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CHEBYSHEV POLYNOMIALS, ZOLOTAREV POLYNOMIALS

AND PLANE TREES

YURY KOCHETKOV

Abstract. A polynomial with exactly two critical values is called a general-
ized Chebyshev polynomial. A polynomial with exactly three critical values is
called a Zolotarev polynomial. Two Chebyshev polynomials f and g are called
Z-homotopic, if there exists a family pα, α ∈ [0, 1], where p0 = f , p1 = g and
pα is a Zolotarev polynomial, if α ∈ (0, 1). As each Chebyshev polynomial
defines a plane tree (and vice versa), Z-homotopy can be defined for plane
trees. In this work we prove some necessary geometric conditions for plane
trees Z-homotopy, describe Z-homotopy for trees with 5 and 6 edges and study
one interesting example in the class of trees with 7 edges.

1. Introduction

1.1. Generalized Chebyshev polynomials. Polynomial p(z) ∈ C[z] is called a
generalized Chebyshev polynomial if it has exactly two finite critical values — α and
β (in what follows we will call such polynomial simply a Chebyshev polynomial).
If p(z) is a Chebyshev polynomial, then the set p−1[α, β] is a plane connected tree
Tp (see, [1], for example). Inverse images of points α and β are vertices of tree Tp

and the degree of a vertex equals to the multiplicity of the corresponding critical
point (a vertex of degree 1 is a simple root of polynomial p(z) − α or p(z) − β).
Also for each plane tree T there exists a Chebyshev polynomial p(z), defined up to
linear change of variable z and variable u = p(z), such that trees p−1[α, β] and T
are isotopic. Such polynomial p(z) will be called a polynomial that defines the tree
T .

Vertices of a plane tree T can be painted in two colors — black and white so,
that colors of any two adjacent vertices are different. Such painting will be called a
binary structure of T . Obviously, vertices of one color are inverse images of α and
vertices of another another color — of β.

The type (or passport) of plane tree with binary structure is two sequences of
multiplicities of white vertices and black vertices, respectively, in nonincreasing
order. Thus the type of the tree

r

r

❝ r ❝ r

��

❅❅

is 〈3, 2 | 2, 1, 1, 1〉.

Remark 1. Often it is assumed that numbers α and β are 0 and 1.
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1.2. Zolotarev polynomials. A polynomial p ∈ C[z] is called a Zolotarev poly-
nomial if it has exactly three finite critical values. If p is a Zolotarev polynomial,
deg(p) = n, α, β and γ its critical values and C is a simple arc C ⊂ C, that
connects points α, β and γ, then p−1(C) is a connected plane tree with 2n edges.
Here points from the set p−1{α, β, γ} are vertices of this tree and degree of a vertex
v, p(v) = α, equals to multiplicity of critical point v, if α is an endpoint of C, or
to double multiplicity, if α is an interior point. Vertices of the tree p−1(C) can
be painted in three colors: white, black and grey, where white vertices are inverse
images of the interior (with respect to arc C) critical value. One vertex of each
edge is white and other — black or grey.

Remark 2. Arcs C1 and C2, that connect points α, β and γ, can be isotopically
nonequivalent

q ❝ s

C1

or q ❝ s

C2

β α γ

β

α γ

for example. In this case trees p−1(C1) and p−1(C2) also can be isotopically
nonequivalent.

The passport of Zolotarev polynomial is three sequences of multiplicities of
its critical points that correspond to the first, the second and the third criti-
cal value, respectively. Multiplicity sequences will be written in the nonincreas-
ing order 〈k1, k2, . . . | l1, l2, . . . |m1,m2, . . .〉. Critical points of polynomial p =
x2(x − 1)2(3x − 1), for example, are 0, 1, 2/3 and 1/5 with values 0, 0, 4/81 and
−32/3125, respectively. So 〈2, 2 | 2 | 2〉 is the passport of p.

