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Abstract—The edge list-ranking problem is a generalization of the classical edge coloring problem,
and it is a mathematical model for some parallel processes. The computational complexity of
this problem is under study for graph sets closed under isomorphism and deletion of vertices
(hereditary classes). All finitely defined and minor-closed cases are described for which the problem
is polynomial-time solvable (unless N=NP). We find the whole set of “critical” graph classes whose
inclusion in a finitely defined class is equivalent to intractability of the edge list-ranking problem in
this class (unless N=NP). It seems to be the first result on a complete description for nonartificial
NP-complete graph problems. For this problem, we prove constructively that, among the inclusion
minimal NP-complete hereditary cases, there are exactly five finitely defined classes and the only
minor-closed class.
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INTRODUCTION

This article is a continuation of the series [1–7] and, in many respects, its terminal term. In [1–7], we
study the partition of a set of the hereditary classes of graphs into “simple” and “complex” elements by
the complexity of the list ranking problems. The essence of the study is to determine the “critical” classes
of graphs; i.e., the classes that play a critical, exceptional role for computational complexity analysis.

A class of graphs is a set of simple graphs closed under isomorphism. A graph class X is
called hereditary if it is closed under the operation of vertex removing . Every hereditary (and only
hereditary) graph class X can be defined by the set of its forbidden generated subgraphs S. In this case,
by convention, we write X = Free(S). There is only one minimum set S with this property which is
denoted by Forb(X ). A hereditary class X is called finitely defined if Forb(X ) is finite. The family of
hereditary classes is a continuum and includes such well-known subsets as the set of all monotonous
and minor-closed classes of graphs. A hereditary class is called monotonous if it is closed under
removing edges. A monotonous class is called minor-closed if it is closed under contracting the edges
of its graphs.

The edge (vertex) ranking problem (rank coloring) for a given graph is to find the minimum number
of colors (integers) for the vertices (edges) such that every path between two vertices (edges) of the same
color contains a vertex (edge) with a greater color. The vertex rank coloring problem is used in the parallel
computation of the Cholesky decomposition [12], VLSI design [11], whereas the edge-ranking problem
is used in parallel processing of database queries [13] and assembling multi-module products [9]. The
list-ranking problem is a generalization of the rank coloring problem. In this paper, we consider the edge
version of the list-ranking problem. It is formulated as follows:

Let G be a graph with the set of edges E, and let L = {L(e) | e∈E} be a set, where L(e) is a finite set
of integers (the colors that can be assigned to the edge e). L-edge ranking of the graph G is a coloring
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c of its edges such that (i) c(e) ∈ L(e) for any edge e; (ii) if c(e1) = c(e2) and e1 �= e2 then every path
between e1 and e2 contains an edge e3 such that c(e3) > c(e1).

The edge list-ranking problem (ELR problem) is to determine, using the information about G and L,
if there is a L-ranking of the edges of G. Studies of the complexity of this problem may be potentially
used in practice since the list-ranking models the parallelism more adequately. This task attracts our
interests because all “critical” classes of some types can be completely described.

Let Π be some NP-complete task for graphs. A hereditary class of graphs is called Π-simple if the
task Π on this class is solvable in polynomial time. Note that ELR-simple class of graphs means
a hereditary class such that the ELR problem for graphs from this class is solvable in polynomial time for
each set L. A hereditary class of graphs is called Π-hard if it is not Π-simple. It is assumed that P�=NP,
and this condition will be further omitted in the statements. A hereditary graph class B is called Π-limit
if there is an infinite sequence B1 ⊇ B2 ⊇ . . . of Π-hard graph classes such that

B =
∞⋂

i=1

Bi.

An inclusion minimal Π-limit class is called Π-boundary. This notion is explained in

Theorem 1 [8]. A finitely defined class of graphs is Π-hard if and only if it contains some
Π-boundary subclass.

It follows from Theorem 1 that the complete information about the structure of the Π-boundary
system (i.e., the set of all Π-boundary graph classes) enables us to fully describe all finitely generated
Π-simple classes. Unfortunately, prior to this work, full description of all boundary classes was not
obtained for any graph problem. One of the major results of this work is such a description for the ELR
problem. We demonstrate that the ELR-boundary system is formed of the 10 specific graph classes and
provide the description of all ELR-simple minor closed graph classes.

