1, · · · , p such that λi , 0 or λ′i , 0, we have λi = λ′i and xi = x ′i .
• If p compact subspaces X1, · · · , Xp ⊆ R

n are geometrically joinable, then we
define their geometric join >p

i=1Xi to be the set of all convex combinations of
elements of Xi , that is,

>p
i=1Xi =

{
p∑
i=1

λi xi ∈ Rn : xi ∈ Xi and λi ∈ I such that
p∑
i=1

λi = 1

}
.

The notion of geometrically joinable introduced here is also called “in general
position”. In the following, when we use the notation X∗Y , it is to be understood that
X and Y are indeed geometrically joinable.
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Example 3.2 Single points X1 = {x1}, · · · , Xp = {xp} in Rn are geometrically
joinable if and only if they are affinely independent. In that case, their geometric join
>p

i=1Xi is their convex hull, which is a (p − 1)-simplex, that is,

>p
i=1Xi = cx{x1, · · · , xp} � ∆p−1.

Lemma 3.3

1. Let X and Y be geometrical joinable subspaces of Rn. The map

Φ : X ∗ Y → X∗Y

[x, y, λ] 7→ λx + (1 − λ)y

is a homeomorphism.
2. More generally, for geometrically joinable subspaces X1, · · · , Xp of Rn, the map

Φp : >p
i=1Xi → >p

i=1Xi

[xi, λi]
p
i=1 7→

p∑
i=1

λi xi

is a homeomorphism.

Remark 3.4 Observe that if U and V are respective subspaces of geometrically
joinable spaces X and Y , then U is geometrically joinable to V .

Lemma 3.5 Let X,Y1 andY2 be three compact subspaces of Rn. If X is geometrically
joinable to each Yi and

X∗Y1 ∩ X∗Y2 = X∗ (Y1 ∩ Y2) , (7)

then X is geometrically joinable to Y1 ∪ Y2.

Proof Let x, x ′ ∈ X , w, w ′ ∈ Y1 ∪ Y2 and λ, λ′ ∈ I be such that

λx + (1 − λ)w = λ′x ′ + (1 − λ′)w ′. (8)

If we have either w, w ′ ∈ Y1 or w, w ′ ∈ Y2, then there is nothing to show since X is
geometrically joinable to both Y1 and Y2. Without lost of generality suppose w ∈ Y1
and w ′ ∈ Y2, and so (8) gives us

X∗Y1 3 λx + (1 − λ)w = λ′x ′ + (1 − λ′)w ′ ∈ X∗Y2.

Then by (7), there are x ′′ ∈ X , w ′′ ∈ Y1 ∩ Y2 and λ′′ ∈ I such that

λx + (1 − λ)w = λ′′x ′′ + (1 − λ′′)w ′′, (9)
λ′x ′ + (1 − λ′)w ′ = λ′′x ′′ + (1 − λ′′)w ′′. (10)

If λ′′ = 0 (respectively λ′′ = 1) then
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• λ = 0 (respectively λ = 1) and w = w ′′ (respectively x = x ′′) by (9), since X and
Y1 are geometrically joinable.

• λ′ = 0 (respectively λ′ = 1) and w ′ = w ′′ (respectively x ′ = x ′′) by (10), since X
and Y2 are geometrically joinable.

Thus λ = 0 = λ′ and w = w ′ (respectively λ = 1 = λ′ and x = x ′).
If 0 , λ′′ , 1 then

• λ = λ′′ and, x = x ′′ and w = w ′′ by (9), since X andY1 are geometrically joinable.
• λ′ = λ′′ and, x ′ = x ′′ and w ′ = w ′′ by (10), since X and Y2 are geometrically

joinable.

Thus λ = λ′ and, x = x ′ and w = w ′. Therefore X is geometrically joinable to
Y1 ∪ Y2. �

Notation 3.6 Now let n = (k+1)m and for i ∈ [m], consider the following notations:

• v`i = e(k+1)(i−1)+` , for any ` = 1, · · · , k + 1,

• ai =
1

k + 1
∑k+1
`=1 vi = bar{v`i }

k+1
`=1 , that is, ai is the barycenter of {v`i }

k+1
`=1 ,

• ∆i = cx
{
v`i

}k+1
`=1 ,

• Si = ∂∆i .

Lemma 3.7 For any subset σ ⊆ [m], the collections {∆i}i∈σ , {Si}i∈σ and {ai}i∈σ
are respectively families of geometrically joinable compact subspaces of Rn.

Proof Consider the following identity of convex combinations

|σ |∑
i=1

λi xi =
|σ |∑
i=1

λ′i x
′
i, (11)

for some xi, x ′i ∈ ∆i and λi, λ′i ∈ I with
∑k

i=1 λi = 1 =
∑k

i=1 λ
′
i . The equation (11) is

equivalent to
|σ |∑
i=1

k+1∑̀
=1
λit`i v

`
i =

|σ |∑
i=1

k+1∑̀
=1
λ′i s

`
i v
`
i ,

where xi =
∑k+1
`=1 t`i v

`
i and x ′i =

∑k+1
`=1 s`i v

`
i are convex combinations. Since

{v`i : i ∈ σ, ` = 1, · · · , k + 1} is affinely independent, then λit`i = λ′i s
`
i , for all

i ∈ σ, ` = 1, · · · , k + 1. Without loss of generality if λi , 0 (the proof is similar if

we assume λ′i , 0), then t`i =
λ′i
λi

s`i . Hence we have

k+1∑̀
=1

t`i = 1⇒
k+1∑̀
=1

λ′i
λi

s`i = 1

⇒
λ′i
λi

k+1∑̀
=1

s`i = 1
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k+1∑̀
=1

t`i = 1⇒
λ′i
λi
= 1, since

k+1∑̀
=1

s`i = 1

⇒ λ′i = λi

⇒ t`i = s`i , for all i ∈ σ, ` = 1, · · · , k + 1

⇒ xi =
k+1∑̀
=1

t`i v
`
i =

k+1∑̀
=1

s`i v
`
i = x ′i

⇒ xi = x ′i .

Therefore the collection {∆i}i∈σ is geometrically joinable. As the collection of
boundaries of disjoint k-simplices ∆i in Rn respectively, {Si}i∈σ is a family of geo-
metrically joinable compact subspaces ofRn. Likewise, the collection of barycenters
{ai}i∈σ of the k-simplices ∆i is geometrically joinable. �

Notation 3.8 For any σ ⊆ [m] and by Lemma 3.7, consider the setting

• J(σ) = ∪i∈σ{(k + 1)(i − 1) + `}k+1
`=1 ⊆ [n],

• ∆σ = ∆(J(σ)) = >i∈σ∆i ,
• Sσ = >i∈σSi ,
• S∗σ = >j<σSj ,
• aσ = cx{ai : i ∈ σ}.

An example of this setup is illustrated in Figure 3.

Fig. 3: Examples of ai , Si , aσ , Sσ and S∗σ , for m = 2 and k = 1, that is n = 4.

Lemma 3.9 For any σ ⊆ [m], the compact spaces aσ and Sσ are geometrically
joinable, and we have

∆σ = aσ∗Sσ .

Proof Let us prove aσ and Sσ are geometrically joinable for k = 1 and for
σ = {1, 2}; the general case can be proved similarly. Hence Sσ can be split as follows
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Sσ = [e1, e3]︸ ︷︷ ︸
F1

∪ [e1, e4]︸ ︷︷ ︸
F2

∪ [e2, e3]︸ ︷︷ ︸
F3

∪ [e2, e4]︸ ︷︷ ︸
F4

and

aσ =
[
1
2

e1 +
1
2

e2,
1
2

e3 +
1
2

e4

]
.

The complexes aσ and Fi , for each i = 1, 2, 3, 4, are both 1-simplices and all their
four vertices are not coplanar. So aσ and Fi , for each i = 1, 2, 3, 4, are geometrically
joinable and their join aσ∗Fi is a 3-simplex. Also we have

aσ∗(F1 ∩ F2) = aσ∗{e1} = (aσ∗F1) ∩ (aσ∗F2).

Hence by Lemma 3.5, aσ is geometrically joinable to F1 ∪ F2. Similarly, we have

aσ∗((F1 ∪ F2) ∩ F3) = aσ∗{e3}

= (aσ∗(F1 ∪ F2)) ∩ (aσ∗F3).

Hence aσ is geometrically joinable to F1 ∪ F2 ∪ F3. Similarly, we have

aσ∗((F1 ∪ F2 ∪ F3) ∩ F4) = aσ∗{e2, e4}

= (aσ∗(F1 ∪ F2 ∪ F3)) ∩ (aσ∗F4).

Hence aσ is geometrically joinable to Sσ = F1 ∪ F2 ∪ F3 ∪ F4. For any i ∈ [m],
Si = ∂∆i and ai = bar{v`i }

k+1
`=1 . Then ai and Si are geometrically joinable, and we

have ∆i = ai∗Si . We deduce

∆σ = >i∈σ∆i

= >i∈σ(ai∗Si)

= (>i∈σai)∗(>i∈σSi)

= aσ∗Sσ . �

4 Proof of Theorem 1.5

Now we have all the tools to write down the proof of Theorem 1.5 for k ≥ 1. The
case of k = 0 will be treated in the next section. In the following, we consider the
notations introduced in Sections 2 and 3.

Proof Setting Wσ = ∆σ∗S∗σ for each σ ∈ K , we have⋃
σ∈K

Wσ =
⋃
σ∈K

( (
>i∈σ∆i

)
∗
(
>j<σSj

) )
. (12)
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Consider the collection of simplices A(K) = {aσ}σ∈K , which is a geometric real-
ization of the simplicial complex K and

|A(K)| =
⋃
σ∈K

aσ (13)

to be the underlying subspace of Rn = R(k+1)m. The complexes a[m] and S[m] are
geometrically joinable by Lemma 3.9, and also A(K) is a subcomplex of a[m].
Therefore |A(K)| and S[m] are geometrically joinable by Remark 3.4, and we have
S[m]∗|A(K)| � Skm−1 ∗ |K | � Σkm |K |, since S[m] � Skm−1. Then

Wσ = ∆σ∗S∗σ
= aσ∗(Sσ∗S∗σ) by Lemma 3.9
= aσ∗S[m].

This is illustrated by Figure 4, where Wσ is the union of the two blue triangular
surfaces. In this example, we have S[m] � ∂Wσ . Hence from equation (13) we also

Fig. 4: Examples ofWσ , for m = 2, σ = {1} and k = 1, that is n = 4.

have ⋃
σ∈K

Wσ � Σkm |K |. (14)

Therefore we have

Ψ(C(
⋃
σ∈K

Wσ)) �
⋃
σ∈K

Ψ(CWσ)

=
⋃
σ∈K

Ψ
(
C

( (
>i∈σ∆i

)
∗
(
>j<σSj

) ) )
by (12)
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Ψ(C(
⋃
σ∈K

Wσ)) �
⋃
σ∈K

Ψ

(∏
i∈σ

(C∆i) ×
∏
j<σ

(CSj)

)
by Lemma 2.9

�
⋃
σ∈K

Ψ

(∏
i∈σ

Ck+1
i ×

∏
j<σ

∂−Ck+1
j

)
by Lemma 2.7, (15)

where Ck+1
i and Ck+1

j are copies of the (k + 1)-cube.

Then we get

Ψ(Σ
⋃
σ∈K

Wσ) �
⋃
σ∈K

Ψ(ΣWσ)

�
⋃
σ∈K

ω

(∏
i∈σ

Ck+1
i ×

∏
j<σ

∂−Ck+1
j

)
by (15) and Lemma 2.7

�
⋃
σ∈K

(∧
i∈σ

D̃k+1
i ∧

∧
j<σ

∂D̃k+1
i

)
by Remark 2.8, where D̃k+1

i

are copies of the nonstandard (k + 1)-disk D̃k+1.

Ψ(Σ
⋃
σ∈K

Wσ) �
⋃
σ∈K

(∧
i∈σ

Dk+1
i ∧

∧
j<σ

Sk
j

)
by Lemma 2.3, where Dk+1

i and Sk
j

are (resp.) copies of the (k + 1)-disk Dk+1 and the k-sphere Sk .
� Ẑ(K; (Dk+1, Sk)). (16)

On the other hand, we obtain

Ψ(Σ
⋃
σ∈K

Wσ) � Ψ(ΣΣ
km |K |) by (14)

� Ψ
(
Σ
km+1 |K |

)
� Σkm+1 |K | by Lemma 2.7. (17)

Therefore by (16) and (17), we have

Ẑ(K; (Dk+1, Sk)) � Σkm+1 |K |.

Hence we have the result. �

5 The case k = 0

In the previous section, we have proved Theorem 1.5 for k ≥ 1. Here we prove the
remaining case, namely k = 0, given by the following.
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Theorem 5.1 There is a homeomorphism

Ẑ(K; (D1, S0)) � Σ |K |.

For the purpose of the proof, we will consider the categorical definition of the
polyhedral smash product given by (4). As in the third bullet of Notation 2.4,
consider the functor

∆ : Cat(K) → Top
σ 7→ ∆(σ) � ∆ |σ |−1.

The geometric realization of K is given by

|K | = colim
σ∈K

∆(σ). (18)

Proof Consider the composite functor Σ∆ given by

Σ∆ : Cat(K) → Top
σ 7→ Σ∆(σ) � Σ∆ |σ |−1.

Let τ ⊆ σ be a face inclusion in K , with |τ | = p ≤ ` = |σ |. We will look at the case
τ = {1, · · · , p} ⊆ {1, · · · , `} = σ for simplicity; the same argument works for the
general case. Consider the two following maps

φ1 : C∆p−1 → C∆`−1

[
c, (t1, · · · , tp), λ

]
7→

c, (t1, · · · , tp, 0, · · · , 0︸   ︷︷   ︸
`−p times

), λ


and

φ2 : Cp → C`

(t1, · · · , tp) 7→ (t1, · · · , tp, 0, · · · , 0︸   ︷︷   ︸
`−p times

).

The transformation Ψ : Σ∆⇒ D̂, where the functor D̂ is defined by (3) for the pair
(D1, S0), is a natural isomorphism if the diagram (19) commutes since it induces the
commutative diagram (20) below:

C∆p−1

φ1
��

Ψp

�
// Cp

φ2
��

C∆`−1
Ψ`

� // C`

(19)
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Σ∆p−1

φ1
��

Ψp

�
// D̃p

φ2
��

Σ∆`−1
Ψ`

� // D̃`,

(20)

where φ1([si, x, λ]) = [φ1([c, x, λ])], for all [si, x, λ] ∈ Σ∆p−1, D̃p = C1 ∧ · · · ∧ C1︸           ︷︷           ︸
p times

and so φ2([y]) = [φ2(y)], for all y ∈ Cp . For [c, (t1, · · · , tp), λ] ∈ C∆p−1 we have

Ψ`φ1 ([c, (t1, · · · , tp), λ])

= Ψ`([c, (t1, · · · , tp, 0, · · · , 0︸   ︷︷   ︸
`−p times

), λ])

=


2λ(t1, · · · , tp, 0, · · · , 0︸    ︷︷    ︸

`−p times

), if 0 ≤ λ ≤
1
2(

(2 − 2λ) + (2λ − 1)
2

max1≤i≤p {ti }

)
(t1, · · · , tp, 0, · · · , 0︸    ︷︷    ︸

`−p times

), if
1
2
≤ λ ≤ 1

by (6)

φ2Ψp ([c, (t1, · · · , tp), λ])

=


φ2(2λ(t1, · · · , tp )), if 0 ≤ λ ≤

1
2

φ2

((
(2 − 2λ) + (2λ − 1)

2
max1≤i≤p {ti }

)
(t1, · · · , tp )

)
, if

1
2
≤ λ ≤ 1

by (6)

=


2λ(t1, · · · , tp, 0, · · · , 0︸    ︷︷    ︸

`−p times

), if 0 ≤ λ ≤
1
2(

(2 − 2λ) + (2λ − 1)
2

max1≤i≤p {ti }

)
(t1, · · · , tp, 0, · · · , 0︸    ︷︷    ︸

`−p times

), if
1
2
≤ λ ≤ 1.

