• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Первая удачная попытка за 55 лет: физики из России и Германии подтвердили результаты эксперимента 1969 года

Первая удачная попытка за 55 лет: физики из России и Германии подтвердили результаты эксперимента 1969 года

© iStock

Команда исследователей с участием физиков из НИУ ВШЭ повторила эксперимент 1969 года, связанный с изучением сверхпроводимости и ее свойств. Ученые включали сверхпроводимость — специально ухудшали границы между слоями сверхпроводника и ферромагнетиков в системе — и получили лучшие характеристики спиновых клапанов по сравнению с классическим вариантом, где контакты между слоями идеальны. Такой подход может помочь при создании более эффективных устройств для хранения данных и вычислений. Результаты исследования опубликованы в журнале Beilstein J. Nanotechnology.

Когда электрический ток течет по металлическому проводу, он встречает сопротивление. Однако если охладить некоторые материалы до очень низких температур, то сопротивление исчезает, и электричество течет без потерь. Это свойство  называют сверхпроводимостью.

Еще с XX века ученые работали над системой, где сверхпроводимость можно будет включать и выключать по желанию. В результате была выбрана структура, в которой сверхпроводящий металл контактирует с двумя ферромагнетиками, влияющими на сверхпроводящие свойства.  Один сверхпроводящий слой (S) и два ферромагнитных (F) располагают в порядке F-S-F или F-F-S. Направление магнитов относительно друг друга влияет на общую сверхпроводимость в системе, поэтому если зафиксировать направление одного, а другой вращать, то можно включать и выключать сверхпроводимость. Такое явление называют эффектом сверхпроводящего спинового клапана. 

Считается, что когда переход между различными слоями (магнитными и немагнитными) выполнен без барьеров, дефектов и примесей, то удается добиться наибольшего эффекта спинового клапана. Однако в эксперименте 1969 года ученые Дойчер и Минье показали, что система может работать эффективно и при внедрении прослоек из диэлектрика — материала, который не проводит электрический ток, но через который могут проходить электроны. Согласно их данным, в структуре с диэлектрическими прослойками возможно сохранить выраженный эффект спинового клапана. Однако другие научные команды не могли повторить этот результат. 

© iStock

Впервые эксперимент ученых повторила команда из Казанского физико-технического института им. Е.К. Завойского РАН, Института Лейбница по исследованию твердого тела и материалов (Дрезден), Института теоретической физики им. Л.Д. Ландау РАН и НИУ ВШЭ. Они создали слоистую структуру, в которой использовали свинец как сверхпроводник, кобальт как ферромагнетик, а между ними экспериментально внедрили диэлектрические прослойки. Для этого на одном из этапов изготовления структуры дополнительно вводили кислород, чтобы окислить границы. Полученные окислы уже не проводили электрический ток.

Данные показали, что в полученных структурах наблюдается значительный эффект сверхпроводящего спинового клапана. Ученые объясняют результат тем, что оксидные изолирующие прослойки могут играть двойную роль: ослаблять влияние металлического ферромагнитного слоя на слой сверхпроводника и поддерживать некий эффект близости, который позволяет переключаться между нормальным и сверхпроводящим состояниями. Однако остается открытым вопрос, являются ли сами изолирующие прослойки магнитными. Для ответа на него требуются дополнительные исследования.

Яков Фоминов

«С точки зрения наивной логики внедрение элементов, которые не проводят ток, — ухудшение для системы. Однако оказалось, что это не всегда так. Диэлектрические прослойки улучшают систему, а их отсутствие, наоборот, “убивает” сверхпроводимость, — объясняет профессор факультета физики, ведущий научный сотрудник Международной лаборатории физики конденсированного состояния НИУ ВШЭ Яков Фоминов. — По-видимому, мы имеем дело с условно хрупкой сверхпроводимостью, чувствительной к внешним воздействиям. И когда ферромагнетики в системе хотят полностью подавить сверхпроводимость, введением границ сверхпроводимость удается восстанавливать».

Эффект спинового клапана используется для чтения информации с жестких дисков, в датчиках, измеряющие магнитные поля в компасах и других устройствах. Ученые считают, что продолжение исследования этого подхода поможет улучшить рабочие параметры сверхпроводящих спиновых клапанов.

Работа выполнена при поддержке Российского научного фонда (проект 21-72-20153) и Программы фундаментальных исследований НИУ ВШЭ.