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We consider propositional normal unimodal pretransitive logics, i.e., logics with
expressible ‘transitive’ modality. There is a long-standing open problem about the
finite model property (fmp) and decidability of pretransitive logics, in particular – for
the logics Km

n = K + �mp→ �np, n > m > 1.
A pretransitive logic L has the fmp or is decidable, only if these properties hold for

the logic L.sym∗, which is the extension of L with the symmetry axiom for ‘transitive’
modality: like S5 can be embedded into S4, L.sym∗ can be embedded into L.

We show that for all n > m ≥ 1, the logics Km
n .sym∗ have the fmp.

Pretransitive logics.

Definition 1 ([2]). A logic L is called pretransitive (according to [2] – conically expres-
sive), if there exists a formula χ(p) with a single variable p such that for any Kripke
model M with M � L and for any w in M we have:

M, w � χ(p)⇔ ∀u(wR∗u⇒ M, u � p),

where R∗ is the transitive closure of the acceptability relation on M.

To give a syntactic description of pretransitive logics, put �≤nϕ =
∧n

i=0 �iϕ, where
�0ϕ = ϕ, �i+1ϕ = ��iϕ.

Lemma 2 (Shehtman, 2010). L is pretransitive iff L ` �≤mp → �≤m+1p for some
m ≥ 1.

By this lemma, for any pretransitive logic there exists the least m such that the
formula �∗p = �≤mp plays the role of χ(p) from Definition 1. Let ♦∗ϕ = ¬�∗¬ϕ.

Consider the logics Km
n = K + Am

n , where Am
n = �mp→ �np, n > m ≥ 1. For any

m,n, Am
n is a Sahlqvist formula, which corresponds to the property Rn ⊆ Rm; so all Km

n

are canonical, elementary and Kripke-complete pretransitive logics. If m = 1, n = 2,
we obtain the well-known logic K4, which has the fmp. In fact, due to [1], all logics K1

n

have the fmp. Logics with m > 1 were also considered (to our knowledge, K2
3 appears

already in the 1960s in papers by Segerberg and Sobociński); nevertheless, no results
about the fmp or decidability for these logics are known yet.

Logics with the symmetry axiom for �∗. For a pretransitive logic L, put

L.sym∗ = L + (p→ �∗♦∗p).

(In [3], logics of this kind were considered in the particular case where
L = K + �≤mp→ �≤m+1p.) It is well-known that for any formula ϕ, S5 ` ϕ ⇔
S4 ` ♦�ϕ ([4]). The following is a generalization of this fact.
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Theorem 3. If L is a pretransitive logic, then for any formula ϕ we have

L.sym∗ ` ϕ⇔ L ` ♦∗�∗ϕ.

Before we prove this theorem, we formulate two simple corollaries of Lemma 2.

Proposition 4. For a pretransitive L and a point generated L-frame F = (W,R),
F � L.sym∗ iff R∗ is the universal relation on W .

Proposition 5. For a pretransitive L and a formula ϕ, let ϕ∗ be the formula ob-
tained from ϕ by replacing � with �∗ and ♦ with ♦∗. Then for any ϕ we have:
S4 ` ϕ⇒ L ` ϕ∗, S5 ` ϕ⇒ L.sym∗ ` ϕ∗.

Proof of Theorem 3. If L ` ♦∗�∗ϕ, then L.sym∗ ` ♦∗�∗ϕ. S5 ` (♦�p→ p), so using
the above proposition, we have L ` ϕ.

To prove the converse direction, we proceed by induction on a derivation of ϕ.
Suppose ϕ = p → �∗♦∗p. Since S4 ` ♦�(p → ♦�p), by the above proposition

L ` ♦∗�∗ϕ.
Suppose L.sym∗ ` ψ1, L.sym∗ ` ψ1 → ϕ. By the induction hypothesis, L ` ♦∗�∗ψ1,

L ` ♦∗�∗(ψ1 → ϕ). Then L ` �∗♦∗�∗ψ1, L ` �∗♦∗�∗(ψ1 → ϕ) (using �-rule, one
can easily show that �∗-rule is admissible in L). S4 ` �♦�p ∧ �♦�(p → q) → ♦�q,
since this formula is valid in any finite S4-frames. So using Proposition 5, we have
♦∗�∗ϕ.

