CHEBYSHEV POLYNOMIALS, ZOLOTAREV POLYNOMIALS AND PLANE TREES

YURY KOCHETKOV

Abstract

A polynomial with exactly two critical values is called a generalized Chebyshev polynomial. A polynomial with exactly three critical values is called a Zolotarev polynomial. Two Chebyshev polynomials f and g are called Z-homotopic, if there exists a family $p_{\alpha}, \alpha \in[0,1]$, where $p_{0}=f, p_{1}=g$ and p_{α} is a Zolotarev polynomial, if $\alpha \in(0,1)$. As each Chebyshev polynomial defines a plane tree (and vice versa), Z-homotopy can be defined for plane trees. In this work we prove some necessary geometric conditions for plane trees Z-homotopy, describe Z-homotopy for trees with 5 and 6 edges and study one interesting example in the class of trees with 7 edges.

1. Introduction

1.1. Generalized Chebyshev polynomials. Polynomial $p(z) \in \mathbb{C}[z]$ is called a generalized Chebyshev polynomial if it has exactly two finite critical values - α and β (in what follows we will call such polynomial simply a Chebyshev polynomial). If $p(z)$ is a Chebyshev polynomial, then the set $p^{-1}[\alpha, \beta]$ is a plane connected tree T_{p} (see, [1], for example). Inverse images of points α and β are vertices of tree T_{p} and the degree of a vertex equals to the multiplicity of the corresponding critical point (a vertex of degree 1 is a simple root of polynomial $p(z)-\alpha$ or $p(z)-\beta$). Also for each plane tree T there exists a Chebyshev polynomial $p(z)$, defined up to linear change of variable z and variable $u=p(z)$, such that trees $p^{-1}[\alpha, \beta]$ and T are isotopic. Such polynomial $p(z)$ will be called a polynomial that defines the tree T.

Vertices of a plane tree T can be painted in two colors - black and white so, that colors of any two adjacent vertices are different. Such painting will be called a binary structure of T. Obviously, vertices of one color are inverse images of α and vertices of another another color - of β.

The type (or passport) of plane tree with binary structure is two sequences of multiplicities of white vertices and black vertices, respectively, in nonincreasing order. Thus the type of the tree

is $\langle 3,2 \mid 2,1,1,1\rangle$.
Remark 1. Often it is assumed that numbers α and β are 0 and 1 .

[^0]1.2. Zolotarev polynomials. A polynomial $p \in \mathbb{C}[z]$ is called a Zolotarev polynomial if it has exactly three finite critical values. If p is a Zolotarev polynomial, $\operatorname{deg}(p)=n, \alpha, \beta$ and γ its critical values and C is a simple arc $C \subset \mathbb{C}$, that connects points α, β and γ, then $p^{-1}(C)$ is a connected plane tree with $2 n$ edges. Here points from the set $p^{-1}\{\alpha, \beta, \gamma\}$ are vertices of this tree and degree of a vertex $v, p(v)=\alpha$, equals to multiplicity of critical point v, if α is an endpoint of C, or to double multiplicity, if α is an interior point. Vertices of the tree $p^{-1}(C)$ can be painted in three colors: white, black and grey, where white vertices are inverse images of the interior (with respect to arc C) critical value. One vertex of each edge is white and other - black or grey.
Remark 2. Arcs C_{1} and C_{2}, that connect points α, β and γ, can be isotopically nonequivalent

for example. In this case trees $p^{-1}\left(C_{1}\right)$ and $p^{-1}\left(C_{2}\right)$ also can be isotopically nonequivalent.

The passport of Zolotarev polynomial is three sequences of multiplicities of its critical points that correspond to the first, the second and the third critical value, respectively. Multiplicity sequences will be written in the nonincreasing order $\left\langle k_{1}, k_{2}, \ldots\right| l_{1}, l_{2}, \ldots\left|m_{1}, m_{2}, \ldots\right\rangle$. Critical points of polynomial $p=$ $x^{2}(x-1)^{2}(3 x-1)$, for example, are $0,1,2 / 3$ and $1 / 5$ with values $0,0,4 / 81$ and $-32 / 3125$, respectively. So $\langle 2,2| 2|2\rangle$ is the passport of p.