2. Z-homotopy

Definition 1. Two trees T1 and T2 will be called Z-homotopic if there exists a
continuous family pλ ∈ C[z], λ ∈ [0, 1], such that

• all polynomials pλ has the same degree;
• polynomial p0 is a Chebyshev polynomial and defines the tree T1;
• polynomial p1 is a Chebyshev polynomial and defines the tree T2;
• polynomials pλ, λ 6= 0, 1, are Zolotarev polynomials, but not Chebyshev
polynomials.

Example 1. Let us study the Z-homotopy problem on the set of 5-edge trees.
There are five of them:

q ❝

q

q

q ❝

T1

q

q

❝ q ❝ q

��

❅❅

T2

q

q

❝ q

❝

❝

��

❅❅ ��

❅❅

T3

q ❝

q

q

❝

❝

✑
✑
✑

◗
◗
◗

T4

q ❝ q ❝ q ❝

T5
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Let p =
∫
x2(x − 1)(x − a) dx. Critical points of p are 0, 1 and a and 0, 5a − 3

and a4(5− 3a) are corresponding critical values. If

• a = 0, then p is a Chebyshev polynomial that defines the tree T1;
• a = 1, then p is a Chebyshev polynomial that defines the tree T3;
• a = 3/5, then p(1) = 0 and p is a Chebyshev polynomial that defines the
tree T2;

• a = 5/3, then p(a) = 0 and p is a Chebyshev polynomial that defines the
tree T2;

• a = (−2±
√
5 i)/3, then p(a) = p(1) and p is a Chebyshev polynomial that

defines the tree T4.

For all other values of parameter a the polynomial p is Zolotarev polynomial. Thus
deformations of parameter a allows one to realize pairwise Z-homotopies between
trees T1, T2, T3 and T4. For example the following deformation of tree corresponds
to the increase of parameter a from 0 to 3/5 (arc C in this case is the segment, that
connects critical values 5a− 3 and a3(5− 3a)):

s ❝

s

s

s ❝ ⇒ s ❝

s

s

s ❝ qq

q

q

⇓

s ❝

s

s

s❝ qq

q

q

❅❅

��
⇐

q

q

❝ q ❝ q

❅
❅

�
�

Trees T1, T2 and T4 are Z-homotopic to tree T5. Indeed, let us consider the
polynomial p(x) =

∫
x(x − 1)(x − a)(x − b) dx. If p(a) = p(0), a 6= 2, then this

polynomial is a Zolotarev polynomial (here b = (3a2− 5a)/(5a− 10)). However, for
some values of parameter a polynomial p degenerates into Chebyshev polynomial.
Indeed,

(1) if a = 0, then b = 0, and we have a Chebyshev polynomial, that defines the
tree T1;

(2) if a = 1, then b = 2/5 and p(1) = 0, and we have a Chebyshev polynomial,
that defines the tree T2;

(3) if a = 5/3, then b = 0, and we have a Chebyshev polynomial, that defines
the tree T2;

(4) if a = ±
√
5, then b = 1 ±

√
5 and p(1) = p(b), and we have a Chebyshev

polynomial, that defines the tree T5;
(5) if a = (5 ±

√
5)/4, then b = −(1 ±

√
5)/4 and p(1) = p(b), and we have a

Chebyshev polynomial, that defines the tree T5;
(6) if a = (5±

√
5 i)/3, then b = 1, and we have a Chebyshev polynomial, that

defines the tree T4.

Thus, a deformation of parameter a allows us to construct a Z-homotopy between
trees T1 and T5, T2 and T5, T4 and T5.
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Trees T3 and T5 are not Z-homotopic. This statement will be proved in the next
section. Also it is a consequence of results in section ”Theorems”.