So, the Π-boundary classes are “critical” classes, and all other critical classes are minimal Π-hard
classes; i.e., the inclusion minimal Π-hard graph classes. In [2], the first examples of such classes were
found and it was shown that, for some problems, there are no minimal Π-hard classes (in [8] it is proved
that Π-boundary classes always exist). For all k > 2, for both edge and vertex variants of the k-coloring
problem, there are no minimal hard classes. Currently, there are known six minimal ELR-hard cases.
It is possible that there are no classes other than these.

In this paper, we prove that five specific classes form all finitely generated minimum ELR-hard classes
and that some class is the unique minor closed minimum ELR-hard class.

1. NOTATION, DEFINITIONS, AND SOME CITED RESULTS

We introduce the following notations:

kG is disconnected union of k copies of G;
Pn is a simple path with n vertices;
Kn is a complete graph with n vertices;
Kp,q is a complete bipartite graph with p vertices in one part and q vertices in the other;
Si is a graph that is obtained from K1,i by partitioning all its edges;

Combi is a graph that is obtained from K2,i by adding an edge incident to both vertices of degree i;
Cami is a graph obtained from Si by connecting the edges of the vertex of degree i to all its leaves;
Comi is a graph obtained from K1,i by identifying one of the endvertices of the path Pi with a vertex

of degree i.

The hereditary closure of a classX (denoted by [X ]) is a set of graphs generated by subgraphs of the
graphs from X . The additive closure of a class X is a set of graphs whose all connected components
belong to X .

We also introduce the notations for graph classes:
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Clique stands for the class of complete graphs;

Bat =
[ ∞⋃

i=1

{K2,i}
]
, Comb =

[ ∞⋃

i=1

{Combi}
]
, Star =

[ ∞⋃

i=1

{Si}
]
,

Camomile =
[ ∞⋃

i=1

{Cami}
]
, Comet =

[ ∞⋃

i=1

{Comi}
]
,

T̃ is the hereditary closure of the additive closure of a set of graphs that are obtained by adding a vertex
to some path and an edge that is incident to the added vertex and to some vertex of the path;

D̃ is the hereditary closure of the additive closure of a set of graphs that are obtained by adding a vertex
to some path and the edges that are incident to the added vertex and to some two consecutive vertices of
the path;

T̂ is the hereditary closure of the additive closure of a set of graphs that are obtained by adding a vertex
to some path and the edges that are incident to the added vertex and to some two vertices of the path the
distance between which is 2;

D̂ is the hereditary closure of the additive closure of a set of graphs that are obtained by adding a vertex
to some path and the edges that are incident to the added vertex and to some three consecutive vertices
of the path;

In [1–7], it is proved that Bat, Star, Comet, Comb, Camomile, Clique, T̃ , D̃, T̂ , and D̂ are ELR-
boundary classes, the first six classes being minimal ELR-hard classes. Note that, in [7], the class Bat

was denoted by BC; and Comb by BC ′; while, in [6], the class T̃ was denoted by T1.
One of the major results of this work is the statement that the set

{Bat, Star, Comet, Comb, Camomile, Clique, T̃ , D̃, T̂ , D̂}
is an ELR-boundary; another result is that there are exactly five finitely generated minimal ELR-hard
classes

Clique, Bat, Comb, Star, Camomile

and one minor-closed minimal ELR-hard class Comet.

2. ESTIMATES FOR THE NUMBER OF VERTICES, VERTEX DEGREES,
AND DIAMETERS OF GRAPHS FROM SOME CLASSES

Recall that the set of mutually nonadjacent vertices of a graph is called independent, and the set of
mutually adjacent vertices is called a clique. A matching in a graph is a set of mutually nonadjacent
edges. A matching is called generated if there is no edge adjacent to any two distinct edges of the
matching.

Lemma 1. Each graph G with n vertices containing no isolated vertices and with maximum
degree of Δ contains a generated matching with �n/(2Δ2)� edges.

Proof. A 2-sphere Be with the center at some e ∈ E(G) is the set of edges of G that lie in the line graph
of G at the distance at most 2 from e. It is clear that, for each e ∈ E(G), a 2-sphere Be contains at most

1 + 2(Δ − 1) + 2(Δ − 1)2 = ξ
Δ= 2Δ(Δ − 1) + 1 < 2Δ2

elements. Therefore, each connected component H of G contains a generated matching with �|E(H)|/ξ�
edges, which can be obtained using an first-fit algorithm. If H is not a tree then |E(H)| ≥ |V (H)|;
therefore,

�|E(H)|/ξ� ≥ �|V (H)|/ξ� ≥ �|V (H)|/(2Δ2)�.
Let H be a tree. Let us show that

�|E(H)|/ξ� = �(|V (H)| − 1)/ξ� ≥ �|V (H)|/(2Δ2)�.
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Indeed, let

k = �(|V (H)| − 1)/ξ�, �|V (H)|/(2Δ2)�≥k + 1.

