
ar
X

iv
:2

41
2.

15
61

1v
1 

 [
m

at
h.

D
S]

  2
0 

D
ec

 2
02

4

MATHEMATICAL AND PHYSICAL BILLIARD IN PYRAMIDS

YURY KOCHETKOV AND LEV PYATKO

Abstract. In this experimental work we study billiard trajectories in triangular pyramids and try to establish
conditions that guarantee the existence (or absence) of 4-cycles (there can be not more, than three of them).
We formulate conjectures and prove some statements. For example, if a pyramid has two orthogonal faces, then
it has not more than two 4-cycles. Also we study 4-cycles of the ”physical” billiard in pyramids, i.e. in the
presence of gravity. Here we present our observations for a generic case.

1. Introduction

The two-dimensional mathematical billiard is a vast and well known part of geometry (see [1] or [2]). However,
the 3-dimensional billiard is much less known and the physical billiard (in the presence of gravity) is, probably,
a novel area of investigation. We are interested in the simplest problem here: the existence of 4-cycles in
triangular pyramids. Cycles in pyramids were studied in [3] and [4]. In [3] periodic trajectories in right-angled
tetrahedra were constructed, but there 4-cycles do not exist. In [4] only pyramids in a neighborhood of the
regular tetrahedron were considered.

Our work is organized in the following way. In the second section we explain how one can find a 4-cycle with
the given order of reflections. In the third section we introduce the ”map of cycles”, i.e. for the given base of
a pyramid and a variable altitude we study 4-cycles with the given order of reflections. In the forth section we
prove statements about existence and behavior of 4-cycles in some special cases. In the fifth section we present
results of our investigations in the physical case, i.e. in the presence of gravity.

2. Construction of 4-cycles

Usually we will work with pyramid ABCD with base ABC in the xy plane, the apex D is in the upper half-
space, A — at the origin, B — at the positive x-axis, C — in the upper half plane, DO will be the altitude and
h = |DO|. Each 4-cycle is determined by an order of reflections. There are three possible trajectories, because
each trajectory can be passed in both directions:
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Let p0 be the starting point of our trajectory (usually it will be a point in the base ABC), v̄ be the starting
vector and F1F2F3F4 be the order of reflections. Each reflection defines an orthogonal operator Ri with the
matrix Mi. The composition R1 ◦R2 ◦R3 ◦R4 is a rotation with the matrix M = M4M3M2M1. Thus, v̄ is the
eigenvector of M with the eigenvalue 1.

Remark 2.1. R1 ◦ R2 is a rotation around an edge and R3 ◦ R4 also is a rotation around another edge. These
two rotations are rotations around skew lines, hence, the composition R1 ◦R2 ◦R3 ◦R4 cannot be the identity.

Example 2.1. Let A = (0, 0, 0), B = (4, 0, 0), C = (2, 4, 0) and D = (2, 3, 3), p0 ∈ ABC and the order of
reflections be ABD → ACD → BCD → ABC. Let M1,M2,M3,M4 be matrices of reflections with respect to
planes ABD,ACD,BCD,ABC, respectively. Here

M4M3M2M1=





1 0 0

0 1 0

0 0 −1









−13/23 −18/23 −6/23
−18/23 14/23 −3/23
−6/23 −3/23 22/23









−13/23 18/23 6/23
18/23 14/23 −3/23
6/23 −3/23 22/23









1 0 0

0 0 1

0 1 0



=
1

529





−191 −156 −468

468 −216 −119

−156 −457 216



=M

The vector v̄ = (−13,−12, 24) is the the eigenvector with eigenvalue 1.

Now we must find the starting point. We construct the pyramid ABC1D, where C and C1 are symmetric with
respect to the plane ABD. Then we construct the pyramid AB1C1D, where B and B1 are symmetric with
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respect to the plane AC1D. And then we construct the pyramid A1B1C1D, where A and A1 are symmetric
with respect to the plane B1C1D. Here C1 = (2, 0, 4), B1 =

(

− 52

23
, 24

23
, 72

23

)

, A1 =
(

− 432

529
, 1176

529
, 3528

529

)

. We replace
a polygonal trajectory of our 4-cycle by a line that connects a point F ∈ ∆ABC with barycentric coordinates
(x, y, z) and a point F1 ∈ ∆A1B1C1 with the same barycentric coordinates. If F is the starting point of the
4-cycle, then the vector FF 1 is collinear to the vector v̄. This condition defines x, y and z:

x =
115

1778
, y =

583

1778
, z =

540

889
⇒ F =

(

2246

889
,
2160

889
, 0

)

.

