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1 Introduction

Most solutions for cooperative games with transferable utilities (TU) are covariant with respect

to positive linear transformations of individual utilities. However, this property does not take into

account interpersonal comparisons of players' payo�s. The constrained egalitarian solution de�ned

by Dutta and Ray (1989) for the class of convex TU games, being not covariant, served as a pretext

for studying non-covariant solutions. One of the approaches consists in a weakening of covariance

in such a manner that, together with some other properties, it could characterize new solutions

or give new characterizations for some known ones.

In the paper a weakening of the translation covariance property is de�ned. A TU game solution

is self-covariant, if for every TU game it is homogenous and satis�es a "restricted"translation

covariance property such that feasible shifts are only the solution vectors themselves and their

multipliers. On the one hand, all the most known TU game solutions veri�es this property, and

on the other one it permits to replace the stronger covariance property in axiomatizations of some

solutions.

Evidently, the properties of solutions � positive homogeneity, weak covariance, and self covari-

ance � jointly are weaker than covariance. The Dutta-Ray (DR)solution (Dutta, Ray 1989) on the

class of convex TU games satis�es all them though it is not covariant.

It turns out that each of the well-known characterizations of the prenucleolus (Sobolev 1975)

and of the Shapley value (Hart, Mas-Colell 1989) applied to the class of the convex games, under

replacing covariance by weak covariance and self-covariance, gives three solutions: each of the two

mentioned ones together with the Dutta�Ray solution and the equal share solution (Yanovskaya

2012).

In this paper we study e�cient, self-covariant, and anonymous single-valued solutions for arbi-

trary two-person games that have consistent in the Davis�Maschler sense extensions to the class of

all TU games. It turned out that only three such solutions for two-person games admit consistent

extensions: they are the standard solution, the egalitarian solution, and the solution coinciding

with the constrained egalitarian solution for superadditive games, and with the standard solution

for subadditive games.

The paper is organized as follows. In Section 2 we give the de�nitions of some solutions for TU

games and their properties, and formulate the known theorems characterizing the prenucleolus

and the Dutta�Ray solution. A new property of TU game solutions � self-covariance that is a

weakening of covariance � is introduced in Section 3. A complete characterization of single-valued,

anonymous, and weak and self-covariant solutions for the class of all two-person games is given.

Section 4 deals with consistent extensions of solutions studied in the previous section to the class

of TU games with arbitrary sets of players. It turns out that only three such solutions admit

consistent extensions. Section 5 poses two open problems connected with consistent solutions.

The proofs of the main results are presented in Appendix.
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2 Preliminaries

2.1 TU game solutions and theirs properties

A cooperative game with transferable utilities (TU game) is a pair (N, v), where N is a �nite

set of players, v : 2N → R is a characteristic function of the game assigning to every coalition

S ⊂ N a number v(S) with a convention v(∅) = 0). An outcome of the game is a payo� vector

x ∈ RN ∈ X(N, v), where

X(N, v) = {x ∈ RN |
∑
i∈N

xi ≤ v(N)}

is the set of feasible payo� vectors.

In the sequel we use the notation x(S) =
∑

i∈S xi for vectors x ∈ RN and coalitions S ⊂ N.

A solution σ to a class G of TU games associates with every game (N, v) ∈ G a subset

σ(N, v) ⊂ X(N, v).

Denote by X∗(N, v) the set of e�cient payo� vectors or preimputations

X∗(N, v) = {x ∈ RN |
∑
i∈N

xi = v(N)}.

If for each game (N, v) ∈ G |σ(N, v)| = 1, then the solution σ is single-valued or a value.

For every set of players N denote by GN the set of all TU games with players' set N. Let N
be an arbitrary universal set of players. Then

(N, v) ∈ GN =⇒ N ⊂ N .

For every injection π : N → N and every game (N, v) ∈ GN de�ne the game (π(N), πv) ∈ GN
by v(π(S)) = πv(S) for all S ⊆ N. If x ∈ RN denote y = π(x) the vector y ∈ Rπ(N) such that

yπ(i) = xi, i ∈ N. The game (N ′, w) is isomorphic to the game (N, v), if there is an injection

π : N → N such that π(N) = N ′ and πv = w.

A game (N, v) is superadditive (subadditive) if v(S) + v(T ) ≤ (≥)v(S ∪ T ) for every S, T ⊂
N, S ∩ T = ∅. These properties are strict, if the inequalities in the previous de�nition are strict.

A game (N, v) is convex (concave), if v(S)+v(T ) ≤ (≥)v(S∪T )+v(S∩T ) for every S, T ⊂ N.

Given a game (N, v), the players i, j ∈ N are symmetric, if v)S ∪ {i}) = v(S ∪ {j}) for every
S ⊂ N \ {i, j}.

Recall some well-known properties of cooperative game solutions that are applied for their

characterizations. First we give them for an arbitrary subclass G ′N j GN .
A solution σ for the class G ′N is

� non-empty or satis�es nonemptiness (NE), if σ(N, v)) 6= ∅ for every game (N, v) ∈ G ′N ;

� e�cient (EFF) or Pareto optimal, if
∑

i∈N xi(N, v) = v(N) for every x ∈ σ(N, v) and for

every (N, v) ∈ G ′N ;

� single-valued (SV) or a value, if for every game (N, v) ∈ G ′N |σ(N, v)| = 1;

� positively homogeneous (PH), if for every α > 0 and a game (N, v) ∈ G ′N it holds (N,αv) ∈
G ′N and σ(N,αv) = ασ(N, v);
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� translation covariant (TCOV), if for every game (N, v) ∈ G ′N and a number b 〈N, v + b〉 ∈
G ′N , and

x ∈ σ(N, v) =⇒ x ∈ σ(N, v + b),

where (v + b)(S) = v(S) + b for all S $ N, and (v + b)(N) = v(N);

� covariant (COV), if it is positively homogeneous and translation covariant;

� weakly covariant (WCOV), if it is positively homogeneous and translation covariant with

only respect to shift b ∈ RN with equal coordinates;

� anonymous (ANO), if for every game (N, v)) ∈ G ′N and injection π : N → N such that

(πN, πv) ∈ GN , the following equality holds: σ(πN, πv) = π(σ(N, v)). Here the function πv

is de�ned by πv(πS) = v(S) for all S ⊂ N ;

� symmetric or satis�es the equal treatment property (ETP), if ϕi(N, v) = ϕj(N, v) as soon as

i and j are symmetric in (N, v).

For games with variable set of players, i.e. those from some subclass G ′ ⊂ GN , de�ne the

consistency property connecting solutions of a game with those of games with smaller sets of

players.

A solution σ for a class G ′ is

� consistent (CONS) , if, for every game (N, v) ∈ G ′, coalition T ⊂ N, and vector x ∈ σ(N, v),

the reduced game (N \T, vxN\T ), obtained after leaving the game by players from the coalition

T with payo�s xi, i ∈ T, belongs to the class G ′, and the following equality holds:

x = (xN\T , xT ) ∈ σ(N, v) =⇒ xN\T ∈ σ(N \ T, vΦ
N\T ). (1)

From de�nition (1) it follows that the consistency property can be determined for every class

of games closed under reducing, i.e., such that with every game (N, v) and every its payo� vector

x, it contains all its reduced games (N \ T, vxN\T ), T ⊂ N.