Then |V (H)| ≥ 2Δ2k + 1 (from the last inequality); thus,

�(|V (H)| − 1)/ξ� ≥ �(2Δ2k + 1 − 1)/ξ� ≥ �2Δ2k/ξ�.

Note that �2Δ2k/ξ� = �k + k(2Δ − 1)/ξ� ≥ k + 1 since 2Δ > 1 and k ∈ N (because |V (H)| > 1);
a contradiction.

So, each connected component H of G contains a generated matching with �|V (H)|/(2Δ2)� edges.
This implies that G itself contains a generated matching with �n/(2Δ2)� edges. Let us recall that

�x1� + . . . + �xk� ≥ �x1 + . . . + xk�
for all positive numbers x1, x2, . . . , xk. The proof of Lemma 1 is complete.

By Ramsey’s theorem, every graph with sufficiently large number of vertices contains either an
independent set or a clique of a given size. Let R(a, b) denote the smallest number of vertices in a graph
that contains either an independent set with a vertices or a clique with b vertices.

Lemma 2. Let G ∈ Free({Ki,K2,i, Combi, Si, Cami}) (i ≥ 2) and x ∈ V (G). Then x has less than
2iR2(i, i) + R(iR(i, i), i) nonleaf neighbors.

Proof. Consider N(x) and remove from it all leaves of G. Partition the remaining set into the two
subsets N1 and N2 as follows: The subset N1 comprises the vertices y such that N(y) ⊆ N(x) ∪ {x}.
The subset N2 consists of the vertices that have at least one neighbor nonadjacent to x.

Each vertex in N(x) has at most R(i, i − 1) − 1 adjacent vertices in N(x). Indeed, if there were
y ∈ N(x) with at least R(i, i − 1) neighbors from N(x) then N(y) ∩ N(x) would contain either an
independent set of size i or a clique with i − 1 vertices. Then G would contain either Combi or Ki

as a generated subgraph. Consider a subset N ′
2 ⊂ N2 of the vertices adjacent to at least one vertex

from N1. The subgraph H of G generated by N1 ∪ N ′
2 does not contain isolated vertices and, moreover,

the degree of each of its vertices does not exceed R(i, i − 1) − 1. Therefore, the set N1 ∪ N ′
2 contains

at most 2(i− 1)(R(i, i− 1)− 1)2 < 2iR2(i, i) vertices since otherwise, by Lemma 1, there are 2i vertices
from N1 ∪N ′

2 generating a matching in G (and G would contain a generated subgraph Cami). Therefore,

|N1| < 2iR2(i, i).

Consider N2. By N
(1)
2 we will denote the largest independent subset of N2. Put

N
(2)
2 =

{
z | ∃y ∈ N

(1)
2 , z ∈ N(y) \ (N(x) ∪ {x})

}
.

Consider the inclusion minimal subset

V = {u1, u2, . . . , uk} ⊆ N
(2)
2 ,

dominating the set N
(1)
2 (i.e., N

(1)
2 ⊆

⋃k
j=1 N(uj)). Such a set certainly exist since each vertex of N

(1)
2

is adjacent to at least one vertex from N
(2)
2 . Since V is minimal, there are vertices v1, v2, . . . , vk ∈ N

(1)
2

such that, for every s ∈ 1, k, vs belongs to

N(us)
∖ k⋃

j=1, j �=s

N(uj).

It is clear that every vertex of V is adjacent to at most i− 1 vertices from N
(1)
2 (since G ∈ Free({K2,i}));

therefore, k = |V | ≥ |N (1)
2 |/(i − 1). The set V contains at most R(i, i) − 1 elements since otherwise
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it would contain an independent set of size i whose vertices, together with the adjacent vertices from
{v1, v2, . . . , vk} and the vertex x, would generate a subgraph Si in G. Therefore,

k < R(i, i),
∣∣N (1)

2

∣∣ < iR(i, i).

It is clear that |N2| ≤ R
(∣∣N (1)

2

∣∣ + 1, i − 1
)
− 1; thus, |N2| < R(iR(i, i), i). Combining this estimate

with the estimate for the size of N1, we conclude that x has less than 2iR2(i, i) + R(iR(i, i), i) nonleaf
neighbors. The proof is over.