3. Geometry of space of Zolotarev polynomials of degree 5

Let q = x4 + ax2 + bx+ c and p =
∫
q dx. The polynomial p is a Zolotarev poly-

nomial if among numbers p(x1), p(x2), p(x3), p(x4), where x1, x2, x3, x4 are roots of
q, there are only three different. In this case the polynomial s(y) = (y− p(x1))(y−
p(x2))(y − p(x3))(y − p(x4)) has a multiple root., i.e. its discriminant is zero. This
discriminant is reducible:

(1280a6−32256a4c+9504a3b2+269568a2c2−69984ab2c−19683b4−746496c3)×
(16a4c− 4a3b2 − 128a2c2 + 144ab2c− 27b4 + 256c3) = 0.

We see that the variety of Zolotarev polynomials of degree 5 is reducible and has
two components C1 and C2. The second factor, that defines the component C2, is
simply the discriminant of polynomial q.

Intersection C1 ∩ C2 is the union of 3 components.

• Polynomials that belong to the first component are Chebyshev polynomials
that define the tree T4.

• Polynomials that belong to the second component are Chebyshev polyno-
mials that define the tree T2.

• Polynomials that belong to the third component are Chebyshev polynomials
that define the tree T1.

A Chebyshev polynomial p0 that defines T5 belongs only to the first component
C1 and a Chebyshev polynomial p1 that defines T3 belongs only to the second
component C2. Thus a family of Zolotarev polynomials which connect p0 and p1
must also contain one of Chebychev polynomials in C1 ∩ C2. But then this family
is not a Z-homotopy.

4. Theorems

In this section we will prove a necessary condition for Z-homotopy existence (i.e.
a sufficient condition for its absence).

Lemma 1. Let pλ, 0 < λ < 1 be a continuous family of Zolotarev polynomials of
degree n. Then passports of all these polynomials are the same.

Proof. Let aλ, bλ cλ be critical values of polynomial pλ. They are continuous
functions of parameter λ. A change of passport during increase or decrease of
parameter λ can occur only in the case of collision of roots of polynomial pλ − aλ
(or pλ− bλ, or pλ− cλ): two roots x′

λ and x′′

λ of polynomial pλ−aλ of multiplicities
k′ and k′′, respectively, approach to each other, when λ → µ, and generate a root
xµ of polynomial pµ − aµ of multiplicity k′ + k′′ − 1.

Let the passport of pλ be 〈k1, . . . , kr | l1, . . . , ls |m1, . . . ,mt〉. Then
r∑

i=1

ki = n,

s∑
i=1

li = n,

t∑
i=1

mi = n

and
r∑

i=1

(ki − 1) +

s∑
i=1

(li − 1) +

t∑
i=1

(mi − 1) = n− 1.
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Hence, r + s+ t = 2n+ 1. But the collision of roots diminishes the number r and
violates the above equality. �

Remark 3. We see, that it is more correct to speak not about Z-homotopy, but
about Z-homotopy in the class of Zolotarev polynomials with a given passport.
Thus, trees T1, T2, T3 and T4 with 5 edges are pairwise Z-homotopic in the class of
Zolotarev polynomials with the passport 〈3 | 2 | 2〉 and trees T1 and T5, T2 and T5,
T4 and T5 are Z-homotopic in the class of Zolotarev polynomials with the passport
〈2, 2 | 2 | 2〉.

Lemma 2. Let pλ, 0 6 λ < 1, be a continuous family of polynomials of degree n,
where p0 is a Chebyshev polynomial and pλ, λ > 0, are Zolotarev polynomials (but
not Chebyshev polynomials). Let us assume that a critical point a of polynomial p0
of multiplicity k generates m, m > 1, critical points a1(λ), . . . , am(λ) in the family
pλ with multiplicities k1, . . . , km. Then numbers pλ(a1(λ)), . . . , pλ(am(λ)) cannot
all be equal.

Proof. Let us assume that the opposite is true:

pλ(a1(λ)) = . . . = pλ(am(λ)) = α(λ).

Let λ → 0. Then

ai(λ) → a, i = 1, . . . ,m, and α(λ) → α = p0(a).

But k−1 = (k1−1)+. . .+(km−1), so a is a root of polynomial p0−α of multiplicity
k +m− 1. We have a contradiction. �

Definition 2. A tree is called a chain, if valences of all its vertices are 6 2.