Note that in (1) the reduced games are not de�ned uniquely by a game and its payo� vector.

There are di�erent de�nition of the reduced games and of the corresponding di�erent de�nitions

of consistency. In this paper we consider the de�nition due to Davis and Maschler (1965):

The reduced game (S, vxS) of a game (N, v) on the player set S and w.r.t. the payo� vector x is

the game de�ned by the characteristic function

vxS(T ) =

{
v(N)− x(N \ S), if T = S,

maxQ⊂N\S(v(T ∪Q)− x(Q)) for other coalitions .
(2)

If we put the de�nition of a single-valued solution for a class of two-person games as an axiom,

then some cooperative game solutions can be characterized by this property and by consistency.

Among them there are two single-valued solutions1 they are the equal share solution for the class

of all TU games and the Dutta�Ray solution for the class of convex games.

1the Shapley value is also axiomatized by this two axioms, but consistency should be applied in another sense
(Hart�Mas-Colell, 1987).
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The prenucleolus has such a characterization only for the class of convex games, since on

this class the prenucleolus coincides with the prekernel, and the prekernel is characterized as the

maximum solution satis�ed by standardness for two-person games, and by consistency (Peleg

1986). As for the class of all TU games, then the prenucleolus yet has no such a characterization,

though there is no example of a consistent value being standard for two-person games and not

coinciding with the prenucleolus.

Recall the de�nitions of these solutions.

The equal share solution for every TU game (N, v) divides the total gain v(N) equally between

all the players. It is e�cient, single-valued, anonymous, and consistent.

Let (N, v) be an arbitrary game, x ∈ X(N, v), e(S, x) = v(S)−x(S) be the excess of a coalition

S ( N w.r.t. x, {e(S, x)}S$N be the excess vector. Denote by θ(x) ∈ R2N
the vector whose

components coincide with those of {e(S, x)}S$N , but disposed in a weakly decreasing manner:

θt(x) = max
T ⊂2N

|T |=t

min
S∈T

e(S, x). (3)

Let ≥lex be the relation of lexicographic ordering of the space Rm :

x ≥lex y ⇐⇒ x = y or ∃1 ≤ k ≤ m such that xk = yk and xi > yi for i < k.

The prenucleolus PN(N, v) of a game (N, v) is the unique e�cient payo� vector on which the

lexicographic minimum of the set of vectors θ(y), y ∈ X(N, v) is attained:

θ(y) ≥lex θ(PN(N, v)) for all y ∈ X(N, v). (4)

The prenucleolus is non-empty for every game. On the class of two-person games this solution

coincides with the standard solution (ST), de�ned for every two-person game ({i, j}, v) as follows:

STi(N, v) =
v(N)

2
+
v({i})

2
− v({j})

2
. (5)

The egalitarian Dutta�Ray solution (DR-solution) (Dutta, Ray 1989) is de�ned on the class

of all convex games. It associates with every convex game the unique payo� vector from the core

that Lorenz dominates all other vectors from the core.

For two-person superadditive (convex) games the Dutta-Ray solution coincides with the con-

strained egalitarian solution (CE):

CE({i, j}, v) =


(
v(N)

2
, v(N)

2

)
, if v({i}), v({j}) ≤ v(N)

2
,

(v({i}), v(N)− v({i})), if v({i}) > v(N)
2
,

(v(N)− v({j}), v({j})), if v(j) > v(N)
2
.

(6)

Let us give characterizations of the three solutions de�ned above.

Proposition 1 The equal share solution is the unique solution for the class of all TU games

with arbitrary universe of players satisfying non-emptiness, single-valuedness, consistency and

coinciding with the equal share solution on the class of two-person games.
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Proof. Evidently, the equal share solution satis�es all the properties given in the Proposition.

Let now Φ be an arbitrary solution satisfying all these properties. Let (N, v) ne an arbitrary

game, x = Φ(N, v). Let ({i, j}, vxi,j) be the reduced game on the players set {i, j} w.r.t. x. Then,

by consistency of Φ, (xi, xj) = Φ({i, j}, vxi,j), and, hence, xi = xj =
xi+xj

2
. Since the last equality

ful�ls for every i, j ∈ N, we obtain xi = xj for all i, j ∈ N. By the de�nition of the reduced games

vxi,j({i, j}) = v(N) −
∑

k 6=i,j xk = xi + xj. The last equality shows e�ciency of Φ and we obtain

that Φ(N, v) = (x, x, ..., x), where x = v(N)
n
.

Theorem I [Sobolev 1985] The unique solution for the class of all TU games with in�nite

universal set of players satisfying non-emptiness, single-valuedness, anonymity, covariance, and

consistency is the prenucleolus.

Theorem II [Dutta 1990] The unique solution for the class of convex games with arbitrary

universal set of players, satisfying nonemptiness, single-valuedness, consistency, and coinciding

with the CE solution on the class of two-person games is the Dutta�Ray solution.

The Dutta�Ray solution is anonymous, but it is not covariant, it satis�es only weak covariance.

For the class of convex games the prenucleolus has the axiomatization similar to Theorem II:

Theorem Icon. The unique solution for the class of convex games with arbitrary universal set of

players, satisfying nonemptiness, single-valuedness, consistency, and coinciding with the standard

solution on the class of two-person games is the prenucleolus.

The proof follows from the coincidence of the prenucleolus with the prekernel for the class of

convex games and from Peleg's characterization of the prekernel (Peleg 1986).

Thus, we obtain the characterizations of the three values � the equal share solution, the prenu-

cleolus and the Dutta�Ray solution (the two last ones only for convex games) � by the unique

manner with the help of consistency and the de�nition of the solution for two-person games.

This fact can be treated as the existence of consistent extensions for the three two-person games

solutions to convex games with arbitrary sets of players. In the paper we try to �nd another single-

valued anonymous solutions for both superadditive and subadditive two-person games, possessing

a weakening of covariance and admitting the consistent extensions to the class of all TU games.

3 Self-covariance of TU game solutions

3.1 De�nition

The DR-solution to the class of convex games does not satisfy covariance, it is only a weakly

covariant solution. Since the homogeneity axiom is a part of the both mentioned axioms, they

di�er only in the second part of them: translation covariance means invariance of the solution

w.r.t. arbitrary translation vector, and weak translation covariance admits only translations with

equal components. The last property, together with nonemptiness, single-valuedness, anonymity

and consistency, is insu�cient for characterizing the Dutta�Ray solution to the class of convex

games.

Let us introduce one more weakening of the translation covariance property, intermediate

between these two ones. Let G be an arbitrary class of TU games closed under summation of
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characteristic functions with arbitrary vectors such that if (N, v) ∈ G, then (N, v + a) ∈ G for

every vector a ∈ RN .

De�nition 1 A nonempty single-valued solution ϕ for the class G is called self-covariant (self-

COV), if it is homogeneous and for every number A ≥ −1 the equalities

ϕ(N, v + Aϕ(N, v)) = (A+ 1)ϕ(N, v) (7)

hold for all games (N, v) ∈ G.

In De�nition 1 translations of characteristic functions are permitted only for multipliers of the

solution vectors such that they would not change the signs of the solution vectors in both parts

of equality (7).

Proposition 2 The DR-solution veri�es self-covariance on the class of convex games.

