• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдены 264 публикации
Сортировка:
по названию
по году
Препринт
Busjatskaja I., Kochetkov Y. math. arxive. Cornell University, 2018. No. 1811.10357.
В работе сначала рассматриваются  плоские корневые деревья с отмеченным ребром, выходящим из корневой вершины. Используя скобочный код таких деревьев, мы  вводим новую характеристику -- четность. Оказывается, что четность не зависит от выбора отмеченного ребра, а в случае четного числа вершин, не зависит и от выбора корневой вершины. Далее рассматриваются группы вращений двудольных деревьев. Доказывается, что в случае четного вершин, группы вращений четных и нечетных деревьев различны.
Добавлено: 27 ноября 2018
Препринт
Kolesnikov A., Zaev D. math. arxive. Cornell University, 2015
Добавлено: 23 февраля 2016
Препринт
Kolesnikov A., Klartag B. math. arxive. Cornell University, 2017
Добавлено: 30 декабря 2017
Препринт
Rybakov S. math. arxive. Cornell University, 2017
Добавлено: 23 октября 2017
Препринт
Prokhorov Y., Zaidenberg M. math. arxive. Cornell University, 2017
Добавлено: 20 июня 2017
Препринт
Cheltsov I., Shramov K., Przyjalkowski V. math. arxive. Cornell University, 2019
Добавлено: 19 ноября 2019
Препринт
Shramov K., Przyjalkowski V. math. arxive. Cornell University, 2019
Добавлено: 19 ноября 2019
Препринт
Shramov K. math. arxive. Cornell University, 2019
Добавлено: 19 ноября 2019
Препринт
Shramov K. math. arxive. Cornell University, 2019
Добавлено: 19 ноября 2019
Препринт
Shramov K., Prokhorov Y. math. arxive. Cornell University, 2019
Добавлено: 19 ноября 2019
Препринт
Gorsky E., Negut A., Rasmussen J. math. arxive. Cornell University, 2016
Добавлено: 19 сентября 2016
Препринт
Verbitsky M., Vuletescu V., Ornea L. math. arxive. Cornell University, 2018
Добавлено: 5 декабря 2018
Препринт
Gayfullin S. math. arxive. Cornell University, 2018
Добавлено: 6 декабря 2018
Препринт
Gayfullin S., Шафаревич А. А. math. arxive. Cornell University, 2018. No. arXiv:1805.05024.
Добавлено: 1 сентября 2018
Препринт
Levando D. V. math. arxive. Cornell University, 2017. No. 1702.06922.
The paper defines a family of nested non-cooperative simultaneous finite games to study coalition structure formation with intra and inter-coalition externalities. Every game has two outcomes - an allocation of players over coalitions and a payoff profile for every player.  Every game in the family has an equilibrium in mixed strategies. The equilibrium can generate more than one coalition with a presence of intra and inter group externalities. These properties make it different from the Shapley value, strong Nash, coalition-proof equilibrium, core, kernel, nucleolus. The paper demonstrates some applications: non-cooperative cooperation, Bayesian game, stochastic games and construction of a non-cooperative criterion of coalition structure stability for studying focal points. An example demonstrates that a payoff profile in the Prisoners' Dilemma is non-informative to deduce a cooperation of players.
Добавлено: 26 февраля 2017
Препринт
Levando D. V. math. arxive. Cornell University, 2016. No. arXiv:1612.02344.
The paper defines a non-cooperative simultaneous finite game to study coalition structure formation with intra and inter-coalition externalities. The novelty of the game is that the game definition embeds a \textit{coalition structure formation mechanism}. This mechanism portions a set of strategies of the game into partition-specific strategy domains, what makes every partition to be a non-cooperative game with partition-specific payoffs for every player. The mechanism includes a maximum coalition size, a set of eligible partitions with coalitions sizes no greater than this number (which also serves as a restriction for a maximum number of deviators) and a coalition structure formation rule. The paper defines a family of nested non-cooperative games parametrized by a size of a maximum coalition size. Every game in the family has an equilibrium in mixed strategies. The equilibrium can generate more than one coalition and encompasses intra and inter group externalities, what makes it different from the Shapley value. Presence of individual payoff allocation makes it different from a strong Nash, coalition-proof equilibrium, and some other equilibrium concepts. The accompanying papers demonstrate applications of the proposed toolkit.
Добавлено: 8 декабря 2016
Препринт
Levando D. V. math. arxive. Cornell University, 2016. No. 1612.03742.
The paper uses a non-cooperative simultaneous game for coalition structure formation (Levando, 2016) to demonstrate some applications of the introduced game: a cooperation, a Bayesian game within a coalition with intra-coalition externalities, a stochastic game, where states are coalition structures; self-enforcement properties of a non-cooperative equilibrium and a construction of a non-cooperative stability criterion.
Добавлено: 31 января 2017
Препринт
Finkelberg M. V., Kapranov M., Schechtman V. math. arxive. Cornell University, 2018
Добавлено: 3 декабря 2018
Препринт
Kroshnin A., Sobolevski A. math. arxive. Cornell University, 2015. No. 1512.08421.
Добавлено: 31 декабря 2015
Препринт
Gorsky E., Schilling A., Hawkes G. et al. math. arxive. Cornell University, 2019
Добавлено: 3 сентября 2019
Препринт
Krylov V., Перунов И. math. arxive. Cornell University, 2019
Добавлено: 30 мая 2019