It remains to check that the line FF1 intersects planes B1C1D, AC1D and ABD inside triangles ∆B1C1D,
∆AC1D and ∆ABD, respectively.

Proposition 2.1. For a given order of reflections we have either one 4-cycle, or none.

Proof. After constructing pyramids ABC1D, AB1C1D and A1B1C1D, we solve a linear system to find a starting
point F . But a linear system has either a unique solution, or infinitely many (a line), or none. We must
demonstrate that infinite case is impossible.

Let us assume that points of a line ℓ ⊂ ABC are solutions of our system. Points with the same barycentric
coordinates constitute a line ℓ1 ⊂ A1B1C1. Let points P ∈ ℓ and P1 ∈ ℓ1 have the same coordinates and
points Q ∈ ℓ and Q1 ∈ ℓ1 also. Then lines PP1 and QQ1 are parallel. As |PQ| = |P1Q1|, then PQQ1P1 is a
parallelogram, i.e. ℓ ‖ ℓ1.

Let R be the composition of reflections with respect to planes ABD,AC1D,B1C1D. Then R is a rotation ρ
around some line L and a reflection π with respect to the plane Π, orthogonal to L. As R maps ℓ into ℓ1, then
ℓ is parallel to L. But the reflection π changes the barycentric order of points in ℓ into opposite. �

3. Computations and conjectures

Let ABCD be a pyramid, where ∆ABC is a fixed acute triangle in the plane xy. The point O — the base of
the altitude DO is fixed, but the height h = |DO| is variable. Let ABC → ACD → ABD → BCD → ABC be
the order of reflections. Then a 4-cycle with this order of reflections either

(1) exists for all h > a > 0;
(2) or exists for 0 6 a < h < b < ∞;
(3) or does not exist for all h > 0.

Definition 3.1. Points O for which the first case is realized constitute the α-set. Points O for which the second
case is realized constitute the β-set. Points O for which the third case is realized constitute the γ-set. The
arrangement of these three sets in the plane will be called the the map of cycles.

Remark 3.1. α-set for the cycle ABC → ACD → ABD → BCD → ABC and α-set for the cycle ABC →
ABD → ACD → BCD → ABC are, of course, different sets.

How one can describe these sets? We can give only a partial answer. Let ABC be a fixed acute triangle: A
at origin, B at the positive x-axis, C at the upper half-plane. We will describe the map of cycles for the order
ABC → ACD → ABD → BCD → ABC. The construction of the map is performed in the following steps
(Figure 2): a) we rotate ∆ABC on π around the center of AB and obtain the triangle ABC′; b) we draw
altitudes AG,AG′, BF,BF ′; c) we draw the lines CC′, FF ′ and GG′ (the last two lines are parallel).
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Figure 2

Conjecture 3.1. The map of cycles in the upper half-plane. (See Figure 3). The infinite polygonal
domain QNMR minus the segment [G,K] and the ray FR is the α-set. The union of open triangles ∆AFM
and ∆BGN and the open infinite sector with vertex K, bounded by rays KP and KQ, is the β-set. All other
points of the upper half-plane belong to the γ-set.
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Remark 3.2. Situation in the lower half-plane is much more complicated. In particular, there are points inside
∆ABC′ that belong to the γ-set.

Remark 3.3. Cases of a right or an obtuse triangles ABC are also much more complicated.

Example 3.1. Let us consider the acute triangle ∆ABC, A = (0, 0), B = (15, 0), C = (5, 10). The line
l : 3x + y = 45

2
is the central line of the α-set in the upper half-plane. Here is the plot of the function a(y),

(x, y) ∈ l, 0 6 y < ∞ :

✲
y

✻a

u v

Figure 4

Here a(0) = 7.5; a(u) ≈ 4.1, where u ≈ 7.1 is the y-coordinate of the intersection point of l and the circle
x2 + y2 − 45x = 0; a(v) ≈ 3.7,where v = 9 is the y-coordinate of the intersection point of l and AC.