Then the two diagrams commute and therefore Ψ is a natural isomorphism. Passing
to the colimit, we have

colimΨ : colim
σ∈K

Σ∆(σ)
�
−→ colim

σ∈K
D̂(σ). (21)

But we have
colim
σ∈K

Σ∆(σ) � Σ colim
σ∈K

∆(σ) = Σ |K | by (18)

and also considering identity (4), the homeomorphism (21) yields a homeomorphism

Σ |K | � Ẑ(K; (X, A)).

Hence we have the result. �
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6 Generalization of Theorem 1.5

In this section, we generalize Theorem 1.5 further, using an argument kindly pro-
vided by the referee. Instead of doubling all the vertices of K simultaneously as
in David Stone’s original construction, we double one vertex at a time and argue
inductively, starting from the case k = 0 in Theorem 5.1. Let us start by setting
some notation and stating intermediate results.

Notation 6.1 In this section, we consider the following set up

• For J = ( j1, · · · , jm) an m-tuple from (N∪ {0})m, denote the family of CW-pairs(
DJ+1, SJ

)
=

{(
D j1+1, S j1

)
, · · · ,

(
D jm+1, S jm

)}
.

• Set Ji = (0, · · · , 1, · · · , 0) to be the m-tuple having 1 only at the i-th position and
0 elsewhere. For a simplicial complex K over [m] and i ∈ [m], consider the new
simplicial complex K(Ji) with m + 1 vertices labeled
{1, · · · , i − 1, ia, ib, i + 1, · · · ,m} and defined by

K(Ji) := {(σ\{i}) ∪ {ia, ib} | σ ∈ K and i ∈ σ}

∪{σ ∪ {ia} | σ ∈ K and i < σ}

∪{σ ∪ {ib} | σ ∈ K and i < σ} ∪ {all their subsets}.

The meaning behind the introduction of K(Ji) is illustrated in the following
example.

Example 6.2 For m = 2, consider K = {∅, {1}, {2}} and J1 = (1, 0). We have

Ẑ(K; (DJ1+1, SJ1 )) = Ẑ(K; {(D2, S1), (D1, S0)})

= D̂({1}) ∪ D̂({2}) as a subspace of D2 ∧ D1

= D2 ∧ S0 ∪ S1 ∧ D1

� (D1 ∧ D1) ∧ S0 ∪ (D1 ∧ S0 ∪ S0 ∧ D1) ∧ D1

=
(
D1 ∧ D1 ∧ S0

)
∪

(
D1 ∧ S0 ∧ D1

)
∪

(
S0 ∧ D1 ∧ D1

)
= D̂({1a, 1b}) ∪ D̂({2} ∪ {1a}) ∪ D̂({2} ∪ {1b})
= Ẑ(K(J1); {(D1, S0), (D1, S0), (D1, S0)})

= Ẑ(K(J1); (D1, S0)), see Figure 5.

The next lemma suggests that the polyhedral smash product Ẑ(K; (DJ+1, SJ )) can be
computed iteratively with steps involving K(Ji) for some i ∈ [m].

Lemma 6.3 Let J = ( j1, · · · , jm) to be an m-tuple and i ∈ [m] such that ji , 0.
There is a homeomorphism

Ẑ(K; (DJ+1, SJ )) � Ẑ(K(Ji); (DJ′+1, SJ′)),
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Fig. 5: K(J1) = {{1a, 1b }, {1a, 2}, {1b, 2}, their subsets}.

where J ′ is the (m + 1)-tuple J ′ = ( j1, · · · , ji − 1, 0, · · · , jm).

Proof The polyhedral smash product Ẑ(K; (DJ+1, SJ )) is defined as follows

Ẑ(K; (DJ+1, SJ )) = Ẑ(K; {(D j1+1, S j1 ), · · · , (D ji+1, S ji ), · · · , (D jm+1, S jm )})

=
⋃
σ∈K

(
D̂(σ)

)
as a subspace of

m∧̀
=1

D j`+1 � D̃ j1+· · ·+jm+m

=
⋃
σ∈K

(
m∧̀
=1

Ỳ

)
, where Ỳ is given by (2)

=
⋃

σ∈K,i∈σ

(
m∧̀
=1

Ỳ

)
∪

⋃
σ∈K,i<σ

(
m∧̀
=1

Ỳ

)
=

⋃
σ∈K,i∈σ

(
Y1 ∧ · · · ∧ D ji+1 ∧ · · · ∧ Ym

)
∪

⋃
σ∈K,i<σ

(
Y1 ∧ · · · ∧ S ji ∧ · · · ∧ Ym

)
�

⋃
σ∈K,i∈σ

(
Y1 ∧ · · · ∧ (D ji ∧ D1) ∧ · · ·Ym

)
∪

⋃
σ∈K,i<σ

(
Y1 ∧ · · · ∧ (D ji ∧ S0 ∪ S ji−1 ∧ D1) ∧ · · ·Ym

)
=

⋃
σ∈K,i∈σ

(
Y1 ∧ · · · ∧ D ji ∧ D1 ∧ · · ·Ym

)
∪

⋃
σ∈K,i<σ

(
Y1 ∧ · · · ∧ D ji ∧ S0 ∧ · · ·Ym

)
∪

⋃
σ∈K,i<σ

(
Y1 ∧ · · · ∧ S ji−1 ∧ D1 ∧ · · ·Ym

)
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Ẑ(K; (DJ+1, SJ )) =
⋃

σ∈K,i∈σ

D̂ ((σ\{i}) ∪ {ia, ib}) ∪
⋃

σ∈K,i<σ

D̂ (σ ∪ {ia})

∪
⋃

σ∈K,i<σ

D̂ (σ ∪ {ib})

= Ẑ(K(Ji); (DJ′+1, SJ′)),

where J ′ is the (m + 1)-tuple J ′ = ( j1, · · · , ji − 1, 0, · · · , jm). �

Example 6.4

1. For m = 3, consider K = {{1, 2}, {3}, their subsets} and J = (1, 1, 0). We have

Ẑ(K; (DJ+1, SJ )) = Ẑ(K; {(D2, S1), (D2, S1), (D1, S0)})

= D̂({1, 2}) ∪ D̂({3}) as a subspace of D2 ∧ D2 ∧ D1

= D2 ∧ D2 ∧ S0 ∪ S1 ∧ S1 ∧ D1

� D2 ∧ (D1 ∧ D1) ∧ S0 ∪ S1 ∧ (D1 ∧ S0 ∪ S0 ∧ D1)

∧D1

=
(
D2 ∧ D1 ∧ D1 ∧ S0

)
∪

(
S1 ∧ D1 ∧ S0 ∧ D1

)
∪

(
S1 ∧ S0 ∧ D1 ∧ D1

)
= D̂(({1, 2a, 2b}) ∪ D̂({2a, 3}) ∪ D̂({2b, 3})
= Ẑ(K(J2); {(D2, S1), (D1, S0), (D1, S0), (D1, S0)})

= Ẑ(K(J2); (DJ1+1, SJ1 )), with J1 = (1, 0, 0, 0)

= Ẑ(K(J2)(J1); (D1, S0))

= Ẑ(K(J); (D1, S0)), where K(J) = K(J2)(J1).

See Figure 6.

Fig. 6: K(J2) = {{1, 2a, 2b }, {2a, 3}, {2b, 3}, their subsets}.

2. For m = 3, consider K = {{1, 2}, {1, 3}, {2, 3}, their subsets} and J = (2, 1, 1).
We have
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Ẑ(K; (DJ+1, SJ )) = Ẑ(K; {(D3, S2), (D2, S1), (D2, S1)})

� Ẑ(K(J1); (DJ′+1, SJ′)), where J ′ = (1, 0, 1, 1).

With

K(J1) = {{1a, 1b, 2}, {1a, 1b, 3}, {1a, 2, 3}, {1b, 2, 3}, their subsets},

which is a simplicial complex with m + 1 = 4 vertices.

The second intermediate result in given by the following lemma, which states
that the geometric realization of the simplicial complex K(Ji) can be obtained just
by considering a single suspension of the geometric realization of the simplicial
complex K .

Lemma 6.5 For any i ∈ [m], we have

|K(Ji)| � Σ |K |.

Proof Set S0 = {s1, s2} to be the 0-sphere. We have

Σ |K | = S0 ∗ |K |

= {s1, s2} ∗

( ⋃
σ∈K

|σ |

)
=

⋃
σ∈K

({s1, s2} ∗ |σ |)

=

( ⋃
σ∈K,i∈σ

({s1, s2} ∗ |σ |)

)
∪

( ⋃
σ∈K,i<σ

({s1, s2} ∗ |σ |)

)
�

( ⋃
σ∈K,i∈σ

(|σ\{i} ∪ {s1, s2}|)

)
∪

( ⋃
σ∈K,i<σ

(|σ ∪ {s1}| ∪ |σ ∪ {s2}|)

)
=

( ⋃
σ∈K,i∈σ

(|σ\{i} ∪ {s1, s2}|)

)
∪

( ⋃
σ∈K,i<σ

(|σ ∪ {s1}|)

)
∪

( ⋃
σ∈K,i<σ

(|σ ∪ {s2}|)

)
�

( ⋃
σ∈K,i∈σ

(|σ\{i} ∪ {ia, ib}|)

)
∪

( ⋃
σ∈K,i<σ

(|σ ∪ {ia}|)

)
∪

( ⋃
σ∈K,i<σ

(|σ ∪ {ib}|)

)
=

⋃
τ∈K(Ji )

|τ |

= |K(Ji)|. �
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The lemma is illustrated in Figure 7 for the simplicial complex K from Example
6.4(1). Now we can state and prove the main result.

Fig. 7: |K(J2) | � Σ |K |.

Theorem 6.6 For any m-tuple J = ( j1, · · · , jm) in (N∪ {0})m, there is a homeomor-
phism

Ẑ(K; (DJ+1, SJ )) � Σ j1+· · ·+jm+1 |K |.

Proof Applying Lemma 6.3
∑m

i=1 ji times, we get

Ẑ(K; (DJ+1, SJ )) � Ẑ(K(J); (D1, S0)), (22)

where K(J) is a simplicial complex obtained by applying the basic move (doubling
a single vertex)

∑m
i=1 ji times. By the base case k = 0 in Theorem 5.1, we have

Ẑ(K(J); (D1, S0)) � Σ |K(J)|. (23)

Also, applying Lemma 6.5
∑m

i=1 ji times, we have

Σ |K(J)| � ΣΣ j1+· · ·+jm |K |

= Σ j1+· · ·+jm+1 |K |. (24)

Therefore, by putting equations (22), (23) and (24) together, we obtain

Ẑ(K; (DJ+1, SJ )) � Σ j1+· · ·+jm+1 |K |.

Hence we have the result. �
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Invariance of Polarization Induced by
Symplectomorphisms

Ethan Ross

Abstract A variant of the Kirillov-Kostant-Souriau approach to quantizing a sym-
plectic manifold (M, ω) requires associating a prequantum line bundle (L,∇) → M
and a Lagrangian foliation to M . One then uses these data to define a vector space
called the quantization. In this paper, I introduce an action of the symplectomor-
phisms of (M, ω) on the Lagrangian foliations of M . I then show that a symplec-
tomorphism Φ : M → M will preserve the quantization if it admits a connection-
preserving lift to the prequantum line bundle. Finally, I give a topological condition
on M which guarantees the existence of such a lift of a symplectomorphism.

1 Introduction

Geometric quantization roughly amounts to associating complex vector spaces
(preferably Hilbert spaces) to symplectic manifolds. The terminology arises from the
realization of a symplectic manifold as a classical phase space and a Hilbert space
as the space of quantum wave functions. One fruitful direction in quantization has
been the Kirillov-Kostant-Souriau picture in which one associates to a given sym-
plectic manifold (M, ω) a complex Hermitian line bundle with compatible covariant
derivative (L,∇) → M so that the curvature curv(∇) is given by the symplectic
form ω. The Hilbert space of L2 sections then satisfies many of the naive axioms of
quantization given by Dirac [12, axioms Q1-Q3, page 155], but it can be “too large"
in some sense. In order to correct this issue with size, one possible approach is to
introduce an object called a polarization. In this paper I shall only be considering real
polarizations, which are possibly singular Lagrangian foliations P of the symplec-
tic manifold (M, ω). Kähler polarizations, given by complex structures compatible

Ethan Ross
Department of Mathematics, University of Toronto, Toronto, Ontario M5S 2E4, Canada
e-mail: ethan.ross@mail.utoronto.ca
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with the symplectic form ω, are also widely used in the literature, but shall not be
considered in this paper.

From here, one has at least two choices for what a quantization could be. One
option uses the covariant derivative ∇, to define a sheaf of polarized sections S(P,∇)
of L. I then define the sheaf quantization to be

Qsh f (M, P,∇) =
⊕
n

Ȟn(M,S(P,∇)), (1)

where Ȟn(M,S(P,∇)) are the Čech cohomology groups associated to the sheaf. The
other option makes use of the fact that P is a foliation to define distinguished leaves
ι : B → M , called Bohr-Sommerfeld leaves, which admit non-trivial covariantly
constant sections, that is, sections s of the pull back bundle (ι∗L, ι∗∇) satisfying
ι∗∇s = 0 along T B. Writing BS(P) for the Bohr-Sommerfeld leaves of P, I then
define the other quantization, Bohr-Sommerfeld quantization, by

QBS(M, P,∇) =
⊕

B∈BS(P)

Ȟ0(B,S(P,∇) |B), (2)

where S(P,∇) |B denotes the sheaf of covariantly constant sections on B. Sometimes
these two quantizations agree as shown by Sniatycki [9, Theorems 1.1 and 1.2], and
other times they do not as shown by Hamilton [6, Theorem 8.10]. Since both are of
interest, I will consider both in this paper.

A famous body of results in geometric quantization are the “invariance of po-
larization" results, where it can be shown that two naturally arising polarizations
induce the same quantization. Standard examples include the Gelfand-Zeitlin sys-
tem [5, Theorem 6.1] and the moduli space of flat SU(2) connections [7, Theorem
8.3]. In this paper, I show a new kind of invariance theorem arising from the action
of a symplectomorphism on the polarizations. The reason this invariance is “new" is
due to the fact that I am comparing quantizations coming from two real polarizations.
The more classic results cited above arose from comparing the quantizations of a
real polarization with a Kähler polarization.

