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We consider propositional normal unimodal pretransitive logics, i.e., logics with
expressible ‘transitive’ modality. There is a long-standing open problem about the
finite model property (fmp) and decidability of pretransitive logics, in particular — for
the logics KI' = K+ 0O"p — O"p, n > m > 1.

A pretransitive logic L has the fmp or is decidable, only if these properties hold for
the logic L.sym*, which is the extension of L. with the symmetry axiom for ‘transitive’
modality: like S5 can be embedded into S4, L.sym* can be embedded into L.

We show that for all n > m > 1, the logics K!"'.sym* have the fmp.

Pretransitive logics.

Definition 1 ([2]). A logic L is called pretransitive (according to [2] — conically expres-
sive), if there exists a formula x(p) with a single variable p such that for any Kripke
model M with M F L and for any w in M we have:

M, w E x(p) © Vu(wR*u = M, u E p),

where R* is the transitive closure of the acceptability relation on M.

To give a syntactic description of pretransitive logics, put <" = /\?:0 Oy, where
O = ¢, Oty = Ofp.

Lemma 2 (Shehtman, 2010). L is pretransitive iff L = O<™p — O™ %y for some
m > 1.

By this lemma, for any pretransitive logic there exists the least m such that the
formula [0*p = OS™p plays the role of x(p) from Definition 1. Let {*¢ = —[0* .

Consider the logics K" = K+ A", where A" = O0™p — O"p, n > m > 1. For any
m,n, AT is a Sahlqvist formula, which corresponds to the property R™ C R™; so all K"
are canonical, elementary and Kripke-complete pretransitive logics. If m = 1,n = 2,
we obtain the well-known logic K4, which has the fmp. In fact, due to [1], all logics K}
have the fmp. Logics with m > 1 were also considered (to our knowledge, Kg appears
already in the 1960s in papers by Segerberg and Sobocinski); nevertheless, no results
about the fmp or decidability for these logics are known yet.

Logics with the symmetry axiom for [J*. For a pretransitive logic L, put
L.sym" =L+ (p — O0"p).

(In [3], logics of this kind were considered in the particular case where
L =K+ 0OSmp — 0O5"+p) It is well-known that for any formula o, S5 F ¢ <
S4 + OO ([4]). The following is a generalization of this fact.
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Theorem 3. If L is a pretransitive logic, then for any formula ¢ we have
Lsym' k¢ < LE O O%.
Before we prove this theorem, we formulate two simple corollaries of Lemma 2.

Proposition 4. For a pretransitive L and a point generated L-frame F = (W, R),
F E L.sym* iff R* is the universal relation on W.

Proposition 5. For a pretransitive L and a formula ¢, let ©* be the formula ob-
tained from ¢ by replacing O with O% and O with O*. Then for any ¢ we have:
SdFe=LF¢* S5F ¢ = L.sym"| ¢*.

Proof of Theorem 3. If L F ¢*0O%p, then L.sym* - 0*0*p. S5 F (OOp — p), so using
the above proposition, we have L F ¢.

To prove the converse direction, we proceed by induction on a derivation of .

Suppose ¢ = p — O0*0*p. Since S4 F OO(p — OOp), by the above proposition
LE O*O%.

Suppose L.sym* b 11, L.sym* | 1)1 — . By the induction hypothesis, L - O*[0*),
L+ O*O0*(¢1 — ). Then L F O*0*0O*yy, L F O*0*0*(¢1 — ) (using O-rule, one
can easily show that O*-rule is admissible in L). S4 - O0Op A O00(p — ¢q) — 0Ugq,
since this formula is valid in any finite S4-frames. So using Proposition 5, we have
O .

The case when ¢ is obtained by the substitution rule is trivial.

Suppose ¢ = Oy, L.sym® F 9. It is easy to check (e.g., using the completeness
of the logics K+O<™p — OS™*1p) that L - ¢*0p — O*0*0p. By the induction
hypothesis, L = ¢*O*, so L F $*O* . O

Corollary 6. If L has the fmp, then L.sym* also has the fmp.