The case when ϕ is obtained by the substitution rule is trivial.
Suppose ϕ = �ψ, L.sym∗ ` ψ. It is easy to check (e.g., using the completeness

of the logics K+�≤mp → �≤m+1p) that L ` ♦∗�∗p → ♦∗�∗�p. By the induction
hypothesis, L ` ♦∗�∗ψ, so L ` ♦∗�∗ϕ.

Corollary 6. If L has the fmp, then L.sym∗ also has the fmp.

Proof. If a formula ϕ is L.sym∗-consistent then �∗♦∗ϕ is satisfiable in a finite L-frame
(W,R). It follows that ϕ is satisfiable in a maximal R∗-cluster, which is an L.sym∗-
frame.

Thus, for a pretransitive L, any negative result about decidability or the fmp for
L.sym∗ transfers to L. At the same time, the authors do not know any examples of
such L.sym∗. Moreover, next we prove that Km

n .sym∗ have the fmp for all n > m ≥ 1.

Finite model property. By Sahlqvist’s Theorem, all logics Km
n .sym∗ are canonical

and elementary. The class of all Km
n .sym∗-frames can be easily characterized in terms

of paths and cycles. By an R-path Σ in (W,R) we mean a finite sequence of at least
two (not necessary distinct) points (x0, x1, . . . , xl), such that xiRxi+1 for all i < l; we
say that Σ connects x0 and xl. l is the length of Σ (notation: [Σ]). If xl = x0 then Σ
is an R-cycle.

Proposition 7. Suppose n > m ≥ 1, F is a point generated frame which is not an
irreflexive singleton. Then F � Km

n .sym∗ iff any two points in W belong to an R-cycle,
and for any w, u, if w, u are connected by an R-path with the length n, then w, u are
connected by an R-path with the length m.

Proposition 8. For any s, r ≥ 0, Km
n ` ♦m+(n−m)q+rp→ ♦m+rp.

Proof. By an easy induction on q.

Proposition 9. All logics Km
n .sym∗ are different.



Proof. Let L1 = Km
n .sym∗ and L2 = Ks

t .sym∗. First, we assume that s < m, then we
consider the following frame

F = (W,R), W = {0, 1, . . . ,m} , xRy ⇔ y = x or y ≡ x+ 1 (mod m+ 1).

It is easy to check that F |= L1 and F 6|= L2.
Now assume that s = m and t < n. Put k = n−m,

F′ = (W ′, R′), W ′ = {0, 1, . . . , k − 1} , xR′y ⇔ y ≡ x+ 1 (mod k).

It is also easy to see that F′ |= L1 and F′ 6|= L2.

Theorem 10. The logics Km
n .sym∗ have the fmp for all n > m ≥ 1.

If m = 1, the statement of the theorem immediately follows from [1] and Corollary
6. Also, for the case m = n+1, this theorem can be easily proved by the straightforward
filtration argument (the same reasoning works if we consider K + �≤mp → �p≤m+1

instead of Km
m+1, [3]). Nevertheless, the standard filtration argument does not work for

the arbitrary case: to preserve validity of Am
n , we have to construct a countermodel in

a more subtle way. First, we need the following slightly modified version of filtration.

Definition 11. Let M = (W,R, θ) be a model, ϕ be a formula, ∼ be an equivalence
relation on W . For u, v ∈W , we define

u ∼ϕ v iff u ∼ x and M,u � ψ ⇔M, v � ψ for every subformula ψ of ϕ.

Let W = W/ ∼ϕ, uRv ⇔ ∃u′ ∈ u ∃v′ ∈ v(u′Rv′), θ(p) = {u |u ∈ θ(p)} for all variables
of ϕ (and put θ(p) = ∅ for other variables). The model (W,R, θ) is called the (minimal)
∼-filtration of M through ϕ.

Note that in the case when ∼ is the universal relation, the ∼-filtration is the stan-
dard minimal filtration. Clearly, ∼-filtrations preserve truth of subformulas of ϕ. Also,
if W/ ∼ is finite, then W/ ∼ϕ is finite too.

Proposition 12. Let (W,R, θ) be a ∼-filtration of (W,R, θ).

• For any l > 0, xRly implies xR
l
y.

• If R∗ is universal on W , then R
∗

is universal on W .

The proof of the above proposition is straightforward. The main difficulty in the
proof of the theorem is to find an appropriate equivalence relation to make sure that
Am

n is valid in the resulting frame.
For a set of integers I, let gcd(I) denotes its greatest common devisor.

