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Abstract—We investigate the possibility of extracting features of second-order phase transitions
using transfer machine learning. We have performed supervised machine learning for binary
classification of snapshots of the spin distribution of the isotropic Ising model. The binary
classification is performed in ferromagnetic and paramagnetic phases using a known critical
temperature. The trained network is used to predict whether a snapshot obtained from
model simulations with orthogonal anisotropy belongs to the paramagnetic phase. Using finite-
dimensional prediction analysis, we estimate the critical temperature and the exponent of the
correlation length. This gives us an estimate of the interval of the anisotropy parameter in
which the neural network can make correct estimates.
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1. INTRODUCTION
Machine learning methods have become widespread in tasks that require processing big amounts

of data. Such tasks include the study of statistical physics systems, which are characterized by a large
volume of phase space. With data on the thermodynamic ensemble, it is possible to make estimates
of the properties of systems as a whole [1]. For example, one of the first studies in this area [2]
was devoted to obtaining information about the second-order phase transition in the Ising model.
The authors formulated a classification problem for a neural network: in the Ising model, the phase
transition occurs between ferro- and paramagnetic phases, which define two classes. By analyzing
the probability distribution of each phase, we can estimate the critical transition temperature and
some universal properties of the Ising model.

Models with the same (a) dimensionality, (b) symmetry and (c) degeneracy of the ground state
form universality classes. In the field of phase transitions, models from the same universality class
have the same properties. With the help of machine learning (neural networks) it is possible to
obtain the properties of the universality class in which the model with input data [3] is located. In
particular, a method is known for estimating the growth rate of the correlation length diverging at
a second-order phase transition point [4]. The growth rate, or critical exponent of the correlation
length, takes the same value for all models from the same universality class. The question arises as
to the feasibility and accuracy of estimating this same exponent using a neural network approach
in other models from the same universality class. For this purpose, it is necessary to apply the
knowledge obtained during the training of the neural network to new data.

The method of using a neural network pre-trained on one task to make predictions on another task
is called transfer learning [5]. Previously, we investigated the applicability of transfer learning [6]
for square and triangular Ising models in the same universality class. In this paper, we continue
to study transfer learning in the same universality class, but now with the example of orthogonal
anisotropy in the Ising [4] model.
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Figure 1. The spin σx,y and its nearest neighbors in the Ising model with orthogonal couplings.

We begin by training a neural network to binary classify samples of the isotropic Ising model: the
values of the coupling constants on the vertical Jv and horizontal Jh coincide (see expression (1)).
The data are classified relative to the critical temperature of the isotropic model first derived in [7].
We then test the pre-trained network on anisotropic samples. The strength of anisotropy depends
on the parameter κ = Jv/Jh, which we gradually decrease: κ < 1.

The output of the neural network is a prediction of whether the instantaneous snapshot belongs to
the paramagnetic phase pi(T ;L) ∈ [0, 1]. We feed the neural network a set of snapshots at a given
temperature, average the resulting predictions, and obtain estimates of the paramagnetic phase
probability at a given temperature. We also investigate the standard deviations of the D(T ;L)
phase probabilities.

By analyzing the functions P (T ;L), we obtain estimates of the critical temperature, and from
the functions D(T ;L) we obtain the exponent of the critical correlation length. The obtained results
indicate that anisotropy affects the estimates of the investigated quantities in a nontrivial way.

2. MODEL AND DATA SETS
We consider the orthogonal Ising model on the square lattice L× L (Fig. 1)

H=−
L∑

x,y=1

σx,y [Jhσx+1,y+Jvσx,y+1] . (1)

Data samples are generated by the Metropolis algorithm, each instantaneous sample is a black
and white image, or snapshot. The thermalization time is 20×L2.15 [8]. After equilibration, each
snapshot is stored once for 2×L2.15 Monte Carlo (MC) steps and each MC consists of L× L local
flips of spins.

We fix the horizontal coupling parameter Jh = 1, and vary the vertical coupling parameter
Jv with κ = 1, 3/4, 1/2, 1/4, 1/8, 1/16. We also consider several sizes of linear lattices L =
20, 30, 60, 80, 100, 120.

The value of the critical temperature as a function of Jv and Jh is known from the analytical
solution of Onsager [4]:

sinh
2Jv
kBTc

sinh
2Jh
kBTc

= 1. (2)

Each data set is generated over a range of Tc ± 0.3, totaling 100 equidistant from each other
temperature points in 6× 10−3 increments. Thus, Tc varies as a function of Jv according to the
formula (2), which gives the coverage of the region under study necessary to hit the phase transition
temperature. At each T of the range considered, we save N = 2048 snapshots in the case of isotropic
sampling κ = 1 for training the network. For testing anisotropic datasets Jv 6= Jh, we save only
N = 512 snapshots. Thus, the total size of the dataset for each lattice size L and anisotropy
parameter κ is 100 N snapshots.
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Figure 2. Left: probability function of samples belonging to paramagnetic phase P (T ;L) and Right: standard
deviations of probability of samples belonging to paramagnetic phase D(T ;L). Anisotropy parameter κ = 1/8.