Recall that the diameter of a graph is the maximum distance between all pairs of vertices.

Lemma 3. Let G be a connected graph from Free({Comi}) and i ≥ 3. Then either the diameter
of G does not exceed 2i − 3 or each vertex of G has at most i − 1 neighboring leaves.

Proof. Let the diameter of G be less than 2i− 2, and let some vertex x have i adjacent leaves. Let y and z
be some vertices with the distance of at least 2i− 2. By the triangle inequality, there is a vertex x′ ∈ {y, z}
such that the distance between it and x is at least i − 1. Since G is connected, there is a generated
path P between x and x′ that contains at least i vertices. The path P contains no leaf neighbor of x
since its length is at least 2. Some vertices in P and some leaves in G adjacent to x generate a subgraph
isomorphic to Comi; a contradiction that completes the proof.

We will say that G is an supergraph of a graph H if H is a generated subgraph of G. A vertex of
degree 2 in a graph is called internal if its neighbors are not adjacent.

Lemma 4. Let H1 ∈ T̃ , H2 ∈ D̃, H3 ∈ T̂ , and H4 ∈ D̂, and let G be a connected graph without
internal vertices with at least three vertices from the class Free({H1,H2,H3,H4}). Then G has
at most

(
Δ8n(n+2) − 1

)
/
(
Δ− 1

)
vertices, where Δ is the maximum degree of the vertices of G and

n = max{|V (H1)|, |V (H2)|, |V (H3)|, |V (H4)|}.

Proof. Suppose the opposite. Since G is a connected graph and contains at least three vertices, Δ ≥ 2.
It is easy to show that a connected graph with the diameter d and with the maximum vertex degree
Δ′ > 1 has at most

1 + Δ′ + Δ′2 + · · · + Δ′d =
Δ′d+1 − 1

Δ′ − 1

vertices. Combining this and the assumption, we obtain that the diameter of G is at least 8n(n + 2).
Consider two vertices x and y in G and a generated path between them with length equal to the diameter
of G. Remove the endvertices from this path, and denote the remaining path by P = (u1, u2, . . . , uk).
It is clear that k ≥ (8n − 1)(n + 2) + n + 1. Each vertex in P is adjacent to at least one vertex from
V (G) \ V (P ) (since G does not contain internal vertices and P is a generated path). Let V denote the
set of the vertices from V (G) \ V (P ) that are adjacent to at least one vertex from P . Consider the set
Iv = {i | (v, ui) ∈ E(G)} for each v ∈ V . Let us show that each Iv consists of at most three consecutive
indices. Consider an arbitrary vertex ui adjacent to v. Assume that there is a vertex uj adjacent to v,
where j > i + 2. Then G contains a path (x, u1, . . . , ui, v, uj , . . . , uk, y) of length of at most k, which is
less than the diameter of G; a contradiction.

Consider the vertices un+2, u3n+6, . . . , u(8n−1)(n+2). For u(2i−1)(n+2), there is an adjacent vertex
vi ∈ V . All vertices v1, v2, . . . , v4n are different (see arguments at the end of the previous paragraph). It is
easy to see that all of them are mutually nonadjacent (otherwise the diameter of G would be at most k).
For each i ∈ 1, 4n, the set

Vi = {vi, u(2i−1)(n+2)−n−1, . . . , u(2i−1)(n+2), . . . , u(2i−1)(n+2)+n+1}

exists (since k ≥ (8n − 1)(n + 2) + n + 1) and generates a subgraph in G which is an supergraph of
every component of some graph H i ∈ {H1,H2,H3,H4}. The graph G does not contain any edge that is
incident to two vertices from different sets.
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By Dirichlet’s principle, the sequence v1, v2, . . . , v4n contains vertices vi1 , vi2 , . . . , vin such that
the sets Vi1, Vi2 , . . . , Vin generate the graphs that are supergraphs of all components of some graph
H ∈ {H1,H2,H3,H4}. The union of these supergraphs is an supergraph of H ; therefore, G contains H
as a generated subgraph; a contraction to the initial assumptions.

The proof of Lemma 4 is complete.

We will call a graph H a contraction of G if G can be obtained by subdivisions of the edges of H
and H contains a minimum number of vertices. It is clear that there exists a unique contraction of G.
Consider a graph class X . Let Xc stand for the set of contractions of the graphs from X .

Lemma 5. Let a hereditary class X contain none of the classes T̃ , D̃, T̂ , D̂, or Comet. Then [Xc]
contains none of them.

