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1. Introduction

In this note we present a wide class of bilinear identities the Schur symmetric functions satisfy.
The bilinear identities are homogeneous second order polynomial relations with integer coefficients,
connecting different Schur functions. For the detailed treatment of the Schur function theory, the
corresponding terminology, examples etc., see the monograph [Mac]. Here we give only a short list
of definitions and key examples for convenience of the reader.

A sequence of non-increasing non-negative integers

λ = (λ1, λ2, . . . , λi, . . . ), λ1 ≥ λ2 ≥ · · · ≥ λi ≥ . . .

containing only finitely many non-zero terms is called a partition. The total number of non-zero
components, `(λ), is called the height of a given partition λ

`(λ) = n ⇐⇒ λn > 0, λn+1 = 0.

Given a partition λ with `(λ) = n, the Schur symmetric function (actually, it is a polynomial)
sλ(t1, . . . , tm), where m ≥ `(λ), is an element of the ring Z[t1, . . . , tm] defined as the ratio of two
determinants [Mac]

sλ(t1, . . . , tm) =
det ‖tλj+m−ji ‖

det ‖tm−ji ‖

∣∣∣∣∣
1≤i,j≤m

.
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The set of Schur symmetric functions sλ(t1, . . . , tm) labeled by all partitions λ with `(λ) ≤ m forms
a Z-basis of the subring of symmetric polynomials

Λm = Z[t1, . . . , tm]Sm

where the symmetric group Sm acts on the polynomials from Z[t1, . . . , tm] by the permutating the
indeterminates.

The ring Λm is graded

Λm =
⊕
k≥0

Λkm,

where Λkm consists of the homogeneous symmetric polynomials of degree k. Then by a specific
inverse limit (for details, see [Mac]) as m → ∞ we pass from Λkm to a graded ring Λ called the
ring of symmetric functions in countably many indeterminates {ti}i∈N. For each partition λ, the
polynomials sλ ∈ Λm, define a unique element sλ ∈ Λ called the Schur symmetric function in
countably many indeterminates. Note that sλ ∈ Λ is no longer polynomial (as well as other elements
of the ring Λ). It is a formal infinite sum of monomials, each of them being homogeneous of degree
|λ| = λ1 + · · · + λn. The Schur symmetric functions form a Z-basis of the ring Λ and satisfy the
Littlewood-Richardson multiplication rule

sλsµ =
∑
ν

Cνλµsν , (1.1)

where the non-negative integers Cνλµ (the Littlewood-Richardson coefficients) are calculated by some
combinatorial rule from partitions λ, µ and ν. Actually, the multiplication rule (1.1) can be taken
for the formal definition of the ring Λ in the Z-basis of Schur symmetric functions.

The bilinear identities we would like to discuss is another type of relations among the Schur
functions. As was mentioned at the beginning of the section, they are of the form p({sλi}) = 0,
where p({xi}) is a homogeneous second order polynomial (a bilinear form) in its indeterminates
with integer coefficients. These identities follow, of course, from the multiplication rule (1.1) but we
use another technique to prove them.

As the first example of such identities we mention the bilinear relations obtained in [Kir]:

s[m|n]s[m|n] = s[m|n−1]s[m|n+1] + s[m−1|n]s[m+1|n], (1.2)

where [m|n] stands for the partition (mn) with n components equal to m. This identity connects the
characters of the irreducible representations of SU(p + 1), where s[m|n] is a character of the m-th
symmetric power of the fundamental SU(p + 1) representation πn corresponding to the signature
(1, 1, . . . , 1, 0, . . . , 0) (n units, 1 ≤ n ≤ p). The identity (1.2) played the key role in proving the
completeness of the Bethe vector set for the generalized Heisenberg model. In the paper [KR],
analogous bilinear identities were obtained for the characters of symmetric powers of fundamental
representations of other classical Lie groups (of B, C and D series).

In the work [GPS] on quantum supermatrix algebras of GL(m|n) type, we generalized the above
identities to the products s[a|b] s[m|n] for arbitrary integers 1 ≤ a ≤ m and 1 ≤ b ≤ n:

s[a|b] s[m|n] =
a∑
k=

max{1,a+b−n}

(−1)a−ks[m|n]a+b−k s[a−1|b−1]k−1 +
b∑
k=

max{1,a+b−m}

(−1)b−ks[m|n]a+b−k s[a−1|b−1]k−1 ,

(1.3)
where the symbols [r|p]k (k ≤ r) and [r|p]k (k ≤ p) denote the partitions ((p+1)k, pr−k) and (pr, k),
respectively. These identities turned out to be useful in studying the structure of the maximal
commutative subalgebras of the quantum supermatrix algebra.
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In the work [Kl], identity (1.2) was generalized to the product sλsλ for an arbitrary partition λ.
In the present paper, we give a different version of the identity for the product sλsλ. In contrast with
the result of [Kl], our formula admits the transposition of the Young diagrams which parameterize
the Schur functions. In other words, given a bilinear identity for sλsλ, we get a true identity if we
change all the partitions λ by their conjugates λ′ (see section 2 and [Mac]). In particular, if the
Young diagram of the partition λ is symmetric under the transposition, the identity for sλsλ is also
symmetric.

