
Parallel and Cloud Computing Research (PCCR) Volume 1 Issue 3, October 2013 www.seipub.org/pccr

 41

Highly Parallel Hardware-oriented Algorithm
for Jacobi SVD of Hermitian Quaternion
Valued Matrix
Evgueni Doukhnitch*1, Vadim Podbelskiy2
1Department of Computer Engineering, Istanbul Aydin University/Istanbul, Turkey
2Department of Sofware Engineering, National Research University Higher School of Economics/Moscow, Russia
*1evgenydukhnich@aydin.edu.tr; 2vpodbelskiy@hse.ru

Abstract

In this study, new highly parallel algorithm of two-sided
Jacobi 8-D transformation is suggested. It is oriented on
VLSI-implementation of special processor array. This array
is built using 8-D CORDIC algorithm for quaternion valued
matrix singular value decomposition. Accuracy analysis and
simulation results are added. Such array can be utilized to
speed up the Jacobi method realization to compute the SVD
of a quaternion matrix in signal and image processing.

Keywords

Quaternion Matrix; Jacobi Method; SVD; Processor Arrays

Introduction

Singular value decompositions (SVD) and eigenvalue
decomposition (EVD) are important problems in linear
algebra and digital signal processing. The most widely
employed method of solving SVD problem is zeroing
the entries in a matrix by a sequence of rotations or
reflections (see Rader [1996]). In many such
computations, it is necessary to vanish some elements
selectively with matrix similarity transformation. High
practical importance of these problems leads to the
need of designing hardware-oriented algorithms for
their fast VLSI implementation. The Jacobi method is
the frequently used tool and very high throughputs
are required from the special processors which will be
used as array’s elements for the parallel computation
of these transformations.

The coordinate rotation computer (CORDIC) is an
effective processing element for such systolic arrays
which executes these transformations without
multiplications (see Meher [2009]). The original
CORDIC algorithm processes two real numbers at a
time. It is well below the needed throughput for DSP.
To speed up the matrix computations, they use higher
dimensional rotations. To generalize the original
CORDIC algorithms, Hsiao and Delosme offered the

Quaternion or Pseudo-quaternion CORDIC algorithms
for 4-D rotations(see Hsiao [1996]). These algorithms
are used for parallel decomposition of complex
matrices and demonstrate significant speed up in
contrast to the original 2-D CORDIC. Following this
direction, Octonion CORDIC algorithm (OCA) for 8-D
rotations was suggested in Doukhnitch [2002] and
generalized in Doukhnitch [2011] to implement Givens
rotation applied to quaternion valued vectors.

The study of quaternion matrices has gained interest
in many practical areas in recent years (see Bihan,
Miron, Zhang). It is motivated with smaller
complexity in terms of storage and computations
needed for a direct quaternion algorithm (seeBihan
[2007]). Besides that, use of quaternion operands for
computations leads to less computational errors. The
application of quaternions to represent color images
has been introduced by Sangwine [1996]. A color
image is represented as a pure quaternion image:

𝑆𝑆(𝑥𝑥,𝑦𝑦) = 𝑟𝑟(𝑥𝑥,𝑦𝑦)𝒊𝒊+ 𝑔𝑔(𝑥𝑥,𝑦𝑦)𝒋𝒋 + 𝑏𝑏(𝑥𝑥,𝑦𝑦)𝒌𝒌, (1)
wherer(x,y), g(x,y), b(x,y) are respectively the red,
green and blue components of a pixel at position (x,y)
in the image S(x,y). This representation has allowed
the definition of powerful tools for color image
processing such as Fourier transforms, compression,
correlation, recognition or edge detection including
using SVD (see Bihan[2003], Pei [2003]). In the last few
years, quaternions were used in statistical signal
processing for multiple sources characterization and
discrimination.

In accordance with Jacobi method, they divide the
rows of a given matrix into pairs and for each pair
they calculate an angle for two-sided rotation to null
off-diagonal element. In 1983, the Brent-Luk-Van Loan
(BLV) systolic array was proposed for fast SVD
parallel computation, see Brent [1983]. In Cavallaro
[1988], there was suggested to use CORDIC processors

www.seipub.org/pccr Parallel and Cloud Computing Research (PCCR) Volume 1 Issue 3, October 2013

42

for such array. B.Yang and J.F. Bohme proposed the
Two Plane Rotation (TPR) method to perform two-
sided 2×2 SVD as two parallel rotations, see Yang
[1991]. Hsiao and Delosme proposed to use
multidimensional CORDIC algorithms in systolic
array for both real and complex matrices (see Hsiao
[1996]). There are many modifications of Jacobi
method realization in publications. For example, the
approximate CORDIC-based Jacobi algorithm was
considered in Gotze [1993]. In Strumpen [2003], a
stream SVD algorithm was suggested. In Snopce
[2010], a preliminary complex-to-real transformation
was proposed.