Proof. Let us show that if Y ⊆ [Xc] for some Y from {T̃ , D̃, T̂ , D̂, and Comet} then, for some

Y ′ ∈ {T̃ , D̃, T̂ , D̂, Comet},
we have Y ′ ⊆ X , which implies the claim of the lemma. A subdivision of any edges of an arbitrary graph
from Comet (or from T̃ ) creates an supergraph of it. This and the heredity of X imply that the statement
is true for the cases Y ∈ {Comet, T̃ } (here Y ′ = Y).

The reasoning for the remaining three cases is similar; we, therefore, provide the proof only for Y = D̃.
We will prove that if D̃ ⊆ [Xc] then X contains at least one of the classes T̃ , D̃, and T̂ .

Suppose the opposite. Let G
(1)
k be the result of adding a vertex to the path P2k+1 and an edge incident

to the added vertex and the middle vertex of the path. Let G
(2)
k be the result of identifying two ends of two

paths Pk+1 with two distinct vertices of the triangle. Let G
(3)
k be the result of identifying two ends of the

paths Pk+1 with two nonadjacent vertices of a cycle of length 4. Note that, for every k,

G
(1)
k ∈ T̃ , G

(2)
k ∈ D̃, G

(3)
k ∈ T̂ .

There is k′ such that

X ⊆ Free
({

k′G
(1)
k′ , k′G

(2)
k′ , k′G

(3)
k′

})
.

By definition of the class Xc and since X is hereditary, for every k there is a graph Hk ∈ X with 3k
connected components that can be transformed into 3kG

(2)
k through a number of contractions. Note

that each connected component of Hk is an supergraph of either G
(1)
k , or G

(2)
k , or G

(3)
k . Therefore,

there is ik ∈ 1, 3 such that kG
(ik)
k is a generated subgraph of Hk. Let k > k′. Therefore, kG

(ik)
k ∈ X

and k′G(ik)
k′ ∈ X (since X is hereditary); this contradiction completes the proof of Lemma 5.

3. POLYNOMIAL CASES OF THE EDGE-LIST RANKING PROBLEM

Theorem 2 [10]. For an arbitrary fixed C, the ELR problem is solvable in polynomial time in
the class of graphs with at most C nonleaf vertices.

In [7], a notion of a polyclass was introduced: We say that a graph class is a polyclass if each of
its connected graphs G with n vertices contains at most p(n) subsets of V (G) each of which generates
a connected subgraph in G, where p(n) is some polynomial in n.

The following reveals our interest in the notion of polyclass:

Theorem 3 [7]. The ELR problem is solvable in polynomial time for all graphs from each of the
polyclasses.

In [7], it is shown that some specific graph classes are polyclasses.

Lemma 6. For every fixed d and k, the class of graphs whose all vertices have degrees at most d
and having at most k vertices with degree greater than 2 is a polyclass.
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4. STRUCTURE OF ALL FINITELY DEFINED AND MINOR CLOSED
EASY-SOLVABLE CASES FOR THE ELR PROBLEM

AND ELR-“CRITICAL” GRAPH CLASSES

A graph H is called a minor of G if H can be obtained from a subgraph of G by contracting its edges.
The class of graphs is called minor-closed if every minor of each graph from this class is also in this
class. Every minor-closed class X can be defined by the set of its forbidden minors S, which can be
written as

X = Freem(S).

By the well-known Robertson-Seymour theorem, the minimal set (by graph minor relationship) of
forbidden minors is finite for every minor-closed class. For example, for the class of planar graphs, this
set coincides with {K3,3,K5} by the Pontryagin–Kuratowski criterion.

The statement and proof of Lemma 4 for minor-closed classes are somewhat easier:

Lemma 7. Let G be a connected graph from Freem({Comi}) (i ≥ 2) with at least three vertices,
and let Δ stand for the largest vertex degree in G. Then the contraction of G has at most(
Δ4i+1 − 1

)
/
(
Δ − 1

)
vertices.

Proof. Suppose the opposite. It is clear that Δ > 1. Let H be the contraction of G. If G is a simple path
then H = K2. The equality holds for such G.