M. Fulmek and M. Kleber have found the identities for the product of two different Schur
functions. Namely, in [FK], they proved that

s(λ1,...,λn)s(λ2,...,λn+1) = s(λ2,...,λn)s(λ1,...,λn+1) + s(λ2−1,...,λn+1−1)s(λ1+1,...,λn+1), (1.4)

where (λ1, λ2, . . . , λn+1) is a partition, n > 0 being an integer.
The series of the bilinear identities derived in this paper considerably generalizes the identities

(1.4).
In the next section we introduce our notation and some key operations with partitions. The

third section is devoted to the derivation of bilinear identities. The main results are formulated in
Proposition 3.1 and Corollary 3.7.

2. Definitions and notation

We use the terminology and definitions from the monograph [Mac].
Let λ = (λ1, . . . , λn) be a partition of the height `(λ) = n, that is λn > 0. We omit the zero

components of λ. The Schur symmetric function corresponding to the partition λ can be expressed
in terms of the complete symmetric functions hk by means of the Jacobi-Trudi relations [Mac]:

sλ = det ‖hλi−i+j‖1≤i,j≤N , (2.1)

where the index i enumerates rows, the index j enumerates columns, and N ≥ `(λ) = n is an
arbitrary positive integer. In the above formula it is assumed that h0 ≡ 1 and hk ≡ 0 if k < 0.

Vectors µ. As is clear from the Jacobi-Trudi determinant (2.1), any its row is completely defined
by the index of the first element of the row. Therefore, the Jacobi-Trudi determinants and the
corresponding Schur functions can be unambiguously parameterized by the vectors µ ∈ ZN of the
form

µ = [µ1, . . . , µN ], µi := λi − i+ 1 (2.2)

that is, µ = λ− δ(N), δ(N) = [0, 1, . . . , N − 1]. Unlike the partition λ, some of the components of µ
can be negative. Besides, the components of µ form a strictly descending sequence

µ1 > µ2 > · · · > µN .

To each partition λ we assign its graphical image — the Young diagram (see [Mac]). Below
we denote the Young diagram of the partition λ by the same letter (when it does not lead to a
misunderstanding). Now we describe subsets of the Young diagram λ and define some operations
with them; this will be used in what follows.

The complete border strip. Consider the Young diagram corresponding to a partition λ =
(λ1, . . . , λn). Let us remove λ2 − 1 boxes from the first row of the diagram, starting from the first
(the left-most) one. Then we extend this procedure to the other rows removing λk+1− 1 boxes from
the k-th row, 1 ≤ k ≤ n− 1. We leave the last n-th row unchanged.

This procedure results in a skew-diagram which will be referred to as the complete border strip.
Any nonempty proper subset of the complete border strip will be called a border strip provided this
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subset can be represented as the set-theoretical difference λ \ ν, where ν ⊂ λ is a Young diagram
completely contained in λ.

As an example, we consider the partition (8, 7, 43, 22). Its Young diagram with the complete
border strip marked by star signs is depicted below:

∗ ∗
∗ ∗ ∗ ∗
∗ ↑
∗ (2, 1)

∗ ∗ ∗
∗ ←(6, 0)

∗ ∗

.

We accept the following indexation of the boxes in the complete border strip. As follows from the
definition, in the r-th row of the Young diagram λ, the boxes of the complete border strip occupy
positions from the λr+1-th column till the λr-th one (counting from left to right). So, these boxes
in the r-th row can be enumerated by the number s such that 0 ≤ s ≤ λr − λr+1. A box of the
complete border strip situated in the r-th row and in the (λr+1 + s)-th column will be represented
by an ordered pair of nonnegative integers (r, s). In the above example of the Young diagram, we
show the coordinate pairs of two boxes in the complete border strip.

The peeling. Let us remove the complete border strip from the Young diagram λ. The new diagram
thus obtained will be denoted by the symbol λ↓. We say that λ↓ is obtained from λ by peeling the
complete border strip off. Note that the diagram λ↓ can be the empty set if λ is a simple hook
diagram:

(k, 1m)↓= ∅ for all k,m ≥ 0.

It is not difficult to see that the diagram λ↓ can be obtained by removing the first row and the first
column from λ. As a consequence, the height of λ↓ is always less than that of λ:

`(λ↓) ≤ `(λ)− 1.

Turning to the components of the partition λ, we get the following structure of the partition λ↓

λ = (λ1, λ2, . . . , λn) → λ↓= (λ2 − 1, λ3 − 1, . . . , λn − 1, 0). (2.3)

The corresponding µ-vectors (2.2) are connected with each other by a simple transformation

µ = [µ1, µ2, . . . , µN ] → µ↓= [µ2, µ3, . . . , µN ,−N + 1]. (2.4)

In other words, the components of µ are just shifted one position to the left, the component µ1

disappears, and on the last place we get the number 1−N .
Consider now the peeling a border strip off, or a partial peeling. In this case, we have to indicate

the direction of the peeling, that is we consider a partial up-peeling and a partial down-peeling.
Let us fix a box (r, s) in the complete border strip of a Young diagram λ. Starting from the box

(r, s), we remove all the boxes of the complete border strip lying to the left and down of the chosen
box. That is, we remove all the boxes (r, t) with 0 ≤ t ≤ s and (p, t) with p > r. This procedure will
be called the partial down-peeling from the starting box (r, s). We will only be interested in down-
peelings that transform a Young diagram to a Young diagram. For this to be true, the starting box
(r, s) of the partial down-peeling must be the right-most box in the r-th row. In other words, the
number s must take the maximal possible value s = λr − λr+1. To simplify the expressions, we
omit this s in notation and denote the diagram (and the partition) obtained from the diagram λ by
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the partial down-peeling from the box (r, λr − λr+1) by the symbol λ↓(r). The components of the
partition λ↓(r) read

λ↓(r) = (λ1, . . . , λr−1, λr+1 − 1, . . . , λn − 1, 0), (2.5)

while for the components of the corresponding µ-vector µ↓(r) we obtain

µ↓(r) = [µ1, . . . , µr−1, µr+1, . . . , µN ,−N + 1]. (2.6)

Same as the peeling the complete border strip off, the partial down-peeling decreases the height of
the diagram at least by one: `(λ↓(r)) ≤ `(λ)− 1.