In particular, given a real polarization P and a symplectomorphism Φ on (M, ω),
I define a new real polarization Φ∗P via the pushforward of the inverse of Φ. It then
appears to be a tautology that the quantizations of M with respect to P and Φ∗P
should agree, however I could only show this holds if the symplectomorphismΦ lifts
to a connection-preserving isomorphism on the prequantum line bundle (L,∇) → M .
It is not known to the author if this condition is necessary.

To set up the statements of the main results, let C×M denote the sheaf of locally
constant, non-vanishing complex functions on M . I then obtain the following two
theorems.

Theorem 1.1 Let (M, ω) be a symplectic manifold, P a real polarization, Φ :
M → M a symplectomorphism, and (L,∇) → M a prequantum line bundle. If
Ȟ1(M,C×M ) = 0, then Φ induces an isomorphism between the sheaf quantizations
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Qsh f (M, P,∇) → Qsh f (M,Φ∗P,∇),

where Qsh f (M, P,∇) is defined in Equation 1.

Theorem 1.2 Let (M, ω) be a symplectic manifold, P a real polarization, Φ :
M → M a symplectomorphism, and (L,∇) → M a prequantum line bundle. If
Ȟ1(M,C×M ) = 0, then Φ induces an isomorphism between the Bohr-Sommerfeld
quantizations

QBS(M, P,∇) → QBS(M,Φ∗P,∇),

where QBS(M, P,∇) is defined in Equation 2.

The upshot of the proofs of these theorems is that the isomorphism can explicitly
be defined via lifts of the symplectomorphism Φ to the prequantum line bundle.
Historically, most invariance results arise from counting the dimensions of the quan-
tizations with respect to two choices of polarization, then showing these agree. So,
even though the isomorphisms of Theorems 1.1 and 1.2 depend on choices, they
could be considered more “canonical" in some sense.

Once again, it should be noted here that although Theorems 1.1 and 1.2 are
invariance of polarization results, they are of a different nature than the classical
results cited above. In particular, I am only comparing the quantizations arising from
two real polarizations. There is a more general notion of polarization where one
consider subbundles P of the complexified tangent bundle TCM . This gives rise to
three classes of polarizations: real (which I am considering in this paper), mixed,
and complex. In the cases of the Gelfand-Zeitlin system and the moduli space of flat
SU(2) connections, the main point of interest is that quantization by naturally arising
real and complex polarizations give the same quantization. The ideas in this paper do
not apply to those results since symplectomorphisms do not change the “type" of a
polarization. An interesting future direction of research could involve finding larger
classes of symmetries than just symplectomorphisms which interpolate between
the various kinds of polarizations and investigating if similar invariance results can
be obtained. I am also unaware of any example of a symplectic manifold (M, ω)
with Ȟ1(M,C×M ) , 0 such that quantization is not preserved under the action of
symplectomorphisms. This could also be an interesting area of future research.

I would like to thankDr. Lisa Jeffrey,DanHudson, Carrie Clark, and the referee for
reading through the drafts of this paper and pointing out the numerous grammatical
mistakes.

2 Quantization

Let (M, ω) be a symplectic manifold.

Definition 2.1 A prequantum line bundle over M is a complex Hermitian line bundle
with compatible connection (L,∇) → M such that
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curv(∇) = ω.

Naively, a quantization should attach to a symplectic manifold (thought of as a
classical phase space) a Hilbert space and a map taking the classical observables
C∞(M) to self-adjoint operators on the Hilbert space. Prequantum line bundles
achieve both of these objectives. The Hermitian structure of the complex line bundle
together with the canonical volume formωn/n! allows us to equip the space Γc(L) of
compactly supported sections with the structure of a pre-Hilbert space. Then, using
the compatible covariant derivative ∇, one can construct the desired map between
classical and quantum observables. SeeWoodhouse [12, Chapter 8] for more details.

The reason why these are called “prequantum" line bundles and not “quantum"
line bundles is due to the fact that even in the simplest cases, the resulting Hilbert
space is too large in some sense. For example, equip R2n with standard coordinates
(x1, . . . , xn, y1, . . . , yn) and the standard symplectic structure

ω0 =
∑
j

dxj ∧ dyj .

Also define the prequantum line bundle (L,∇) over (R2n, ω0) by

L = R2n × C, ∇ = d + i
n∑
j=1

xjdyj,

where I identify the sections of L with smooth complex-valued functions on R2n.
It’s then an easy exercise to show that the resulting Hilbert space is L2(R2n). This is
unsatisfactory since the quantization of symplectic R2n should be L2(Rn). Further-
more, important properties like the Heisenberg uncertainty relations between the
coordinates will not hold in this Hilbert space.

An easy remedy for these problems would be to only consider functions f which
only depend on half the variables, say f = f (y1, . . . , yn). Observe that these are
precisely the functions which obey

∇ ∂
∂x j

f = 0

for each j, that is, functions which are covariantly constant along the Lagrangian
subbundle

P = span{
∂

∂x1
, . . . ,

∂

∂xn
}.

Generalizing this idea is where the concept of a polarization arises.

Definition 2.2 A (singular, real) polarization of (M, ω) is a singular subbundle P ⊂
T M such that its sheaf of sections FP satisfies the following axioms.

(i) (Involutivity) If X,Y ∈ FP , then so is [X,Y ].
(ii)(Locally Finitely Generated) For any x ∈ M , there exists an open neighbourhood

U ⊂ M of x and sections X1, . . . , Xk ∈ FP(U) such that
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FP(U) = spanC∞(U){X1, . . . , Xk}.

(iii)(Lagrangian) There exists open dense subset U ⊂ M such that for each x ∈ U,
Px ⊂ TxM is Lagrangian.

Remark 2.3 (i) Involutivity and the Locally Finitely Generated property of P means
that it defines a singular foliation in the sense of [2]. It then automatically follows
that there exists an open dense subset U ⊂ M such that P |U is an involutive
smooth subbundle of TU.

(ii)As was noted in the introduction, there are other kinds of polarizations. In the non-
singular case, a polarization is an involutive Lagrangian subbundle P ⊂ TCM ,
where TCM is the complexified tangent bundle. Usually it is also demanded that
E = (P + P) ∩ T M and D = P ∩ P ∩ T M are also subbundles. P is called real if
D = E , complex if E = T M and D = 0, and mixed otherwise. See Andersen [1]
for a more in depth discussion.

Since Lagrangian subspaces have half the dimension of the symplectic manifold,
demanding sections be covariantly constant along the directions associated to P is
one mechanism for cutting down the variables on which the Hilbert space depends.
With this motivation, define the sheaf of covariantly constant sections S(P,∇) by

S(P,∇)(U) := {s ∈ Γ(U, L) | ∇X s = 0 ∀ X ∈ FP(U)}, (3)

for open U ⊂ M .
This enables us to formally define the sheaf quantization for the purposes of this

paper.

Definition 2.4 Define the sheaf quantization of (M, ω) with respect to the prequan-
tum line bundle (L,∇) → M and the polarization P ⊂ T M by

Qsh f (M, P,∇) :=
⊕
n

Ȟn(M,S(P,∇)), (4)

where Ȟn(M,S(P,∇)) denotes the n-th Ĉech cohomology group of M with respect
to the sheaf S(P,∇).

As alluded to in the introduction, another commonway of quantizing a symplectic
manifold is by a Bohr-Sommerfeld quantization. To do this, observe that if P ⊂ T M
is a polarization, then P induces a decomposition of M into disjoint immersed
submanifolds called leaves [10, Theorem 4.2]. If M is connected, the leaves of
maximal dimension are immersed Lagrangian submanifolds.

Now, if ι : B → M is a leaf of P, one can pull back the covariant derivative
∇ on L to the pull back bundle ι∗L → B and write ι∗∇ for the resulting covariant
derivative. Thus, define a sheaf S(P,∇) |B on B by

S(P,∇) |B(U) = {s ∈ Γ(U, ι∗L) | ι∗∇X s = 0 ∀X ∈ X(U)}, (5)

for open U ⊂ B.



270 Ethan Ross

Definition 2.5 A leaf B of P is called Bohr-Sommerfeld if

H0(B,S(P,∇) |B) , 0.

Writing BS(P) for the set of Bohr-Sommerfeld leaves of P, define the Bohr-
Sommerfeld quantization of (M, ω) with respect to the prequantum line bundle
(L,∇) → M and the polarization P by

QBS(M, P,∇) :=
⊕

B∈BS(P)

H0(B,S(P,∇) |B). (6)

Remark 2.6 (i) An equivalent definition of a Bohr-Sommerfeld leaf used in the
literature is as follows. A Bohr-Sommerfeld leaf is a leaf ι : B → M that admits
a non-trivial covariantly constant section s : B→ ι∗L, i.e. a covariantly constant
section which is not identically the zero section.

(ii)If B is a Bohr-Sommerfeld leaf and is connected, then it follows that

H0(B,S(P,∇) |B) � C.

3 Lifts of Symplectomorphisms

The main mechanism for comparing the quantizations by various polarizations is by
lifts of symplectomorphisms to automorphisms of the line bundle. For the following
discussion, fix a prequantum line bundle (L,∇)

π
−→ (M, ω), with M connected, and a

symplectomorphism Φ : M → M .

Definition 3.1 A lift of the symplectomorphism Φ is a diffeomorphism F : L → L
such that

(i) π ◦ F = Φ ◦ π.
(ii)For each x ∈ M , the map

Fx : Lx → LΦ(x)

is a linear isomorphism.

Example 3.2 If L = M × C is a trivial line bundle, then a lift of Φ : M → M is
given by

F : L → L; (x, z) 7→ (Φ(x), f (x)z),

where f ∈ C∞(M,C×) is a non-vanishing smooth function.

Remark 3.3 Let X and Y be topological spaces and f : X → Y a continuous map.
f then defines a functor between the category of sheaves on X to the category of
sheaves on Y . Indeed, let S be a sheaf of X and define sheaf f∗S on Y by

f∗S(U) := S( f −1(U)) (7)



Invariance of Polarization Induced by Symplectomorphisms 271

for open U ⊂ Y . Similarly, given a natural transformation

η : S → S′

between sheaves S and S′ on X , we can define natural transformation

f∗η : f∗S → f∗S′

by
f∗η(U) = η( f −1(U)) : S( f −1(U)) → S′( f −1(U)) (8)

for open U ⊂ Y .

Write ΓL for the sheaf of sections of L. A lift F of Φ then defines a natural
isomorphism

F∗ : Φ∗ΓL → ΓL, (9)

where for each open U ⊂ M and each s ∈ ΓL(Φ−1(U)), define F∗s ∈ ΓL(U) by

F∗s(x) := FΦ−1(x)(s(Φ
−1(x))), x ∈ U.

It’s easy to see that F∗ respects restrictions and hence is indeed a natural transforma-
tion. The inverse to F thus also induces a natural transformation

(F−1)∗ : (Φ−1)∗ΓL → ΓL .

Pushing this forward by Φ,

Φ∗(F−1)∗ : ΓL → Φ∗ΓL,

we thus get our inverse to F∗.
Now, let XM denote the sheaf of vector fields on M . SinceΦ is a diffeomorphism,

its derivative dΦ also defines a natural isomorphism

Φ∗ : Φ∗XM → XM .

Thus, since the covariant derivative ∇ is a natural transformation XM ⊗ ΓL → ΓL ,
the natural isomorphisms Φ∗ and F∗ are then used to define a pullback covariant
derivative.

Definition 3.4 Given a lift F : L → L of Φ, define the pullback covariant derivative
F∗∇ to be the unique natural transformation

F∗∇ : XM ⊗ ΓL → ΓL

so that the diagram commutes
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Φ∗(XM ⊗ ΓL) Φ∗ΓL

XM ⊗ ΓL ΓL

Φ∗(F
∗∇)

Φ∗×F∗ F∗

∇

Remark 3.5 For any lift F of Φ, F∗∇ is a prequantum covariant derivative for
L → (M, ω), that is, the curvature of F∇ is the symplectic form ω,

curv(F∗∇) = ω.

This can be shown as follows. Let U ⊂ M be open and s ∈ ΓL(U) non-vanishing,
then there exists unique α ∈ Ω1(U) such that

∇s = iα ⊗ s. (10)

Since curv(∇) = ω, it follows that dα = ω |U . Now, define t ∈ ΓL(Φ−1(U)) uniquely
by F∗t = s. It’s then a matter of unfolding the above definitions to see that t is
non-vanishing and that

F∗∇t = iΦ∗α ⊗ t . (11)

Thus, since Φ is a symplectomorphism,

dΦ∗α = ω |Φ−1(U).

Hence, curv(F∗∇) = ω.

It will be important later to determine when a symplectomorphism Φ admits a
covariant derivative preserving lift, that is, a lift F : L → L satisfying

F∗∇ = ∇.

IfΦ does admit such a lift, thenΦ will always preserve the quantization with respect
to any polarization.

Lemma 3.6 Let C×M be the sheaf of locally constant C×-valued functions on M . If
Ȟ1(M,C×M ) = 0, then Φ admits a lift F : L → L satisfying F∗∇ = ∇.

Proof Choose a good cover {Uj}[3], that is, for any finite collection of indices
j1, . . . , jk , the intersection

Uj1 · · · jk := Uj1 ∩ · · · ∩Ujk (12)

is either empty or contractible. One can always choose such a cover since contractible
covers are cofinal among all covers. Furthermore, since Uj is contractible for each
j, there exists a non-vanishing section sj ∈ ΓL(Uj).

Since each of the sj are non-vanishing, we obtain useful local data.
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• (Local primitives of ω) As was noted above, on each Uj there exists unique
αj ∈ Ω

1(Uj) such that
∇sj = iαj ⊗ sj . (13)

These αj all satisfy
dαj = ω |Uj . (14)

• (Transition Functions) If Ujk , ∅, then there exists unique λjk ∈ C∞(Ujk,C
×)

satisfying
λjk sk |Ujk

= sj |Ujk
. (15)

It’s a straightforward calculation to show that on overlaps Ujk , the local primitives
αj and the transition functions λjk are related by

αj − αk = −id log(λjk) (16)

for any choice of branch of log.
Now, using the inverse image of Φ, we obtain another good cover {Φ−1(Uj)},

and so we can choose a new collection of non-vanishing local sections where tj ∈
ΓL(Φ

−1(Uj)). Write βj for the associated local primitives of ω and write µjk for
the associated transition functions. The sections tj will now be suitably re-scaled to
define the lift F.

First, we may assume that βj = Φ∗αj . Otherwise, since Uj is contractible and
since βj and Φ∗αj are local primitives of ω, there exists fj ∈ C∞(Φ−1(Uj)) such that

βj − Φ
∗αj = dfj .

Now redefine t ′j := e−i fj tj . It then follows that

∇t ′j = iΦ∗αj ⊗ t ′j .

Next, we may assume that the transition functions µjk for the tj are related to the
transition functions of the sj by

µjk = λjk ◦ Φ.