Let G not be a simple path. It is clear that H does not contain internal vertices, the degrees of all
vertices in H do not exceed Δ, and some vertex in H has the degree exactly Δ. Consider a generated
path P in H of length equal to the diameter of H . This path contains at least 4i + 2 vertices (recall that
a connected graph with diameter d and maximum vertex degree Δ′ > 1 has at most (Δ′d+1 − 1)/(Δ′ − 1)
vertices). Each nonendvertex in P is adjacent to at least one vertex from V (H) \ V (P ), and each vertex
in V (H) \ V (P ) is adjacent to at most three vertices from P . Consider the set V1 consisting of 3i
nonendvertices from P . There exist some set V2 that consists of i vertices from V (H) \ V (P ), each
of which is adjacent to at least one vertex from V1.

Consider a subgraph H ′ of H consisting of all nonendedges of P and i arbitrary edges each of which
is incident to one vertex from V2 and one vertex from V1, wherein all these i edges are incident to all
vertices from V2. It is easy that we can obtain Comi from H ′ by contracting some of its edges. Therefore,
H contains Comi as a minor; a contradiction.

A class of graphs X is called a minor of some class Y if, for each graph H ∈ X , there is G ∈ Y
such that H is a minor of G. The class X is called a strong minor of the class Y , if, for every graph
from H ∈ X , there is G ∈ Y such that H is a minor of G, wherein the number of vertices in G is upper-
bounded by some polynomial in the number of vertices of H .

It turned out that, using the notion of a strong minor of a class of graphs, we can fully describe all
polynomial cases of ELR problem for some family of graph classes that contains all finitely defined and
minor-closed classes. It seems, this is the first result that provides full description for nonartificial NP-
complete problems on graphs.

Theorem 4. Let X be a class of graphs for which the ELR problem is not solvable in polynomial
time. Then each class for which X is a strong minor also has this property.

Proof. Let X be a strong minor of the class Y . Let us show that the ELR problem for the graphs
from X can be reduced in polynomial time to the same problem for the graphs from Y . This will prove
the theorem.

Let H ∈ X and L be the input data for the ELR problem, and let C denote the maximum color in the
sets from L. Let G be the graph that exists according to the definition of a strong minor of a class. The
graph H can be obtained from G by removing vertices and edges and then by contracting some edges
of G. There is a set of edges of G that become the edges of H . Let E be the set of such edges in G, let E1

denote the set of edges in G that are contracted while constructing H , and let E2 = E(G) \ (E ∪ E1).
The sets E, E1, and E2 are computed in polynomial time.
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Fig. 1.

Construct the set L′ of assignments of acceptable colors to edges of G as follows: If e ∈ E then put
L′(e) equal to the union of colors from L(e) increased by |E1|. Enumerate all edges in E1 from 1 to |E1|.
For the ith edge e ∈ E1, put L′(e) = {i}. Enumerate all edges in E2 from 1 to |E2|. For the ith edge
e ∈ E2, put L′(e) = {C + |E1| + i}. It is apparent that L′-ranking of edges of G exists if and only if
there is L-ranking of edges of H . At the same time, the length of input data for (G,L′) is bounded above
by some polynomial in the length of input data for (H,L). This allows for the earlier identified polynomial
reduction, and Theorem 4 is proved.

Theorem 4 allows for construction of the new ELR-hard cases from the already known ELR-hard
cases. This is especially useful for detection of new minimal ELR-hard classes. Thus, relying on ELR-
hard classes Bat, Star, and Comet, it was proved in [5, 7] in a similar way that the classes Comb,
Camomile, and Clique are ELR-hard.

We can introduce the graph strong minor relationship on the set of all minimal ELR-hard classes;
this relationship is necessarily a quasi-order (it is reflexive and transitive). It can be checked that this
relationship is an order on the set

{Bat, Star, Comet, Comb, Camomile, Clique}
The Hasse diagram for this order is shown in Fig. 1.

It is shown below that the classes Bat, Star, Comb, Camomile, and Clique form a full set of finitely
defined minimal ELR-hard classes. Therefore, the given diagram (without Comet) is complete for these
classes.

Consider the family of graph classes M. A hereditary graph class X belongs to M if one of the
following conditions is true:

(i) none of the classes Bat, Star, or Comet is a minor of X ;

(ii) if at least one of the classes Bat, Star, or Comet is a minor of X then at least one of them is also
a strong minor of X .

It is clear that all minor-closed classes belong to M. It is proved below that all finitely defined classes
belong to M.

Lemma 8. Every finitely defined class belongs to M.

Proof. Let X be a finitely defined class such that at least one of the classes Bat, Star, or Comet is its
minor. We can assume that X contains none of the six classes Bat, Star, Comet, Comb, Camomile, and
Clique since otherwise one of the classes Bat, Star, and Comet is a strong minor of X .