2. Z-HOMOTOPY

Definition 1. Two trees T_{1} and T_{2} will be called Z-homotopic if there exists a continuous family $p_{\lambda} \in \mathbb{C}[z], \lambda \in[0,1]$, such that

- all polynomials p_{λ} has the same degree;
- polynomial p_{0} is a Chebyshev polynomial and defines the tree T_{1};
- polynomial p_{1} is a Chebyshev polynomial and defines the tree T_{2};
- polynomials $p_{\lambda}, \lambda \neq 0,1$, are Zolotarev polynomials, but not Chebyshev polynomials.
Example 1. Let us study the Z-homotopy problem on the set of 5 -edge trees. There are five of them:

T_{1}

T_{2}

T_{3}

T_{5}

Let $p=\int x^{2}(x-1)(x-a) d x$. Critical points of p are 0,1 and a and $0,5 a-3$ and $a^{4}(5-3 a)$ are corresponding critical values. If

- $a=0$, then p is a Chebyshev polynomial that defines the tree T_{1};
- $a=1$, then p is a Chebyshev polynomial that defines the tree T_{3};
- $a=3 / 5$, then $p(1)=0$ and p is a Chebyshev polynomial that defines the tree T_{2};
- $a=5 / 3$, then $p(a)=0$ and p is a Chebyshev polynomial that defines the tree T_{2};
- $a=(-2 \pm \sqrt{5} i) / 3$, then $p(a)=p(1)$ and p is a Chebyshev polynomial that defines the tree T_{4}.
For all other values of parameter a the polynomial p is Zolotarev polynomial. Thus deformations of parameter a allows one to realize pairwise Z-homotopies between trees T_{1}, T_{2}, T_{3} and T_{4}. For example the following deformation of tree corresponds to the increase of parameter a from 0 to $3 / 5$ ($\operatorname{arc} C$ in this case is the segment, that connects critical values $5 a-3$ and $a^{3}(5-3 a)$):

Trees T_{1}, T_{2} and T_{4} are Z-homotopic to tree T_{5}. Indeed, let us consider the polynomial $p(x)=\int x(x-1)(x-a)(x-b) d x$. If $p(a)=p(0), a \neq 2$, then this polynomial is a Zolotarev polynomial (here $\left.b=\left(3 a^{2}-5 a\right) /(5 a-10)\right)$. However, for some values of parameter a polynomial p degenerates into Chebyshev polynomial. Indeed,
(1) if $a=0$, then $b=0$, and we have a Chebyshev polynomial, that defines the tree T_{1};
(2) if $a=1$, then $b=2 / 5$ and $p(1)=0$, and we have a Chebyshev polynomial, that defines the tree T_{2};
(3) if $a=5 / 3$, then $b=0$, and we have a Chebyshev polynomial, that defines the tree T_{2};
(4) if $a= \pm \sqrt{5}$, then $b=1 \pm \sqrt{5}$ and $p(1)=p(b)$, and we have a Chebyshev polynomial, that defines the tree T_{5};
(5) if $a=(5 \pm \sqrt{5}) / 4$, then $b=-(1 \pm \sqrt{5}) / 4$ and $p(1)=p(b)$, and we have a Chebyshev polynomial, that defines the tree T_{5};
(6) if $a=(5 \pm \sqrt{5} i) / 3$, then $b=1$, and we have a Chebyshev polynomial, that defines the tree T_{4}.
Thus, a deformation of parameter a allows us to construct a Z-homotopy between trees T_{1} and T_{5}, T_{2} and T_{5}, T_{4} and T_{5}.

Trees T_{3} and T_{5} are not Z-homotopic. This statement will be proved in the next section. Also it is a consequence of results in section "Theorems".

3. Geometry of space of Zolotarev polynomials of degree 5

Let $q=x^{4}+a x^{2}+b x+c$ and $p=\int q d x$. The polynomial p is a Zolotarev polynomial if among numbers $p\left(x_{1}\right), p\left(x_{2}\right), p\left(x_{3}\right), p\left(x_{4}\right)$, where $x_{1}, x_{2}, x_{3}, x_{4}$ are roots of q, there are only three different. In this case the polynomial $s(y)=\left(y-p\left(x_{1}\right)\right)(y-$ $\left.p\left(x_{2}\right)\right)\left(y-p\left(x_{3}\right)\right)\left(y-p\left(x_{4}\right)\right)$ has a multiple root., i.e. its discriminant is zero. This discriminant is reducible:

$$
\begin{gathered}
\left(1280 a^{6}-32256 a^{4} c+9504 a^{3} b^{2}+269568 a^{2} c^{2}-69984 a b^{2} c-19683 b^{4}-746496 c^{3}\right) \times \\
\left(16 a^{4} c-4 a^{3} b^{2}-128 a^{2} c^{2}+144 a b^{2} c-27 b^{4}+256 c^{3}\right)=0
\end{gathered}
$$

We see that the variety of Zolotarev polynomials of degree 5 is reducible and has two components C_{1} and C_{2}. The second factor, that defines the component C_{2}, is simply the discriminant of polynomial q.

