• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Ученые усомнились в том, что искусственный интеллект DeepMind понимает физику молекул с нецелым зарядом

Ученые усомнились в том, что искусственный интеллект DeepMind понимает физику молекул с нецелым зарядом

Фото: deepmind.com

В журнале Science, одном из самых авторитетных научных изданий, команда исследователей из Высшей школы экономики, Сколтеха, Института органической химии им. Н.Д. Зелинского и Kyungpook National University (Южная Корея) опубликовала комментарий к статье DeepMind, говорится на сайте Сколтеха. В нем ученые показали, что приведенные аргументы в пользу достижения поставленной DeepMind цели не настолько надежны, как кажется, и требуют дополнительного исследования.

Команда DeepMind в статье, опубликованной в журнале Science в декабре 2021 года, попыталась решить одну из ключевых проблем современной физики: создать метод теории функционала плотности (DFТ), корректно работающий для самых разных молекулярных систем, включая имеющие нецелое количество электронов.

Михаил Медведев

«Современные химия и наука о материалах постепенно переходят от экспериментального метода проб и ошибок к изучению цифровых двойников. Вместо того чтобы ставить десятки или даже сотни экспериментов в надежде найти новый эффективный катализатор или материал, для этого класса катализаторов/материалов создается цифровой двойник (математическая модель), который досконально изучается в компьютере, и на основании найденных теоретически закономерностей ставятся несколько прицельных экспериментов. Этот подход позволяет экономить килограммы дорогостоящих химических реагентов и тонны токсичных органических растворителей», — говорит руководитель Группы теоретической химии Института органической химии им. Н.Д. Зелинского РАН, доцент факультета химии НИУ ВШЭ Михаил Медведев.

Евгений Епифанов

Вместе с Михаилом Медведевым в группе исследователей над проблемой работал третьекурсник ОП «Химия» НИУ ВШЭ Евгений Епифанов. «Когда в начале 1-го курса мне пришлось определяться с лабораторией для научной работы, я хотел заниматься квантовой химией и решил выбрать группу теоретической химии ИОХ РАН, — рассказал он. — В этой группе есть разные направления работы, в целом можно описать их как предсказание возможности протекания реакций без проведения эксперимента. Я разрабатываю методы, чтобы такие расчеты были точнее. Здесь нужны не только знания химии, нужно еще уметь программировать. Но даже если не умеете, более опытные коллеги научат. Мне нравится этим заниматься, и я планирую писать диплом по этой теме».

Теория функционала плотности является самым широко используемым подходом для построения цифровых двойников в химии и науке о материалах. Она позволяет относительно корректно описать взаимодействие большого количества электронов между собой, что необходимо для построения цифровых двойников сложных химических систем: молекул, наночастиц, кристаллов. Основой теории функционала плотности является обменно-корреляционный функционал, для которого точный вид все еще не установлен, поэтому в настоящий момент для него используются различные приближенные выражения, которых уже более 400.

Петр Жиляев

«С каждым годом количество приближенных выражений для обменно-корреляционного функционала растет, предлагаются все более и более точные выражения. DeepMind, известные своей разработкой нейросетевой программы AlphaGo, победившей одного из сильнейших игроков мира в игру го, решили применить свои наработки в нейронных сетях для создания нейросетевого функционала теории функционала плотности. Их работа была далеко не первой, однако она однозначно является одной из самых амбициозных», — говорит старший научный сотрудник Центра технологий материалов Сколтеха Петр Жиляев.

DeepMind создали новый функционал теории функционала плотности — DM21. Предполагалось, что он будет способен корректно работать с системами, содержащими нецелое количество электронов: несмотря на отсутствие таких систем в природе, корректная работа функционала на них должна помочь ему в описании обычных химических систем. Для того чтобы научить свой функционал корректно работать на таких системах, команда DeepMind добавила их в базу данных, на которой обучался DM21. Чтобы убедиться, что DM21 научился работать на таких системах, авторы протестировали его на тестовом наборе BBB, состоящем из пар атомов на разных расстояниях друг от друга, например два атома водорода с одним электроном на двоих. DM21 показал превосходную точность на наборе BBB, обойдя стандартные функционалы, а также функционал DM21m, обученный DeepMind на том же датасете, за исключением систем с нецелым количеством электронов.

Авторы постарались обойти одно из ключевых ограничений традиционных функционалов — их неспособность корректно описывать системы с нецелым количеством электронов. DeepMind добавили в функционал новый нелокальный ингредиент (информацию о волновой функции системы, которую функционал может использовать для вычисления энергии), который ранее никогда не использовался, — пространственно разделенную локальную обменную энергию. В дальнейшем она может помочь строить функционалы с лучшим разделением между обменной и корреляционной энергиями.

Команда DeepMind ввела дополнительную регуляризацию, связанную с процедурой самосогласованного поля. Их дополнительное слагаемое в функции ошибки модели приближенно равно выражению для изменения энергии после шага вариационной процедуры минимизации, начинающегося с орбиталей традиционного функционала. Эта регуляризация позволяет сделать обучаемый функционал более стабильным.

«В машинном обучении очень важно не использовать для тестирования нейронной сети данные, на которых она была обучена. Однако в своей работе команда DeepMind допустила подобную ошибку: наиболее сложные димеры из набора BBB очень близки к системам с нецелым количеством электронов из обучающей выборки», — рассуждает инженер-исследователь Центра технологий материалов Сколтеха Александр Рябов.

