Finite model property of pretransitive analogs of $S5^*$

Andrey Kudinov[†], Ilya Shapirovsky[†]

We consider propositional normal unimodal *pretransitive* logics, i.e., logics with expressible 'transitive' modality. There is a long-standing open problem about the finite model property (fmp) and decidability of pretransitive logics, in particular – for the logics $K_n^m = K + \Box^m p \rightarrow \Box^n p$, n > m > 1.

A pretransitive logic L has the fmp or is decidable, only if these properties hold for the logic L.sym^{*}, which is the extension of L with the symmetry axiom for 'transitive' modality: like S5 can be embedded into S4, L.sym^{*} can be embedded into L.

We show that for all $n > m \ge 1$, the logics \mathbf{K}_n^m .sym^{*} have the fmp.

Pretransitive logics.

Definition 1 ([2]). A logic L is called *pretransitive* (according to [2] – *conically expressive*), if there exists a formula $\chi(p)$ with a single variable p such that for any Kripke model M with $M \models L$ and for any w in M we have:

$$\mathsf{M}, w \vDash \chi(p) \Leftrightarrow \forall u(wR^*u \Rightarrow \mathsf{M}, u \vDash p),$$

where R^* is the transitive closure of the acceptability relation on M.

To give a syntactic description of pretransitive logics, put $\Box^{\leq n} \varphi = \bigwedge_{i=0}^{n} \Box^{i} \varphi$, where $\Box^{0} \varphi = \varphi$, $\Box^{i+1} \varphi = \Box \Box^{i} \varphi$.

Lemma 2 (Shehtman, 2010). L is pretransitive iff $L \vdash \Box^{\leq m} p \to \Box^{\leq m+1} p$ for some $m \geq 1$.

By this lemma, for any pretransitive logic there exists the least m such that the formula $\Box^* p = \Box^{\leq m} p$ plays the role of $\chi(p)$ from Definition 1. Let $\Diamond^* \varphi = \neg \Box^* \neg \varphi$.

Consider the logics $\mathbf{K}_n^m = \mathbf{K} + \mathbf{A}_n^m$, where $\mathbf{A}_n^m = \Box^m p \to \Box^n p$, $n > m \ge 1$. For any m, n, \mathbf{A}_n^m is a Sahlqvist formula, which corresponds to the property $\mathbb{R}^n \subseteq \mathbb{R}^m$; so all \mathbf{K}_n^m are canonical, elementary and Kripke-complete pretransitive logics. If m = 1, n = 2, we obtain the well-known logic K4, which has the fmp. In fact, due to [1], all logics \mathbf{K}_n^1 have the fmp. Logics with m > 1 were also considered (to our knowledge, \mathbf{K}_3^2 appears already in the 1960s in papers by Segerberg and Sobociński); nevertheless, no results about the fmp or decidability for these logics are known yet.

Logics with the symmetry axiom for \Box^* . For a pretransitive logic L, put

$$L.sym^* = L + (p \rightarrow \Box^* \Diamond^* p).$$

(In [3], logics of this kind were considered in the particular case where $L = K + \Box^{\leq m} p \to \Box^{\leq m+1} p$.) It is well-known that for any formula φ , $S5 \vdash \varphi \Leftrightarrow$ $S4 \vdash \Diamond \Box \varphi$ ([4]). The following is a generalization of this fact.

^{*}The authors acknowledges the support of grant 11-01-00958-a of Russian Foundation for Basic Research

[†]Institute for Information Transmission Problems, Moscow, Russia

Theorem 3. If L is a pretransitive logic, then for any formula φ we have

$$L.sym^* \vdash \varphi \Leftrightarrow L \vdash \Diamond^* \Box^* \varphi.$$

Before we prove this theorem, we formulate two simple corollaries of Lemma 2.

Proposition 4. For a pretransitive L and a point generated L-frame $\mathsf{F} = (W, R)$, $\mathsf{F} \models \text{L.sym}^*$ iff R^* is the universal relation on W.

Proposition 5. For a pretransitive L and a formula φ , let φ^* be the formula obtained from φ by replacing \Box with \Box^* and \Diamond with \Diamond^* . Then for any φ we have: S4 $\vdash \varphi \Rightarrow$ L $\vdash \varphi^*$, S5 $\vdash \varphi \Rightarrow$ L.sym^{*} $\vdash \varphi^*$.