Intersection $C_{1} \cap C_{2}$ is the union of 3 components.

- Polynomials that belong to the first component are Chebyshev polynomials that define the tree T_{4}.
- Polynomials that belong to the second component are Chebyshev polynomials that define the tree T_{2}.
- Polynomials that belong to the third component are Chebyshev polynomials that define the tree T_{1}.
A Chebyshev polynomial p_{0} that defines T_{5} belongs only to the first component C_{1} and a Chebyshev polynomial p_{1} that defines T_{3} belongs only to the second component C_{2}. Thus a family of Zolotarev polynomials which connect p_{0} and p_{1} must also contain one of Chebychev polynomials in $C_{1} \cap C_{2}$. But then this family is not a Z-homotopy.

4. Theorems

In this section we will prove a necessary condition for Z-homotopy existence (i.e. a sufficient condition for its absence).
Lemma 1. Let $p_{\lambda}, 0<\lambda<1$ be a continuous family of Zolotarev polynomials of degree n. Then passports of all these polynomials are the same.
Proof. Let $a_{\lambda}, b_{\lambda} \quad c_{\lambda}$ be critical values of polynomial p_{λ}. They are continuous functions of parameter λ. A change of passport during increase or decrease of parameter λ can occur only in the case of collision of roots of polynomial $p_{\lambda}-a_{\lambda}$ (or $p_{\lambda}-b_{\lambda}$, or $p_{\lambda}-c_{\lambda}$): two roots x_{λ}^{\prime} and $x_{\lambda}^{\prime \prime}$ of polynomial $p_{\lambda}-a_{\lambda}$ of multiplicities k^{\prime} and $k^{\prime \prime}$, respectively, approach to each other, when $\lambda \rightarrow \mu$, and generate a root x_{μ} of polynomial $p_{\mu}-a_{\mu}$ of multiplicity $k^{\prime}+k^{\prime \prime}-1$.

Let the passport of p_{λ} be $\left\langle k_{1}, \ldots, k_{r}\right| l_{1}, \ldots, l_{s}\left|m_{1}, \ldots, m_{t}\right\rangle$. Then

$$
\sum_{i=1}^{r} k_{i}=n, \quad \sum_{i=1}^{s} l_{i}=n, \quad \sum_{i=1}^{t} m_{i}=n
$$

and

$$
\sum_{i=1}^{r}\left(k_{i}-1\right)+\sum_{i=1}^{s}\left(l_{i}-1\right)+\sum_{i=1}^{t}\left(m_{i}-1\right)=n-1 .
$$

Hence, $r+s+t=2 n+1$. But the collision of roots diminishes the number r and violates the above equality.

Remark 3. We see, that it is more correct to speak not about Z-homotopy, but about Z-homotopy in the class of Zolotarev polynomials with a given passport. Thus, trees T_{1}, T_{2}, T_{3} and T_{4} with 5 edges are pairwise Z-homotopic in the class of Zolotarev polynomials with the passport $\langle 3| 2|2\rangle$ and trees T_{1} and T_{5}, T_{2} and T_{5}, T_{4} and T_{5} are Z-homotopic in the class of Zolotarev polynomials with the passport $\langle 2,2| 2|2\rangle$.
Lemma 2. Let $p_{\lambda}, 0 \leqslant \lambda<1$, be a continuous family of polynomials of degree n, where p_{0} is a Chebyshev polynomial and $p_{\lambda}, \lambda>0$, are Zolotarev polynomials (but not Chebyshev polynomials). Let us assume that a critical point a of polynomial p_{0} of multiplicity k generates $m, m>1$, critical points $a_{1}(\lambda), \ldots, a_{m}(\lambda)$ in the family p_{λ} with multiplicities k_{1}, \ldots, k_{m}. Then numbers $p_{\lambda}\left(a_{1}(\lambda)\right), \ldots, p_{\lambda}\left(a_{m}(\lambda)\right)$ cannot all be equal.