«Если нейронные сети не могут понять, как прийти к правильным ответам, они пытаются их зазубрить. Поэтому не столь сложно обучить нейронную сеть — сложно показать, что она действительно осознала физические законы, лежащие в основе вопроса, на который она отвечает. Так что тестировать нейронную сеть на данных, на которых она обучалась, — это все равно что дать студенту на экзамене ту же задачу, которая разбиралась пять минут назад на доске: мы узнаем, хорошая ли у него память, но вряд ли узнаем, понимает ли он предмет», — отмечает Михаил Медведев.

Этот недостаток не был очевидным. Системы в наборе BBB состоят из двух атомов, тогда как DM21 обучался на одноатомных системах с нецелым количеством электронов. Поэтому предвидеть то, что произошло, было очень непросто. Ученые поняли, что при расстояниях между атомами в тест-сете BBB, где обычные функционалы начинают испытывать проблемы, атомы уже практически не взаимодействуют между собой и каждый атом в отдельности по сути становится тем самым «атомом с нецелым числом электронов», на которых проводилось обучение.

Читать материал в источнике

Вам также может быть интересно:

Центр ИИ Вышки помогает стране и Сберу развивать AI-технологии

Сбер оценил экономический эффект от сотрудничества с исследовательскими центрами в сфере искусственного интеллекта в 1,1 млрд рублей. Одним из партнеров Сбера с 2021 года является Центр ИИ Высшей школы экономики. Всего в рамках этого партнерства успешно реализовано 19 проектов.

Вышка приняла участие в Дне ИИ на выставке-форуме «Россия»

13 марта на ВДНХ в рамках Международной выставки-форума «Россия» прошел День искусственного интеллекта. НИУ ВШЭ — один из ведущих отечественных исследовательских и образовательных центров в сфере ИИ — принял участие в этом событии. Исследователи университета выступили в экспертных дискуссиях. Кроме того, проректор Вышки Сергей Рощин подписал Декларацию об ответственной разработке и использовании больших генеративных моделей.

ВШЭ помогает разрабатывать систему статистического мониторинга ИИ

Отслеживать внедрение технологий искусственного интеллекта (ИИ) в России, оперативно оценивать их распространение в отраслях экономики и социальной сфере позволит новая программа статистического наблюдения. Правительство РФ поставило задачу разработать комплексную систему мониторинга развития ИИ. Формирование ее статистического ядра поручено Минэкономразвития России и Росстату совместно с НИУ ВШЭ. Непосредственным исполнителем от университета выступает Институт статистических исследований и экономики знаний (ИСИЭЗ).

«Цель школы Spring into ML — объединить молодых ученых, занимающихся математикой ИИ»

Институт искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ и Университет Иннополис провели для студентов, аспирантов и молодых ученых недельную школу, посвященную применению математики в машинном обучении и искусственном интеллекте. 50 участников Spring into ML прослушали 24 доклада о машинном обучении, участвовали в тематических питч-сессиях и прошли два мини-курса по диффузионным моделям — развивающейся области ИИ для генерации данных.

Сотрудники духовных учебных заведений повысили квалификацию в области ИИ

Завершился трехдневный курс повышения квалификации «Принципы, методы и этические аспекты использования искусственного интеллекта», организованный НИУ ВШЭ и Общецерковной аспирантурой и докторантурой имени святых равноапостольных Кирилла и Мефодия (ОЦАД) для представителей духовных учебных заведений. Итогом курса стала презентация слушателями идей проектов по применению искусственного интеллекта.

Студенты со всей России пройдут интенсив по компьютерным наукам от ВШЭ и «Яндекса»

С 1 по 13 апреля в Москве на базе факультета компьютерных наук НИУ ВШЭ пройдет бесплатный студкемп по машинному обучению, организованный в рамках программы «Яндекса» для студентов IT-специальностей. За две недели студенты изучат материал, на освоение которого в рамках традиционных программ уходит от пары месяцев до нескольких семестров. Они получат фундаментальные знания в области искусственного интеллекта, а также познакомятся с практиками применения нейросетей в сервисах «Яндекса».

Ученые Вышки вошли в Научный совет Альянса в сфере ИИ

Альянс в сфере искусственного интеллекта создал Научный совет, в который вошли ведущие представители российской науки в области искусственного интеллекта. Высшая школа экономики представлена в совете четырьмя учеными.

«Терминатор не придет»: каким будет образование будущего в эпоху ИИ

Как применение искусственного интеллекта повлияет на образование, какие этические вопросы есть сейчас и готово ли человечество к тому, чтобы людей учили роботы, — об этом и многом другом говорили участники дискуссии «DebAIte: Революция ИИ в образовании», состоявшейся на фестивале «НОЧЬ Студента».

Звери, зарплаты и data leak: как разрабатываются задания для олимпиады школьников по ИИ

В этом году участники Всероссийской олимпиады школьников по искусственному интеллекту впервые смогут зачесть ее результаты при поступлении в вузы. Елена Кантонистова, председатель методической комиссии олимпиады и академический руководитель онлайн-магистратуры факультета компьютерных наук «Машинное обучение и высоконагруженные системы», рассказала новостной службе «Вышка.Главное» о том, как ученые ВШЭ составляли задания для соревнований 2023 года, откуда взялась задача об уссурийских тиграх и почему школьникам полезно осваивать ИИ.

Каким будет 2024 год: прогноз дает iFORA

Журналисты РБК решили спросить у отечественных систем искусственного интеллекта, каким будет 2024 год. Участниками проекта стали четыре ведущие российские компании и Высшая школа экономики. На вопросы отвечала разработанная ИСИЭЗ НИУ ВШЭ система интеллектуального анализа больших текстовых данных iFORA.