Proof. Let (N, v) ∈ Gc, x = DR(N, v). Then the vector âåêòîð x can be represented as follows

(Dutta 1990):

x = (a1, . . . , a1︸ ︷︷ ︸
T1

, a2, . . . , a2,︸ ︷︷ ︸
T2

. . . am . . . , am︸ ︷︷ ︸
Tm

), (8)

where a1 = max
S⊂N

v(S)

|S|
=
v(T1)

|T1|
, aj = max

S⊂N\∪j−1
i=1Ti

vj(S)

|S|
=
vj(Tj)

|Tj|
, j = 2, . . . ,m, and

vj(S) = v

(
j−1⋃
i=1

Ti ∪ S

)
− v

(
j−1⋃
i=1

Ti

)
for S ⊂ N \

j−1⋃
i=1

Ti. (9)

Here coalitions T1, T2, ... are the maximal in inclusion coalitions among those satisfying (8) and

(9).

Inequalities v(T1)
|T1| ≥

v(S)
|S| for all S ⊂ N and a1 > aj for all j = 2, ...,m, imply DRT1(N, v) =

(a1, ..., a1). Since the DR-solution belongs to the core and A ≥ −1, we obtain the inequalities

(A+ 1) · a1 ≥ (A+ 1) · DR(N, v)(S)

|S|
≥ (A+ 1)

v(S)

|S|
for all coalitions S ⊂ N, implying the relation

T1 ∈ arg max
S⊂N

v(S) + A ·DR(N, v)(S)

|S|
∀S ⊂ N. (10)

Consider the games (N \ T1, v
1), (N \ T1, (v + A ·DR(N, v))1). By de�nition (9) we obtain

v1(S) = v(T1 ∪ S)− a1|T1|,

(v + A ·DR(N, v))1(S) = v(T1 ∪ S) + A · a1|T1| +A ·DR(N, v)(S)− (1 + A) · a1|T1| =

v(T1 ∪ S) + A ·DR(N, v)(S)− a1|T1| = v1(S) + A ·DR(N, v)(S).

(11)

From equalities (11) it follows that

T2 ∈ arg max
S⊂N\T1

v1(S) + A ·DR(S)(N, v)

|S|
, (12)

and T2 is the maximal in inclusion coalition satisfying equality (12).

The remaining proof is ful�led by the evident induction in the numbers of coalitions Ti, i =

1, 2, ...,m in representation (8).
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3.2 Self-covariant solutions for two-person games

In this subsection we characterize all nonempty, e�cient, single-valued, anonymous, weak- and

self-covariant solutions for the class of all two-person games with arbitrary universe of players.

Since we will consider only anonymous solutions for this class, it su�ces to restrict their de�nition

by games with a �xed pair of players {i, j}. In the sequel we denote v({i}) = vi, v({j}) = vj.

For simplicity, we will denote a two-person game by a letter v, and for a two-dimensional vector

(vi, vj) we will apply the notation v̄.

Every class of two-person games consists of subclasses of additive, strictly superadditive, and

strictly subadditive games. Since feasible transformations of the individual utilities applied in the

de�nitions of weak and self covariance do not turn a game from one of the three classes out of

it, we will de�ne weak and self-covariant solutions separately for every class. Weak covariance of

solutions permits to de�ne them only for games with zero value of the grand coalition.

To begin with, consider the class G0ad
2 of additive games with zero total payo� v({i, j}) = 0.

Proposition 3 There are two single-valued solutions for the class G0ad
2 that verify axioms NE,

EFF, ANO, PH, and self-COV. They are the equal share solution, giving zero payo�s to both

players for every games, and the solution φind(v) = v̄.

Proof. Evidently, both solutions verify all the axioms.

Let φ be an arbitrary single-valued solution for the class G0ad
2 verifying all the axioms. If

φ(v) = 0 for some game v 6= (0, 0), then by positive homogeneity and anonymity of φ φ(v) = (0, 0)

for all games v ∈ G0ad
2 .

It remains to consider the case when φ(v) 6= (0, 0) for all games v 6= (0, 0). Then φ(v) =

(x,−x) = αv̄ for some x, α 6= 0, and positive homogeneity and anonymity of φ implies that

φ(v) = αv̄ for all v ∈ G0ad
2 . By self-covariance of φ φ(v + αv̄) = 2φ(v) = φ(2v), and by positive

homogeneity φ(v + αv̄) = (1 + α)φ(v). The two last equalities imply α(1 + α)v̄ = α(2v̄). Hence,

α = 1, and φ(v) = v̄ for all v ∈ G0ad
2 , i.e., φ = φind.

These two solutions can be easily extended to the class of additive games with arbitrary

values v({i, j}) with the help of weak covariance, Then the equal share solution is de�ned for

every additive two-person games by ES(v) =
(
v({i,j})

2
, v({i,j})

2

)
. The solution φind(v) = v̄ does not

change.

Now consider the class G0sp
2 of strictly superadditive two-person games with the set of players

{i, j}, and with zero total gain of players v({i, j}) = 0. Let us de�ne for this class a collection

of one-parametric non-empty, e�cient, single-valued, and anonymous solutions ϕk, k ∈ (−1, 1].

Because of anonymity of solutions it su�ces to de�ne them only for games v with vi < vj.

ϕk(v) =

(0, 0), if vi = vj, or vj < kvi,,((kvi − vj
1 + k

)
i
,
(vj − kvi

1 + k

)
j

)
, if vj ≥ kvi.

(13)

Evidently, for every k ∈ (−1, 1] ϕk is an e�cient, nonempty, and anonymous solution.

For k = 0 the solution ϕ0 coincides with the constrained egalitarian solution;

For k = 1 ϕ1 is the standard solution;
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For k = −1 the solution ϕ−1 is not de�ned by (13) for strictly superadditive games. However,

when k → −1, then for every game v ∈ G0sp, the domain vj ≥ kvi, vi + vj < 0 transforms into a

half-line vi + vj = 0, vi < 0, and for every game v limk→−1 ϕk(v) = (0, 0).

So, we will de�ne ϕ−1 for the class of strictly superadditive gams as the equal share solution,

when both players obtain zero.

Let us depict solutions ϕk with the help of the level lines:

1. k > 0.
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2. k < 0.
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If the point v̄, is placed inside the angle α, then ϕk(v) = (0, 0)

Note that if k ≥ 0, then the solutions ϕk are individually rational, and if k < 0, then they do

not.

By the same manner we can de�ne solutions ϕk for all strictly superadditive two-person games

with arbitrary v({i, j}). However, without other conditions, the parameter k in the extension of

such solutions to the whole class of superadditive two-person games may depend on v({i, j}) that
seems too much complicated and unreasonable for studying. Thus, in this section we will consider

the self-covariance property only jointly with the weak covariance one.

Let us extend the solutions ϕk to the class of all strictly superadditive two-person games with

the help of translation covariance, i.e., by putting for arbitrary strictly superadditive two-person

game v

ϕk(v) = ϕk(v − ev({i,j})) + ev({i,j}),

where ev({i,j}) =
(
v({i,j})

n
, ..., v({i,j})

n

)
. The complete formula for ϕk(v), k ∈ (−1, 1] and for vi ≤ vj

follows from (13):

ϕk(v) =


(
v({i, j})

2
,
v({i, j})

2

)
, if vi = vj, or vj − kvi < (1− k)v({i,j})

2
,(

v({i, j})− vj + kvi
k + 1

,
kv({i, j}) + vj − kvi

k + 1

)
otherwise.