Proof. Let us assume that the opposite is true:

$$
p_{\lambda}\left(a_{1}(\lambda)\right)=\ldots=p_{\lambda}\left(a_{m}(\lambda)\right)=\alpha(\lambda)
$$

Let $\lambda \rightarrow 0$. Then

$$
a_{i}(\lambda) \rightarrow a, i=1, \ldots, m, \text { and } \alpha(\lambda) \rightarrow \alpha=p_{0}(a) .
$$

But $k-1=\left(k_{1}-1\right)+\ldots+\left(k_{m}-1\right)$, so a is a root of polynomial $p_{0}-\alpha$ of multiplicity $k+m-1$. We have a contradiction.

Definition 2. A tree is called a chain, if valences of all its vertices are $\leqslant 2$.
Theorem 1. If a tree T has a white vertex a of degree $\geqslant 3$ and a black vertex b of degree $\geqslant 3$, then it cannot be Z-homotopic to a chain.

Proof. Let us assume that the opposite is true. Then there exist a Z-homotopy connecting a Chebyshev polynomial p_{0}, that defines T, with a Chebyshev polynomial p_{1}, that defines the chain. It means that critical points a and b in the family p_{λ} generated critical points a_{1}, \ldots, a_{m} and b_{1}, \ldots, b_{n}, respectively, all of them of multiplicity 2. Let $p_{0}(a)=\alpha$ and $p_{0}(b)=\beta$. If parameter λ is small, then values $p_{\lambda}\left(a_{1}\right), \ldots, p_{\lambda}\left(a_{m}\right)$ are close to α and among them are at least two different. Analogously, values $p_{\lambda}\left(b_{1}\right), \ldots, p_{\lambda}\left(b_{n}\right)$ are close to β and among them are at least two different. But then a polynomials $p_{\lambda}, \lambda \ll 1$, has at least 4 critical values. We have a contradiction.

Corollary 1. Trees T_{3} and T_{5} cannot be Z-homotopic.

5. Trees with six edges

Below are all plane 6-edge trees up to mirror symmetry (the designation of symmetrical tree is in brackets):

By Theorem 1 from the previous section, trees T_{3} and T_{13}, T_{7} and T_{13}, T_{8} and T_{13} are not Z-homotopic. However, there is one more non-homotopic pair.

Proposition 1. Trees T_{6} and T_{12} are not Z-homotopic.
Proof. Let the opposite be true and let a and b be white vertices of degree 3 of the tree T_{6}.
The first case. Let polynomials p_{λ} have a critical point a_{λ} of multiplicity 3 , all other critical points are of multiplicity 2 . Thus the vertex b generates two critical points b_{1} and b_{2} of multiplicity $2, p_{\lambda}\left(b_{1}\right) \neq p_{\lambda}\left(b_{2}\right)$ and value $p_{\lambda}(a)$ coincides with value $p_{\lambda}\left(b_{1}\right)$ or with values $p_{\lambda}\left(b_{2}\right)$. But then tree T_{12} has a white vertex of degree 2 except white vertex of degree 3 .
The second case. Polynomials p_{λ} have critical points only of multiplicity 2. Thus vertices a and b generate critical points a_{1}, a_{2} and b_{1}, b_{2}, respectively. Moreover, $p_{\lambda}\left(a_{1}\right)=p_{\lambda}\left(b_{1}\right), p_{\lambda}\left(a_{2}\right)=p_{\lambda}\left(b_{2}\right)$ and $p_{\lambda}\left(b_{1}\right) \neq p_{\lambda}\left(b_{2}\right)$. Let the fifth critical point be $c=c_{\lambda}$. The vertex of T_{12} of degree 3 cannot be generated by junction of points a_{1} and b_{1} (or a_{2} and b_{2}), because otherwise during the change of parameter λ from 1 to 0 the vertex of degree 3 of T_{12} generates two critical points with same values. Also, this vertex cannot be generated by junction of points c and a_{1} (for example), because then T_{12} has a vertex of degree 3 and a vertex of degree 2 of the same color.

All other pairs of trees are Z-homotopic. The construction of corresponding Zhomotopy usually is quite straightforward. Let us describe some interesting cases.

- Tree T_{4} and tree T_{12}. Let degree 2 vertices of T_{4} be in points ± 1, its degree 4 vertex - in origin, degree 3 vertex of T_{12} - in origin and its degree 2 vertices - in cubic roots of 1 .