Indeed, otherwise using equation (16), we have

−id log(λjk) = αj − αk

and, by assumption, we also have

−id log(µjk) = Φ∗αj − Φ
∗αk .

Thus,
d log(µjk) = d log(Φ∗λjk).

Thus, since Ujk is contractible, there exists Cjk ∈ C
× such that
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µjk = CjkΦ
∗λjk .

Observe that on triple overlaps Ujk` the following cocycle condition holds

λk`λ
−1
j` λjk = 1.

Thus, the constants Cjk satisfy an analogous cocycle condition

Ck`C−1
j` Cjk = 1.

Hence, the constants Cjk define a closed 2-cocycle {Cjk} ∈ Ž1({Uj},C
×
M ). Since

Ȟ1({Uj},C
×
M ) = 0, there exists a collection of constants {ej} ⊂ C× such that

Cjk = eke−1
j .

Now, redefine t ′j := ej tj . It’s then straightforward to check that

Φ
∗λjk t ′k = t ′j

and the local primitives are still Φ∗αj

∇t ′j = iΦ∗αj ⊗ t ′j .

Thus, we may locally define lifts Fj of Φ. For each j, set

Fj : L |Φ−1(Uj )
→ L |Uj

uniquely by (Fj)∗tj = sj . Since the transition functions for tj are given by the
pullbacks of the transition functions of the sj , it follows that Fj = Fk on overlaps
Ujk . Thus, we obtain a global lift F : L → L of Φ. By construction, we have

∇tj = iΦ∗αj ⊗ tj .

Further,
F∗∇tj = iΦ∗αj ⊗ tj .

Therefore, F∗∇ = ∇.

4 Action by Symplectomorphisms on Polarizations

Consider themotivating example for polarizations,R2nwith the standard prequantum
line bundle introduced in the beginning of section 2. Physicists will (implicitly) use
one of two polarizations to cut down on the number of variables. Recall, R2n is given
coordinates x1, . . . , xn, y1, . . . , yn, then there are two naturally arising polarizations:
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P = span{
∂

∂x1
, . . . ,

∂

∂xn
}

and
Q = span{

∂

∂y1
, . . . ,

∂

∂yn
}.

Using P as the polarization gives the “momentum representation" Qsh f (R
2n, P) and

Q returns the “position representation" Qsh f (R
2n,Q). If one were to equip these

vector spaces with a Hilbert space structure, this can be done using half-forms [1],
then both would be isomorphic to L2(Rn). In particular, they could be viewed as the
same quantization.

Another, perhaps more geometric approach would be to realize that

Φ : R2n → R2n; (x1, . . . , xn, y1, . . . , yn) 7→ (y1, . . . , yn,−x1, . . . ,−xn)

is a symplectomorphism which fibrewise swaps the polarizations

Φ∗P = Q, Φ∗Q = P.

Furthermore, if U ⊂ R2n is open, then it’s easy to see that precomposition by Φ
defines an isomorphism of sheaves

Φ
∗ : S(P,∇) → Φ∗S(Q,∇).

Hence, Φ induces an isomorphism

Qsh f (R
2n, P) → Qsh f (R

2n,Q)

between the momentum and position representations as desired.
I now want to generalize the above construction to more general prequantum line

bundles and polarizations.

Definition 4.1 Fix a symplectic manifold (M, ω), a symplectomorphism Φ : M →
M , and a polarization P ⊂ T M . Define a new polarization Φ∗P ⊂ T M point-wise
by

Φ
∗Px := dΦ(x)Φ−1(PΦ(x)). (17)

Since Φ is a diffeomorphism it easily follows that Φ∗P is an involutive, locally
finitely generated, smooth singular subbundle of T M . Further, Φ being a symplec-
tomorphism gives us that Φ∗P is generically Lagrangian in the sense of Definition
2.2.
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4.1 Symplectomorphisms and Sheaf Quantization

For this section, fix a prequantum line bundle (L,∇) → (M, ω), a polarization
P ⊂ T M , and a symplectomorphism Φ : M → M . Recall that FP denotes the sheaf
of sections of P.

Proposition 4.2 Let F : L → L be a lift ofΦ. Then the inverse of F defines a natural
isomorphism

Φ∗(F−1)∗ : S(P,∇) → Φ∗S(Φ∗P,F∗∇),

where Φ∗(F−1)∗ is the pushforward of the natural isomorphism (F−1)∗ by Φ as in
Equation (8).

Proof Let U ⊂ M be open. Recall that the lift F defines an isomorphism

F∗ : ΓL(Φ−1(U)) → ΓL(U)

fromequation (9). Fix s ∈ S(P,∇)(U). Iwill now show that (F−1)∗s ∈ S(Φ∗P,F∗∇)(Φ−1(U)),
that is, for any X ∈ FΦ∗P(Φ−1(U)), I want to show

(F∗∇)XF−1
∗ s = 0.

This is quite straightforward since by definition of F∗∇, we have

(F∗∇)XF−1
∗ s = F−1

∗ (∇Φ∗X s).

By construction of Φ∗P, we have Φ∗X ∈ FP(U). Hence, ∇X s = 0 and thus
(F∗∇)XF−1

∗ s = 0. Clearly F∗ : Φ∗S(Φ∗P,F∗∇) → S(P,∇) is the inverse. �

Corollary 4.3 For any lift F : L → L of Φ, there exists a canonical isomorphism

Qsh f (M, P,∇) → Qsh f (M,Φ∗P, F∗∇).

Proof The natural isomorphisms of Proposition 4.2 give an isomorphism

Ȟ•(M,S(P,∇)) → Ȟ•(M,Φ∗S(Φ∗P,F∗∇))

All that’s left to show is that there is an isomorphism between cohomology groups

Ȟ•(M,Φ∗S(Φ∗P,F∗∇)) � Ȟ•(M,S(Φ∗P,F∗∇)).

For sake of convenience, set S = S(Φ∗P,F∗∇). For any open cover {Uj} we have
equality of chain complexes

Č•({Uj},S) = Č•({Φ−1(Uj),Φ∗S).

Thus, we get an isomorphism of cohomologies

Ȟ•({Uj},S) → Ȟ•({Φ−1(Uj)},Φ∗S).
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It’s easy to check that this isomorphism is compatible with refinement, hence induces
a map

Ȟ•(M,S) → Ȟ•(M,Φ∗S).

It follows since Φ is a diffeomorphism that it is a bijection on open covers, hence
the above map is in fact an isomorphism. See chapter 10 of Wedhorn[11] for more
details. �

Proof (Of Theorem 1.1 ) Applying Lemma 3.6 there exists a lift F : L → L of Φ
such that F∗∇ = ∇. Corollary 4.3 then gives the desired isomorphism

Qsh f (M, P,∇) → Qsh f (M,Φ∗P,∇).

4.2 Symplectomorphisms and Bohr-Sommerfeld Leaves

As before, fix a polarization P ⊂ T M and a symplectomorphism Φ : M → M .

Lemma 4.4 If ι : B→ M is a leaf of P, then Φ−1 ◦ ι : B→ M is a leaf of Φ∗P.

Proof By construction of Φ∗P it is clear that if ι : B → M is an immersed integral
submanifold of P, then Φ−1 ◦ ι : B → M is an immersed integral submanifold of
Φ∗P. Indeed, for any x ∈ B, by definition

ι∗(TxB) = Pι(x).

Hence,
(Φ−1 ◦ ι)∗(TxB) = Φ−1

∗ Pι(x) = Φ∗PΦ−1◦ι(x).

The only issue now is maximality of Φ−1 ◦ ι : B → M . Suppose ι′ : B′ → M is
another integral submanifold of Φ∗P through Φ−1 ◦ ι(x) for some x ∈ B. Then, by
the same argument, Φ ◦ ι′ : B′ → M is an integral submanifold of P through ι(x).
Thus, by the maximality of ι : B→ M there exists an open embedding

H : B′→ B

making the diagram commute

M

B B′

ι

Φ◦ι′

H

Since Φ is a diffeomorphism, it then follows that the below diagram commutes
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M

B B′

Φ−1◦ι

ι′

H

Hence, Φ−1 ◦ ι : B→ M is a maximal integral submanifold of Φ∗P. �

For the sake of convenience, simply write B for the data of a leaf ι : B → M of
P and Φ∗B for the data of Φ−1 ◦ ι : B→ M . It then becomes clear that Φ induces a
bijection between the leaves of P and Φ∗P.

Corollary 4.5 If L f (P) denotes the set of leaves of P, then the map

L f (P) → L f (Φ∗P); B 7→ Φ
∗B.

is a bijection.

Lemma 4.6 Let Φ be a symplectomorphism and F : L → L a lift. Then, for any leaf
ι : B ↪→ M , F induces an isomorphism

(FB)∗ : H0(B,S(Φ∗P,F∗∇) |Φ∗B) → H0(B,S(P,∇) |B). (18)

Proof Fix a leaf ι : B → M and a lift F : L → L of Φ. Define an isomorphism of
line bundles

(Φ−1 ◦ ι)∗L ι∗L

B

FB

by
FB(x, z) = (x, Fι(x)(z)).

One then checks that the following identity holds

F∗B(ι
∗∇) = (Φ−1 ◦ ι)∗(F∗∇).

Thus, if s : B→ (Φ−1 ◦ ι)∗L is a section satisfying

(Φ−1 ◦ ι)∗(F∗∇)X s = 0

for all vector fields X on B, then

(ι∗∇)X (FB)∗s = (FB)∗((Φ
−1 ◦ ι)∗(F∗∇)X s) = (FB)∗(0) = 0.

Hence, one obtains a map

(FB)∗ : H0(B,S(Φ∗P,F∗∇) |Φ∗B) → H0(B,S(P,∇) |B).

It’s clear that (F−1
B )∗ is the inverse. �
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Proof (Of Theorem 1.2) By Lemma 3.6, Φ admits a lift F : L → L such that
F∗∇ = ∇. Due to Lemma 4.6, the bijection in Corollary 4.5 restricts to a bijection

BS(P) → BS(Φ∗P).

Furthermore, taking the direct sum of the isomorphisms in equation (18), the desired
isomorphism is given by⊕

B∈BS(P)

(FB)∗ : QBS(M,Φ∗P,∇) → QBS(M, P,∇)

5 Application to Toric Geometry

To finish off, let’s discuss an application to toric varieties. There are easier proofs
that don’t require the machinery developed above, but it at least illustrates how the
vanishing of the first cohomology with coefficients C× can appear.

Theorem 5.1 Let (M, ω) be a smooth compact symplectic toric variety together with
a prequantum line bundle (L,∇) → M . Then, for any choice of symplectomorphism
Φ : M → M and any choice of real polarization P ⊂ T M , there exists isomorphisms

Qsh f (M, P,∇) � Qsh f (M,Φ∗P,∇)

QBS(M, P,∇) � QBS(M,Φ∗P,∇)

Proof Since M is a compact toric variety, it follows that π1(M) = 0 [4, First
Proposition, Section 3.2]. Since

H1(M,C×) � Hom(π1(M),C×),

it then follows that H1(M,C×) = 0. Thus, the hypotheses of Theorems 1.1 and 1.2
hold. �

As an application of this result, I obtained a kind of universality for quantization
of toric manifolds under twisting. In more detail, let T � (S1)n be an n-torus with
t = Lie(T) and µ : (M, ω) → t∗ be a compact T-toric manifold. The momentum
map µ naturally defines a polarization P(µ) ⊂ T M on (M, ω), where for each x ∈ M
we define

P(µ)x := Txµ
−1(µ(x)). (19)

Given a symplectomorphism Φ : M → M , one can twist the action of T on M by

T × M → M; (t, x) 7→ Φ(t · Φ−1(x)).

This is clearly a symplectic action. Furthermore, define
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µΦ := µ ◦ Φ−1.

Then, µΦ : (M, ω) → t∗ is a T-toric manifold once again. Call this the twisting of
µ : (M, ω) → t∗ by Φ.

Thus, each symplectomorphismΦ of a toricmanifold generates a newpolarization
P(µΦ) defined as in equation 19, but with µΦ replacing µ. It is a triviality to unwind
the definitions to show that

P(µΦ) = Φ∗P(µ).

This computation together with the previous theorem provides us with the following
result.

Corollary 5.2 Quantization of a compact toric manifold is invariant under twisting
by symplectomorphisms.

Of course this is nothing new as Hamilton in [6, Theorem 8.10] showed for any
compact toric manifold µ : (M, ω) → t∗ that

Qsh f (M, P(µ),∇) �
⊕

Λ∩µ(M)◦

C,

where Λ is the dual of the lattice ker(exp : t → T) and µ(M)◦ is the interior
of the associated Delzant polytope to M . Since the cardinality of Λ ∩ µ(M)◦ is a
isomorphism invariant of a toric manifold, we immediately arrive at Corollary 5.2.
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Polyhedral products for wheel graphs and their
generalizations

Stephen Theriault

Abstract A general homotopy decomposition is established for the based loops on
certain polyhedral products. This is then specialized to obtain an explicit homotopy
decomposition for the loops on the moment-angle complexZK , where K is a wheel
graph or a generalization thereof.

1 Introduction

Polyhedral products have emerged as an important class of topological spaces and
a key problem is identifying their homotopy type. While there has been a certain
amount of success in doing this in special cases it is a very difficult problem in
general. In this paper we make the case that it is sometimes, perhaps paradoxically,
easier to determine the homotopy type of the loop space. This may be a new way
forward in the analysis of the homotopy theory of polyhedral products.

Let K be an abstract simplicial complex on the vertex set [m] = {1, 2, . . . ,m}. In
other words, K is a collection of subsets σ ⊆ [m] such that for any σ ∈ K all subsets
of σ also belong to K . We refer to K as a simplicial complex rather than an abstract
simplicial complex. A subset σ ∈ K is a simplex or face of K . The emptyset ∅ is
assumed to belong to K .

Given a simplicial complex K on the vertex set [m], for 1 ≤ i ≤ m let (Xi, Ai)

be a pair of pointed CW-complexes, where Ai is a pointed subspace of Xi . Let
(X, A) = {(Xi, Ai)}

m
i=1 be the sequence of CW-pairs. For each simplex (face) σ ∈ K ,

let (X, A)σ be the subspace of
∏m

i=1 Xi defined by

(X, A)σ =
m∏
i=1

Yi where Yi =
{

Xi if i ∈ σ
Ai if i < σ.

Stephen Theriault
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The polyhedral product determined by (X,A) and K is

(X, A)K =
⋃
σ∈K

(X, A)σ ⊆
m∏
i=1

Xi .

A fundamental case is themoment-angle complexZK that is central to toric topology,
which occurs when each pair of spaces (Xi, Ai) is (D2, S1).