H. C. Lee and then F. Zhang [1997] suggested
calculating SVD of quaternion matrices by means of
the SVD of its equivalent complex matrix with twice
size (see also Bihan [2003], Pei [2003]). The two-sided
Jacobi algorithm has also been used to solve SVD of a
quaternion matrix directly without such decomposition
(see Bihan [2007]).

In this paper, we suggest to use Octonion CORDIC
algorithm for hardware realization of Jacobi
transformation with BVL processor array. The only
difference is in new processor elements (PEs). They
can speed up the process because of parallel
calculation of elements of 8-D vectors (pairs of
quaternions) and alignmentat runtime of angle
calculation and rotations implementation. But it
needssignificant modification of diagonal PEs. It is due
to the fact that OCA does not have an evident
representation of angle for 8-D rotation and TPR
method cannot be realized directly.

In Section 1, a short description of Givens
transformation with OCA for quaternion operands is
given. In Section 2 OCA modification for Jacobi and
TPR methods is described. The algorithm of SVD
implementation with processor array is suggested in
Section 3. In Section 4, the error analysis together with
simulation results are shown. Finally, in the last
section, the conclusions are given.

Quaternion Vector Transformation with OCA

The typical matrix operation for a matrix
decomposition is an one-sided linear transformation of
rotation:

Y=P*X (2)
If we have a quaternion valued vector X=(q1, q2)T in (2)
we can describe an 8-D rotation of equivalent 8-D real
vector X=(q11, q12, q13, q14, q21, q22, q23, q24)T, where
quaternion l has components ql=(ql1, ql2, ql3, ql4) (l=1,2).

The Cayley numbers(see Ward [1997])or octonions (8-D
objects)can be used to represent 8x8 matrix P as a
product of octonions of elementary rotations:

𝑷𝑷 = � 𝑴𝑴𝒊𝒊

𝒏𝒏

𝒊𝒊=𝟎𝟎
 (3)

These octonions have a unit norm (NM=1), and can be
represented in polar form:

𝑴𝑴𝑖𝑖 = cos𝜑𝜑𝑖𝑖 + sin𝜑𝜑𝑖𝑖 (𝛼𝛼𝒊𝒊 + 𝛽𝛽𝒋𝒋 + 𝛾𝛾𝒌𝒌 + 𝛿𝛿𝒍𝒍 + 𝜆𝜆𝒒𝒒
+ 𝜇𝜇𝒓𝒓 + 𝜌𝜌𝒔𝒔) (4)

where 𝜑𝜑𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2−𝑖𝑖 . Following Doukhnitch [2002], the
8-D rotation matrix can be represented as R8,i=(1/cosφi)
Mior
 𝑅𝑅8,𝑖𝑖 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 1 αiti
−αiti 1

βiti γiti

−δiti −ρiti

−βiti δi ti
−γiti ρiti

1 −λiti
λiti 1

δiti λiti
βiti −µiti

µiti ρiti

λiti γiti
−αiti γiti

−µi ti −βiti

−ρiti µi ti

δi ti −αiti

−δiti −βiti

−λiti µi ti

αiti µi ti

−γiti βiti

−µiti −λiti
−ρiti −γiti

ρiti −δi ti
−µi ti αiti

1 −ρiti

ρiti 1
−γiti λiti

−αiti −δiti
γiti αiti

−λiti δi ti

1 −βiti

βiti 1 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (5)

The scaling factor is ki=1/cosφi=
271 it+ . Many

strategies were proposed to force 𝑘𝑘 = ∏ 𝑘𝑘𝑖𝑖𝑖𝑖 to be a
simple signed bits representation for efficient scaling
correction, e.g. Yang [1991] or Cavallaro [1988]. All of
them use additional sequence of shift-add operations
with average total numbern/4.

The rotation parameters ti are equal to 2−f(i) where {f(i)}
is a non-decreasing positive integer sequence:

f(i) ={0,1*,2*,3*,4*,5,6,7*,8,…,13*,14,…,n} (6)
where the sign * denotes a repetition. Thus, for n-bits
accuracy (n>13), the total number of iterations is (n+6)
with guaranteed convergence (see Doukhnitch [2011]).