Let us consider the polynomial $p=\int x^{2}(x-1)(x-a)(x-b) d x$ with condition $p(a)=p(b)$. Then p is a Zolotarev polynomial with passport $\langle 3| 2,2|2\rangle$. If $a=0$ and $b=-1$, then p degenerates into Chebyshev polynomial that corresponds to the tree T_{4}. The change of parameter a from 0 to $-i$, to $2-i$, to 2 , to $2+\sqrt{3} i / 2$ and to $(-1+\sqrt{3} i) / 2$ induces the change of the parameter b from -1 to $(-1-\sqrt{3} i) / 2$.

- Tree T_{10} and tree T_{13}. Let degree 3 vertex of T_{10} be in origin, its degree 2 vertices - in points $1, a_{1} \approx 1.57-0.03 i$ and $b_{1} \approx-0.57+0.58 i$, degree 2 vertices of T_{13} - in points $0, \pm 1 \pm \sqrt{3}$.

Let us consider the polynomial $p=\int x(x-1)(x-a)(x-b)(x-c) d x$ with conditions $p(a)=0$ and $p(b)=p(c)$. Then p is a Zolotarev polynomial
with passport $\langle 2,2| 2,2|2\rangle$. If $a=a_{1}, b=b_{1}$ and $c=0$, then p degenerates into Chebyshev polynomial that corresponds to the tree T_{10}. The change of parameter b from b_{1} to -1 induces the change of the parameter a from a_{1} to $\sqrt{3}$ and the change of the parameter c from 0 to $-\sqrt{3}$ (here c moves along the arc in the lower half plane).

- Tree T_{12} and tree T_{13}. Let degree 3 vertex of T_{12} be in the point $i / \sqrt{3}$, its degree 2 vertices - in points ± 1 and $\sqrt{3} i$, degree 2 vertices of T_{13} - in points $0, \pm 1 \pm 1 / \sqrt{3}$.

Let us consider the polynomial $p=\int\left(x^{2}-1\right)(x-a)(x-b)(x-c) d x$ with conditions $p(-1)=p(1)=p(c)$. Then p is a Zolotarev polynomial with passport $\langle 2,2,2| 2|2\rangle$. If $a=b=i / \sqrt{3}$ and $c=\sqrt{3} i$, then p degenerates into Chebyshev polynomial that corresponds to the tree T_{12}. The change of parameter a from $i / \sqrt{3}$ to $1 / \sqrt{3}$ induces the change of the parameter b from $i / \sqrt{3}$ to $-1 / \sqrt{3}$ and the change of the parameter c from $\sqrt{3} i$ to 0 .

6. Trees with seven edges

Zolotarev polynomials of degree 7 with passport $\langle 2,2| 2,2|2,2\rangle$ give a nontrivial example of absence of Z-homotopy (nontrivial in the sense, that this absence cannot be explained by Lemma 2 or Theorem 1). Without loss of generality we can assume, that the first critical value is 0 and that corresponding critical points are 0 and 1 . Then such polynomial is of the form

$$
p(x)=\int x(x-1)(x-a)(x-b)(x-c)(x-d) d x
$$

where

$$
p(1)=0, \quad p(a)=p(b), \quad p(c)=p(d)
$$

Algebraic variety C in 4 -dimensional space with coordinates a, b, c, d, defined by these conditions, is reducible: it is the union of two components $C=C_{1} \cup C_{2}$ of degrees 8 and 16 , respectively. Trees (up to mirror symmetry), that correspond to Zolotarev polynomials from the first component, can be seen in the picture below:

The order of monodromy group of Zolotarev polynomials from C_{1} is 168.
Trees (up to mirror symmetry), that correspond to Zolotarev polynomials from the second component, can be seen in the picture below:

The order of monodromy group of Zolotarev polynomials from C_{2} is 2520 .
The intersection $C_{1} \cap C_{2}$ consists of Chebyshev polynomials that correspond to trees

However, the component C_{1} contains Chebyshev polynomials that correspond to trees

and the component C_{2} contains Chebyshev polynomials, that correspond to trees

Thus we see that trees

for example, are not Z-homotopic in the class of Zolotarev polynomials with the passport $\langle 2,2| 2,2|2,2\rangle$ (although they are Z-homotopic in the class with the passport $\langle 4| 2|2\rangle$).

References

[1] Lando S., Zvonkin A. Graphs on surfaces and their applications, Springer, 2004.
E-mail address: yuyk@prov.ru

[^0]: Date: 19.12.2012.