Proof of Theorem 3. If $L \vdash \Diamond^* \Box^* \varphi$, then $L.sym^* \vdash \Diamond^* \Box^* \varphi$. S5 $\vdash (\Diamond \Box p \rightarrow p)$, so using the above proposition, we have $L \vdash \varphi$.

To prove the converse direction, we proceed by induction on a derivation of φ .

Suppose $\varphi = p \to \Box^* \Diamond^* p$. Since S4 $\vdash \Diamond \Box (p \to \Diamond \Box p)$, by the above proposition $L \vdash \Diamond^* \Box^* \varphi$.

Suppose L.sym^{*} $\vdash \psi_1$, L.sym^{*} $\vdash \psi_1 \to \varphi$. By the induction hypothesis, $L \vdash \Diamond^* \Box^* \psi_1$, $L \vdash \Diamond^* \Box^* (\psi_1 \to \varphi)$. Then $L \vdash \Box^* \Diamond^* \Box^* \psi_1$, $L \vdash \Box^* \Diamond^* \Box^* (\psi_1 \to \varphi)$ (using \Box -rule, one can easily show that \Box^* -rule is admissible in L). S4 $\vdash \Box \Diamond \Box p \land \Box \Diamond \Box (p \to q) \to \Diamond \Box q$, since this formula is valid in any finite S4-frames. So using Proposition 5, we have $\Diamond^* \Box^* \varphi$.

The case when φ is obtained by the substitution rule is trivial.

Suppose $\varphi = \Box \psi$, L.sym^{*} $\vdash \psi$. It is easy to check (e.g., using the completeness of the logics $K + \Box^{\leq m} p \to \Box^{\leq m+1} p$) that $L \vdash \Diamond^* \Box^* p \to \Diamond^* \Box^* \Box p$. By the induction hypothesis, $L \vdash \Diamond^* \Box^* \psi$, so $L \vdash \Diamond^* \Box^* \varphi$. \Box

Corollary 6. If L has the fmp, then $L.sym^*$ also has the fmp.

Proof. If a formula φ is L.sym^{*}-consistent then $\Box^* \Diamond^* \varphi$ is satisfiable in a finite L-frame (W, R). It follows that φ is satisfiable in a maximal R^* -cluster, which is an L.sym^{*}-frame. \Box

Thus, for a pretransitive L, any negative result about decidability or the fmp for L.sym^{*} transfers to L. At the same time, the authors do not know any examples of such L.sym^{*}. Moreover, next we prove that K_n^m .sym^{*} have the fmp for all $n > m \ge 1$.

Finite model property. By Sahlqvist's Theorem, all logics K_n^m .sym^{*} are canonical and elementary. The class of all K_n^m .sym^{*}-frames can be easily characterized in terms of paths and cycles. By an *R*-path Σ in (W, R) we mean a finite sequence of at least two (not necessary distinct) points (x_0, x_1, \ldots, x_l) , such that $x_i R x_{i+1}$ for all i < l; we say that Σ connects x_0 and x_l . l is the length of Σ (notation: $[\Sigma]$). If $x_l = x_0$ then Σ is an *R*-cycle.

Proposition 7. Suppose $n > m \ge 1$, F is a point generated frame which is not an irreflexive singleton. Then $\mathsf{F} \models \mathsf{K}_n^m$.sym^{*} iff any two points in W belong to an R-cycle, and for any w, u, if w, u are connected by an R-path with the length n, then w, u are connected by an R-path with the length n.

Proposition 8. For any $s, r \ge 0$, $\mathbf{K}_n^m \vdash \Diamond^{m+(n-m)q+r} p \rightarrow \Diamond^{m+r} p$.

Proof. By an easy induction on q.

Proposition 9. All logics K_n^m .sym^{*} are different.

Proof. Let $L_1 = K_n^m$.sym^{*} and $L_2 = K_t^s$.sym^{*}. First, we assume that s < m, then we consider the following frame

$$\mathsf{F} = (W, R), \ W = \{0, 1, \dots, m\}, \ xRy \Leftrightarrow y = x \text{ or } y \equiv x + 1 \pmod{m+1}.$$

It is easy to check that $\mathsf{F} \models L_1$ and $\mathsf{F} \not\models L_2$.

Now assume that s = m and t < n. Put k = n - m,

$$F' = (W', R'), W' = \{0, 1, \dots, k-1\}, xR'y \Leftrightarrow y \equiv x+1 \pmod{k}.$$

It is also easy to see that $\mathsf{F}' \models L_1$ and $\mathsf{F}' \not\models L_2$.