We first give a general decomposition for the loops on certain polyhedral products
that generalizes work of Félix and Tanré [6]. Let K , L and M be simplicial complexes
with L a sub-complex of K , and let K be the pushout of the simplicial maps L −→
K and L −→ L ∗ M , where L ∗ M is the join of L and M . In Theorem 2.6 a
homotopy equivalence for Ω(X, A)K is given in terms of Ω(X, A)K , Ω(X, A)L and
two related spaces. This is then specialized considerably in order to get concrete,
explicit homotopy equivalences for a family of moment-angle complexes. Taking
K = Pm as the boundary of the m-gon, L = Vm as its vertex set, and M a single
vertex, the simplicial complex K = Wm is known as a wheel graph. With the same
K and L but taking M to be any simplicial complex we obtain what will be called
a wheel complex Wm(M) (as it need no longer be a graph). In Theorem 5.9 explicit
homotopy equivalences for ΩZPm and the homotopy fibre of ZVm −→ ZPm are
used to give an explicit homotopy equivalence for ΩZWm(M) in terms of spheres,
loops on spheres, and ΩZM . In particular, ΩZWm is homotopy equivalent to a
product of spheres and loops on spheres.

This suggests there may be a wide class of simplicial complexes K with the
property that ΩZK is homotopy equivalent to a product of spheres and loops on
spheres. It would be interesting to investigate this problem further.

The authorwould like to thank the referee for several comments that have improved
the paper.

2 A general decomposition for the loops on certain polyhedral
products

This section generalizes work of Félix and Tanré [6] on the homotopy theory of
certain polyhedral products. The main result is Theorem 2.6; it requires two tools,
presented in Lemmas 2.1 and 2.3. The first is Mather’s Cube Lemma [15].

Lemma 2.1 Suppose that there is a homotopy commutative diagram of spaces and
maps
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E //

��

��

F

  

G //

��

��

H

��

A

��

// B

  

C // D

where the bottom face is a homotopy pushout and the four sides are homotopy
pullbacks. Then the top face is a homotopy pushout. 2

A typical construction of such a cube is to start with a homotopy pushout A-B-
C-D and a map f : D −→ Z . Define the space H as the homotopy fibre of f and
define F, G and E by pulling back with the map H −→ D. This gives a homotopy
commutative cube with the bottom face a homotopy pushout and all four sides being
homotopy pullbacks, so Lemma 2.1 implies that the top face is also a homotopy
pushout.

The second tool requires some setup. In general, if L and M are simplicial
complexes the join of L and M is the simplicial complex

L ∗ M = {σ ∪ τ | σ ∈ L and τ ∈ M}.

By the definitions of the join and the polyhedral product, there is a homeomorphism

(X, A)L∗M = (X, A)L × (X, A)M .

Let K be a simplicial complex on the vertex set {1, . . . ,m} and let M be a
simplicial complex on the vertex set {m+1, . . . , n}. Let L be a subcomplex of K and
define the simplicial complex K by the pushout

L //

��

L ∗ M

��

K // K .

(1)

Note that K has vertex set {1, . . . , n}.

Example 2.2 If M = {v} has only a single vertex then (1) attaches a cone to the
subcomplex L of K . In terms of the standard star-link-restriction pushout with respect
to the vertex v we have K = K\v, L ∗ M = starK (v) and L = linkK (v).

The pushout (1) induces a commutative diagram of polyhedral products but
this can be strengthened to a pushout of polyhedral products if correctly interpreted.
Regard K , L and M as simplicial complexes on the vertex set {1, . . . , n}. In particular,
K has ghost vertices m + 1, . . . , n, and the simplicial map K −→ K induces a map
of polyhedral products (X, A)K ×

∏m+1
i=1 Ai −→ (X, A)K . While L, as a subcomplex

of K , may have fewer vertices it will be convenient to distinguish the ghost vertices
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m+1, . . . , n and regard the simplicial map L −→ K as inducing a map of polyhedral
products (X, A)L ×

∏n
i=m+1 Ai

g×1
−→ (X, A)K ×

∏n
i=m+1 Ai where g is the map of

polyhedral products induced when restricted to the vertex set {1, . . . ,m} and 1 is
the identity map on

∏n
i=m+1 Ai . The simplicial map L ∗ M −→ K induces the map

(X, A)L × (X, A)M −→ (X, A)K and the simplicial inclusion L −→ L ∗ M induces

the map (X, A)L ×
∏n

i=m+1 Ai
1×h
−→ (X, A)L × (X, A)M where 1 is the identity map on

(X, A)L and h is induced by the simplicial map ∅ −→ M (where ∅ is the simplicial
complex on ghost vertices {m + 1, . . . , n}). By [9, Proposition 3.1] all this combines
to give the following.

Lemma 2.3 There is a (point-set) pushout

(X, A)L ×
∏n

i=m+1 Ai
1×h //

g×1
��

(X, A)L × (X, A)M

��

(X, A)K ×
∏n

i=m+1 Ai
// (X, A)K . 2

The pushout in Lemma 2.3 will serve as the starting point for a cube that lets us
apply Lemma 2.1. To produce the four sides of the cube we will construct a map
from (X, A)K to an appropriate polyhedral product and take fibres.

Including K and L ∗ M into K ∗ M , by (1) there is a pushout map

K −→ K ∗ M .

Since the composite K −→ K −→ K ∗ M is the inclusion of the first factor the
composite and L ∗ M −→ K −→ K ∗ M is the join of the inclusion of L into K and
the identity map on M , there are induced maps of polyhedral products

(X, A)K ×
n∏

i=m+1
Ai

1×h
−→ (X, A)K × (X, A)M

(X, A)L × (X, A)M
g×1
−→ (X, A)K × (X, A)M .

Therefore, if the four corners of the diagram in Lemma 2.3 are composed with the
map (X, A)K −→ (X, A)K × (X, A)M we obtain homotopy fibrations

F −→ (X, A)K −→ (X, A)K × (X, A)M

H −→ (X, A)K ×
n∏

i=m+1
Ai

1×h
−→ (X, A)K × (X, A)M

G −→ (X, A)L × (X, A)M
g×1
−→ (X, A)K × (X, A)M
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G × H −→ (X, A)L ×
n∏

i=m+1
Ai

g×h
−→ (X, A)K × (X, A)M

where the first fibration defines F, and G and H are defined as the homotopy fibres
of the maps g and h respectively. Since all homotopy fibres are given by composing
into a common base, we obtain a homotopy commutative cube

G × H //

**

��

G

%%
H //

��

��

F

��

(X, A)L ×
∏n

i=m+1 Ai
1×h

g×1
((

// (X, A)L × (X, A)M

##

(X, A)K ×
∏n

i=m+1 Ai
// (X, A)K

(2)

where the bottom face is a pushout and the four sides are homotopy pullbacks.
Therefore, by Lemma 2.1 the top face is also a homotopy pushout.

The (reduced) join of two spaces A and B is the quotient space

A ∗ B = (A × [0, 1] × B)/∼

where (a, 0, b) ∼ (a′, 0, b), (a, 1, b) ∼ (a, 1, b′) and (∗, t, ∗) ∼ (∗, 0, ∗) for all a, a′ ∈ A,
b, b′ ∈ B and t ∈ [0, 1]. It is well known that there is a homotopy equivalence
A ∗ B ' ΣA ∧ B.

Lemma 2.4 The maps G × H −→ G and G × H −→ H in (2) can be chosen to be
the projections. Consequently, there is a homotopy equivalence F ' G ∗ H.

Proof Consider the homotopy fibration diagram

G × H //

��

(X, A)L ×
∏n

i=m+1 Ai
g×h
//

g×1
��

(X, A)K × (X, A)M

H // (X, A)K ×
∏n

i=m+1 Ai
1×h // (X, A)K × (X, A)M .

Regarding H as ∗×H, this fibration diagram is the product of the fibration diagrams
for the lefthand and righthand factors. Thus one choice of the map between fibres is
G × H −→ ∗ × H is the product ∗ × 1. That is, this is the projection G × H −→ H.
The argument that G × H −→ G can be chosen to be a projection is similar.

In general, it is well known that the homotopy pushout of projections S×T −→ S
and S × T −→ T is the joint S ∗ T . So in our case, we obtain F ' G ∗ H. �

Remark 2.5 Félix and Tanré [6] considered the special case of (2) when M is a
single vertex.

We now identify a homotopy decomposition for Ω(X, A)K .
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Theorem 2.6 Let K be a pushout as in (1). Then there is a homotopy fibration

G ∗ H −→ (X, A)K −→ (X, A)K × (X, A)M

where G is the homotopy fibre of (X, A)L −→ (X, A)K and H is the homotopy fibre
of

∏n
i=m+1 Ai −→ (X, A)M . Further, this fibration splits after looping, giving a

homotopy equivalence

Ω(X, A)K ' Ω(X, A)K ×Ω(X, A)M ×Ω(G ∗ H).

Proof Consider the homotopy fibration F −→ (X, A)K −→ (X, A)K × (X, A)M that
defines F. By Lemma 2.4, F ' G ∗ H, proving the first statement.

For the splitting, we have seen that the composite (X, A)K −→ (X, A)K −→
(X, A)K × (X, A)M is the inclusion of the left factor while (X, A)L × (X, A)M −→
(X, A)K −→ (X, A)K × (X, A)M is g × 1. Restricting the latter case to (X, A)M is the
inclusion of the right factor. Taking the wedge sum therefore gives a composite

(X, A)K ∨ (X, A)M −→ (X, A)K −→ (X, A)K × (X, A)M

which is the inclusion of the wedge into the product. It is well known that the
inclusion of the wedge into a product has a right homotopy inverse after looping.
Hence the fibration G ∗ H −→ (X, A)K −→ (X, A)K × (X, A)M splits after looping,
and the asserted homotopy equivalence for Ω(X, A)K follows. �

3 An initial analysis of Theorem 2.6

The decomposition for Ω(X, A)K in Theorem 2.6 has four ingredients: (i)Ω(X, A)K ,
(ii)Ω(X, A)M , (iii) the homotopy fibre of (X, A)L −→ (X, A)K , and (iv) the homotopy
fibre of

∏n
i=m+1 Ai −→ (X, A)M . To go further, we would like to identify some or

all of these components.
It will be helpful to reduce to analyzing a special case of polyhedral products.

In general, for 1 ≤ i ≤ m, let Yi be the homotopy fibre of the inclusion Ai −→ Xi .
In [10] the following was proved when each pair (Xi, Ai) has both Xi and Ai path-
connected, but the same argument works in the more general case when only Xi is
path-connected.

Theorem 3.1 Let K be a simplicial complex on the vertex set [m] and let (X, A) be
any sequence of pointed pairs (Xi, Ai) where each Xi is path-connected. Then there
is a homotopy fibration

(CY,Y )K −→ (X, A)K −→
m∏
i=1

Xi .
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Further, this fibration splits after looping to give a homotopy equivalence

Ω(X, A)K '

(
m∏
i=1

ΩXi

)
×Ω(CY,Y )K .

2

In our case, we obtain Ω(X, A)K '
(∏n

i=1 ΩXi

)
× Ω(CY,Y )K , so to determine

the homotopy type of Ω(X, A)K it is equivalent to determine the homotopy type of
Ω(CY,Y )K . Put another way, in the context of Theorem 2.6 it suffices to consider the
case when (X, A) is of the form (CA, A).

Now, from the point of view of (CA, A), the decomposition for Ω(CA, A)K

in Theorem 2.6 has four ingredients: (i)′ Ω(CA, A)K , (ii)′ Ω(CA, A)M , (iii)′ the
homotopy fibre of (CA, A)L −→ (CA, A)K , and (iv)′ the homotopy fibre of∏n

i=m+1 Ai −→ (CA, A)M . Component (iv)′ can be handled generically. In general,
in [9, Corollary 3.4] the following was proved.

Proposition 3.2 If K is a simplicial complex on the vertex set [m] then the inclusion∏m
i=1 Ai −→ (CA, A)K is null homotopic. 2

In our case, we immediately obtain the following.

Corollary 3.3 The homotopy fibre of the map
∏n

i=m+1 Ai −→ (CA, A)M is homotopy
equivalent to

(∏n
i=m+1 Ai

)
×Ω(CA, A)M . 2

Consequently, (iv)′ has been rewritten in terms of (ii)′. Components (i)′ to (iii)′
cannot be handled generically, so special cases need to be identified. In particular,
(iii)′ is particularly contentious.

In what follows we will specialize considerably. The polyhedral products will be
taken to bemoment-angle complexes. The simplicial complexK will be the boundary
of an m-gon and L will be the vertex set of the m-gon. The point in specializing
so much is that then the homotopy types of ZK and ZL are known, and with a
nontrivial amount of work we will be able to identify the homotopy types of ΩZK

and the homotopy fibre of the mapZL −→ ZK .

4 Spaces having the homotopy type of a wedge of spheres

This section establishes some preliminary properties for spaces having the homotopy
type of a wedge of spheres.

Lemma 4.1 If X is homotopy equivalent to a finite type product of path-connected
spheres and loops on simply-connected spheres then ΣX is homotopy equivalent to
a wedge of simply-connected spheres.
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Proof By hypothesis,

X '
( ∏
α∈I

Snα

)
×

( ∏
β∈J

ΩSnβ

)
for some index sets I and J , with each nα ≥ 1 and each nβ ≥ 2. By the James
construction [13], ΣΩSn is homotopy equivalent to a wedge of spheres if n ≥ 2 and
it is well known that Σ(S × T) ' ΣS ∨ ΣT ∨ (ΣS ∧ T). Iteratively using these two
properties implies that ΣX is homotopy equivalent to a wedge of simply-connected
spheres. �

The right half-smash of pointed spaces A and B is the quotient space

Ao B = (A × B)/∼

where (a, ∗) ∼ (∗, ∗) for all a ∈ A. It is well known that if A is a co-H-space then there
is a homotopy equivalence Ao B ' A∨ (A∧ B). A modest variation on Lemma 4.1
is the following.

Lemma 4.2 If X is homotopy equivalent to a finite type product of path-connected
spheres and loops on simpy-connected spheres, and Y is homotopy equivalent to a
wedge of simply-connected spheres, then Y o X is homotopy equivalent to a wedge
of simply-connected spheres.

Proof Since Y is homotopy equivalent to a wedge of simply-connected spheres
we have Y ' ΣY ′ for some wedge of path-connected spheres Y ′. Therefore Y is
a co-H-space so there is a homotopy equivalence Y o X ' Y ∨ (Y ∧ X). Further,
Y ∧ X ' Y ′ ∧ (ΣX) and by Lemma 4.1 ΣX is homotopy equivalent to a wedge of
simply-connected spheres. Hence asY ′ is a wedge of spheres so isY ′∧(ΣX), and the
spheres are all simply-connected because ΣX is. ThusY o X is homotopy equivalent
to a wedge of simply-connected spheres. �

Lemma 4.3 Suppose that R and S are wedges of simply-connected spheres and
R

f
−→ S induces an epimorphism in homology. Then f has a right homotopy

inverse.