The partial up-peeling is defined in an analogous way. We fix a starting box (r, s) in the complete
border strip of a diagram λ and remove all the boxes (r, t) with t ≥ s and (p, t) with p < r. That is
we remove all the boxes of the complete border strip, lying to the right and up of the chosen starting
box. This procedure will be called the partial up-peeling from the starting box (r, s). In what follows
we will be interested only in partial up-peelings that do not destroy the structure of Young diagrams.
Therefore, the starting box (r, s) of the up-peeling must be chosen in such a way that there are no
box of the diagram directly under it. This is only possible if λr > λr+1 and, besides, s ≥ 1. The
Young diagram (and the partition) obtained from the diagram λ by the partial up-peeling from the
starting box (r, s) will be denoted by the symbol λ↑(r, s).

The component structure of the partition λ↑(r, s) is as follows

λ↑(r, s)= (λ2 − 1, . . . , λr − 1, λr+1 + s− 1, λr+1, . . . , λn)
1 r − 1 r r + 1 n

, 1 ≤ s ≤ λr−1 − λr, (2.7)

where in the second line we have written the ordinal numbers of the corresponding components to
clarify the structure. For the corresponding vector µ, we get the following expression

µ↑(r, s)= [µ2, . . . , µr, µr+1 + s, µr+1, . . . , µN ]
1 r − 1 r r + 1 N

, 1 ≤ s ≤ µr−1 − µr − 1, (2.8)

Adding a border strip to diagram. Consider the Young diagram, corresponding to a partition
λ = (λ1, . . . , λn). Choose m ≤ n − 1 consecutive rows with numbers r, r + 1, . . . , r + m − 1, where
2 ≤ r ≤ n −m + 1. We are going to add boxes in the chosen rows in such a way that the result
would be a Young diagram, and, besides, the added boxes would form a connected border strip in
the new diagram. The restriction on the number of rows means that we do not add boxes into the
first line of λ (r ≥ 2) and that we do not increase the height of the diagram (r ≤ n−m+ 1). Below
we use the shorthand notation rm := r +m− 1.

It turns out to be convenient to treat the first (the left-most) box added into the rm-th row as
the beginning (or the first) box of the strip.

The last (the right-most) box added into the r-th row will be treated as the end (or the last)
box of the strip. The beginning of the added strip can be placed in any row of λ (except for the
above restriction on number) with the only requirement that the first added box must appear in the
(λrm + 1)-th column (to preserve the correct structure of the Young diagram). As for the end of the
strip, it can be situated only in the row which is shorter than its preceding row: λr < λr−1.

The number of boxes added into the (r + i)-th row reads as follows

pi = λr+i−1 − λr+i + 1, 1 ≤ i ≤ m− 1. (2.9)

Into the last, r-th, row we add p0 = t boxes, where 1 ≤ t ≤ λr−1 − λr. Therefore, the total amount
of boxes added is equal to

p =
m−1∑
i=0

pi = λr − λrm + t+m− 1 = µr − µrm + t.
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Here is an example of adding a border strip for the case λ = (8, 7, 43, 23), r = 3, m = 5 and t = 2:

∗ ∗
∗
∗

∗ ∗ ∗
∗

Here stars denote the added boxes.
The symbol λ+t

(r,m) will stand for the diagram (and the partition) obtained from the diagram λ

by adding a border strip of m rows from r to rm = r+m−1 with t boxes in the end row r. If we add
several (say k) disconnected border strips, the notation is obviously generalized to λ+t1 ... tk

(r1,m1)...(rk,mk).
The components of the partition λ+t

(r,m) read (recall that 1 ≤ t ≤ λr−1 − λr)

λ+t
(r,m) = (λ1, . . . , λr−1, λr + t, λr + 1, λr+1 + 1, . . . , λrm−1 + 1, λrm+1, . . . , λn)

r r + 1 r + 2 . . . rm rm + 1 . . . n.

(2.10)

Here in the second line we have written the ordinal numbers of the corresponding components.
The component structure of the corresponding vector µ+t

(r,m) is more transparent

µ+t
(r,m) = [µ1, . . . , µr−1, µr + t, µr, µr+1, . . . , µrm−1, µrm+1, . . . , µN ]

r r + 1 r + 2 . . . rm rm + 1 . . . N

. (2.11)

As we see, the changes take place only for the components from µr to µrm . Namely, the string of
components µr, . . . , µrm−1 shifts one position to the right, in the r-th place (the end row of the
added strip) we get the new component µr + t and the component µrm (the beginning row of the
strip) disappears.

3. Bilinear identities

The bilinear identities on the Schur symmetric functions follow from the Jacobi-Trudi determinant
formula (2.1) and the Plücker relation on the product of two determinants (for details, see [St]). Let
us formulate the corresponding statement for the reader’s convenience.