(14)

From (14) it follows that ϕk(v) = v̄ for all additive games and for all k ∈ (−1, 1].

11



For strictly superadditive games xi 6= vi, we obtain the formula for the parameter k :

k =
(ϕk(v))j − vj
(ϕk(v))i − vi

. (15)

Thus, the parameter k equals the tangent of the angle between the horizontal ax and the direct

line passing through the points v̄ and ((ϕk(v))i, (ϕk(v)j) 6=
(
v({i,j})

2
, v({i,j})

2

)
.

For k = −1, as in the case v({i, j}) = 0, we put ϕ−1(v) =
(
v({i,j})

2
, v({i,j})

2

)
for all strictly

superadditive games. Now the solutions ϕk have been de�ned for the whole class Gsp2 of strictly

superadditive two-person games, and these solutions are anonymous and weakly covariant.

Lemma 1 The solutions ϕk are self-covariant in the class Gsp2 for all k ∈ [−1, 1].

Let us give an axiomatization of ϕk solutions for all k ∈ [−1, 1].

Theorem 1 If a solution ϕ on the class of strictly superadditive two-person games Gsp2 satis�es

axioms NE, EFF, ANO, wCOV , and self-COV, then it is a ϕk solution for some k ∈ [−1, 1]. If,

moreover, it is individually rational, then k ∈ [0, 1].

Remark 1 The solutions ϕk are de�ned by (14) for additive two-person games as well. However,

when we describe the set of all e�cient, single-valued, anonymous, and self-covariant solutions

for the class of two-person games, we should consider all three subclasess of super-additive, sub-

additive and additive games separately, since feasible transformations of individual utilities applied

in the de�nition of self-covariance, do not move a game from one class to another.

Let us turn to the class Gsb2 of strictly subadditive two-person games.

A two-person game v is strictly subadditive, if vi + vj > v({i, j}). An extension of the con-

strained egalitarian solution to the class of two-person subadditive games is an analogue of the

equal awards rule for cost allocation problems. The �rst attempt to its de�nition was due to Arin

and I�narra (2001). For every subadditive two-person game v the constrained egalitarian solution

is de�ned by

CE(v) =


(
v({i,j})

2
, v({i,j})

2

)
, if vi, vj ≥ v({i,j})

2
,

(vi, v({i, j})− vi), if vi ≤ v({i,j})
2

< vj,

(v({i, j})− vj, vj), if vj ≤ v({i,j})
2

< vi.

(16)

The CE solution for subadditive games (16) protects the "poor"player (with a smaller value

of the characteristic function) as well as this solution does for superadditive games (6). In fact,

solution (16) either gives to both players equal losses, or the �poor� player saves his value, and

another, ("rich"player) receives his marginal value, which is smaller then his individual value.

Thus, formulas (6), (16) and the equal share solution for additive games de�ne the constrained

egalitarian solution for the class of all two-person games. On Fig.3 by the thick line the locus of

the CE solution is depicted for a particular pair of values (vi, vj), vj > vi and all values v({i, j}).

12
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The locus for the standard solution is depicted by the dotted line. Since both the CE and the

standard solutions are anonymous, on the second half-plane vi > vj they are depicted similarly.

Similarly to solutions ϕk, de�ne now a one-parametric family of anonymous values for two-

person strictly subadditive games. Every value ψl from the family is de�ned by a parameter

l ∈ (−∞,−1) ∪ [1,∞) such that for a game v with vj > vi

ψl(v) =


(
v({i, j})

2
,
v({i, j})

2

)
, if vj − lvi <

(1−l)v({i,j})
2

,(
v({i, j})− vj + lvi

l + 1

)
i

,

(
lv({i, j}) + vj − lvi

l + 1

)
j

, otherwise.
(17)

Note that formula (17) almost coincides with that (14). The di�erence is only in the domain

of parameters k, l and characteristic functions: k ∈ [−1, 1], l ∈ (−∞,−1) ∪ [1,∞); and vi + vj ≤
v({i, j}) in (14), vi + vj ≥ v({i, j}) in (17).

The equality (ψl(v))i = vi is possible only for additive games, thus, from (17) it follows

l =
(ψl(v))j − vj
(ψl(v))i − vi

. (18)
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On Fig.4 the thick piece-wise line depicts the locus of the solutions ψl, l > 1 for variable values

v({i, j}) ≤ vi+ vj. The parameter l equals the tangent of the angle between the horizontal ax and

the ray from the point (vi, vj) to the solution vector ψl(v).

The angle π
2
corresponds to liml→±∞ ψl and coincides with the solution of the constrained

egalitarianism. Thus, we put ψ±∞(v) = CE(v).

For l = 1 ψl is the standard solution,

If l → −1, then liml→−1 ψl(v) =
(
v({i,j})

2
, v({i,j})

2

)
for every strictly subadditive game v, so we put

ψ−1(v) =
(
v({i,j})

2
, v({i,j})

2
)
)
.

By anonymity, formula (17) and its additions for l = −1, l = ∞ completely determines the

solutions ψl for l ∈ [−∞,−1] ∪ [1,∞].

The solutions ψl on the class Gsb2 satisfy the same axioms as those characterizing the solutions

ϕk for the class of superadditive two-person games in Theorem 1: they are non-empty, e�cient,

single-valued, anonymous, and weakly covariant. Moreover, by rewriting the proof of Lemma 1

adapted to solutions ψl, it is easy to show that these solutions are self-covariant on the class Gsb2
for all l ∈ [−∞,−1] ∪ [1,∞].

Let us formulate an analogue of Theorem 1:

Theorem 2 If a solution ψ to the class of strictly subadditive two-person games Gsb2 satis�es

axioms NE, EFF, SV, ANO, WCOV è self-COV, then it is a ψl solution for some l ∈ [−∞,−1]∪
[1,∞].

Now let us unite the solutions ϕk and ψl, and de�ne with their help a family of non-empty

solutions to the class of all non-additive two-person TU games. Such a union is possible, since the

transformations of games admitted for the weak covariance property save super- and sub-additivity

of games.

Then we obtain solutions φkl de�ned for every non-additive two-person game ({i, j}, v) by

φkl(v) =

{
ϕk(v) if vi + vj < v({i, j}), k ∈ (−1, 1],

ψl(v) if vi + vj > v({i, j}), l ∈ [−∞,−1),∪[1,∞],
(19)

and φ−1−1 = ϕ−1 = ψ−1. The last solution � the equal share solution � does not depend on

super or subadditivity of games.

For additive games φkl(v) = φind(v) = (vi, vj) for all k, l 6= −1, and φ−1−1(v) equals the

equal share solution. Note that these two solutions can be combined arbitrarily with solutions for

non-additive games (19) and φ−1−1.

The locus of a solution φkl for some values (vi, vj), vi < vj, k 6= −1, 0, 1, l 6= ∞,−1, 1 and for

variable v({i, j}) is depicted by the thick piece-wise line on Fig 5.
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The next Theorem is the union of the statements of Theorems 1 and 2.