Proof Take homology with integral coefficients. Since f∗ is an epimorphism, for
each generator xα ∈ H∗(S) there is an element yα ∈ H∗(R) such that f∗(yα) = xα.
Since R is a wedge of spheres, the basis for H∗(R) induced by including each
sphere into the wedge implies that each basis generator is in the image of the
Hurewicz homomorphism. As the Hurewicz homomorphism is a homomorphism,
any linear combination of basis elements inH∗(R) is also in the image of theHurewicz
homomorphism. In particular, yα is in the image of the Hurewicz homomorphism
and so there is a map sα : Snα −→ R whose Hurewicz image is yα. Let

s :
∨
α

Snα −→ R
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be the wedge sum of the maps sα as α runs over a basis for H∗(S). Then the
composite

∨
α Snα

s
−→ R

f
−→ S induces an isomorphism in homology. As all

spaces are simply-connected, this isomorphism in homology implies that f ◦ s is
a homotopy equivalence by Whitehead’s Theorem. Thus f has a right homotopy
inverse. �

Improving on Lemma 4.3, the next lemma shows that the map R
f
−→ S is obtained

by taking the cofibre of some map T
u
−→ R.

Lemma 4.4 Suppose that R and S are wedges of simply-connected spheres and
R

f
−→ S induces an epimorphism in homology. Then there is a wedge of simply-

connected spheresT and a map u : T −→ R such that there is a homotopy cofibration
T

u
−→ R

f
−→ S.

Proof Let s : S −→ R be the right homotopy inverse of f in Lemma 4.3. Define the
space T and the map t by the homotopy cofibration

S
s
−→ R

t
−→ T . (3)

As R is a wedge of spheres it is a co-H-space so it has a comultiplication σ. The
right homotopy inverse for f implies that the composite

e : R
σ
−→ R ∨ R

f∨t
−→ S ∨ T

is a homotopy equivalence. Note that as T retracts off a simply-connected space it is
simply-connected, and as it retracts off a wedge of spheres it is homotopy equivalent
to a wedge of spheres.

Define the map u by the composite

u : T
i2
−→ S ∨ T

e−1

−→ R

where i2 is the inclusion of the second wedge summand. Let C be the homotopy
cofibre of u. By definition of u, the composite e ◦ u ' i2. Therefore there is a
homotopy pushout diagram

T u // R //

e

��

C

e′

��

T
i2 // S ∨ T

p1 // S

where p1 is the pinch map to the first wedge summand and e′ is an induced map
of cofibres. Since e is a homotopy equivalence, the Five-Lemma implies that e′

induces an isomorphism in homology so as all spaces are simply-connected, e′

is a homotopy equivalence by Whitehead’s Theorem. Thus there is a homotopy
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cofibration T
u
−→ R

p1◦e
−→ S. It remains to show that p1 ◦ e ' f . But this follows from

the definition of e and the naturality of the pinch map p1. �

5 Wheel graphs

Let Pm be the boundary of an m-gon and let Vm be its vertex set, so Vm consists of
m disjoint points. Define the simplicial complex Wm by the pushout

Vm
//

��

Vm ∗ {v}

��

Pm
// Wm

where {v} is a vertex disjoint from those inVm. The simplicial complexWm is called
a wheel graph, where v is regarded as a hub with spokes (edges) connecting it to
each vertex in the n-gon. Pictorially, representations of P5 and W5 are as follows:

P5: W5:

The homotopy type ofZPm is known. In fact, a much stronger identification was
proved by MacGavran [14] in work that predated moment-angle complexes. Since
Pm is a triangulation of a sphere, it is known [4] that the corresponding moment-
angle complex ZPm is a manifold. Reformulating MacGavran’s result in terms of
moment-angle complexes, he showed that for m ≥ 4 there is a diffeomorphism

ZPm � #m−1
k=3 (S

k × Sm+2−k)#(k−2)(m−2
k−1) (4)

where the right side is an iterated connected sum of products of two spheres.
It would be ideal to identify the homotopy type of ZWm as well. However, this

seems to be difficult, but it is possible to determine the homotopy type of ΩZWm .
In fact, we will do more. Let M be any simplicial complex. Define the simplicial
complex Wm(M) by the pushout

Vm
//

��

Vm ∗ M

��

Pm
// Wm(M).

(5)

The wheel graphWm is the special case when M is a single point. We will determine
the homotopy type ofZWm(M), provided the homotopy type of ΩZM is known.
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It is worth mentioning two facts that give some context to the homotopy type of
Wm(M).

• Observe that Pm is the full subcomplex ofWm(M) on the vertex setVm. Therefore,
by [5], ZPm is a retract of ZWm(M). That is, ZWm(M) has the connected sum of
products of two spheres in (4) retracting off it.

• Removing an edge from Pm and also the corresponding edge from Wm gives
simplicial complexes that pictorially look like:

P′5: W ′5:

Observe that P′m can be formed by iteratively gluing an edge to the previous
one along a common endpoint, and W ′m can be formed by iteratively gluing a 2-
simplex to the previous one along a common edge. By [18], bothZP′m andZW ′m

are homotopy equivalent to wedges of spheres. So inserting the final edge to form
Pm from P′m and Wm from W ′m dramatically changes the homotopy type, and also
significantly changes cohomology by introducing nontrivial cup products.

To get started, suppose that M is on the vertex set {m+1, . . . , n}. By Theorem 2.6
applied to (5) there is a homotopy equivalence

Ω(X, A)Wm(M) ' Ω(X, A)Pm ×Ω(X, A)M ×Ω(G ∗ H) (6)

where G is the homotopy fibre of the map (X, A)Vm −→ (X, A)Pm and H is the
homotopy fibre of the map

∏n
i=m+1 Ai −→ (X, A)M . Specialize to the case when

each pair (Xi, Ai) is (D2, S1). Then the polyhedral products in (6) are moment-angle
complexes, Corollary 3.3 applies to identify H, and we obtain the following.

Lemma 5.1 Let Vm, Pm and M be as in (5) and suppose that M is on the vertex set
{m + 1, . . . , n}. Then there is a homotopy equivalence

ΩZWm(M) ' ΩZPm ×ΩZM ×Ω(G ∗ H)

where G is the homotopy fibre ofZVm −→ ZPm and H '
(∏n

i=m+1 S1
)
×ΩZM . 2

Lemma 5.1 implies that to understand the homotopy type ofZWm(M) we need to
understand the homotopy type of (i) ΩZPm , (ii) ΩZM and (iii) G. Both (i) and (iii)
depend only on Vm and Pm, so the next few lemmas will focus solely on these cases.

While ZPm is a connected sum of products of two spheres, the homotopy type
of the loops on a connected sum is not easy to explicitly identify. However, in this
case, by [2, Example 3.1] we have the following.

Lemma 5.2 For m ≥ 4 there is a homotopy equivalence

ΩZPm ' ΩS3 ×ΩSm−1 ×ΩS(Pm)
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where S(Pm) is a wedge of simply-connected spheres. 2

The construction in [2] describes the wedge S(Pm) explicitly. In general, let A∨t

be the wedge sum of t copies of A. Let

Rm =

( m−1∨
k=3
(Sk ∨ Sm+2−k)∨(k−2)(m−2

k−1)
)
.

Observe that Rm is the (m+1)-skeleton of #m−1
k=3 (S

k×Sm+2−k)#(k−2)(m−2
k−1). Equivalently,

Rm is homotopy equivalent to the connected sum with a puncture. Define R′m by the
cofibration

S3 ∨ Sm−1 −→ Rm −→ R′m

where the left map is the inclusion of one copy of S3 ∨ Sm−1 into Rm. Then R′m is a
wedge of simply-connected spheres and

S(Pm) = R′m o (ΩS3 ×ΩSm−1).

By Lemma 4.2, S(Pm) is homotopy equivalent to a wedge of simply-connected
spheres.

Next, we aim towards Lemma 5.7, which identifies the space G in Lemma 5.1.
Since Vm is m disjoint points, by [8, 17] the following holds.

Lemma 5.3 For m ≥ 4 there is a homotopy equivalence

ZVm '

m+1∨
k=3
(Sk)∨(k−2)( mk−1).

2

Observe that the dimensions ofZVm andZPm are m + 1 and m + 2 respectively,
so the mapZVm −→ ZPm factors through the (m + 1)-skeleton Rm ofZPm , giving
a homotopy commutative diagram

ZVm
//

θ

��

ZPm

Rm
// ZPm

(7)

for some map θ.

Lemma 5.4 The map θ induces a surjection in homology.

Proof In general, by [1, Corollary 2.23] there is a homotopy equivalence

ΣZK '
∨
I<K

Σ
2+ |I | |KI |
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where I = {i1, . . . , ik} is a subsequence of [m] with 1 ≤ i1 < · · · < ik ≤ m, KI is the
full subcomplex of K on the vertex set I, |KI | is the geometric realization of KI , and
|I | is the number of vertices in I. This homotopy equivalence is natural for simplicial
maps L −→ K and induces a Z-module decomposition in integral homology,

H∗(ZK ) �
⊕
I<K

H∗(Σ1+ |I | |KI |). (8)

In our case, if I = [m] then |(Pm)I | = |Pm | ' S1 and this case accounts for the
generator of Hm+2(ZPm ). Therefore, as Rm is the (m + 1)-skeleton ofZPm , there is
an isomorphism

H∗(Rm) �
⊕
I<Pm
I,[m]

H∗(Σ1+ |I | |(Pm)I |).

In general, the inclusion of the vertex set V into a simplicial complex K induces
an epimorphism H0(|V |) −→ H0(|K |) since H0 counts the number of connected
components, |K | has at most m components where m is the number of vertices in
V , and each connected component of |K | contains at least one of the vertices of V .
Consequently, if |K | is homotopy equivalent to some number of disjoint points then
the inclusion V −→ K induces an epimorphism H∗(|V |) −→ H∗(|K |).

In our case, consider (8) applied to the simplicial map Vm −→ Km. Assume that
I < Pm and I , [m]. Observe that I < Vm as well. Since I is a proper subset of [m]
we have |(Pm)I | homotopy equivalent to some number of disjoint points. Therefore,
as the vertex set of (Pm)I is (Vm)I , the simplicial map (Vm)I −→ (Pm)I induces an
epimorphism H∗(|(Vm)I |) −→ H∗(|(Pm)I |). Hence there is an epimorphism⊕

I<Vm
I,[m]

H∗(Σ1+ |I | |(Vm)I |) −→
⊕
I<Pm
I,[m]

H∗(Σ1+ |I | |(Pm)I |) � H∗(Rm).

Observe that the left side is a submodule of H∗(ZVm ) by (8), and therefore the
homotopy commutativity of (7) implies that θ∗ is an epimorphism. �

Observe that ZVm is a wedge of simply-connected spheres by Lemma 5.3, Rm

is a wedge of simply-connected spheres by definition, and ZVm

θ
−→ Rm induces an

epimorphism in homology by Lemma 5.4. Therefore Lemmas 4.3 and 4.4 imply that
θ has a right homotopy inverse and there is a homotopy cofibration

Tm
u
−→ ZVm

θ
−→ Rm

where Tm is a wedge of simply-connected spheres.
By definition, Rm is the (m+1)-skeleton of #m−1

k=3 (S
k ×Sm+2−k)#(k−2)(m−2

k−1). Writing
the connected sum asZPm , there is a homotopy cofibration

Sm+1 g
−→ Rm −→ ZPm (9)
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where g attaches the top cell. Since θ has a right homotopy inverse, g lifts to a map
g′ : Sm+1 −→ ZVm .

Lemma 5.5 There is a homotopy cofibration Sm+1 ∨ Tm
g′∨u
−−→ ZVn −−→ ZPm .

Proof Consider the diagram

Tm

i2
��

Tm

u

��

Sm+1 ∨ T
g′∨u
//

p1

��

ZVm
//

θ

��

ZPm

Sm+1 g
// Rm

// ZPm .

The upper left square clearly commutes. Taking cofibres vertically gives the lower
left square. The lower left square is therefore a homotopy pushout, so taking cofibres
horizontally we obtain the lower right square (which matches (7)). �

We will use the following result proved in [3].

Proposition 5.6 Suppose that A −→ X
h
−→ Z is a homotopy cofibration and Ωh

has a right homotopy inverse. Then there is a homotopy fibration

AoΩZ −→ X
h
−→ Z .

2

In our case, consider the homotopy cofibration Sm+1 ∨ Tm −→ ZVm

h
−→ ZPm

from Lemma 5.5, where h is simply a label for the right map. Since Pm is a flag
simplicial complex andVm is its vertex set, by [16] the mapΩh has a right homotopy
inverse. Therefore the hypotheses of Proposition 5.6 are satisfied, implying that the
homotopy fibre G of h can be identified.

Lemma 5.7 There is a homotopy equivalence G ' (Sm+1 ∨ Tm)oΩZPm . 2

Remark 5.8 By definition, Tm is a wedge of simply-connected spheres, and by
Lemma5.2,ΩZPm is homotopy equivalent to a product of loops on simply-connected
spheres. Therefore, Lemma 4.2 implies that G ' (Sm+1 ∨Tm)oΩZPm is homotopy
equivalent to a wedge of simply-connected spheres.

The homotopy equivalence for ΩZWm(M) in Lemma 5.1 can now be refined by
substituting in the homotopy equivalences for ΩZPm and G in Lemmas 5.2 and 5.7
respectively.

Theorem 5.9 For m ≥ 4 there is a homotopy equivalence

ΩZWm(M) ' ΩS3 ×ΩSm+1 ×ΩS(Pm) ×ΩZM ×Ω(G ∗ H)

where G ' (Sm+1 ∨ Tm)oΩZPm and H = (
∏n

i=m+1 S1) ×ΩZM . 2
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Corollary 5.10 If ΩZM is homotopy equivalent to a product of path-connected
spheres and loops on simply-connected spheres then so is ΩZWM .

Proof Since ΩZM is homotopy equivalent to a product of path-connected spheres
and loops on simply-connected spheres, so is H = (

∏n
i=m+1 S1) ×ΩZM . Therefore,

by Lemma 4.1, ΣH homotopy equivalent to a wedge of simply-connected spheres.
Since G is also homotopy equivalent to a wedge of simply-connected spheres by
Remark 5.8, so is G ∗ H. The Hilton-Milnor Theorem then implies that Ω(G ∗ H) is
homotopy equivalent to a product of loops on simply-connected spheres. Thus in the
homotopy equivalence forΩZWm(M) in Theorem 5.9, each of the factors is homotopy
equivalent to a product of path-connected spheres and loops on simply-connected
spheres and hence so is ΩZWm(M). �

Example 5.11 Return to the wheel graph Wm itself. This is Wm(M) with M = {v}
being a single vertex. By definition of the polyhedral product, Z{v } = D2, which is
contractible, so Theorem 5.9 implies that there is a homotopy equivalence

ΩZWm ' ΩS3 ×ΩSm+1 ×ΩS(Pm) ×Ω(G ∗ H)

where G ' (Sm+1 ∨ Tm)oΩZPm and H = S1. In particular, G ∗ H ' Σ2G.

Example 5.12 Take M = {u, v} be two disjoint points. A pictorial representation of
W5({u, v}) is:

W5({u, v}):

By Lemma 5.3, ZM ' S3. Theorem 5.9 therefore implies that there is a homotopy
equivalence

ΩZWm({u,v }) ' ΩS3 ×ΩSm+1 ×ΩS(Pm) ×ΩS3 ×Ω(G ∗ H)

where G ' (Sm+1 ∨ Tm)oΩZPm and H = S1 × S1 ×ΩS3.