Consider a pair of p× p matrices A = ‖aij‖pi,j=1 and B = ‖bij‖pi,j=1. Let ai∗ denote the i-th row
of the matrix A. Introduce the following notation:

detA := |A| , A :=
(
a1∗ . . . ai∗ . . . ap∗
1 . . . i . . . p

)
, (3.1)

where the last symbol contains a detailed information on the row content of A. Namely, it says that
the row ai∗ is located in the i-th place in the matrix A (when counting from the top down).

Let us fix a set of integer data {k | r1, r2, . . . , rk}, where 1 ≤ k ≤ p and 1 ≤ r1 < · · · < rk ≤ p.
Given these data, the Plücker relation reads

|A||B| =
∑

1≤s1<···<sk≤p

∣∣∣∣a1∗ . . . bs1∗ . . . bs2∗ . . . bsk∗ . . . ap∗
1 . . . r1 . . . r2 . . . rk . . . p

∣∣∣∣×∣∣∣∣ b1∗ . . . ar1∗ . . . ar2∗ . . . ark∗ . . . bp∗1 . . . s1 . . . s2 . . . sk . . . p

∣∣∣∣ , (3.2)

where the sum is taken over all possible sets {k | s1, . . . , sk}.
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Now we can obtain a bilinear identity, connecting the Schur symmetric functions labeled by a
partition λ and the partition λ+t1 ... tk

(r1,m1)...(rk,mk). Here we assume that the structure of the diagram
λ allows adding k border strips of the indicated size and location.

Proposition 3.1. In the Young diagram corresponding to a partition λ = (λ1, . . . , λn), let there
exist k ≥ 1 rows with numbers 2 ≤ r1 < r2 < · · · < rk ≤ rk+1 := n possessing the property

λri < λri−1, 1 ≤ i ≤ k.

Let the integers ti,mi, where 1 ≤ i ≤ k, satisfy the restrictions

1 ≤ ti ≤ λri−1 − λri , 1 ≤ mi ≤ ri+1 − ri, 1 ≤ i ≤ k.

Then the Young diagram λ+t1 ... tk
(r1,m1)...(rk,mk) can be defined and the following bilinear identity on the

Schur symmetric functions holds

s
λ
s
λ+t1 ... tk

(r1,m1)...(rk,mk)↓
= s

λ+t1 ... tk
(r1,m1)...(rk,mk)

s
λ↓

+
k∑
p=1

s
λ+t1 ... tk

(r1,m1)...(rk,mk) ↓
(rp)s

λ↑(rp − 1, tp)

. (3.3)

Proof. To prove the proposition we use the Jacobi-Trudi formulae for the Schur functions and the
Plücker relation for the product of two determinants. In so doing, we shall parameterize the rows of
the Jacobi-Trudi determinants in (3.2) by components of vectors µ defined in (2.2).

First of all, we inspect the structure of the Jacobi-Trudi determinants in the left-hand side of
(3.3) in order to find the set of rows to be exchanged in accordance with the Plücker relation. Taking
into account expression (2.11) for the µ-vector of the diagram with added border strip and expression
(2.4) for the peeling the complete border strip off, we have

s
λ
s
λ+t1 ... tk

(r1,m1)...(rk,mk)↓
=
∣∣∣∣µ1 . . . µri µri+1 . . . µrmi . . . µN

1 . . . ri ri + 1 . . . rmi . . . N

∣∣∣∣
I

×∣∣∣∣µ2 . . . µri−1 µri + ti µri µri+1 . . . µrmi−1 µrmi+1 . . . µN −N + 1
1 . . . ri − 2 ri − 1 ri ri + 1 . . . rmi − 1 rmi . . . N − 1 N

∣∣∣∣
II

,

where we explicitly indicated the components containing the i-th part of the added border strip.
Recall that it is located in rows between ri and rmi = ri+mi−1. The indices I and II were introduced
for convenience of references.

Let us take the data {k | rm1 , rm2 , . . . rmk} to indicate the k rows of the determinant I to be
exchanged with all possible sets of k rows of the determinant II in accordance with the Plücker
relation (3.2). It is not difficult to see that in the right hand side of the Plücker relation applied to
the above product of the determinants I and II there are only (k+1) nonzero terms. They correspond
to the exchange of the rows rm1 , rm2 , . . . , rmk of the determinant I with rows r1−1, r2−1, . . . , rk−1
and N of the determinant II. The other terms vanish since the determinants obtained in exchanging
procedure possess at least two identical rows.



March 4, 2010 14:35 WSPC/INSTRUCTION FILE Bil-ide-fin-2

8 Dimitri Gurevich, Pavel Pyatov, Pavel Saponov

The nonzero terms correspond to the following ways of row exchange[
µrmi
rmi

]
I

←→
[
µri + ti
ri − 1

]
II

, 1 ≤ i ≤ k placement A

[
µrmi
rmi

]
I

←→
[
µri + ti
ri − 1

]
II

, 1 ≤ i ≤ p− 1

[
µrmj
rmj

]
I

←→
[
µrj+1 + tj+1

rj+1 − 1

]
II

, p ≤ j ≤ k − 1

[
µrmk
rmk

]
I

←→
[
−N + 1
N

]
II


placements Bp, 1 ≤ p ≤ k

The row exchange in accordance with the placement A gives the first term in the right hand side of
(3.3). Indeed, after such an exchange the typical part of the determinant I takes the form∣∣∣∣ . . . µri µri+1 . . . µri + ti . . .

. . . ri ri + 1 . . . rmi . . .

∣∣∣∣
I

.