Theorem 10. The logics K_n^m sym^{*} have the fmp for all $n > m \ge 1$.

If m = 1, the statement of the theorem immediately follows from [1] and Corollary 6. Also, for the case m = n+1, this theorem can be easily proved by the straightforward filtration argument (the same reasoning works if we consider $K + \Box^{\leq m} p \to \Box p^{\leq m+1}$ instead of K_{m+1}^m , [3]). Nevertheless, the standard filtration argument does not work for the arbitrary case: to preserve validity of A_n^m , we have to construct a countermodel in a more subtle way. First, we need the following slightly modified version of filtration.

Definition 11. Let $M = (W, R, \theta)$ be a model, φ be a formula, \sim be an equivalence relation on W. For $u, v \in W$, we define

 $u \sim^{\varphi} v$ iff $u \sim x$ and $M, u \vDash \psi \Leftrightarrow M, v \vDash \psi$ for every subformula ψ of φ .

Let $\overline{W} = W/\sim^{\varphi}, \ \overline{u}\overline{R}\overline{v} \Leftrightarrow \exists u' \in \overline{u} \ \exists v' \in \overline{v}(u'Rv'), \ \overline{\theta}(p) = \{\overline{u} \mid u \in \theta(p)\}\$ for all variables of φ (and put $\overline{\theta}(p) = \emptyset$ for other variables). The model $(\overline{W}, \overline{R}, \overline{\theta})$ is called *the (minimal)* \sim -filtration of M through φ .

Note that in the case when \sim is the universal relation, the \sim -filtration is the standard *minimal filtration*. Clearly, \sim -filtrations preserve truth of subformulas of φ . Also, if W/\sim is finite, then W/\sim^{φ} is finite too.

Proposition 12. Let $(\overline{W}, \overline{R}, \overline{\theta})$ be a ~-filtration of (W, R, θ) .

- For any l > 0, $xR^l y$ implies $\overline{xR}^l \overline{y}$.
- If R^* is universal on W, then \overline{R}^* is universal on \overline{W} .

The proof of the above proposition is straightforward. The main difficulty in the proof of the theorem is to find an appropriate equivalence relation to make sure that A_n^m is valid in the resulting frame.

For a set of integers I, let gcd(I) denotes its greatest common devisor.

Proof of Theorem 10. Let $L = K_n^m$.sym^{*}, k = m - n. Consider an infinite rooted L-frame F = (W, R), and suppose that $M = (W, R, \theta), x \models \varphi$. We construct a finite L-frame $\overline{F} = (\overline{W}, \overline{R})$ where φ is satisfiable.

For a positive integer d, consider the relation \sim_d on W: $u \sim_d w$ iff there exists an *R*-path Γ from u to w such that d divides [Γ].

Claim 1. If d divides the length of any R-cycle in F, then \sim_d is an equivalence relation and W/\sim_d is finite.

Clearly, \sim_d is transitive. \sim_d is reflexive, since for any $w \in W$ there exists an *R*-path from w to w. If $u \sim_d w$, then d divides $[\Gamma^{\uparrow}]$ for some *R*-path Γ^{\uparrow} from u to w. Let Γ^{\downarrow} be an *R*-path from w to u. Then d divides $[\Gamma^{\uparrow}] + [\Gamma^{\downarrow}]$, so d divides $[\Gamma^{\downarrow}]$, and $w \sim_d u$.

To show that W/\sim_d is finite, take points $w_1 R w_2 R \dots R w_d$ (we can choose these points because F is serial). If $u \in W$, then some Γ connects w_d and u. Then $w_{d-r} \sim_d u$, where r is the remainder of the division $[\Gamma]$ by d.

To illustrate the following construction, first we consider the simplest case when k is a prime number or k = 1. In this case, we have two possibilities:

(a) there exists an *R*-cycle Γ_0 such that $gcd([\Gamma_0], k) = 1$;

(b) k divides the length of any R-cycle in F.

Suppose (a). Let us show that $wR^l u$ for any $l \ge m$, $w, u \in W$. Let v be the starting point of Γ_0 , Γ_1 be an R-path from w to v, and Γ_2 be an R-path from v to u. For some r < k we have $l + [\Gamma_1] + [\Gamma_2] \equiv r \pmod{k}$. Consider the path $\Gamma = \Gamma_1 \Gamma_0^{l+k-r} \Gamma_2$ (that is, Γ goes along Γ_1 then l + k - r times along Γ_0 and then along Γ_2). Thus Γ connects w and u, and $[\Gamma] = l + qk$ for some q > 0. By Proposition 8, $wR^l u$.