4. Theorems

Here we will prove three results about 4-cycles in special cases.

Proposition 4.1. There are no 4-cycles in a right pyramid, i.e. in a section of the first octant.

Proof. Let P = ABCO be a pyramid, where A is a point in the positive x-axis, B — a point in the positive y —
axis, C — a point in the positive z-axis and O is the origin. A billiard trajectory begins at a point S ∈ ∆ABC
with a vector v̄. After three reflections from planes xy, xz and yz it returns to ∆ABC with the directing vector
−v̄. The reflection from ∆ABC must transforms −v̄ into v̄, hence, the vector v̄ is orthogonal to ABC. But in
this case the returning point cannot be S. �

Proposition 4.2. If a pyramid has the right dihedral angle, then it has not more, than two 4-cycles.

Proof. Let ABCD be a pyramid, where A = (0, 0, 0), B = (a, 0, b), C = (0, c, d) and D = (0, 0, e), i.e. the
dihedral angle at the edge AD is π

2
. We will consider 4-cycles

ABC → ABD → ACD → BCD → ABD and ABC → ACD → ABD → BCD → ABC

and will prove that both two cannot exist.

As faces ABD and ACD are orthogonal, then reflection operators with respect to these faces commute. But
then these cycles have the same starting vector and, thus, the same starting point. �

Let a pyramid ABCD be symmetric with respect to the plane CDE, where E is the middle point of the
edge AB. Then the altitude DO belongs to CDE, lines CE and AB are perpendicular and lines DE and
AB are also perpendicular. Let us consider the cycle C = ABC → ACD → ABD → BCD → ABC.
Let K,L,M,N be points of C that belong to ∆ABC, ∆ACD, ∆ABD and ∆BCD, respectively. The cycle
ABC → BCD → ABD → ACD → ABC is the same cycle, passed in the reversed direction. As the symmetry
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with respect to the plane CDE maps the first cycle into the second, then the cycle C is symmetric: K ∈ [C,E],
M ∈ [D,E] and points L and N are symmetric. As the plane LMN contains the normal vector to the plane
ABD, then LM⊥DE.

Let us consider the pyramid ACDB′ which is symmetric to ABCD with respect to the plane ACD, and let
points E′ and M ′ be symmetric to E and M , respectively. Points K,L,M ′ are collinear (because KLM is the
billiard trajectory) and LM ′⊥DE′ (because LM⊥DE). Thus, the starting vector KL is orthogonal both to
CE and DE′.
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Now we can describe the geometry of our 4-cycle.

Proposition 4.3. The staring point and the starting vector belongs to the common perpendicular of two skew
lines CE and DE′.

Conjecture 4.1. If a pyramid has k obtuse dihedral angles, then the number of its 4-cycles is not more, than
3− k.

5. Physical billiard. Computations

In this section we will study the movement of a mass point in the presence of a gravity field with the constant
g. A point moves inside a triangular pyramid with elastic reflections (i.e. without loss of the energy), thus,
trajectories of the point between reflections are segments of parabolas.

It must be noted that each billiard trajectory can be passed in both directions. Thus, we must consider three
different orders of reflections. As opposed to the mathematical case, each order of reflections can admit infinitely
many trajectories. Computations in the physical case are much more complex, than in the mathematical one,
because we have to work with nonlinear systems. We present here only results of computations and don’t
formulate statements or conjectures.

The above assumptions about our pyramid are preserved: the base ABC is in the xy plane: A at the origin,
B at the positive x-axis, C in the upper half-plane. The apex D is in the upper half-space. The gravity force
with the constant g is directed downwards.

Example 5.1. Let A = (0, 0, 0), B = (4, 0, 0), C = (3, 3, 0), D = (2, 1, 3). Here

ABD : 3y − z = 0, ACD : 3x− 3y − z = 0, BCD : −9x− 3x− 5z + 36 = 0

— are equations of planes and

n̄1 = (0, 3,−1), n̄2 = (3,−3,−1), n̄3 = (−9,−3,−5)

— are corresponding normal vector (all of them are directed inside the pyramid). Let the order of reflections
be ABD → ACD → BCD → ABC, the starting point be p1 = (a, b, 0), the starting vector be v̄1 = (k, l,m),
m > 0.