Now we have to make the cyclic permutation of rows placing the component µri + ti to the ri-th
row. This gives the sign factor (−1)rmi−ri = (−1)mi−1 and, according to (2.11), the structure of
the determinant I corresponds to the Schur function s

λ+t1 ... tk
(r1,m1)...(rk,mk)

. As for the typical part of the

second determinant, we get after the row exchange∣∣∣∣µ2 . . . µrmi µri . . . µrmi−1 µrmi+1 . . . µN −N + 1
1 . . . ri − 1 ri . . . rmi − 1 rmi . . . N − 1 N

∣∣∣∣
II

.

Here we also have to make the cyclic permutation of rows from (ri − 1) to (rmi − 1) placing the
component µrmi to the (rmi−1)-th row. This generates the sign factor (−1)mi−1 which compensates
the same factor of the determinant I. As for the structure of the determinant II, it corresponds to
sλ↓ as directly follows from (2.4).

Turn now to a placement of Bp type for some fixed integer p such that 1 ≤ p ≤ k. We first
consider the changes in the determinant I. The rows rm1 to rmp−1 are exchanged in the same way as
in the placement A giving rise to the following typical parts corresponding to added border strips∣∣∣∣µ1 . . . µri + ti µri . . . µrmi−1 . . .

1 . . . ri ri + 1 . . . rmi . . .

∣∣∣∣
I

, 1 ≤ i ≤ p− 1,

with the sign factor (−1)mi−1 for each strip lying in rows ri to rmi . The remaining part of the
determinant I can be transformed to∣∣∣∣∣ . . . µrmp−1 µrmp+1 . . . µrj + tj µrj . . . µrmj−1 . . . µrmk−1 µrmk+1 . . . −N + 1

. . . rmp − 1 rmp . . . rj − 1 rj . . . rmj − 1 . . . rmk − 1 rmk . . . N

∣∣∣∣∣
I

with the sign factors (−1)rj+1−rmj−1 and p ≤ j ≤ k− 1 which originate from the cyclic permutation
of rows from rmj till (rj+1−1). This permutation results in moving the component µrj+1 +tj+1 from
the rmj -th row to the (rj+1− 1)-th one. We have also a sign factor (−1)N−rmk since the component
(−N + 1) moved from the rmk -th row to the last, N -th, row. Finally, taking into account the
structure of the partial down-peeling (2.6), we see that, up to the above sign factors, the determinant
I represents the following Schur symmetric function∣∣∣∣µ1 . . . µri µri+1 . . . µrmi . . . µN

1 . . . ri ri + 1 . . . rmi . . . N

∣∣∣∣
I

Bp−→ s
λ+t1 ... tk

(r1,m1)...(rk,mk) ↓
(rp) .
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Consider now the changes in the determinant II under the row exchange of the same Bp type.
The part of the determinant containing the rows ri − 1 for 1 ≤ i ≤ p − 1 can be expressed in the
following form ∣∣∣∣µ2 . . . µrmi µri . . . µrmi−1 µrmi+1 . . .

1 . . . ri − 1 ri . . . rmi − 1 rmi . . .

∣∣∣∣
II

.

Here we have to rearrange the rows from (ri−1) till (rmi−1) by cyclic permutation in order to move
the component µrmi to the (rmi−1)-th row. This gives rise to the sign factor (−1)ri−rmi = (−1)mi−1

for each 1 ≤ i ≤ p− 1. The sign factors compensate the analogous sign factors originated from the
determinant I.

The rest part of the determinant II reads (p ≤ j ≤ k − 1)∣∣∣∣∣ . . . µrp + tp µrp . . . µrmj µrj+1+1 . . . µrmj+1−1 µrmj+1+1 . . . µrmk
. . . rp − 1 rp . . . rj+1 − 1 rj+1 . . . rmj+1 − 1 rmj+1 . . . N

∣∣∣∣∣
II

.

On moving the component µrmj from the (rj+1− 1)-th row to the rmj -th one we get the sign factor

(−1)rj+1−rmj−1 for each p ≤ j ≤ k − 1. Also we get the factor (−1)N−rmk since the component
µrmk moved from the last, N -th, row to the row rmk . All these sign factors exactly compensate the
corresponding sign factors appearing in the determinant I. The final structure of the determinant II

is as follows: ∣∣∣∣µ2 . . . µri . . . µrp−1 µrp + tp µrp . . . µrj . . . µN
1 . . . ri − 1 . . . rp − 2 rp − 1 rp . . . rj . . . N

∣∣∣∣
II

.

On comparing the above determinant with (2.8), we conclude that under the row exchange of the
Bp type the determinant II transforms to the Schur function s

λ↑(rp − 1, tp)
(up to the sign factors

compensated by the corresponding factors of the determinant I).
At last, summing over all placements of the Bp type and adding the result of the placement A

we get the final formula (3.3).

Consider now some important corollaries of Proposition 3.1.

Corollary 3.2. The identity (3.3) is preserved under the simultaneous transposition of all the Young
diagrams parameterizing the Schur functions in (3.3).

Proof. Recall (see [Mac]) that the partition λ′ is said to be the conjugate of a given partition λ if
the Young diagram λ′ is obtained from the Young diagram λ by the transposition with respect to
the main diagonal. In other words,

λ′i = #(j | λj ≥ i).

The key point in the proof of the Corollary 3.2 is the following Jacobi-Trudi determinant formula
for the Schur symmetric function sλ

sλ = det ‖eλ′i−i+j‖1≤i,j,≤M , (3.4)

where ek is the k-th elementary symmetric function, and M ≥ `(λ′) = λ1 is an arbitrary positive
integer. Here, as well as in relation (2.1), we set: ek ≡ 0 for k < 0 and e0 ≡ 1.