Proof of Theorem 10. Let L = Km
n .sym∗, k = m − n. Consider an infinite rooted

L-frame F = (W,R), and suppose that M = (W,R, θ), x � ϕ. We construct a finite
L-frame F = (W,R) where ϕ is satisfiable.

For a positive integer d, consider the relation ∼d on W : u ∼d w iff there exists an
R-path Γ from u to w such that d divides [Γ].

Claim 1. If d divides the length of any R-cycle in F, then ∼d is an equivalence
relation and W/∼d is finite.

Clearly, ∼d is transitive. ∼d is reflexive, since for any w ∈W there exists an R-path
from w to w. If u ∼d w, then d divides [Γ↑] for some R-path Γ↑ from u to w. Let Γ↓

be an R-path from w to u. Then d divides [Γ↑] + [Γ↓], so d divides [Γ↓], and w ∼d u.
To show that W/∼d is finite, take points w1Rw2R . . . Rwd (we can choose these

points because F is serial). If u ∈W , then some Γ connects wd and u. Then wd−r ∼d u,
where r is the remainder of the division [Γ] by d.



To illustrate the following construction, first we consider the simplest case when k
is a prime number or k = 1. In this case, we have two possibilities:
(a) there exists an R-cycle Γ0 such that gcd([Γ0], k) = 1;
(b) k divides the length of any R-cycle in F.

Suppose (a). Let us show that wRlu for any l ≥ m, w, u ∈W . Let v be the starting
point of Γ0, Γ1 be an R-path from w to v, and Γ2 be an R-path from v to u. For some
r < k we have l + [Γ1] + [Γ2] ≡ r (mod k). Consider the path Γ = Γ1Γl+k−r

0 Γ2 (that
is, Γ goes along Γ1 then l+ k− r times along Γ0 and then along Γ2). Thus Γ connects
w and u, and [Γ] = l + qk for some q > 0. By Proposition 8, wRlu.

Let (F, θ) be the minimal filtration of M through ϕ. By Proposition 12, between
any two point in W there exists an R-path with the length m, so F � L.

Suppose (b). In this case, ∼k is an equivalence relation on W . Let (W,R, θ) be
the ∼k-filtration of M through ϕ. Let us show that (W,R) � Am

n . Suppose that
xR

n
y. It means that we have for some x0, x

′
0, . . . , xn, x

′
n: x0 = x, x′n = y, and

xi ∼d x
′
i & x′iRxi+1 for all i < n. Now, since xi ∼d x

′
i implies xiR

qikx′i (for some qi),
there is an R-path Γ from x to y with [Γ] = n + qk, q =

∑
qi. Thus, xRm+(q+1)ky,

and xRmy (Proposition 8), and so xR
m
y (Proposition 12). Hence F � L.

Now we extend the above construction for arbitrary k. In this case, we need a
combination of reasonings from (a) and (b).

Let D =
{
gcd([Γ], k) | Γ is an R-cycle in W

}
, and let d be the greatest common

devisor of D. Let us assume that D = {d1, . . . , ds}.
Claim 2. There exists positive integers a1, . . . , as and R-cycles Γ1, . . . ,Γs such that

a1[Γ1] + · · ·+ as[Γs] ≡ d (mod k).

To prove this claim, note that for every di there exists an R-cycle Γi and a positive
integer li, such that

[Γi] = lidi and li ≡ 1 (mod k).

By the Euclidean algorithm, we have
∑s

i=1 bidi = d for some integers bi, therefore∑s
i=1 aidi ≡ d (mod k) for some ai > 0. Since li ≡ 1 (mod d),

∑s
i=1 ailidi ≡ d (mod k),

which proves the claim.
By Claim 1, ∼d is an equivalence on W . Let (W,R, θ) be the ∼d-filtration of M

through ϕ. Similarly to the case (b), we obtain that if uR
n
w, then u ∈ Rn+drw for

some r ≥ 0. By Proposition 8, we may assume that r < k.
Let vi denote the starting point of Γi, ∆↑i be an R-path from w to vi, ∆↓i – from

vi to w. Let Σi = ∆↑i
k−1

∆↓i
k−1

∆↑i Γ(k−r)ai

i ∆↓i . So Σi is an R-path from w to w and
[Σi] ≡ (k − r)ai[Γi] (mod k). Let Γ = Σ0Σ1 . . .Σs, where Σ0 is an R-path from u to
w with the length n + dr. By Claim 2, [Γ] ≡ m (mod k). Thus, uRmw, uR

m
w and

F � Am
n .
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