More generally, there is a wide class of simplicial complexes M with the property
thatZM is homotopy equivalent to awedge of simply-connected spheres, implying by
the Hilton-Milnor Theorem that ΩZM is homotopy equivalent to a product of loops
on simply-connected spheres, and hence Corollary 5.10 can be applied to decompose
ΩZWm(M). This class of simplicial complexes includes shifted complexes [9, 11], or
more generally extractible simplicial complexes [12], and flag simplicial complexes
whose 1-skeleton is a chordal graph [7].
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On the Cohomology Ring of Real Moment-Angle
Complexes

Elizabeth Vidaurre

Abstract In this article, we study the cohomology ring of real moment-angle com-
plexes over a simplicial complex K . Combinatorial generators for the cohomology
can be given in terms of K . For K the boundary of an n-gon, we give a full description
of the multiplicative structure of the cohomology ring in terms of the combinato-
rial generators. As a consequence, it is evident that these generators do not form a
symplectic basis, unlike the case for moment-angle complexes.

1 Introduction

Fixing a pair of topological spaces (X, A), polyhedral product spaces ZK (X, A) give
a family of spaces where K is a simplicial complex (see Definition 2.1). Examples
include moment-angle complexes, complements of complex coordinate subspace
arrangements, and intersections of quadrics among others. In certain cases, polyhe-
dral products provide geometric realizations of right-angled Artin groups and the
Stanley-Reisner ring (see Definition 2.5).

The real moment-angle complex, ZK (D1, S0), and its complex analog (arising
from the pair of spaces, the unit disc D2 and the circle S1) feature in toric topology, as
they have been key in showing applications in combinatorics and algebraic geometry,
among others [5]. The cohomology ring of the moment-angle complex is shown to
be isomorphic to the Tor-algebra TorZ[v1,...,vm](Z[K],Z) in [4], where Z[K] is the
Stanley-Reisner (or face ring) of K and the indeterminates vi are of degree two
(see Section 2). The generators correspond to certain subsets of integers and the
product of two generators corresponding to non-disjoint subsets is trivial, forming a
symplectic basis.

Elizabeth Vidaurre
Molloy College, Rockville Centre, NY 11570, USA
e-mail: evidaurre@molloy.edu
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On the other hand, the cohomology ring of the real moment-angle complex
is not completely understood. The group structure is known to be given by
TorZ[v1,...,vm](Z[K],Z) with indeterminates vi of degree one. Theorem 3.5 gives the
ring structure for real moment-angle complexes over certain simplicial complexes.
A consequence of Theorem 3.5 is that the multiplicative structure does not have the
same nice closed form as that ofmoment-angle complexes. In otherwords, generators
corresponding to non-disjoint subsets do not necessarily have trivial product.

This set of combinatorially defined generators can be identified using Bahri-
Bendersky-Cohen-Gitler’s Splitting Theorem [1] and Welker-Ziegler-Z̆ivaljević’s
wedge lemma [13]. In this paper, we consider the case when the simplicial complex
K is the boundary of an n-gon, and describe the ring structure in terms of the
combinatorial generators in Theorem 3.5.

In full generality, for a simplicial complex K on m vertices, polyhedral product
spaces ZK (X, A) are defined in terms of a collection of pairs of spaces (X, A) =
{Xi, Ai}

m
i=1. The ring structure for the real moment-angle complex ZK (D1, S0) is

particularly useful in that the cohomology ring of the more general polyhedral
product ZK (CA, A) when CAi is the cone on Ai , can be described in terms of the
ring structure of H∗(ZK (D1, S0)) and H∗(A) [3].

Moreover, this problem of understanding the cohomology ring of a real moment-
angle complex has connections to studying the topology of intersections of quadrics
associated to simple polytopes, as well as that of real coordinate subspace arrange-
ments. In particular, the case when K is the pentagon is discussed in [10]. The
cohomology of real moment-angle complexes and related spaces has also been stud-
ied in [7], in the case of rational coefficients.

In Section 3.2, we will illustrate the main theorem with some examples. As a
corollary we will see that, even though real moment-angle complexes over an n-gon
are orientable surfaces, the combinatorial generators do not form a symplectic basis.

Acknowledgements. This work is part of the author’s doctoral dissertation at the
City University of NewYork Graduate Center. The author would like to thankMartin
Bendersky for his guidance throughout this research.

2 Polyhedral Product Spaces

In this section,wewill give a brief introduction to polyhedral products,moment-angle
complexes, and real moment-angle complexes, with an emphasis on the multiplica-
tive structure of their respective cohomology rings.

Let [m] = {1, 2, . . . ,m} denote the set of integers from 1 to m. An abstract
simplicial complex, K , on [m] is a subset of the power set of [m], such that:

1. ∅ ∈ K .
2. If σ ∈ K with τ ⊂ σ, then τ ∈ K .



On the Cohomology Ring of Real Moment-Angle Complexes 301

An n-simplex is the full power set of [n + 1] and is denoted ∆n. Associated to an
abstract simplicial complex is its geometric realization, denotedK or |K | (also called
a geometric simplicial complex). A (geometric) n-simplex, ∆n, is the convex hull of
n + 1 points.

We do not assume m is minimal, i.e. there may exist [n] ( [m] such that K is
contained in the power set of [n].

Let I be a subset of [m]. The full subcomplex of K in I is denoted KI . It is a
simplicial complex on the set I and defined

KI := {σ ∈ K |σ ⊂ I}.

It is often called the restriction of K to I in the literature.
Given an abstract simplicial complex K , let SK be the category with simplices of

K as the objects and inclusions as the morphisms. In particular, for σ, τ ∈ ob(SK ),
there is a morphism σ → τ whenever σ ⊂ τ. Define CW to be the category of
CW-complexes and continuous maps. Define (X, A) to be a collection of pairs of
CW-complexes {(Xi, Ai)}

m
i=1, where Ai is a subspace of Xi for all i.

Definition 2.1 Given an abstract simplicial complex K on [m], simplices σ, τ of K
and a collection of pairs of CW-complexes (X, A), define a diagram D : SK → CW
given by

D(σ) =
∏
i∈[m]

Yi where Yi =

{
Xi i ∈ σ
Ai i ∈ [m]\σ

.

For a morphism f : σ → τ, the functor D maps f to ι : D(σ) → D(τ) where ι is
the canonical injection.

The polyhedral product space is defined as

ZK (X, A) := colim
σ∈K

D(σ) =
⋃
σ∈K

D(σ)

and is topologized as a subspace of
∏
i∈[m]

Xi .

Notice that it suffices to take the colimit over the maximal simplices of K . In fact,
simplicial complexes can be defined by their maximal simplices and this description
will be used throughout. In the case where (Xi, Ai) = (X, A) for all i, we write
ZK (X, A).

Some examples of polyhedral products are moment-angle complexes ZK (D2, S1),
which have the homotopy type of the complement of a complex coordinate subspace
arrangement, and Davis-Januszkiewicz spaces ZK (CP∞, ∗), which have the Stanley-
Reisner ring as cohomology ring. For a simple example, consider the following. Let
K be the boundary of a 2-simplex with vertices labelled 1, 2, 3.
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ZK (D1, S0) = D({1, 2}) ∪ D({1, 3}) ∪ D({2, 3})
= D1 × D1 × S0 ∪ D1 × S0 × D1 ∪ S0 × D1 × D1

= ∂(D1 × D1 × D1)

� S2

In general, Z∂∆m (D1, S0) � Sm (see examples in [1]). Next we will define the
polyhedral smash product, a space analogous to the polyhedral product with the
smash product operation in place of the Cartesian product. Define CW∗ to be the
category of based CW-complexes and based continuous maps.

Definition 2.2 Let the CW-pairs (X, A) be pointed. Likewise, define a functor D̂(σ) :
SK → CW∗ by

D̂(σ) = ∧Yi where Yi =

{
Xi i ∈ σ
Ai i < σ

.

Then the polyhedral smash product is

ẐK (X, A) =
⋃

D̂(σ).

For the remainder of the paper, we will assume that (Xi, Ai) is a pair of pointed
CW-complexes where Ai is a subspace of Xi .

The following theorem of Bahri, Bendersky, Cohen and Gitler (BBCG) gives a
stable decomposition of a polyhedral product.

Theorem 2.3 (Splitting Theorem, [1])
Let (XI, AI ) = {(Xi, Ai)}i∈I . Then

ΣZK (X, A) ' Σ
∨
I⊂[m]

ẐKI (XI, AI ))

where Σ denotes the reduced suspension.

In [1], the authors apply the wedge lemma from [13] to polyhedral smash products
and obtain the following:

Theorem 2.4 (Wedge Lemma, [13])
If Xi is contractible for all i, then

ẐK (X, A) ' Σ |K | ∧ A∧[m] ' |K | ∗ A∧[m]

where A∧[m] = A1 ∧ . . . ∧ Am.

Since S0 serves as an identity for the smash product operation, computing the co-
homology groups of real moment-angle complexes becomes a combinatorial process
that involves examining only the simplicial complex. This follows from the previous
two theorems.
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H∗(ZK (D1, S0)) =
⊕
I⊂[m]

H∗(ΣKI) (1)

The generators of the cohomology ring are given by the subsets of [m] that yield a
noncontractible full subcomplex of K after suspension, which we call the combina-
torial generators.

To describe the ring structure of the cohomology of the moment-angle complex,
we will introduce some notation. The graded ring Z[m] is the polynomial ring on m
variables Z[v1, v2, . . . , vm] with |(|vi) = 2.

Definition 2.5 The Stanley-Reisner ring (or face ring) of the simplicial complex K
is the quotient of Z[m] by the ideal generated by square-free monomials associated
to nonfaces of K

Z[K] := Z[m]/〈vi1 vi2 . . . vik | {i1, i2, . . . , ik} < K〉.

The following was first proved by Franz in [9] and stated in terms of smooth toric
varieties. Another proof was later given by Baskakov, Buchstaber, Panov in [4].

Theorem 2.6 (Franz, [9])
The cohomology ring of the moment-angle complex ZK (D2, S1) is given by

H∗(ZK (D2, S1)) � TorZ[m](Z[K],Z).

A description of the multiplicative structure in terms of full subcomplexes comes
fromHochster’s theorem in commutative algebra on theTor-module [11].We obtain
the following analogous formula

Hk(ZK (D2, S1)) �
⊕
J⊂[m]

H̃k−|J |−1(KJ ).

For the multiplicative structure, take classes α ∈ Hi(ZK (D2, S1)) and β ∈
H̃k(ZK (D2, S1)). Then α corresponds to some class in H̃i−|J |−1(KJ ) for some subset
J ⊂ [m] , and similarly β to some class in H̃k−|L |−1(KL) for some L ⊂ [m]. Their
product is

α ^ β =

{
γ if J ∩ L = ∅
0 if J ∩ L , ∅

for some γ coming from H̃i+k−|L |− |J |−1(KJ∪L). See [12] for more details.

2.1 The BBCG spectral sequence

We will use a spectral sequence developed by BBCG [3]. It gives a Künneth-like
formula for the cohomology of a polyhedral product as long as the pairs (X, A) satisfy
the following freeness condition.
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Definition 2.7 Given the pair (Xi, Ai), the associated long exact sequence is given
by

. . .
δ
→ H̃∗(Xi/Ai)

g
→ H∗(Xi)

f
→ H∗(Ai)

δ
→ H̃∗+1(Xi/Ai)

g
→ . . .

The pair is said to satisfy the strong h∗ freeness condition if there are free h∗−modules
Ei, Bi,Ci and Wi satisfying

H∗(Ai) = Bi ⊕ Ei

H∗(Xi) = Bi ⊕ Ci

H̃∗(Xi/Ai) = Ci ⊕Wi

where Wi is sEi , the suspension of Ei . Additionally, assume 1 ∈ Bi , and for b ∈
Bi, c ∈ Ci, e ∈ Ei, w ∈ Wi = sEi , we have

b
f
7→ b

δ
7→ 0, c

g
7→ c

f
7→ 0, e

δ
7→ w

g
7→ 0.

Before defining the spectral sequence, we will give some notation and recall the
definition of a half smash product:

1. for σ = {i1, . . . , ik}, define X̂σ := Xi1 ∧ . . . ∧ Xik and Aσ = Ai1 × . . . × Aik

2. the complement of a set σ ⊂ [m] is σc = [m]\σ
3. given a basepoint x0 ∈ X , the right half smash product XoY = (X ×Y )/(x0×Y )
4. for a subset I and a simplex σ such that σ ⊂ I, define

Y I,σ :=
⊗
i∈σ

Ci ⊗
⊗
i∈I−σ

Bi .

Choosing a lexicographical ordering for the simplices of K gives a filtration of the
associated polyhedral product space and polyhedral smash product, which in turn
leads to a spectral sequence converging to the reduced cohomology of ZK (X, A) and
a spectral sequence converging to the reduced cohomology of ẐK (X, A). The E s,t

1
term for ZK (X, A) has the following description.

Theorem 2.8 (Bahri, Bendersky, Cohen and Gitler [3])
There exist spectral sequences

E s,t
r → H∗(ZK (X, A))

Ê s,t
r → H∗(ẐK (X, A))

with E s,t
1 = H̃t ((X̂/A)σ o Aσ

c
) and Ê s,t

1 = H̃t ((X̂/A)σ ∧ Âσ
c
) where s is the index

of σ in the lexicographical ordering and the differential dr : E s,t
r → E s+r,t+1

r is
induced by the coboundary map δ : E → W = sE . Moreover, the spectral sequence
is natural for embeddings of simplicial maps with the same number of vertices and
with respect to maps of pairs. The natural quotient map

ZK (X, A) → ẐK (X, A)
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induces a morphism of spectral sequences and the Splitting Theorem (2.3) induces
a morphism of spectral sequences.

Following [3], Definition 2.7 and the Künneth Theorem imply that the entries
H̃t ((X̂/A)σ∧ Âσ

c
) in the first page of the spectral sequence for ẐK (X, A) decompose

as a direct sum of spaces WN ⊗ CS ⊗ BT ⊗ EJ such that N ∪ S = σ, T ∪ J = σc

and N, S, J,T are disjoint. We have that S is a simplex in K as N ∪ S is a simplex
in K . Since the differential is induced by the coboundary δ : E → W , consider all
the possible summands WN ⊗ CS ⊗ BT ⊗ EJ for S and T fixed. It must be the case
that N is a simplex in K and that N is a subset of [m]\(S ∪ T). Therefore all such N
correspond to simplices in the link of S in K restricted to the vertex set [m]\(S ∪T).

Theorem 2.9 (Bahri, Bendersky, Cohen and Gitler [3])
Let (X, A) satisfy the decomposition described in Definition 2.7

H∗(Ai) = Bi ⊕ Ei

H∗(Xi) = Bi ⊕ Ci
.

Then
H∗(ZK (X, A)) =

⊕
I⊂[m],σ⊂I

E I c ⊗ Y I,σ ⊗ H̃∗(Σ |lk(σ)I c |)

where:

1. σ is a simplex in K ,
2. lk(σ)I c = {τ ⊂ [m]\I | τ ∪ σ ∈ K} is the link of σ in K restricted to the set
[m]\I,

3. Y I,σ =
⊗
i∈σ

Ci ⊗
⊗

i∈I−σ

Bi , and

4. H̃∗(Σ∅) = 1.

Theorem 2.10 (Bahri, Bendersky, Cohen and Gitler [3])
Let

H̃∗(Ai) = B̃i ⊕ Ei

H̃∗(Xi) = B̃i ⊕ Ci
.