The proof of Proposition 3.1 is based on formula (2.1), which contains the complete symmetric
functions hk. But we do not use any specific properties of these functions in course of the proof. The
functions hk are just the matrix elements of determinants in the Plücker relation. If we change all the
complete symmetric functions hλi−i+j for eλi−i+j the identity (3.3) still remains true determinant
identity. The interpretation of the determinants involved will, however, be different. As can be
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seen from (3.4), the determinants will now parameterize the Schur functions corresponding to the
conjugate partitions λ′.

Another useful consequence of the proof of Proposition 3.1 is a possibility to remove the first
line or the first column of some partitions and get a new identity. Indeed, as can be easily seen
from the proof, the first row of the Jacobi-Trudi determinant corresponding to the Schur function sλ
(the component µ1) does not play an active role in the calculations. In principle, it can be changed
for an arbitrary row and identity (3.3) will be still valid as the determinant identity (though the
interpretation of the corresponding determinants as Schur functions will be lost in general). But if
we change the row µ1 by the N -dimensional row (1, 0, . . . , 0), the determinants sλ, sλ+ and sλ+↓(r)

can be interpreted as the Schur functions corresponding to the partition with the first component
removed. Here is an example of the procedure:

s(λ1,...,λn) = det ‖hλi−i+j‖ −→

∣∣∣∣∣∣∣∣∣
1 0 . . . 0
hλ2−1 hλ2 . . . hλ2+n−2

... . . .
...

...
hλn−n+1 hλn−n+2 . . . hλn

∣∣∣∣∣∣∣∣∣ = s(λ2,...,λn).

Due to Corollary 3.2 the same is true for removing the first column in the diagram λ. Therefore,
the following corollary holds true.

Corollary 3.3. Let λ = (λ1, . . . , λn) be a partition satisfying the conditions of Proposition 3.1.
Denote by λ̄ the partition obtained from λ by removing the first line or the first column from the
Young diagram λ, that is

λ̄ = (λ2, . . . , λn) or λ̄ = (λ1 − 1, λ2 − 1, . . . , λn − 1).

Then identity (3.3) implies that

s
λ̄
s
λ+t1 ... tk

(r1,m1)...(rk,mk)↓
= s

λ+ t1 ... tk
(r1,m1)...(rk,mk)

s
λ↓

+
k∑
p=1

s
λ+ t1 ... tk

(r1,m1)...(rk,mk)↓
(rp) s

λ↑(rp − 1, tp)

. (3.5)

Here λ+ and λ+↓(rp) are the Young diagrams obtained from the diagrams λ+ and λ+↓(rp) by removing
the first row (column).

We give two examples illustrating the above formulae.

Example 3.4. Let λ = (2, 1, 1), k = 1, r1 = 2, m1 = 1 in accordance with the notation of
Proposition 3.1. That is we add a single box in the second row of the Young diagram λ. Then the
main identity (3.3) reads:

s(2,1,1)s(1) = s(2,2,1) + s(2)s(1,1,1)

or, loosely denoting the Schur functions sλ by the corresponding Young diagrams λ (for more visual
clarity)

× = + × .

On removing the first row (λ→ λ̄ = (1, 1)), we get

s(1,1)s(1) = s(2,1) + s(1,1,1),
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or, in the graphic form

× = + .

On removing the first column, we find

s(1)s(1) = s(1,1) + s(2),

or, in the graphic form

× = + .

Evidently, these are nothing but the well known Littlewood-Richardson relations on the Schur func-
tions.

Example 3.5. Take λ = (4, 2, 1), k = 1, r1 = 2, m1 = 2, that is we add a border strip in the second
and the third rows of λ. The main identity takes the form

s(4,2,1)s(2,2) = s(4,3,3)s(1) + s(4,2)s(2,2,1).

In the graphic form it reads

× = × + × .

Removing the first row or the first column gives rise to a pair of new identities

s(2,1)s(2,2) = s(3,3)s(1) + s(2)s(2,2,1)

and

s(3,1)s(2,2) = s(3,2,2)s(1) + s(4,2)s(1,1).

Before proving the next corollary, we should introduce new notation. With a Young diagram
λ = (λ1, . . . , λn) we associate a coordinate system with x and y axes directed as shown in the
picture below

... x

...

...

y

.

The size of each box is accepted to be 1× 1, being measured in the units of the x and y axes.
It is convenient to accept a different notation for components of a given partition λ. Namely,

we denote by ξi, where 1 ≤ i ≤ k ≤ n, all distinct components of the partition λ. That is λ =
(ξm1

1 , ξm2
2 , . . . , ξmkk ) with some integers mi ≥ 1, m1 + · · ·+mk = n. Note, that by definition ξi > ξj

if i < j. Besides, it is convenient to set ξk+1 = 0. We also introduce a set of integers yi, where
0 ≤ i ≤ k, by the rule

y0 = 0, yi = mi + yi−1, 1 ≤ i ≤ k.



March 4, 2010 14:35 WSPC/INSTRUCTION FILE Bil-ide-fin-2

12 Dimitri Gurevich, Pavel Pyatov, Pavel Saponov

An inner corner of a diagram λ is a point with coordinates (ξi, yi−1) with respect to the above
coordinate system. The collection of all inner corners will be called the inner corner set of the
diagram λ. So, the inner corner set Cλ of the Young diagram λ = (ξm1

1 , . . . , ξmkk ) consists of the
following k + 1 points αi

Cλ = {αi = (ξi, yi−1) | 1 ≤ i ≤ k + 1}. (3.6)

For example, the inner corner set of the Young diagram (6, 5, 22, 1) includes five elements: (6, 0),
(5, 1), (2, 2), (1, 4) and (0, 5).