Proof. If a formula ¢ is L.sym*-consistent then [0*()* ¢ is satisfiable in a finite L-frame
(W, R). Tt follows that ¢ is satisfiable in a maximal R*-cluster, which is an L.sym®*-
frame. O

Thus, for a pretransitive L, any negative result about decidability or the fmp for
L.sym* transfers to L. At the same time, the authors do not know any examples of
such L.sym*. Moreover, next we prove that K]'.sym* have the fmp for all n > m > 1.

Finite model property. By Sahlqvist’s Theorem, all logics K'.sym* are canonical
and elementary. The class of all K]'.sym*-frames can be easily characterized in terms
of paths and cycles. By an R-path ¥ in (W, R) we mean a finite sequence of at least
two (not necessary distinct) points (zg, 21, ..., 2;), such that x; Rx; 41 for all i < I; we
say that 3 connects zg and x;. 1 is the length of ¥ (notation: [X]). If #; = xo then ¥
is an R-cycle.

Proposition 7. Suppose n > m > 1, F is a point generated frame which is not an
irreflexive singleton. Then FE K'.sym® iff any two points in W belong to an R-cycle,
and for any w,u, if w,u are connected by an R-path with the length n, then w,u are
connected by an R-path with the length m.

Proposition 8. For any s,r > 0, K" |- mtn=—matry, , mry,
Proof. By an easy induction on gq. O

Proposition 9. All logics K" .sym* are different.



Proof. Let L1 = K]'.sym* and Ly = K{.sym". First, we assume that s < m, then we
consider the following frame

F=W,R), W={0,1,...,m}, xkRy<y=zory=x+1 (mod m+1).

It is easy to check that F |= L; and F & L.
Now assume that s =m and t <n. Put k=n —m,

F=W,R), W ={0,1,...,k—1}, 2Ry y=x2+1 (mod k).
It is also easy to see that F' |= Ly and F’ [~ Lo. O
Theorem 10. The logics K]'.sym* have the fmp for alln > m > 1.

If m = 1, the statement of the theorem immediately follows from [1] and Corollary
6. Also, for the case m = n+1, this theorem can be easily proved by the straightforward
filtration argument (the same reasoning works if we consider K + O0<™p — Op<m+!
instead of K7, ;, [3]). Nevertheless, the standard filtration argument does not work for
the arbitrary case: to preserve validity of A}, we have to construct a countermodel in

a more subtle way. First, we need the following slightly modified version of filtration.

Definition 11. Let M = (W, R, 0) be a model, ¢ be a formula, ~ be an equivalence
relation on W. For u,v € W, we define

u~?viff u~xand M,uFE ¢ < M,vE 1y for every subformula 1 of ¢.

Let W =W/ ~%, uRv & 3u' € uw I’ € 5(v/Rv’), 0(p) = {u|u € 6(p)} for all variables
of ¢ (and put 6(p) = @ for other variables). The model (W, R, ) is called the (minimal)
~-filtration of M through .

Note that in the case when ~ is the universal relation, the ~-filtration is the stan-
dard minimal filtration. Clearly, ~-filtrations preserve truth of subformulas of ¢. Also,
if W/ ~ is finite, then W/ ~¥ is finite too.

Proposition 12. Let (W, R,0) be a ~-filtration of (W, R, 0).
e For any | > 0, xRy implies Tﬁly.
o If R* is universal on W, then R" is universal on W.

The proof of the above proposition is straightforward. The main difficulty in the
proof of the theorem is to find an appropriate equivalence relation to make sure that
AT is valid in the resulting frame.

For a set of integers I, let ged(I) denotes its greatest common devisor.