The control signs αi...ρi are either 1 or −1. Without
performing the scaling by ki−1, the implementation of
one elementary rotation consists of eight concurrent
shift-and-add operations. The Octonion CORDIC
algorithm:

Yi+1 = R8,i Yi, (0, ni = ; Y0=X), (7)

as well as original CORDIC algorithm can be used in
two modes–rotation (application of transformation) and
vectoring (evaluation of parameters of transformation).
The usual task of vectoring in such algorithms is the
annihilation of required components in a given vector,
as after Volder’s plane rotation, one of the two
components becomes zero, while in 8-D space, seven
components may be zero. A sequence of elementary
rotations with matrices (5) is applied to an 8-D vector
X= [x1, x2, x3, x4, x5, x6, x7, x8]T to bring it along the first
canonical axis. To achieve this, the control signs are

Parallel and Cloud Computing Research (PCCR) Volume 1 Issue 3, October 2013 www.seipub.org/pccr

 43

selected for (5) according to the following expressions:

αi = fi⋅sign(z2,i); βi= fi⋅sign(z3,i);
γi= fi⋅sign(z4,i); δi= fi⋅sign(z5,i);

λi = fi⋅sign(z6,i); µi = fi⋅sign(z7,i);
ρi = fi⋅sign(z8,i); fi = sign(z1,i);

(8)

where zj,i denotes the jth component of a vector Zi at
the beginning of the (i+1)th iteration. For vectoring
mode Zi=Yi (Y0=X), and for rotation mode, the control
signs can be obtained from a preliminary vectoring
operation for some vector Z on-the-fly. The result of (7)
is

()XRkY n

i i∏ =
=

0 ,8
(9)

The hardware implementation of the OCA taken from
Doukhnitch [2011]is shown in Fig. 1.

The processor is composed of shifters, which performs
the multiplication using ti, 7-to-2 Carry Save Adder
(CSA) arrays, and 3-input full adders. The S1,S2, ...,S8 at
the top of the figure are the components where the
required control signs for the next iteration are
prepared, the details of which are given in (8). Owing
to their ineffectiveness in the sense of execution time

with respect to our design and to sustain the
traceability of the figure, these components are shown
separately. The control signs αi…ρI are used
subsequently to affect the signs of the elements of 8-D
vector Yi. The I/O registers are designed such that the
data transfer into and out of the processor can take
place simultaneously. In Fig. 1, components labelled as
−1 are used to change a sign of operand.

Quaternion Jacobi Transformation

In this paper, as a particular case, we cosider only
Hermitian matrixes because they have own important
applications though the offered approach can be
extended to a case of rectangular matrixes. The Jacobi
procedure problem is as follows. A 2×2 block of a
Hermitian quaternion m× mmatrix A is given:

𝑨𝑨𝒓𝒓𝒓𝒓 = �
𝑎𝑎𝑟𝑟𝑟𝑟 𝒂𝒂𝒓𝒓𝒓𝒓
𝒂𝒂𝒄𝒄𝒄𝒄 𝑎𝑎𝑐𝑐𝑐𝑐 �, (10)

where quaternion (bold face symbol) 𝒂𝒂𝒄𝒄𝒄𝒄 = 𝒂𝒂�𝒓𝒓𝒓𝒓 and
diagonal elements are real. The over bar denotes
(complex or quaternion) conjugation. In Zhang [1997],
it was shown that a quaternion Jacobi rotation is
analogous to a complex Jacobi rotation.

FIG. 1. OCTONION CORDIC-PROCESSOR ARCHITECTURE

www.seipub.org/pccr Parallel and Cloud Computing Research (PCCR) Volume 1 Issue 3, October 2013

44

Using a 2 × 2 quaternion unitarymatrix P, we can
perform a Jacobi rotation on Arc, i.e.

𝑷𝑷∗𝑨𝑨𝒓𝒓𝒓𝒓𝑷𝑷 = 𝑹𝑹, (11)
where* stands for conjugation–transposition and R is a
2×2 quaternion diagonal matrix with real components
only:

𝑹𝑹 = �𝑟𝑟𝑟𝑟𝑟𝑟 0
0 𝑟𝑟𝑐𝑐𝑐𝑐

�

A general 2×2 unitary quaternion matrix P has
elements which have moduli that are cosines and sines
of some angle θ:

𝑷𝑷 = � 𝑐𝑐 𝐬𝐬
−𝒔𝒔� 𝑐𝑐̅� (12)

with|c| = cos⁡θ, |s| = sin θ and the constraint

𝑐𝑐𝑐𝑐̅ + 𝒔𝒔𝒔𝒔�=1. The elements (real c and quaternion s) can
be calculated as following Bihan [2007]:

𝑐𝑐 = cos 𝜃𝜃 =
1

√1 + 𝑡𝑡2
; 𝒔𝒔 = 𝒂𝒂𝑟𝑟𝑟𝑟

sin𝜃𝜃
|𝒂𝒂𝑟𝑟𝑟𝑟 | (13)

where

𝑡𝑡 =
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

|𝜏𝜏| + √1 + 𝜏𝜏2
;

𝜏𝜏 = cot 2 𝜃𝜃 =
𝑎𝑎𝑐𝑐𝑐𝑐 − 𝑎𝑎𝑟𝑟𝑟𝑟

2|𝒂𝒂𝒓𝒓𝒓𝒓| ; sin𝜃𝜃 = 𝑡𝑡𝑡𝑡

Two-sided rotation (11) can be executed with two 8-D
rotations in sequence but the angle θ of rotation must
be calculated before. This angle can be represented in
no evident form (in an implicit fashion)as a sequence of

sets of control signs {αi…ρi}θ (0, ni =)(see Delosme
[1990]). In general, for a Hermitian matrix, to calculate
an angle θ = atan𝑦𝑦 𝑥𝑥⁄ we can apply algorithm (7) in
vectoring mode with quaternion vector X= [x, y]T and
the corresponding sequence will be generated. If we
take x=ajj-acc and y= acr+𝒂𝒂𝒓𝒓𝒓𝒓���� we can calculate a sequence

of sets {αi…ρi}2θ (0, ni =) corresponding to angle 2θ.

To determine the angle θ, this sequence can be
transformed using a formula:

tan
𝛼𝛼
2

=
sin𝛼𝛼

1 + cos𝛼𝛼
 (14)

First, this sequence is applied to rotate an unit vector
X= [1, 0, 0, 0, 0, 0, 0, 0]T to get two quaternion
components of matrix (10) in the result Y= [c, s]Tand
then vectoring mode is utilized for modified vector

X= [c+1, s]T (15)
As a result, we will get a sequence of sets {αi…ρi}θ

(0, ni =) corresponding to angle θ. This sequence can
be used for orthogonal transformation of matrix A.

To speed up the considered calculations, we can use
Two Plane Rotation (TPR) method to perform 2×2 SVD

as two rotations in parallel suggested in Yang [1991].
This method represents 2×2 matrix (10) as a sum:

𝑨𝑨𝒓𝒓𝒓𝒓 = 𝑨𝑨1 + 𝑨𝑨2 = �
𝑝𝑝1 −𝒒𝒒1
𝒒𝒒1 𝑝𝑝1

� + �
−𝑝𝑝2 𝒒𝒒2
𝒒𝒒2 𝑝𝑝2

�, (16)
where p1=(arr+acc)/2, q1=(acr- 𝒂𝒂𝒓𝒓𝒓𝒓����)/2, p2=(acc-arr)/2,
q2=(acr+𝒂𝒂𝒓𝒓𝒓𝒓����)/2.

In general case, the transformation (11) can be
executed as two rotations in vectoring mode for
quaternion vectors X1=(p1, q1)T and X2=(p2, q2)T. As a
result, the matrix R is calculated as

𝑹𝑹 = �𝑦𝑦11 − 𝑦𝑦21 0
0 𝑦𝑦11 + 𝑦𝑦21

�,

where y11 and y21 are the first components of the
resulting vectors Y1 and Y2 correspondently. In

addition, two sequences of sets {αi…ρi} (0, ni =)
corresponding to angles θ+ and θ- for TPR are
produced. Then we can use two angles for two-sided
rotation (11)𝜃𝜃1 = (𝜃𝜃+ − 𝜃𝜃−)/2 and 𝜃𝜃2 = (𝜃𝜃+ + 𝜃𝜃−)/2 to
modify off-diagonal elements of A(two rows and two
columns).

Actually, for Hermitian matrices, we have q1=0 and the
first rotation is unnecessary (θ-=0, y11= p1, and 𝜃𝜃1 =
𝜃𝜃2 = 𝜃𝜃+/2). The elements p1 and p2 are real and q2

=𝒂𝒂𝒊𝒊𝒊𝒊 ���� is a quaternion. Therefore, we can use sets {αi…ρi}

(0, ni =) corresponding to angle θ+ to rotate an unit
vector for generating vector (15). Then the sequence of

sets {αi…ρi}θ (0, ni =) can be obtained corresponding
to angle θ1=θ2 for rotation matrix P which is used for
orthogonal transformation of m×m matrix A.