Theorem 1. If a tree T has a white vertex a of degree > 3 and a black vertex b of
degree > 3, then it cannot be Z-homotopic to a chain.

Proof. Let us assume that the opposite is true. Then there exist a Z-homotopy
connecting a Chebyshev polynomial p0, that defines T , with a Chebyshev polyno-
mial p1, that defines the chain. It means that critical points a and b in the family
pλ generated critical points a1, . . . , am and b1, . . . , bn, respectively, all of them of
multiplicity 2. Let p0(a) = α and p0(b) = β. If parameter λ is small, then values
pλ(a1), . . . , pλ(am) are close to α and among them are at least two different. Anal-
ogously, values pλ(b1), . . . , pλ(bn) are close to β and among them are at least two
different. But then a polynomials pλ, λ ≪ 1, has at least 4 critical values. We have
a contradiction. �

Corollary 1. Trees T3 and T5 cannot be Z-homotopic.

5. Trees with six edges

Below are all plane 6-edge trees up to mirror symmetry (the designation of
symmetrical tree is in brackets):

q

q

❝

q

q

q ❝
❅❅

��
��

❅❅

T1

q ❝

q

q

q ❝ q

T2

q ❝

q

q

q

❝

❝

��

❅❅

T3

❝ q ❝

q

q

q ❝

T4
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❝ q ❝ q ❝

q q

❅❅ ��

T5

q

q

❝ q ❝

q

q��

❅❅ ��

❅❅

T6

q ❝

q

q

❝

❝ q

T7 (T8)

q

q

❝ q ❝ q ❝
❅❅

��

T9

❝ q ❝

q

q ❝ q

T10 (T11)

❝

❝

q

q

❝ q ❝

◗
◗
◗

✑
✑
✑

T12

q ❝ q ❝ q ❝ q

T13

By Theorem 1 from the previous section, trees T3 and T13, T7 and T13, T8 and
T13 are not Z-homotopic. However, there is one more non-homotopic pair.

Proposition 1. Trees T6 and T12 are not Z-homotopic.

Proof. Let the opposite be true and let a and b be white vertices of degree 3 of the
tree T6.
The first case. Let polynomials pλ have a critical point aλ of multiplicity 3, all other
critical points are of multiplicity 2. Thus the vertex b generates two critical points
b1 and b2 of multiplicity 2, pλ(b1) 6= pλ(b2) and value pλ(a) coincides with value
pλ(b1) or with values pλ(b2). But then tree T12 has a white vertex of degree 2
except white vertex of degree 3.
The second case. Polynomials pλ have critical points only of multiplicity 2. Thus
vertices a and b generate critical points a1, a2 and b1, b2, respectively. Moreover,
pλ(a1) = pλ(b1), pλ(a2) = pλ(b2) and pλ(b1) 6= pλ(b2). Let the fifth critical point
be c = cλ. The vertex of T12 of degree 3 cannot be generated by junction of points
a1 and b1 (or a2 and b2), because otherwise during the change of parameter λ from
1 to 0 the vertex of degree 3 of T12 generates two critical points with same values.
Also, this vertex cannot be generated by junction of points c and a1 (for example),
because then T12 has a vertex of degree 3 and a vertex of degree 2 of the same
color. �

All other pairs of trees are Z-homotopic. The construction of corresponding Z-
homotopy usually is quite straightforward. Let us describe some interesting cases.

• Tree T4 and tree T12. Let degree 2 vertices of T4 be in points ±1, its degree
4 vertex — in origin, degree 3 vertex of T12 — in origin and its degree 2
vertices — in cubic roots of 1.