Let $(\overline{\mathsf{F}}, \overline{\theta})$ be the minimal filtration of M through φ . By Proposition 12, between any two point in \overline{W} there exists an \overline{R} -path with the length m, so $\overline{\mathsf{F}} \models \mathsf{L}$.

Suppose (b). In this case, \sim_k is an equivalence relation on W. Let $(\overline{W}, \overline{R}, \overline{\theta})$ be the \sim_k -filtration of M through φ . Let us show that $(\overline{W}, \overline{R}) \models A_n^m$. Suppose that $\overline{xR}^n \overline{y}$. It means that we have for some $x_0, x'_0, \ldots, x_n, x'_n$: $x_0 = x$, $x'_n = y$, and $x_i \sim_d x'_i \& x'_i R x_{i+1}$ for all i < n. Now, since $x_i \sim_d x'_i$ implies $x_i R^{q_i k} x'_i$ (for some q_i), there is an R-path Γ from x to y with $[\Gamma] = n + qk, q = \sum q_i$. Thus, $xR^{m+(q+1)k}y$, and $xR^m y$ (Proposition 8), and so $\overline{xR}^m \overline{y}$ (Proposition 12). Hence $\overline{\mathsf{F}} \models \mathsf{L}$.

Now we extend the above construction for arbitrary k. In this case, we need a combination of reasonings from (a) and (b).

Let $D = \{gcd([\Gamma], k) \mid \Gamma \text{ is an } R\text{-cycle in } W\}$, and let d be the greatest common devisor of D. Let us assume that $D = \{d_1, \ldots, d_s\}$.

Claim 2. There exists positive integers a_1, \ldots, a_s and *R*-cycles $\Gamma_1, \ldots, \Gamma_s$ such that

$$a_1[\Gamma_1] + \dots + a_s[\Gamma_s] \equiv d \pmod{k}.$$

To prove this claim, note that for every d_i there exists an *R*-cycle Γ_i and a positive integer l_i , such that

$$[\Gamma_i] = l_i d_i$$
 and $l_i \equiv 1 \pmod{k}$.

By the Euclidean algorithm, we have $\sum_{i=1}^{s} b_i d_i = d$ for some integers b_i , therefore $\sum_{i=1}^{s} a_i d_i \equiv d \pmod{k}$ for some $a_i > 0$. Since $l_i \equiv 1 \pmod{d}$, $\sum_{i=1}^{s} a_i l_i d_i \equiv d \pmod{k}$, which proves the claim.

By Claim 1, \sim_d is an equivalence on W. Let $(\overline{W}, \overline{R}, \overline{\theta})$ be the \sim_d -filtration of M through φ . Similarly to the case (b), we obtain that if $\overline{uR}^n \overline{w}$, then $u \in R^{n+dr} w$ for some $r \geq 0$. By Proposition 8, we may assume that r < k.

Let v_i denote the starting point of Γ_i , Δ_i^{\uparrow} be an *R*-path from w to v_i , Δ_i^{\downarrow} – from v_i to w. Let $\Sigma_i = \Delta_i^{\uparrow k-1} \Delta_i^{\downarrow k-1} \Delta_i^{\uparrow} \Gamma_i^{(k-r)a_i} \Delta_i^{\downarrow}$. So Σ_i is an *R*-path from w to w and $[\Sigma_i] \equiv (k-r)a_i[\Gamma_i] \pmod{k}$. Let $\Gamma = \Sigma_0 \Sigma_1 \dots \Sigma_s$, where Σ_0 is an *R*-path from u to w with the length n + dr. By Claim 2, $[\Gamma] \equiv m \pmod{k}$. Thus, $uR^m w$, $\overline{uR}^m \overline{w}$ and $\overline{\mathsf{F}} \vDash \Lambda_n^m$.

References

- D. Gabbay. A general filtration method for modal logics. Journal of Philosophical Logic, 1(1):29–34, 1972.
- [2] D. Gabbay, V. Shehtman, and D. Skvortsov. Quantification in Nonclassical Logic. Elsevier, 2009.
- [3] R. Jansana. Some logics related to von Wright's logic of place. Notre Dame Journal of Formal Logic, 35(1):88–98, 1994.
- [4] K. Matsumoto. Reduction theorem in Lewis's sentential calculi. Mathematica Japonicae, 3:133-135, 1955.