Proof of Theorem 10. Let L = K'.sym*, k = m — n. Consider an infinite rooted
L-frame F = (W, R), and suppose that M = (W, R,0),x E ¢. We construct a finite
L-frame F = (W, R) where ¢ is satisfiable.

For a positive integer d, consider the relation ~4 on W: u ~g4 w iff there exists an
R-path T from u to w such that d divides [I].

Claim 1. 1f d divides the length of any R-cycle in F, then ~y is an equivalence
relation and W/~ is finite.

Clearly, ~ is transitive. ~ is reflexive, since for any w € W there exists an R-path
from w to w. If u ~4 w, then d divides [[''] for some R-path T'T from u to w. Let T'
be an R-path from w to u. Then d divides [['1] + [['Y], so d divides [['}], and w ~g u.

To show that W/~ is finite, take points wjRwsR ... Rwy (we can choose these
points because F is serial). If u € W, then some I' connects wg and u. Then wg—, ~q u,
where r is the remainder of the division [I'] by d.



To illustrate the following construction, first we consider the simplest case when k
is a prime number or k = 1. In this case, we have two possibilities:
(a) there exists an R-cycle T'g such that ged([To], k) = 1;

(b) k divides the length of any R-cycle in F.

Suppose (a). Let us show that wR'u for any [ > m, w,u € W. Let v be the starting
point of T'g, I'; be an R-path from w to v, and I's be an R-path from v to u. For some
r < k we have [ + [[';] + [['2] = 7 (mod k). Consider the path T' = T',T5™~"T'y (that
is, I goes along I'y then [ + k — r times along I'y and then along I';). Thus I' connects
w and u, and [['] = [ + gk for some ¢ > 0. By Proposition 8, wRu.

Let (F,0) be the minimal filtration of M through ¢. By Proposition 12, between
any two point in W there exists an R-path with the length m, so F E L.

Suppose (b). In this case, ~;, is an equivalence relation on W. Let (W, R,0) be
the ~-filtration of M through . Let us show that (W,R) F A™. Suppose that
ZR"y. It means that we have for some Oy LYy« ey Ty Tt Xg = x, x, = y, and
x; ~q ), & T\ Rxiy for all i < n. Now, since z; ~¢ x} implies x; R%*z! (for some ¢;),
there is an R-path I' from z to y with [I] = n 4 gk, ¢ = 3. ¢;. Thus, zR™HatDky,
and zR™y (Proposition 8), and so ZR"'y (Proposition 12). Hence F F L.

Now we extend the above construction for arbitrary k. In this case, we need a
combination of reasonings from (a) and (b).

Let D = {gcd([I'],k) | I is an R-cycle in W}, and let d be the greatest common
devisor of D. Let us assume that D = {d;,...,ds}.

Claim 2. There exists positive integers aq,...,as and R-cycles I'y,...,'s such that
a1[T1] + -+ as[Ts] = d (mod k).

To prove this claim, note that for every d; there exists an R-cycle I'; and a positive
integer [;, such that
[[;] = Lid; and I; = 1 (mod k).

By the Euclidean algorithm, we have Y ;_, b;d; = d for some integers b;, therefore
> aid; = d (mod k) for some a; > 0. Since l; = 1 (mod d), >°:_, a;l;d; = d (mod k),
which proves the claim.

By Claim 1, ~4 is an equivalence on W. Let (W, R, ) be the ~y-filtration of M
through . Similarly to the case (b), we obtain that if wR"w, then u € Ry for
some r > 0. By Proposition 8, we may assume that r < k.

Let v; denote the starting point of I';, AZT be an R-path from w to v, A} — from

v; to w. Let ¥; = Azk_lA%k_lAIFl(-k*T)aiA%. So ¥; is an R-path from w to w and
[¥i] = (k —r)a;[y] (mod k). Let I' = X% ... %, where Xy is an R-path from u to
w with the length n + dr. By Claim 2, [I'] = m (mod k). Thus, uR™w, uR w and
FEA™ O
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