Let us consider the polynomial p =
∫
x2(x − 1)(x − a)(x − b) dx with

condition p(a) = p(b). Then p is a Zolotarev polynomial with passport
〈3 | 2, 2 | 2〉. If a = 0 and b = −1, then p degenerates into Chebyshev
polynomial that corresponds to the tree T4. The change of parameter a
from 0 to −i, to 2− i, to 2, to 2+

√
3 i/2 and to (−1+

√
3 i)/2 induces the

change of the parameter b from −1 to (−1−
√
3 i)/2.

• Tree T10 and tree T13. Let degree 3 vertex of T10 be in origin, its degree 2
vertices — in points 1, a1 ≈ 1.57− 0.03 i and b1 ≈ −0.57+ 0.58 i, degree 2
vertices of T13 — in points 0, ±1 ±

√
3.

Let us consider the polynomial p =
∫
x(x − 1)(x − a)(x − b)(x − c) dx

with conditions p(a) = 0 and p(b) = p(c). Then p is a Zolotarev polynomial
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with passport 〈2, 2 | 2, 2 | 2〉. If a = a1, b = b1 and c = 0, then p degenerates
into Chebyshev polynomial that corresponds to the tree T10. The change
of parameter b from b1 to −1 induces the change of the parameter a from
a1 to

√
3 and the change of the parameter c from 0 to −

√
3 (here c moves

along the arc in the lower half plane).

• Tree T12 and tree T13. Let degree 3 vertex of T12 be in the point i/
√
3, its

degree 2 vertices — in points ±1 and
√
3 i, degree 2 vertices of T13 — in

points 0, ±1 ±1/
√
3.

Let us consider the polynomial p =
∫
(x2−1)(x−a)(x−b)(x−c) dx with

conditions p(−1) = p(1) = p(c). Then p is a Zolotarev polynomial with

passport 〈2, 2, 2 | 2 | 2〉. If a = b = i/
√
3 and c =

√
3 i, then p degenerates

into Chebyshev polynomial that corresponds to the tree T12. The change
of parameter a from i/

√
3 to 1/

√
3 induces the change of the parameter b

from i/
√
3 to −1/

√
3 and the change of the parameter c from

√
3 i to 0.

6. Trees with seven edges

Zolotarev polynomials of degree 7 with passport 〈2, 2 | 2, 2 | 2, 2〉 give a nontrivial
example of absence of Z-homotopy (nontrivial in the sense, that this absence cannot
be explained by Lemma 2 or Theorem 1). Without loss of generality we can assume,
that the first critical value is 0 and that corresponding critical points are 0 and 1.
Then such polynomial is of the form

p(x) =

∫
x(x − 1)(x− a)(x− b)(x− c)(x− d) dx,

where
p(1) = 0, p(a) = p(b), p(c) = p(d).

Algebraic variety C in 4-dimensional space with coordinates a, b, c, d, defined by
these conditions, is reducible: it is the union of two components C = C1 ∪ C2 of
degrees 8 and 16, respectively. Trees (up to mirror symmetry), that correspond to
Zolotarev polynomials from the first component, can be seen in the picture below:
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The order of monodromy group of Zolotarev polynomials from C1 is 168.
Trees (up to mirror symmetry), that correspond to Zolotarev polynomials from

the second component, can be seen in the picture below:
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The order of monodromy group of Zolotarev polynomials from C2 is 2520.
The intersection C1 ∩ C2 consists of Chebyshev polynomials that correspond to

trees

q q

q

q q

q

q q or q q

q

q q

q

q q

However, the component C1 contains Chebyshev polynomials that correspond to
trees

q q

q

q q

q

q q q q

q

q q

q

q q q q
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q

q q�❅ q q

q

q q
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and the component C2 contains Chebyshev polynomials, that correspond to trees

q q
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q q q q
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q q q q q q q q q

q

q q q q q q q
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q q q q q q
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Thus we see that trees

q q q q q q

q q

�❅ and q q q q q q

q

q

for example, are not Z-homotopic in the class of Zolotarev polynomials with the
passport 〈2, 2 | 2, 2 | 2, 2〉 (although they are Z-homotopic in the class with the pass-
port 〈4 | 2 | 2〉).
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