Let N denote the sum of numbers of vertices in the graphs from Forb(X ). Consider the graph Gi,j ,
where i ∈ 1, 4 and j ∈ N, that is obtained as follows: Take a path with (j + 1)N + jδi vertices, where
δi = i for i ∈ 1, 3 and δ4 = 3. Number the vertices of this path from 1 to (j + 1)N + jδi from one end to
the other and add j new vertices to it also numbered from 1 to j. For every k ∈ 1, j, consider the added
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vertex with number k. Connect it with the vertex with the number kN + (k − 1) + 1 of the path if i = 1,
or with the vertices with the numbers

kN + 2(k − 1) + 1 and kN + 2(k − 1) + 2, if i = 2,

kN + 3(k − 1) + 1, kN + 3(k − 1) + 2 and kN + 3(k − 1) + 3, if i = 3,

kN + 3(k − 1) + 1 and kN + 3(k − 1) + 3, if i = 4.

Let Zi =
[ ∞⋃

j=1
{Gi,j}

]
. It is clear that, for every i ∈ 1, 4, Comet is a strong minor of the class Zi.

Therefore, we can assume that each of these four classes is not in X . Note that, for every i ∈ 1, 4, each
graph with N vertices from Zi belongs either to T̃ (if i = 1), or D̃ (if i = 2), or D̂ (if i = 3), or T̂ (if i = 4).
Therefore, in Forb(X ), there are graphs that belong to each of the sets T̃ , D̃, T̂ , and D̂. By assumption,
this holds also for the classes Bat, Star, Comet, Comb, Camomile, and Clique.

By Lemmas 2 and 3, there are constants C1 and C2 (depending on the graphs from Forb(X ) that
belong to Bat, Star, Comet, Comb, Camomile, and Clique) such that, for every connected graph G ∈ X ,
either the degrees of all vertices are at most C1, or the diameter of G is at most C2. Let X1 be the set of
connected graphs from X with the degrees of all vertices of at most C1. Let X2 be the set of connected
graphs from X with diameter at most C2. A contraction of a graph does not contain internal vertices.
Therefore, by Lemmas 4 and 5, there is a constant C3 (it also depends on the graphs from Forb(X ) that
belongs to Bat, Star, Comet, Comb, Camomile, Clique, T̃ , D̃, T̂ , and D̂), such that a contraction of
every graph from X1 has at most C3 vertices. By Lemma 2, there is a constant C4 (depending on the
graphs from Forb(X ) that belongs to Bat, Star, Comet, Comb, Camomile, and Clique) such that every
graph from X2 has at most C4 nonleaf vertices.

It is obvious that there are finitely many graphs from

{K2,i | i ∈ N} ∪ {Si | i ∈ N} ∪ {Comi | i ∈ N}
that are minors of at least one graph from X1 (otherwise the sequence of the numbers of vertices of
contractions of the graphs from X1 is not bounded). This also holds for the class X2 since each graph,
for which at least one of K2,i, Si, and Comi is a minor, contains at least i− 1 nonleaf vertices. Therefore,
none of the classes Bat, Star, and Comet can be a minor of X ; a contradiction. The proof of Lemma 8 is
complete.

We are ready now to prove the criterion for effective solvability of the ELR problem in the family M:

Theorem 5. The ELR problem for the class X ∈ M is solvable in polynomial time if and only
if none of the classes Bat, Star, or Comet is a minor of X .

Proof. Recall that all three classes Bat, Star, and Comet are ELR-hard. This, together with Theorem 4,
implies that if at least one of the classes Bat, Star, or Comet was a strong minor of X then the ELR
problem would not be solvable in polynomial time in X . Let none of the three classes be a strong minor
of X . Then, by definition of the family M, none of them is a minor of X . Therefore, there are graphs
H1 ∈ Bat, H2 ∈ Star, and H3 ∈ Comet such that none of the three graphs is a minor of any of the
graphs from X . Thus, X ⊆ Freem({H1,H2,H3}). There is i = i(X ) such that

X ⊆ Free({Ki, K2,i, Combi, Si, Cami, Comi}).
Indeed, if such i did not exist then the class X would include one of the classes Bat, Star, Comet, Comb,
Camomile, or Clique (since X is hereditary); therefore, one of the classes Bat, Star, or Comet is a strong
minor of X .