Then
H∗(ẐK (X, A)) =

⊕
I⊂[m],σ⊂I

E I c ⊗ Y I,σ ⊗ H̃∗(Σ |lk(σ)I c |)

where:

1. σ is a simplex in K ,
2. lk(σ)I c = {τ ⊂ [m]\I | τ ∪ σ ∈ K} is the link of σ in K restricted to the set
[m]\I,

3. Y I,σ =
⊗
i∈σ

Ci ⊗
⊗

i∈I−σ

B̃i where B̃i = Bi\{1},

4. H̃∗(Σ∅) = 1.
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A description of the ring structure in H∗(ZK (X, A)) is given using the decompo-
sition from Theorems 2.9 and 2.10. It is induced by a pairing involving links

H̃∗(Σ |lk(σ1)|I c1 ) ⊗ H̃∗(Σ |lk(σ2)|I c2 ) → H̃∗(Σ |lk(σ3)|I c3 )

defined in terms of the ∗-product, introduced in [2], where I3 and σ3 are defined in
terms of σ1, σ2, I1 and I2.

Theorem 2.11 (Theorem 6.1 in [3]) Two classes

α, β ∈H∗(ZK (X, A))

=
⊕

I⊂[m],σ⊂I

E [m]−I ⊗ Cσ ⊗ BI−σ ⊗ H̃∗(Σlk(σ)I c ),

are of the form
α = a1 ⊗ a2 ⊗ . . . ⊗ am ⊗ nα
β = b1 ⊗ b2 ⊗ . . . ⊗ bm ⊗ nβ

where nα ∈ H̃∗(Σlk(σ)I c ) and nβ ∈ H̃∗(Σlk(τ)Jc ).
The cup product ofα and β is given in terms of the ∗-product and a componentwise

product induced by the multiplicative structure of H∗(Xi) and H∗(Ai).

For the pair of spaces (CAi, Ai), where CAi is the cone on Ai , the modules are
given by Bi = 1, Ci = 0 and Ei = H̃∗(A). The links are all of the form KI for
I ⊂ [m]. Therefore, it can be seen from Theorem 2.9 that the product structure in
H∗(ZK (CA, A)) can be described in terms of the product structure in H∗(A) and
H̃∗(ΣKI ).

Due to the decomposition in Equation 1 and work in [2], the ring structure
in H∗(ZK (CA, A)) can be described in terms of the ring structure in H∗(A) and
H∗(ZK (D1, S0)).

Theorem 2.12 (Theorem 1.9 in [2])
Assume that any finite product of Ai with ZKI (D

1, S0) for all I satisfies the strong
form of the Künneth Theorem. Then the cup product structure for the cohomology al-
gebra H∗(ZK (CA, A)) is a functor of the cohomology algebras of Ai , and ZKI (D

1, S0)

for all I.

3 Multiplicative structure of H∗(ZK (D1, S0))

Recall from Equation 1 that each subset I of [m] such that the full subcomplexKI is
not contractible corresponds to a generator of H∗(ZK (D1, S0)).

To compute the cohomology of a real moment-angle complex, we will use a
filtered chain complex induced by the long exact sequence of the pair (D1, S0),
denoted CK and constructed in [3]. For (Xi, Ai) = (D1, S0), let H̃∗(Ak) = H̃∗(S0) be
generated by tk and H̃∗(Xk/Ak) = H̃∗(S1) be generated by sk .
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Definition 3.1 The chain complex C(KI ) is generated by yσ := ⊗yi where σ ∈ KI

and

yi =


si i ∈ σ
ti i ∈ I − σ
1 k < I

.

The differential is defined by

dI (yσ) =
∑
τ

(−1)n(τ)yτ

where σ ⊂ τ ∈ KI and τ = σ ∪ v for some vertex v ∈ I. The integer n(τ) is defined
by the usual sign convention of a graded derivation. In particular, the coboundary δ
acts on each factor of yσ by δ(si) = 0 and δ(ti) = si , and every time it passes an si a
factor of (−1) is introduced.

Then
CK =

⊕
I⊂[n]

C(KI )

and H∗(CK ) = H∗(ZK (D1, S0)).
It follows from work of Li Cai in [6] that the chain level cup product of two

generators is induced by the following

si ^ si = 0, ti ^ ti = ti, si ^ ti = si, ti ^ si = 0.

3.1 Boundary of a polygon

We will consider the case of K the boundary of a polygon. By Theorem 1, we need
to consider all subsets of [n] to find the cohomology groups. By convention, when I
is the empty set, H∗(ΣKI ) = 1. The suspension of the whole complex K is a degree
two generator. The following lemma gives the generators of degree one.

Lemma 3.2 Suppose K is the boundary of an n-gon. Let I = I1 t I2 t . . . t Ip
be a subset of [n] such that KI has exactly p maximal connected components,
KI '

∨
p−1 S0. Then

H1(ΣKI ) =
〈
∑
i∈I1

y{i },
∑
i∈I2

y{i }, . . . ,
∑
i∈Ip

y{i }〉�
〈
∑
i∈I

y{i }〉
.

Proof Let I1 = {i1, . . . , ic}. If i1 = ic , then d(y{i1 }) = 0 and y{i1 } is clearly a
cocycle. If i1 , ic , then the differential will not be trivial. If +y{e} for some edge
e ∈ KI1 appears as a summand in the image of d(y{v }) for some vertex v ∈ I1, then
e = {v − 1, v} or e = {1, n} (since y{e} was positive, we could not have passed
an s). Additionally, since y{e} was in the image of y{v }, it must be the case that
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v − 1 ∈ I1, so −y{e} is a term in the image of y{v−1} under d. If it had been the case
that e = {1, n}, then {1} ∈ KI and −y{e} would be in the image of y{1}. Since it is
only possible for y{e} to be in the image of y{v−1} or y{v }, the terms y{e} cancel.
This means that d(y{i1 } + . . . + y{ic }) = 0 since i1, . . . , ic are all the vertices in a
connected component ofKI . Without loss of generality, the same is true for the other
connected components. Lastly, d(∅) is the sum of y{i } for i ∈ I. �

Corollary 3.3 If I = I1 t I2 t . . . t Ip is a subset of [n] such that KI has exactly
p maximal connected components with p > 1, then H1(Σ |KI |) has rank p − 1 and
a basis of generators can be chosen by picking any p − 1 of the p disjoint subsets
I1, I2, . . . , Ip .

Next, the following lemma will show how generators coming from different subsets
of [n] multiply. Consider subsets I, J ⊂ [n] such that I ∪ J = [n]. We will employ
a slight change in notation: replacing y’s associated to I with a’s and y’s associated
to J with b’s to differentiate between generators in C(KI ) and generators in C(KJ ).
Recall that a{i } is the generator associated to the vertex i, whereas ai is the ith factor
of a generator.

Lemma 3.4 Suppose a{i } ∈ C(KI ) and b{ j } ∈ C(KJ ). Then a{i } = a1⊗a2⊗ . . .⊗ an
where

ak =


si k = i
tk k ∈ I\{i}
1 k < I

.

Define b{ j } similarly. Then

a{i } ^ b{ j } =


0 j ∈ I or i − j , ±1 (mod n)
y{i, j } j > i
−y{ j,i } j < i

.

Proof If |i− j | , 1, then {i, j} is not a simplex in K and a{i } ^ b{ j } = 0. Therefore,
we will now consider cases where |i − j | = 1.

Recall that s ^ t = s ^ 1 = s and t ^ s = 0.
Suppose j ∈ I. Since j ∈ I, aj = tj . In particular, in the jth coordinate of

a{i } ^ b{ j }, we will have aj ^ bj = tj ^ sj = 0 so a{i } ^ b{ j } = 0.
Next suppose j < I. Then aj = 1 and aj ^ bj = sj . If j = i + 1, then

a{i } ^ b{ j }
= (a1 ^ b1) ⊗ . . . ⊗ (ai ^ bi) ⊗ (aj ^ bj) ⊗ . . . ⊗ (an ^ bn)
= t1 ⊗ . . . ⊗ si ^ bi ⊗ 1 ^ sj ⊗ . . . ⊗ tn
= t1 ⊗ . . . ⊗ si ⊗ sj ⊗ . . . ⊗ tn
= y{i, j }
since the only coordinate of b{ j } that is an s is bj and all other coordinates are t or 1.

If j = i − 1, since ai ^ bi−1 = (−1) |bi−i | |ai |(bi−1 ^ ai), we have
a{i } ^ b{ j }
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= (a1 ^ b1) ⊗ . . . ⊗ (−1) |b j | |ai |(aj ^ bj) ⊗ (ai ^ bi) ⊗ . . . ⊗ (an ^ bn)
= t1 ⊗ . . . ⊗ (−1)(1 ^ sj) ⊗ si ^ bi ⊗ . . . ⊗ tn
= t1 ⊗ . . . ⊗ (−1)sj ⊗ si ⊗ . . . ⊗ tn
= −y{ j,i }

�

The following theorem uses the previous lemmas to show what the only non-trivial
products in H∗(ZK (D1, S0)) are.

Theorem 3.5 Let K be the boundary of an n-gon. Let I = I1 t I2 t . . . t Ip and
J = J1 t J2 t . . . t Jq be nonempty subsets of [n] such that I ∪ J = [n] and
KI '

∨p−1
1 S0 and KJ '

∨q−1
1 S0. Given generators α and β of H∗(ZK (D1, S0))

such that one is associated to some Ig for 1 ≤ g ≤ p and the other is associated to
some Jh for some 1 ≤ h ≤ q. If γ is the second degree generator of H∗(ZK (D1, S0)),
then α ^ β = ±γ if and only if the following conditions are met

• Ig * Jh
• Jh * Ig
• KIg∪Jh is contractible.

Proof We will compute H∗(ZK (D1, S0)) using the chain complex described previ-
ously.

d(y∅) = y{1} + . . . + y{n}
d(y{1}) = −y{1,2} − y{1,n}
d(y{2}) = y{1,2} − y{2,3}
d(y{3}) = y{2,3} − y{3,4}
. . .

d(y{n−1}) = y{n−2,n−1} − y{n−1,n}
d(y{n}) = y{n−1,n} + y{1,n}

Therefore, all the classes in H∗(Z(K; (D1, S0))) represented by an edge are cohomol-
ogous, except y{1,n}, which is the negative. Note that if 1 and n are in I, then 1 and
n are in Ii for some 1 ≤ i ≤ p (since KI '

∨p−1
1 S0, it cannot be that 1 and n are in

different subsets of I). By Corollary 3.3, we only need to consider all but one of the
disjoint subset of I and all but one of the disjoint subsets of J. Therefore, it suffices
to only consider when 1, n < Ig∪ Jh . As a consequence, the class y{1,n} cannot occur
in the product α ^ β.

Let Ig = {i1, . . . , ic} and Jh = { j1, . . . , jd}. By Lemma 3.2, we have that

α =
∑
i∈Ig

a{i }

Since I ∪ J = [n], we have that i1 , j1 and ic , jd .
First, suppose Ig ∩ Jh = ∅. In the case that ic < j1, we must have ic = j1 − 1 so

that there is at least one edge after expanding the product. Then there is only one
nonzero term

α ^ β =
∑

i∈Ig, j∈Jh

a{i } ^ b{ j } = y{ic, j1 }
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by Lemma 3.4. Similarly, if jd = i1 − 1, then

α ^ β =
∑

i∈Ig, j∈Jh

a{i } ^ b{ j } = a{i1 } ^ b{ jd } = −y{ jd,i1 }

Secondly, suppose Ig ∩ Jh , ∅ and that neither set is contained in the other. If
j1 ≤ ic , then there exists j ∈ Jh such that j = ic . Note that j + 1 ∈ Jh (because
ic , jd and so j , jd). Since {ic, j + 1} is an edge and j + 1 = ic + 1 < I, by Lemma
3.4 we have only one nonzero term

α ^ β = a{ic } ^ b{ j+1} = y{ic,ic+1}

Similarly, if i1 ≤ jd and j = i1 for some j ∈ Jh , then j − 1 < I and i1 − ( j − 1) = 1.
Then

α ^ β = a{i1 } ^ b{ j−1} = −y{i1−1,i1 }

If Jh ⊂ Ig, then α ^ β = 0 by Lemma 3.4. If Ig ⊂ Jh , then there are only two
possible nonzero products between the summands of α and β. There exists j ∈ Jh
such that j = i1. Then

α ^ β = a{i1 }b{ j−1} + a{ic }b{ j+c }
= −y{i1−1,i1 } + y{ic,ic+1}
= −γ + γ
= 0

.

3.2 Example and related consequences

To illustrate an application of the theorem and some important consequences, we
will consider the case when K is the boundary of the pentagon, denoted K5. Let
the 1-simplices of K5 be labeled {1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 5}. It follows from
[8] that the real moment-angle complex over the boundary of an n-gon is a closed
orientable surface of genus 1 + (n − 4)2n−3, which means that in this example the
associated real moment-angle complex has genus five.

For the combinatorial generators, there are ten subsets I of [5] that yield a full
subcomplex KI equivalent to a wedge of 0-spheres. The cohomology of ZKI (D

1, S0)

has an identity, ten degree one generators x0, . . . , x4, w0, . . . , w4, and a degree two
generator z, subject to a graded commutative product. The identity corresponds to the
empty set. The generators xi correspond to the subsets that yield a full subcomplex of
K of an edge and the opposite vertex, such as the subset I = {1, 2, 4}. The generators
wi correspond to the subsets that produce a full subcomplex of two disjoint vertices.
Lastly, z corresponds to the full vertex set [5] = {1, 2, 3, 4, 5}.

H∗(ZK5 (D
1, S0)) = 〈1, w0, . . . , w4, x0, . . . , x4, z | xi xj = zδj,i+1, xiwj = zδi, j〉
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Fig. 1 Real moment-angle
complex over the boundary of
a pentagon. An edge {i, j } of
the pentagon contributes 23

copies ofD1×D1. The copies
of D1 × D1 are labeled in the
picture by which edge of the
pentagon they come from.

where δ is the Kronecker delta function and the subscripts i, j are integers modulo 5.
Notice that for subsets J = {2, 4, 5} and I = {1, 3, 4}, αI ^ αJ = γ. This is an ex-

ample where generators coming from non-disjoint subsets have a nontrivial product,
unlike the ring for moment-angle complexes. The cohomology ring of ZK (D1, S0)

is not isomorphic to the Tor-module as rings. Moreover, this application of Theorem
3.5 also shows that the basis of combinatorial generators is not symplectic.

Lastly, recall that the multiplicative structure of the cohomology of real moment-
angle complexes plays an important role in the product structure for more general
polyhedral product spaces [2]. Theorem 2.12 gives the algebra H∗(ZK (CA, A)) in
terms of the cohomology algebras of Ai and H∗(ZKI (D

1, S0)).
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