By the above definition, the inner corner set of any non-empty Young diagram λ is a non-empty
set, containing at least two elements — the points (ξ1, 0) and (0, `(λ)). Note that knowing the inner
corner set of a diagram allows one to restore the diagram itself.

Introduce now the vertical and horizontal shifts of inner corners. Let αi = (ξi, yi−1), where ξi 6= 0,
be an inner corner of a partition λ = (ξm1

1 , . . . , ξmkk ). The horizontal shift h±i of the corner αi by ±1
means increasing or decreasing the component ξi by 1. If ξi + 1 = ξi−1 or ξi − 1 = ξi+1, then the
corresponding rows of the diagram are united:

λ = (. . . , ξmi−1
i−1 , ξmii , . . . )

h+
i−→

 (. . . , ξmi−1
i−1 , (ξi + 1)mi , . . . ) if ξi−1 − ξi ≥ 2

(. . . , ξmi−1+mi
i−1 , . . . ) if ξi−1 − ξi = 1,

λ = (. . . , ξmii , ξ
mi+1
i+1 , . . . )

h−i−→

 (. . . , (ξi − 1)mi , ξmi+1
i+1 , . . . ) if ξi − ξi+1 ≥ 2

(. . . , ξmi+mi+1
i+1 , . . . ) if ξi − ξi+1 = 1.

The other components of λ preserve their values.
Similarly, the vertical shift v±i of the corner αi = (ξi, yi−1), where yi−1 6= 0, by ±1 affects the

exponents mi and mi−1 in the following way

(. . . , ξmi−1
i−1 , ξmii , . . . )

v−i−→

 (. . . , ξmi−1−1
i−1 , ξmi+1

i , . . . ) if mi−1 ≥ 2

(. . . , ξmi−2
i−2 , ξmi+1

i , . . . ) if mi−1 = 1,

(. . . , ξmi−1
i−1 , ξmii , . . . )

v+i−→

 (. . . , ξmi−1+1
i−1 , ξmi−1

i , . . . ) if mi ≥ 2

(. . . , ξmi−1+1
i−1 , ξ

mi+1
i+1 , . . . ) if mi = 1.

The other components of λ remain unchanged.
Note that we do not define the horizontal shifts for the corner (0, `(λ)) and vertical shifts for the

corner (ξ1, 0).
For example, for partition λ = (6, 5, 22, 1), the horizontal shift of the corner α3 = (2, 2) by +1

and the vertical shift of the corner α2 = (5, 1) by −1 lead to the following transformations:

λ
h+
3−→ (6, 5, 32, 1), λ

v−2−→ (52, 22, 1).

Define now two transformations of any partition λ generated by shifts of the inner corners of the
corresponding Young diagram.

Definition 3.6. Let λ be a partition and αi = (ξi, yi−1) an inner corner of the Young diagram λ.
Make the horizontal shift by +1 of all the inner corners situated above αi in the diagram λ (that is the
corners (ξj , yj−1) with j < i). Besides, make the vertical shift by −1 of all the inner corners situated
below αi (that is, the corners (ξj , yj−1) with j > i). The corner αi keeps its position unchanged. The
Young diagram thus obtained will be denoted λ+

−(αi). In a similar way, shifting the corners above
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αi by −1 in the horizontal direction and those below αi by +1 in the vertical direction, we get the
diagram λ−+(αi).

Here is an example of the above procedures for the partition λ = (6, 5, 22, 1) and the inner corner
α3 = (2, 2):

λ = (6, 5, 22, 1) ⇒ λ+
−(α3) = (7, 6, 2, 1), λ−+(α3) = (5, 4, 23, 1).

Corollary 3.7. Let λ = (ξm1
1 , . . . , ξmkk ) be an arbitrary partition and let Cλ be the inner corner set

of the Young diagram λ. Then the following identity holds true

sλsλ =
∑
α∈Cλ

sλ+
−(α)sλ−+(α). (3.7)

This identity generalizes (1.2) to the case of an arbitrary partition.

Proof. Let λ = (ξm1
1 , . . . , ξmkk ) be an arbitrary partition of height `(λ) = n. We introduce an

auxiliary partition ν with n+ 1 components

ν = (ξ1 + 1, ξm1
1 , ξm2

2 , . . . , ξmkk ).

On adding to the diagram ν all possible strictly vertical border strips, we get the partition

ν+ = ((ξ1 + 1)m1+1, (ξ2 + 1)m2 , . . . , (ξk + 1)mk).

The inner corner sets of the new partitions are

Cν = (ξ1 + 1, 0) ∪ {(ξi, yi−1 + 1) , 1 ≤ i ≤ k + 1}

Cν+ = {(ξ1 + 1, 0), (0, yk + 1)} ∪ {(ξi + 1, yi−1 + 1) , 2 ≤ i ≤ k}

Now we apply identity (3.3) of Proposition 3.1 to the product of the Schur functions sνsν+↓ and
then we use Corollary 3.3 in order to remove the first line of length ξ1 + 1 from the diagram ν:

ν 7→ ν̄ = (ξm1
1 , . . . , ξmkk ) = λ.

Besides, as follows from (2.3), ν+↓= λ. So, in our case, the left hand side of identity (3.5) in Corollary
3.3 reads sν̄sν+↓ = sλsλ. We consider the right hand side of (3.5) and verify that it coincides with
that of (3.7).