In addition, since the phase transition temperature Tc is known from the exact solution, we label
the training data into two classes. All images acquired at temperature T < Tc are labeled class 0,
denoting the ferromagnetic phase, and similarly, all images acquired at T > Tc are labeled class 1,
denoting the paramagnetic phase [2]. Labels are assigned to training data only and are not used in
testing.

3. TRAINING AND TESTING A NEURAL NETWORK
We apply a convolutional neural network (CNN) architecture consisting of one convolutional

layer, two full-link layers, and ReLU activation between them [3]. We train multiple neural networks
for each of linear dimension L. The networks are trained in only one epoch to avoid overtraining [9].

So, we train the neural networks on an isotropic data set κ = 1 for all values of lattice size L.
Then, we test the pre-trained networks on each data set κ < 1.

When testing snapshots, the network takes as input instantaneous snapshots of size L× L, and
returns as output a single number pi(T ;L) ∈ [0, 1] – the prediction that the snapshot belongs to the
paramagnetic phase T > Tc. Since the test data sets contain N samples at each temperature, we
average the obtained probabilities and construct the paramagnetic phase probability function

P (T ;L)=
1

N

N∑
i=1

pi(T ;L).

Also, similar to the method [3], we calculate the standard deviations of the network outputs
pi(T ;L) at each temperature value T of the images under test

D(T ;L)=

√√√√ 1

N

N∑
i=1

(pi(T ;L))2−

(
1

N

N∑
i=1

pi(T ;L)

)2

.

For example, the obtained functions P (T ;L) and D(T ;L) for the data set Jv = 1/8 are shown
in Fig. 2.

4. ESTIMATION OF THE CRITICAL TEMPERATURE
Based on the functions P (T ;L) and D(T ;L), we estimate the critical temperature of the phase

transition:
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Figure 3. Left: Relative error of critical temperature estimate T−c : black squares are T ∗c , red triangles are T ◦c , green
circles are T4c , blue stars are µ. Right: Estimation of the critical correlation length exponent (1/ν)−: black squares

are 1/ν, full width; red triangles are (1/ν)r, right half-width; green stars are (1/ν)l, left half-width

1. Temperature T ∗c of a discrete set of points Tc ± 0.3 at which the probability of paramagnetic
phase is closest to the value 0.5

T ∗c (L) = min
T
|P (T ;L)− 0.5| ± 6 · 10−3;

2. From the set Tc ± 0.3, we select two temperature points that define the lower and upper
bounds of the phase probability near 0.5; we connect the two points with a straight line. The
temperature estimate T ◦c is the intersection of the line with y = 0.5

Tmin = min
T
|P (T ;L)− 0.5|, P (T ;L) < 0.5, Tmax = min

T
|P (T ;L)− 0.5|, P (T ;L) > 0.5,

Pmin = Pmin(L) = P (Tmin;L), Pmax = Pmax(L) = P (Tmax;L),

T ◦c (L)=
Tmin(Pmax − 0.5) + Tmax(0.5− Pmin)

Pmax − Pmin
. (3)

3. For several points near 0.5, the intersection of two straight lines: y = a1x+ b1, fitting several
(2) probability estimates P (T ;L) in the neighborhood of 0.5, and y = a2x+ b2, fitting inverse
probability estimates 1− P (T ;L):

T4c =
b2 − b1
a1 − a2

±
∣∣∣∣a1b2 − a2b1a1 − a2

− 0.5

∣∣∣∣ ;
4. Temperature based on the function D(T ;L): the distribution of D(T ;L) at each L is

approximated by a Gaussian function with mean µ and standard deviation σ. We consider
µ(L) as an estimate of the critical temperature.

All estimates are constructed by testing the neural network on finite lattice sizes L. We then
make an estimate of the corresponding temperature in the thermodynamic limit, according to the
shift [10, 11] of the critical temperature at finite dimensions T−c (∞) = T−c (L) + a/L. The left panel
of Fig. 3 and Table 1 show the relative errors of the obtained estimates of the critical temperature
using all four methods.

5. ESTIMATION OF THE CORRELATION LENGTH EXPONENT
It is known [4] that in the universality class of the two-dimensional Ising model, the correlation

length ξ diverges at the phase transition point: ξ∝τ−1/ν with critical exponent ν = 1, and
τ=(T−Tc)/Tc is the reduced temperature.
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κ − T−
c (∞) Tc ∆T−/Tc ∆T−/σT

1

∗ 2.2685(49)

2.2692

–0.0003(22) 0.1

◦ 2.2708(43) 0.0007(19) 0.4

4 2.2795(74) 0.0045(32) 1.2

µ 2.2718(34) 0.0012(15) 0.8

3/4

∗ 1.9686(34)