Theorem 3 If a solution φ to the class of all non additive two-person games G2 satis�es ax-

ioms NE, SV, EFF, ANO, w-COV and self-COV, then it is a φkl solution for k ∈ (−1, 1], l ∈
[−∞,−1), [1,∞] and k = l = −1.

Note that both solutions for additive two-person games characterized in Proposition 3, may

be considered jointly with every solution from Theorem 3 and in this way we obtain the set of all

solutions to the class of two-person games verifying all the axioms of Theorem 3.

4 Consistent extensions of self- and weak covariant solutions

for two-person games

In this section we �nd which parameters k, l admit consistent extensions of the solutions φkl, i.e.,

for what values k, l there exist consistent and non-empty solutions φ for the class of all TU games

such that on the class of two-person games they coincide with φkl.

Because we consider only non-empty solutions for the whole class of TU games, in order to

exclude some values k, l it su�ces to show their impossibility at least for one game.

Proposition 4 Both solutions for additive two-person games de�ned in Proposition 3 admit con-

sistent extensions. The unique parameters k, l which can have consistent extensions of the solutions

φkl to the class of all games with arbitrary set of players are: k = {0, 1}, l = 1, and k = l = −1.

The following Theorem shows that the consistent extensions of the two-person game solutions

given in Proposition 4 really exist.

Theorem 4 The unique e�cient, single-valued, anonymous, and self-covariant solutions to the

class of all two-person games, admitting consistent extensions to games with arbitrary set of players

are: 1) the standard solution φ11 2) the constrained egalitarian solution φ01 for superadditive games

and the standard solution for subadditive games; 3)the equal share solution φ−1−1, giving the equal

gains/losses to all players.
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Remark 2 Note that here we apply the solutions φ11, φ01 for the class of additive games as well,

see Remark 1. In fact, it is impossible to extend a solution φkl for non-additive two-person games

together with the equal share solution for additive ones even to games with more than two players

(see the proof of Theorem 4).

Since parameters k, l have expressions in excesses of the corresponding solutions in two-person

games: k, l =
ej

ei
if xj > xi, and since the maximal surpluses of n-person games

sij(x) = max
S3i,S /∈j

(v(S)− x(S)) (20)

do not change under reducing, the second case in Theorem 4 may be formulated as follows:

Corollary 1 Let φ be a consistent extension of the solution φ01 to the class of all TU games.

Then for every game (N, v) and x ∈ φ(N, v) sij(x)sji(x) ≥ 0, for all i, j ∈ N and

either sij(x) = sji(x) > 0, or, if xj > xi, then sji(x) = 0, sij(x) ≤ 0. (21)

Proof. Let a solution φ satisfy all the properties given in the statement of the Theorem, (N, v)

be an arbitrary game, x ∈ φ(N, v). The de�nitions of surpluses and values of the parameters k, l

de�ning the solution φ for the reduced two-person games imply that if x ∈ φ(N, v), then

k or l =
sji(x)

sij(x)
. (22)

Since k = 0 or 1, and l = 1, equality (22) proves the corollary.

Let us take the assertion of Corollary 1 as the de�nition of a solution for cooperative games.

De�nition 2 An e�cient solution Φ on the class G of all TU games is the egalitarian prekernel

(EPK), if for every game (N, v) and x ∈ Φ(N, v) sij(x)sji(x) ≥ 0 for all i, j ∈ N, and for arbitrary

i, j ∈ N either sij(x) = sji(x) > 0, or xi = xj, or else xj > xi implies sji(x) = 0, sij(x) ≤ 0.

The name 'egalitarian prekernel' is conditioned by the facts that the payo� vector x ∈ Φ(N, v)

belongs to the prekernel, x ∈ PK(N, v), if sij(x) > 0 for all i, j ∈ N, and to the egalitarian set

solution (Ar�in, I�narra 2001), if sij(x) ≤ 0 for all i, j ∈ N.
Theorem 4 and Corollary 1 imply that Φ veri�es all the properties of the solution φ in Corollary

1.

De�nition 2, as well as those of the prekernel and of the egalitarian set solution, determines

a solution with the help of some equality and inequality relations between the components of the

solution vector and between the corresponding maximal surplus values. Since the maximal surplus

function sij(x) (20) does not change under reducing of the game, all such solutions are consistent.

Moreover, they possess the converse consistency property. Let us show converse consistency of the

egalitarian prekernel.

Proposition 5 The egalitarian prekernel possesses the converse reduced game property.
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Proof. Let (N, v) be an arbitrary game, x ∈ X∗(N, v), and for all two-person reduced games

w.r.t. x their solution (xi, xj) = EPK({i, j}, vxi,j) satis�es (21). Since the values sij(x) are the

same in two-person reduced games and in the initial game, we obtain that x satis�es (21) as well.

Let (N, v) be an arbitrary TU game, PC(N, v) be its positive core. It is not empty and compact

for every TU game (Orshan, Sudh�olter 2010).

Recall the de�nition of Lorenz domination. Let x, y ∈ Rn. Denote by θ(x), θ(y) ∈ Rn the vector

whose components coincide with those of x, y respectively, but arranged in a weakly increasing

manner. The vector x Lorenz dominates y, if there is k = 1, ..., n such that
∑k

i=1 θi(x) >
∑k

i=1 θi(y),

and
∑j

i=1 θi(x) =
∑j

i=1 θi(y) for all j = 1, ..., k − 1. A payo� vector x is Lorenz maximal in

PC(N, v), if x ∈ PC(N, v), and there is no z ∈ PC(N, v) that Lorenz dominate x.

Since the positive core is compact, the set of maximal Lorenz preimputations PCLor(N, v) is

non-empty for every game (N, v).

Thus, we can consider the set PCLor(N, v) as the solution set for a non-empty solution PCLor

for the class of all TU games.

Proposition 6 PCLor(N, v) ⊂ EPK(N, v) for every TU game (N, v).

Proof. Let (N, v) be and arbitrary game, x ∈ PCLor(N, v). . By the de�nition of the positive

core the equalities sij(x) = sji(x) hold for all i, j ∈ N such that sij(x) ≥ 0.

Assume that sij(x) < 0, if xi < xj. Then by the de�nition of Lorenz domination there are

no transfers (yi, yj) such that yi + yj = xi + xj, (x||yi, yj) ∈ PC(N, v) and (x||yi, yj) Lorenz

dominates x. This can happen only if sji(x) = 0 that proves PCLor(N, v) = φ0,1(N, v) for all

two-person games, or, that is the same, PCLor(N, v) ⊂ EPK(N, v).

Proposition 7 The solution PCLor is consistent on the class of all TU games.

Proof. Since the positive core possesses the recon�rmation property (RCP) (Orshan, Sudh�olter

2010), the proof coincides with that of Lemma 2 in (Hougaard, Peleg, Thornlund 2001).

Propositions 6 and 7 show that the solution PCLor is a non-empty consistent subsolution of

the egalitarian prekernel. Moreover, it is a non-empty consistent extension of the solution φ01.

5 Concluding remarks

The results of sections 3 and 4 imply open problems concerning solutions being consistent ex-

tensions of the solution φ1,0. For the class of convex TU games there is the unique consistent

extension of the constrained egalitarian solution being the Dutta�Ray solution. For the class of

all TU games the maximum consistent extension of the constrained egalitarian solution is the

egalitarian prekernel. Its subsolution PCLor has at least two single-valued consistent and weakly

covariant selectors. For every game (N, v) they are the maximum of the lexmin relation and the

minimum of the lexmax relation on the set PCLor(N, v). The proof of this fact coincides with

that for balanced games (Yanovskaya 1997). Thus, a problem arises to describe the class of TU

games, not being a subclass of the convex ones, such that for every game from that class the
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egalitarian prekernel would have the unique consistent selector. Such a class could be considered

as an extension of the class of convex games.