The first term in the right hand side of (3.5) in our case has the form s
ν+sν↓ . Recall that the

bar over the symbol of partition means removing the first row of the corresponding Young diagram.
The inner corner sets of the diagrams ν+ and ν↓ are as follows

C
ν+ = {(ξi + 1, yi−1) , 1 ≤ i ≤ k} ∪ (0, yk)

Cν↓ = {(ξi − 1, yi−1) , 1 ≤ i ≤ k} ∪ (0, yk),

and therefore, as follows from the structure of the inner corner set Cλ (3.6) and Definition 3.6,

ν+ = λ+
−(αk+1), ν↓= λ−+(αk+1), αk+1 = (0, yk).

Consider now the sum over the partial peelings in (3.5). In our case, this sum takes the form

k∑
p=1

s
ν+↓(rp)sν↑(rp−1,1)

.
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The starting points rp of partial peelings in the diagram ν+ are the end points of the vertical border
strips added to the diagram ν. The numbers {rp} are expressed in terms of {yp} by the relation
rp = yp−1 + 2 as illustrated in the diagram below

ν+ =

∗ ← r1 = y0 + 2
λ ∗ ← r2 = y1 + 2

∗

Here the star signs mark the end points of the added border strips — the starting points rp of the
partial down-peelings. As is not difficult to see, the inner corner set of the diagram ν+↓(yp−1+2) has
the following structure

C
ν+↓(yp−1+2) = {(ξi + 1, yi−1) | 1 ≤ i ≤ p− 1} ∪ (ξp, yp−1) ∪ {(ξj , yj−1 − 1) | p+ 1 ≤ j ≤ k + 1}.

By Definition 3.6 this means that

ν+↓(yp−1+2)= λ+
−(αp), αp = (ξp, yp−1).

In analogous way we find that ν↑(yp−1+1,1)= λ−+(αp). Lastly, summation over p gives the final result
(3.7).

As an example we write down the bilinear relation for the square s2
(3,2,1):

s(3,2,1)s(3,2,1) = s(4,3,2)s(2,1) + s(4,3)s(2,13) + s(4,1)s(23,1) + s(32,2,1)s(2,1).

In what follows, we give a simple proof of the result (1.4) [FK].

Corollary 3.8. [FK] Let (λ1, λ2, . . . , λn+1) be a partition with an integer n > 0. Then the following
identity holds true

s(λ2,...,λn+1)s(λ1,...,λn) = s(λ1+1,...,λn+1)s(λ2−1,...,λn+1−1) + s(λ2,...,λn)s(λ1,...,λn+1). (3.8)

Proof. The result is based on identity (3.3) and the following steps.

(1) Given a partition λ = (λ1, λ2, . . . , λn+1), we construct an auxiliary partition

λ̂ = (λ1 + 1, λ2, . . . , λn+1)

and take it as the initial partition for Proposition 3.1.
(2) Then we add to λ̂ the connected border strip from the second row till the last one (k = 1, r1 = 2,

m = n) and get the partition (see (2.10))

λ̂+ = (λ1 + 1, λ1 + 1, λ2 + 1, . . . , λn + 1).

(3) Peeling the complete border strip off and partial peelings from the end point of the added strip
result in the following partitions (see (2.3), (2.5) and (2.7)):

λ̂+↓= (λ1, λ2, . . . , λn)

λ̂↓= (λ2 − 1, . . . , λn+1 − 1)

λ̂+↓(2)= (λ1 + 1, λ2, . . . , λn)

λ̂↑(1,λ1−λ2+1)= (λ1, λ2, . . . , λn+1).
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(4) Lastly, the identity (3.3) for the above Schur functions gives

s(λ1+1,λ2,...,λn+1)s(λ1,...,λn) = s(λ1+1,λ1+1,λ2+1,...,λn+1)s(λ2−1,...,λn+1−1)

+ s(λ1+1,λ2,...,λn)s(λ1,λ2,...,λn+1).

Removing from the above identity the first row (λ1 + 1) in accordance with Corollary 3.3, we
come to the result desired (3.8).

Note added in proof. After this paper had been accepted for publication, M. Fulmek communi-
cated to us that identity (3.3) can be proved in another way, as a corollary of Lemma 16 in [FK]
(for details, see [F]).
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condensation formula and Plücker relations, Electronic Journal of Combinatorics, (1) 8 (2001)
#R16.

[GPS] D.I. Gurevich, P.N. Pyatov and P.A. Saponov, Quantum matrix algebras of the GL(m|n) type: the
structure and spectral parameterization of the characteristic subalgebra, Teor. Mat. Fiz., (1) 147
(2006) pp.14–46 (in Russian).
English transl.: Theoretical and Mathematical Physics, (1) 147 (2006) pp. 460–485.

[Kir] A.N. Kirillov, Completeness of states of the generalized Heisenberg magnet, Zap. Nauch. Sem. LOMI,
134 (1984) pp. 169–189 (in Russian).
Engl. transl.: J. Soviet Math., 36 (1987) pp. 115–128.

[KR] A.N. Kirillov and N. Yu. Reshetikhin, Representations of Yangians and multiplicities of occurence
of the irreducible components of the tensor product of representations of simple Lie algebras, Zap.
Nauch. Sem. LOMI, 160 (1987) pp. 211–221 (in Russian).
Engl. transl.: J. Soviet Math., 52 (1990) pp. 3156–3164.
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