We introduce new variables t1 — the time interval from the start to the encounter with the ABD plane, t2 —
the time interval between encounters with planes ABD and ACD, t3 — the time interval between encounters
with planes ACD and BCD and t4 — the time interval between the encounter with the plane BCD and the
return to the starting point.

The coordinates of the velocity vector v̄2 in the moment of the encounter with the ABD-plane are v̄2 =
(k, l,m− g · t1). At this moment the position p2 of our mass point has coordinates

p2 =
(

a+ k · t1, b+ l · t1,m · t1 − g · t21/2
)

.
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Thus, we have the first equation:

3 · (b+ l · t1)−
(

m · t1 − g · t21/2
)

= 0 (Eq.1)

Let s be the dot product s = (v̄2, n̄1), then

v̄3 =

(

k, l −
6s

10
,m− g · t1 +

2s

10

)

is the velocity vector after the reflection from the ABD-plane.

The next step: we find the velocity vector v̄4 in the moment t1 + t2, i.e. in the moment of the contact with the
plane ACD:

v̄4 = (v̄3[1], v̄3[2], v̄3[3]− g · t2)

and the position p3 of our mass point at this moment:

p3 = (p2[1] + v̄3[1] · t2, p2[2] + v̄3[2] · t2, p2[3] + v̄3[3] · t2 − g · t22/2).

This gives us the second equation:

3 · p3[1]− 3 · p3[2]− p3[3] = 0. (Eq.2)

In the same manner we obtain the third equation.

The contact of the mass point with the base ABC gives us 6 equations: we must come to the starting point
with the velocity vector v̄8 = (k, l,−m). Thus, we have a nonlinear system of nine equations and ten variables
{a, b, k, l,m, g, t1, t2, t3, t4}.

Given such system we find the Groebner basis for the lexicographic order {a, b, k, l,m, g, t4, t3, t2, t1} and get
the following results (in generic case).

(1) We have two independent variables t2 and t3 and all other variables are their rational functions.
(2) Numerators and denominators of these fractions are homogeneous polynomials in t2 and t2:

(a) the degrees of numerators and denominators of t1 and t4 are two and one, respectively;
(b) the degrees of the numerator and the denominator of g are three and five, respectively;
(c) the degrees of numerators and denominators of k, l and m are four and five respectively;
(d) the degrees of numerators and denominators of a and b are five and five.

(3) The geometry of a trajectory depends only on the ratio t = t3/t2. The parameter t2 defines the duration
of the cycle passage.

The continuation of Example 5.1. Demands on the positivity of g, t1, t2, t3, t4 and demands on the positions
of reflection points (inside faces) define an admissible interval for t. In our case 0 < t < 0.48. Admissible starting
points constitute a curve s(t) inside ∆ABC, where G = s(0) ≈ (2, 1) and H = s(0.48) ≈ (2.6, 0.8) (Figure 6).
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Remark 5.1. For the above pyramid there exist three families of billiard trajectories for each order of reflections.

Remark 5.2. The pyramid ABCD: A = (0, 0, 0), B = (4, 0, 0), C = (3, 3, 0), D = (3, 2, 1) has three obtuse
dihedral angles and there are no 4-cycles in it.

Remark 5.3. The pyramid ABCD: A = (0, 0, 0), B = (9, 0, 0), C = (6, 3, 0), D = (6, 2, 4) has obtuse angle
ACB in the base ∆ABC and only one order of reflections: ∆ABC → ∆ACD → ∆ABD → ∆BCD → ∆ABC
produces a family of 4-cycles.

Outside the scope of generic cases, symmetric cases are the most interesting.

Example 5.2. Let us consider the symmetric pyramid ABCD: A = (0, 0, 0), B = (6, 0, 0), C = (3, 4, 0),
D = (3, 2, 4). Let CH be the altitude of ∆ABC. There exists a family of 4-cycles for the reflection order
∆ABC → ∆ACD → ∆ABD → ∆BCD → ∆ABC. The starting point always belongs to CH , the starting
vector is orthogonal to the y-axis. A trajectory meets ∆ABD at a point with x-coordinate 3.
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