The well-known single-values solutions � the Shapley value and the Dutta�Ray solution � can

be characterized by the de�nition of the value for two-person games, and by consistency � the

Sobolev consistency for the Shapley value, and the Davis�Maschler consistency for the Dutta�Ray

solution. However, the prenucleolus has no such an axiomatization. In fact, yet it is not known

whether the covariance property is independent of standardness, ETP, and consistency.

6 Appendix

Proof of Lemma 1. It su�ces to prove the Lemma only for the class G0sp
2 with the �xed player set

{i, j}. Evidently the equal share solution ϕ1 is self-covariant. Let v ∈ Gsp2 be an arbitrary game. If

ϕ(v) = (0, 0) then the Lemma is true. Let now ϕk(v) 6= (0, 0). Then, by (14)

ϕk(v) =

(
−vj + kvi
k + 1

,
vj − kvi
k + 1

)
.

Let us calculate ϕk(v + Aϕk(v). Denote v + Aϕk(v) = (mi,mj).

From (14) it follows that (ϕk(v))i ≤ ϕk(v))j for all k ∈ [0, 1]. Hence, for A > −1 mi < mj, and

we have the equality

(
ϕk(v+Aϕk(v)

)
i
=
−mj + kmi

k + 1
=

(−vj + kvi)

k + 1

(
1+

A

k + 1
+

Ak

k + 1

)
= (1+A)

−vj + kvi
k + 1

= (1+A)(ϕk(v))i.

Similarly it can be checked that
(
ϕk(v + Aϕk(v)

)
j
= (A+ 1)(ϕk(v))j.

Proof of Theorem 1. Evidently, the ϕk solutions satisfy axioms NE, EFF, SV, ANO and wCOV.

Lemma 1 shows that they satisfy the axiom self-COV as well.

Let now ϕ be an arbitrary solution for the class Gsp2 satisfying all the axioms stated in the

Theorem. Because of weak covariance of ϕ it su�ces to prove that for every game v ∈ G0sp
2 ⊂ Gsp2

ϕ(v) = ϕk(v) for some k ∈ [−1, 1].

Let v ∈ G0sp
2 be an arbitrary game. Then vi + vj ≤ 0.

If ϕ(v) = (0, 0) for all v ∈ G0
2 , then ϕ = ϕ−1.

Let now there exist a game v ∈ G0sp
2 such that ϕ(v) 6= (0, 0). From de�nition (7) of self-

covariance it follows that ϕ(w) = ϕ(v) for all games w such that

w = βv + (1− β)ϕ(v) for some β ≥ 0. (23)

Let us show that the parameter k(v) =
ϕj(v)−vj

ϕi(v)−vi
is the same for all games v′ with v′i < v′j and

ϕ(v′) 6= (0, 0). Assume that there are two games v1, v2 ∈ G0sp
2 with ϕ(v1), ϕ(v2) 6= (0, 0) such that

k(v1) 6= k(v2). Let k(v1) > k(v2).

Suppose that ϕ(v2)i > ϕ(v1)i. Then the rays from the points ϕ(v1) and ϕ(v2) through v1, v2

respectively, intersect in a point (ui, uj), ui < uj such that ui + uj < 0. Then by (23) ϕ(u) =

ϕ(v1) = ϕ(v2) that contradicts the assumption.
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If ϕ(v1)i > ϕ(v2)i, then consider a game αv1, where α > 0 is su�ciently small such that

ϕ(αv1)i = αϕ(v1)i < ϕ(v2)i. Then, as in the previous case, we obtain k(v2) = k(αv1), and

k(αv1) = k(v1) by positive homogeneity of ϕ.

Thus, we have obtained that k is the unique parameter corresponding to the ϕ = ϕk solution

for games v with ϕ(v) 6= (0, 0).

Consider now games v with zero solution value ϕ(v) = (0, 0).

Equality (23) implies that ϕ(v) = (0, 0) for all games v whose vector v̄ is situated on the ray

xj = kxi, xi ≤ 0 going out of zero point. Consider a game v with vj < kvi. Assume that ϕi(v) < 0,

then the line, connecting v̄ and ϕ(v) intersects the line xj = kxi, and, by self consistency of ϕ, we

should obtain ϕ(v) = 0 that contradicts the assumption ϕi(v) < 0. Assume now that ϕi(v) > 0.

Then the ray going out from the point v̄ and passing through ϕ(v) intersects the diagonal in a

point w̄ = (w,w), w < 0. Since, by anonymity of ϕ, ϕ(w) = (0, 0), by (23) we obtain ϕ(v) = (0, 0),

that again contradicts the assumption.

Hence, ϕ(v) = (0, 0) for all games v with vi < vj and vj ≤ kvi, and we have proved that ϕ = ϕk

for some k ∈ (−1, 1] and for all games from G0sa.

Let now the value ϕ be individually rational. Then k =
ϕj(v)− vj
ϕi(v)− vi

> 0, and the proof is over.

Proof of Theorem 2. The proof is similar to that of Theorem 1.

Let ψ be an arbitrary solution for the class Gsb2 satisfying all the axioms stated in the Theorem.

By weak covariance of the solution ψ it su�ces to prove the theorem only for the class G0sb
2 ∩Gsb2

of games with zero total gain v({i, j}) = 0. Let v be such a game. Then vi + vj > 0. Without loss

of generality we may assume that vj > vi. If ψ(v) = (0, 0) for all v ∈ G0
2 , then ψ = ψ−1.

Let now ψ(v) 6≡ (0, 0). Consider a game with ψ(v) 6= (0, 0). Evidently, as well as for superad-

ditive games, for any subadditive game v and self covariant value ψ ψ(w) = ψ(v) for all games w

satisfying equality (23), or, that is the same,

wj − vj = (wi − vi)
ψj(v)− vj
ψi(v)− vi

. (24)

Denote l =
ψj(v)−vj

ψi(v)−vi
. Then wj = lwi + vj − lvi. Let us show that l ≥ 1 or l ≤ −1. Suppose that

0 ≤ l < 1. Then the ray (24) intersects the diagonal in the point w̄ = (w,w), where vi < w < ψi(v),

so w̄ = αv̄ + (1 − α)ψ(v) for some α ∈ (0, 1). By (23) we obtain (0, 0) = ψ(w) = ψ(v), that is a

contradiction.

Suppose that −1 < l < 0. Then ψj(v) > vj, ψi(v) < vi, hence, the number w satisfying the

equalities and the inequality

−1 < l =
w − vj
w − vi

=
ψj(v)− vi
ψi(v)− vi

< 0,

satis�es the inequality vi < w. Thus, the point v̄ is placed on the same line between ψ(v) and

w̄ = (w,w), hence v̄ = αψ(v) + (1− α)w̄ for some α ∈ (0, 1), or

(1− α)w̄ = v̄ − αψ(v).