1.9728

–0.0021(17) 1.2

◦ 1.9674(42) –0.0028(21) 1.3

4 1.9680(36) –0.0025(19) 1.3

µ 1.9709(41) –0.0010(21) 0.5

1/2

∗ 1.6366(21)

1.6410

–0.0027(13) 2.1

◦ 1.6380(28) –0.0018(17) 1.1

4 1.6398(29) –0.0007(18) 0.4

µ 1.6388(34) –0.0014(21) 0.6

1/4

∗ 1.2387(25)

1.2391

–0.0003(20) 0.2

◦ 1.2392(32) 0.0001(26) 0.03

4 1.2409(7) –0.0015(5) 2.6

µ 1.2384(32) –0.0005(26) 0.2

1/8

∗ 0.9780(25)

0.9723

0.0058(26) 2.3

◦ 0.9800(18) 0.0079(18) 4.3

4 0.9819(2) 0.0098(2) 48.0

µ 0.9799(20) 0.0078(21) 3.8

1/16

∗ 0.8019(20)

0.7884

0.0172(25) 6.8

◦ 0.8031(17) 0.0187(21) 8.6

4 0.8007(5) 0.0156(6) 24.6

µ 0.7921(29) 0.0047(37) 1.3

Table 1. Estimates of the critical temperature T−c ; ∆T−c denotes the absolute error. The symbols are introduced in
Section 4 and correspond to the temperature estimation method.

We find an estimate of the exponent ν using the hypothesis [3] that the width of σ(L) at
finite lattice sizes behaves in the same way as the width of thermodynamic functions [10, 11]:
σ(L)∝bL−1/ν . The evaluation results are shown in the right panel of Fig. 3 and in Table 2.

6. DISCUSSION
Figure 3 show that when the anisotropy parameter κ = Jv/Jh is reduced from the isotropic value

of 1 to within 1/4, the estimates of the critical temperature and critical exponent are within error
with the theoretically known values of the temperature calculated from the expression (2) and the
critical exponent of the correlation length ν = 1. In other words, in this range of anisotropy, the
neural network is able to correctly estimate the phase transition characteristics under cross-learning.
In other words, the neural network correctly produces predictions.

However, as the anisotropy parameter κ = Jv/Jh decreases, a systematically increasing deviation
of both the phase transition temperature estimate and the critical exponent estimate is observed at
values of 1/8 and 1/16. A possible explanation for this deviation could be purely geometric, due to
a change in the lattice aspect ratio. We tested this hypothesis by varying the vertical length of the
lattice in proportion to the anisotropy parameter. This led to significant changes in the estimates

LOBACHEVSKII JOURNAL OF MATHEMATICS



6 D. D. SUKHOVERKHOVA AND L. N. SHCHUR

κ 1
ν ( 1

ν )r ( 1
ν )l

1 1.10(3) 1.11(5) 1.19(3)

3/4 1.07(4) 1.07(5) 1.12(7)

1/2 1.03(3) 1.00(4) 1.13(5)

1/4 1.06(4) 1.08(6) 1.10(3)

1/8 0.87(7) 0.77(5) 0.93(9)

1/16 0.66(11) 0.60(14) 0.74(22)

Table 2. Estimation of the critical correlation length exponent (1/ν)−: 1/ν is the full width; (1/ν)r is the right
half-width; (1/ν)l is the left half-width.

of the critical temperature and the critical exponent ν. Thus, the attribution of the deviations to
the aspect ratio is untenable.

Another possible explanation can be proposed on the basis of the analysis of the correlation
length behavior obtained in [12]. In this work, an expression for the correlation function of spins at
radially measured distance R was obtained, which has the form:

〈σ0,0σx,y〉 = F (t)/R1/4 + F1(t)/R
5/4 + o(R−5/4) (4)

and the main amplitude F (t) and the correction amplitude F1(t) are functions of the recalled
distance t

t = |z1z2 + z1 + z2 − 1|R
[
z1z2(1− z21)(1− z22

]−1/4
expressed through the variables z1 = tanh(Jh/T ) and z2 = tanh(Jv/T ).

The radial measure R is a complex distance function on the lattice including the variables z1
and z2, and its expression is given in formula (2.6) of the article [12]. To give some idea of its form,
in the isotropic case on a lattice with horizontal length Lh and vertical length Lv it has the simple
form R =

√
L2
h + L2

v. It is important for us that the ratio of the amplitudes F (t) and F1(t) changes
sharply with decreasing anisotropy parameter and becomes especially noticeable when κ is less than
1/4. This is qualitatively similar to the sharp increase in the deviations of the temperature and
critical index estimates in our case. The deviations in the Fig. 3 of our paper are similar to Fig. 1
of the paper [12], which shows the ratio F1(t)/(tF (t)) as a function of the anisotropy parameter κ.
This means that for small values of κ, the influence of F1(t)/R

5/4 in 4 grows and the spatial behavior
of the correlation function changes. As a result, the neural network makes a mistake in estimating
the spatial correlations and incorrectly predicts that the images belong to the paramagnetic phase.
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