By analogy to the second part of the proof of Lemma 8 (using Lemmas 2, 3 and 7), it can be shown
that there is a constant C (depending on i and H3) such that each connected graph from X either has at
most C nonleaf vertices or its contraction contains at most C vertices.

Let X1 be the set of connected graphs from X with at most C nonleaf vertices, and let X2 be a set
of connected graphs from X such that their contractions contain at most C vertices. It follows from
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Theorem 2 that the ELR problem is solvable in polynomial time for the graphs from X1. By Lemma 6 and
Theorem 3, the ELR problem is solvable in polynomial time inX2. Ranking of the edges of a disconnected
graph is ranking the edges of each of its connected components. Whether a graph from X belongs to
each of the classes X1 and X2 can be tested in polynomial time in the number of vertices. Therefore, the
ELR problem is solvable in polynomial time in X .

The proof of Theorem 5 is complete.

Theorem 5 is useful when there is a rule for determining whether at least one of the classes Bat, Star,
or Comet is a minor of a given class from M. This can be easily done for minor-closed classes since it is
only necessary to check if a finite set of forbidden minors contains graphs from Bat, Star, and Comet.
At the same time, Theorem 5 is difficult to apply to finitely defined classes. However, ELR-boundary
classes described below can be helpful here.

In [3] the following is proved:

Theorem 6. The Π-boundary classes B1,B2, . . . ,Bk form a Π-boundary system if and only if
the class Free({G1, G2, . . . , Gk}) is Π-simple for all

G1 ∈ B1, G2 ∈ B2, . . . , Gk ∈ Bk.

Theorem 7. The ELR-boundary system coincides with

{Bat, Star, Comet, Comb, Camomile, Clique, T̃ , D̃, T̂ , D̂}.

Proof. Recall that each of the ten classes Bat, Star, Comet, Comb, Camomile, Clique, T̃ , D̃, T̂ , and D̂
is ELR-boundary [1–7].

Let us apply Theorem 6. Let X be an arbitrary hereditary class of graphs that do not contain any of
the ten given boundary classes. Let us show that X is ELR-simple. By Lemma 5, a contraction of every
graph from X belongs to Free({H1,H2,H3,H4,H5}) for some H1 ∈ T̃ , H2 ∈ D̃, H3 ∈ T̂ , H4 ∈ D̂, and
H5 ∈ Comet.

Further proof of the ELR-simplicity of X is similar to the proof of Theorem 5 and is based on
Lemmas 2–4, 6 together with Theorems 2 and 3.

The proof of Theorem 7 is complete.

The criteria are related of effective solvability of the ELR problem for minor-closed classes and finitely
defined classes. Namely, at least one of the classes Bat, Star, or Comet is a (strong) minor of some
finitely defined class of graphs if and only if it includes at least one of the classesBat, Star, Comet, Comb,
Camomile, Clique, T̃ , D̃, T̂ , and D̂. This follows from Theorems 5 and 7, Lemma 8, and definition of M.

Using Theorems 5 and 7, we can easily enumerate all finitely defined minimal ELR-hard classes and
all minor-closed minimal ELR-hard classes:

Theorem 8. There are exactly five finitely defined minimal ELR-hard classes: Bat, Star, Clique,
Comb, and Camomile. The only minor-closed minimal ELR-hard class is Comet.

Proof. The classes Bat, Star, Clique, Comb, and Camomile are finitely defined. The corresponding sets
of forbidden generated subgraphs are described in [3–7]. It is easy to see that Comet, T̃ , D̃, T̂ , and D̂
are infinitely defined (for each of these classes, all simple cycles of length 5 and up belong to the minimal
set of forbidden generated subgraphs).

Let X be an ELR-hard finitely defined class that does not include Bat, Star, Clique, Comb, and
Camomile. By Theorems 1 and 7, X includes at least on of the classes Comet, T̃ , D̃, T̂ , and D̂.
Since they are not finitely defined, while X is; therefore, X coincides with none of them. Therefore, X
contains a graph G that does not belong to at least one of the classes Comet, T̃ , D̃, T̂ , and D̂. The class
X ∩ Free({G}) is, then, ELR-hard by Theorem 1; therefore, X is not a minimal ELR-hard class.

By Theorem 5, each minor-closed ELR-hard class necessarily includes at least one of the classes
Bat, Star, or Comet. Only Comet among them is minor-closed. Therefore, it is the only minor-closed
minimal ELR-hard class. This completes the proof.

Probably, the set of all minimal ELR-hard classes is described by the classes Clique, Bat, Comb,
Star, Camomile, and Comet.
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