Therefore, by self-consistency and positive homogeneity of ψ we obtain ψ(v) = ψ(w) = (0, 0), that

is again a contradiction.
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Thus, l ≥ 1 or l ≤ −1, and the value ψ(v) = ψl(v) for some l and for all games v such that

ψ(v) 6= (0, 0).

Suppose that l > 1 and consider a game v such that l =
vj

vi
. Then ψ(v) = (0, 0), and, by

positive homogeneity of ψ ψ(u) = (0, 0) for every game u = (ui, uj) satisfying uj = lui. Now

consider a game v with vi < vj < lvi. Assume that ϕi(v) < 0, then the line, connecting v̄ and ϕ(v)

intersects the line xj = lxi, and, by self consistency of ψ we obtain ψ(v) = 0 that contradicts the

assumption. If ϕi(v) > 0, then the line, connecting v and ϕ(v), would intersects the diagonal in a

point w̄, and by the same reason we obtain the contradiction 0 = ψ(w) = ψ(v).

Analogously the proof of the equality ψ(v) = (0, 0) for games with 0 >
vj

vi
> l for negative

values of l is full�led.

Thus, we have proved that ψ = ψl for l ∈ [−∞,−1] ∪ [1,∞].

Proof of Proposition 4 The equal share solution and the solution φind(N, v) = {vi}i∈N for

additive games are e�cient, single-valued, anonymous, weak and self-covariant, and consistent.

Consider a solution φkl for the class of non-additive two-person games satisfying the properties

given in Theorem 3. We will �nd under what parameters k, l the solutions φkl have no consistent

extensions to the class of games G3,0 with three players such that (N, v) ∈ G3,0 if |N | = 3, vi >

0, v({i, j} = vi + vj for all i, j ∈ N, . Let for simplicity N = {1, 2, 3}. Without loss of generality

we may suppose that v1 ≤ v2 ≤ v3. For any (N, v) ∈ G3,0 denote φ(N, v) = (x1, x2, x3). Consider

all possible cases of relations between the values vi, xi, i = 1, 2, 3 and x1, x2, x3. In the sequel we

use notation ei = vi − xi, i = 1, 2, 3.

By consistency of the solution φ for every reduced game ({i, j}, vxij) its characteristic function
is de�ned as follows:

vxij({i}) =

{
vi, if et ≤ 0,

vi + et if et > 0, t ∈ {1, 2, 3}, t 6= i, j.
(25)

From the de�nition of the solutions φkl for two-person games it follows that these solutions save

inequalities between the individual characteristic functions values: given a game ({i, j}, v)

vi > vj =⇒ φi({i, j}, v) > φj({i, j}, v). (26)

Thus, from (25),(26) the inequalities x1 ≤ x2 ≤ x3 imply equalities

k or l =

{
ej

ei
if et ≤ 0,

ej+et

ei+et
otherwise ,

(27)

where vj ≥ vi, i, j, t = 1, 2, 3, and k or l are chosen depending on super- or subadditivity of the

reduced game ({i, j}, vxij).
Given the inequalities v1 ≤ v2 ≤ v3, and x1 ≤ x2 ≤ x3, let us consider all cases of inequalities

between vi and xi, i = 1, 2, 3, and between v1 + v2 + v3 and v(N).

1. v1 + v2 + v3 > v(N).

1-1. e1 < 0, e2, e3 > 0.

The reduced game on the set ({2, 3}) is subadditive, and we obtain l = e3
e2
.

a) e1 + e2 + 2e3 > 0, e1 + e3 + 2e2 > 0.
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Since e3 ≥ e2, the right-hand side inequality e1 + e3 + 2e2 > 0 implies the left-hand side one

e1 + e2 + 2e3 > 0.

Then both reduced games on {1, 2}, and on {1, 3} are subadditive, and we obtain the equalities

l =
e2 + e3
e1 + e3

=
e2 + e3
e1 + e2

=
e3
e2
.

These equalities imply e2 = e3, and the only possibility for l is l = 1.

b) e1 + e3 + 2e2 < 0.

In this case the reduced game ({1, 3}, vx13) is superadditive. Therefore,

k =
e3 + e2
e1 + e2

.

Since k ∈ [−1, 1], the last equality implies e3 ≤ e1 that contradicts the inequalities e1 < 0, e3 > 0.

The subcases a) and b) exhaust the case 1-1.

1-2. v1 + v2 + v3 > v(N), e1, e2, e3 > 0.

In this case all reduced games on two-person games ({i, j}, vxi,j) are subadditive< hence,

l =
e2 + e3
e1 + e2

=
e3 + e2
e1 + e2

=
e3 + e1
e2 + e1

,

implying e1 = e2 = e3, l = 1.

1-3. v1 + v2 + v3 > v(N), e1 < 0, e2 < 0, e3 > 0.

a) e1 + e3 > 0, e2 + e3 > 0. As in the previous case we obtain that all two-person reduced

games are subadditive, and

l =
e3
e1

=
e3
e2

=
e2 + e3
e1 + e3

= 1.

b) e1 + e3 > 0, e2 + e3 < 0. The reduced games ({1, 3}, vx1,3) and ({1, 2}, vx1,2) are subadditive,
hence,

l =
e3
e1

=
e2 + e3
e1 + e3

.

However, this equality is impossible, since e2 + e3 < e3, e1 + e3 > e1.

The impossibility of the case e2 + e3 > 0, e1 + e3 < 0 is shown similar to the case b). Since

e1 + e2 < 0, the case 1-3 has been considered completely, giving the unique possibility l = 1.

All the cases ei, ej < 0, et > 0, i, j, t = 1, 2, 3 are considered analogously to the case 1-3. Thus,

the case 1 has been considered completely.

2. v1 + v2 + v3 < v(N).

2-1. e1, e2, e3 < 0. In this case all two-person reduced games are superadditive, hence, we obtain

the following values for k :

k =
e2
e1

=
e3
e1

=
e3
e2
,

implying k = 1.

2-2. e1 < 0, e2 < 0, e3 > 0.

a) e1 + e2 + 2e3 < 0. Then the reduced game ({1, 2}, vx1,2) is superadditive, and k = e2+e3
e1+e3

.

a-1) e1 + e3 > 0. Then e2 + e3 < 0, and the reduced game ({1, 3}, vx1,3) is subadditive< and the

reduced game ({2, 3}, vx2,3) is superadditive. Hence,

l =
e3
e1
, k =

e3
e2
.
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Equalizing two expressions for k, we obtain k = e3
e2

= e2+e3
e1+e3

. However, since e3 > e2 + e3, e2 < 0 <

e1 + e3, the last equality is impossible.

a-2) e2 + e3 > 0. Then e1 + e3 < 0, and similar to case a-1) we obtain

l =
e3
e2
, k =

e3
e1
. (28)

Equalizing the expressions for k we obtain

k =
e3
e1

=
e2 + e3
e1 + e3

, (29)

implying e23 = e1e2. Hence, k =
√

e2
e1
. Since |l| ≥ |k|, from (28) it follows e2 ≥ e1, and, since

|k| ≤ 1, equality (29) may hold only if e1 = e2 = e3 that is impossible.

a-3) e1 + e3 < 0, e2 + e3 < 0. As in the previous cases we obtain l = e2+e3
e1+e3

. The reduced games

({1, 3}, vx1,3), ({2, 3}, vx2,3) are superadditive, hence,

k =
e3
e1

=
e2
e1

implying e1 = e2, and k = l = 1.

The subcase 2-2a) has been considered completely.

b)e1 + e2 + 2e3 > 0. Then the reduced game ({1, 2}, vx1,2) is subadditive, and l = e2+e3
e1+e3

.

b-1) e1 + e3 > 0. Since e1 + e2 < 0, the reduced game ({1, 2}, vx1,2) is subadditive, l = e3
e1
.

Similar to case a-2), equalizing two expressions for l we obtain that the equality l = e3
e1

= e2+e3
e1+e3

is

impossible.

b-2) e1 + e3 < 0 that implies e2 + e3 > 0. Analogously to the previous cases we obtain

k =
e3
e1
, l =

e3
e2

=
e2 + e3
e1 + e3

.

Since |l| ≥ |k|, from these equalities we obtain that e1 < e2.

From the last equality it follows e23 + e1e3 = e22 + e2e3. Hence, e
2
3 > e22 > e21, implying that, in

view of |k| ≤ 1 the only possibility is e3 = −e1, i.e., k = −1, e1 + e3 = 0 → e2 = 0. Therefore,

e1 + e2 + e3 = 0 that contradicts the conditions of case 2.

b-3). e1 + e3 < 0, e2 + e3 < 0. Then from the superadditive reduced games ({1, 3}, vx1,3),
({2, 3}, vx2,3) we obtain

k =
e3
e1

=
e3
e2
.

The last equality implies e1 = e2, hence, k = 1.

If the reduced game ({1, 2}, vx1,2) is superadditive, then we obtain the expression for k once

more. If this game is subadditive, then l = e2+e3
e1+e3

= 1.

Thus, we have �nished studying the case 2-2b), and all possibilities have been considered. We

have shown that for three-person games considered in cases 1�2, a single-valued consistent solution

φ that coincides with ϕk,l on two-person reduced game w.r.t. x = φ({1, 2, 3}, v), and vi − xi 6= 0,

for i = 1, 2, 3, has the unique possibility for parameters k, l : k, l = 1.
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If some of excesses equal zero, then the parameters k, l may take values k = 0 and l = ∞.

Let us show that the second equality l = ∞ is impossible. Consider the example of subadditive

three-person game from (Ar�in, I�narra 2001):

N = {1, 2, 3}, v1 = v2 = 1, v3 = 0, v({1, 3}) = 1.4, v({2, 3}) = 1.3, v({1, 2}) = v(N) = 2.2.

Let y = ϕk,l(N, v). Apply the usual notation sij(y) = max{v({i}) − yi, v({i, k}) − (yi + yk)},
i, j, k ∈ {1, 2, 3}.

By reducing the game on two-person player sets w.r.t. y we obtain that k( or )l =
sij(y)

sji(y)
, if

yi > yj.

First, we show that sij(y) ≥ 0 for all i, j ∈ N. Consider all pairs i, j.
1) Suppose that s12(y) ≤ 0. Since k = 0 or 1, then it should be s12(y) = s21(y) ≤ 0, that implies

inequalities y1 ≥ 1, y1+y3 ≥ 1.4, y2 ≥ 1, y2+y3 ≥ 1.3, and the e�ciency equality y1+y2+y3 = 2.2

These inequality and equality are inconsistent.

2) Suppose that s13(y) = s31(y) ≤ 0. Then y1 ≥ 1, y1 + y2 ≥ 2.2. the last inequality implies

y3 ≤ 0. However, from s31(y) ≤ 0 it follows y3 ≥ 0, that is y3 = 0. The inequality y2 + y3 ≥ 1.3

implies y2 ≥ 1.3, and this inequality together with y1 ≥ 1 are inconsistent with the e�ciency

equality y1 + y2 = 2.2

3) Suppose that s23(y) = s32(y) ≤ 0. It is not di�cult to check that the system of inequalities

y2 ≥ 1, y1 + y2 ≥ 2.2,
y3 ≥ 0, y1 + y3 ≥ 1.4,

y1 + y2 + y3 = 2.2
(30)

is inconsistent.

Therefore, all two-person reduced games are subadditive, and the solution ψl(N, v) should have

parameters l = 1 or l = ∞. The �rst case is impossible as cases 1)-3) above show. The second

possibility means that

yj > yi =⇒ sji(y) ≥ 0, and sij(y) = 0.

The impossibility of this relation had been shown in (Ar�in, I�narra 2002).

Proof of Theorem 4. First, let us show that there are consistent extensions of the solutions 1)�

3). In fact, the prenucleolus equals the standard solution for two-person games and satis�es other

properties given in the Theorem. Hence, on the class of all two-person games the prenucleolus

coincides with the solution φ11.

Let us show the existence of consistent extension of the solution φ01. Given an arbitrary game

(N, v), denote by C(N, v) its core, and by PC(N, v) its positive core. It is non empty for every TU

game (Orshan, Sudh�olter 2010). On the class of subadditive two-person games the positive core

coincides with the prenucleolus, and on the class of two-person superadditive games it coincides

with the core.

Consider the solution PClexmin assigning to every game the payo� vector from the positive

core on which the maximum of the lexmin relation is attained. This solution is single-valued,

anonymous, and on the class of balanced games it coincides with the the lexmin core solution

(Yanovskaya 1997, Ar�in, I�narra 2001). Hence, on the class of subadditive two-person games this

solution coincides with the prenucleolus, and on the class of superadditive two-person games the
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solution PClexmin coincides with the constrained egalitarian solution, thus on the class of all two-

person games PClexmin = φ01.

The proof of consistency of the solution PClexmin can be ful�lled with the help of a slight

modi�cation of the corresponding proof for balanced games in Yanovskaya (1997).

Let φ be an arbitrary solution satisfying the conditions of the Theorem. The equal share

solution is de�ned for games with arbitrary set of players, and satis�es all the properties given in

the Theorem (see Proposition 1).

If φ 6= ES, then φ = φkl, k, l 6= −1 on the class of non-additive two-person games (Theorem

3), then the uniqueness of the values k = 0 or k = 1, l = 1 for the class of non-additive games has

been proved in Proposition 4.

Now let us show that for every additive two-person game ({i, j}, v) this solution φ({i, j}, v) =

φind({i, j}, v) = (vi, vj). For this purpose we should check what a solution � the equal share solution

or the solution φind on the class of additive games � may be consistent with the solutions φ11 and

φ01 on the class of non-additive two-person games.

First, consider the prenucleolus. On the class of convex games the prenucleolus is the unique

single-valued, anonymous, and consistent solution, being equal to the standard solution on the

subclass of two-person games (Theorem Icon.)

This solution coincides with φ11 on the class of all two-person games. Since there are convex

games with more that 3 players such that at least one reduced game on two-player set and

w.r.t. the prenucleolus is additive, we obtain that there are no consistent solutions di�ering from

the standard solution on the class of additive games, since for every additive two-person game

ST ({i, j}, v) = (vi, vj) = φind({i, j}, v).
Now consider the solution PClexmin ∈ PC. For every additive two-person game ({i, j}, v)

PC({i, j}, v) = (vi, vj). Since the positive core is consistent, we obtain that φ = φind for every

additive two-person game.

Thus, only the solution φind can be combined with consistent extensions of the solutions φ11, φ01

on the class of all TU games.
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