SVD Processor Array

The Jacobi algorithm (Rutishauser[1971])consists of
iteratively applying a basic 2×2 diagonalization
formula (11) until the entire m× m matrix is diagonal. It
works in several ‘sweeps’ until convergence is
achieved. In each sweep, it rotates away all the non-
zero off-diagonalelements. But every such rotation of
course creates other non-zerooff-diagonal elements. It
can be shown, however, that the sum of the absolute
values of the off-diagonalelements is reduced in each
sweep. More precisely, the Jacobi method has
quadratic convergence. Convergence is achieved in
O(log m)sweeps(Rutishauser [1971]).

The algorithm for hardware realization of Jacobi
transformation can be described as follows:

Algorithm JA:

 s=0; A(s)=A;
 𝑊𝑊ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑆𝑆𝑆𝑆𝑆𝑆1

(𝑠𝑠)

𝑆𝑆𝑆𝑆𝑆𝑆2
(𝑠𝑠) > 𝜀𝜀 {

Parallel and Cloud Computing Research (PCCR) Volume 1 Issue 3, October 2013 www.seipub.org/pccr

 45

 For step =1 to m-1 {
 Generation of m/2 pairs (r, c);
 For each pair in parallel calculate rotation

angles (sequence of sets{αi…ρi}θ);
rotate:𝑨𝑨(𝑠𝑠+1) = 𝑷𝑷(𝒔𝒔)∗𝑨𝑨(𝒔𝒔)𝑷𝑷 (𝒔𝒔)-- usingTPR

 } –end for

s=s+1
 } –end while

where SUM1-sum of off-diagonal moduli of A(s) in
sweep s, SUM2-sum of on-diagonal moduli of A(s) in
sweep s, matrix 𝑷𝑷 (𝒔𝒔)is a plan rotation in the (r, c) plane
defined by the parameters(c,s,-s,c) in the (rr,rc,cr,cc)
entries of an m×m identity matrix. For serial
implementation, the simple strategy for generation of
index pairs (r, c) is to chose the “cyclic-by-rows”
ordering

(1,2), (1,3), ...,(1, m), (2,3),...,(m-1, m).
For parallel implementation, we can use “Brent-Luk”
ordering (see Brent [1983], [1985]). A sweep for (m-1)
steps has been executed with m/2 parallel annihilations
per each.

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

--

--

--

--

--

FIG. 2. TRIANGLE PROCESSOR ARRAY FOR JACOBI SVD

Parallel implementation of m×m matrix singular value
decomposition is based on square BLV array with m/2
processor elements (PE) per side, where each
processor contains one 2×2 submatrix, e.g. see Brent
[1985]. Taking into account the equality 𝑎𝑎𝑟𝑟𝑟𝑟 = 𝑎𝑎�𝑐𝑐𝑐𝑐 for
Hermitian matrix, a triangle processor array can be
used with one diagonal PE and (m/2-1) off-diagonal
PEs per horizontal side, and one diagonal PE and (m/2-
1) off-diagonal PEs per vertical side (see Brent [1985]).
The total number of PEs is m/2diagonal PEs and (m/2-
1)×m/4off-diagonal PEs. The configuration of this array
is shown in Fig. 2, where crosses are matrix quaternion
elements. All the PEs have nearest- neibour
connections for permutations (17), and details are
given in Brent [1985]). A phase of internal

rearrangement of the elements of Arc must be made
after each step,see also Ma [1999]. Each diagonal PE is
connected with all off-diagonal PEs in the row and in
the column to send them the sequence of sets {αi…ρi}θ
for rotations.

All array PEs are built using module for OCA
implementation shown in Fig. 1. Each PE performs a
Jacobi transformation for 2×2 matrix with quaternion
elements. In Fig. 3 and Fig. 4, Octonion CORDIC
application and evaluation symbols are shown
correspondently.

OCA
apply

8X Y8

7θ}ip ...i{α

FIG. 3.OCTONION CORDIC APPLICATION

OCA
eval

8 8
X=[x1,x2,…,x8]T Y=[y1,0,0,0,0,0,0,0]T

7
α}ipi{α ...

FIG. 4. OCTONION CORDIC EVALUATION

+ 1/2

1/2 OCA1

eval

-

+

OCA3

eval
OCA2

apply

-

arr
acc

arc

8

7
7 7

8

q2

p2

p1

rcc

Y2=[y21,0,0,…,0]

+1

X=[1,0,0,...,0]T

θ2}ip ...i{α

Y

θ}ip...i{α
7

y21

y1

rrr

FIG. 5. DIAGONAL PE OF THE SVD ARRAY

Diagonal PE consists of 2 OCA modules described in
Fig.1 (OCA1 and OCA3) to execute CORDIC
evaluations (see Fig.5) and one module OCA2 to rotate
vector X= [1, 0, 0, 0, 0, 0, 0, 0]T to get two quaternion
components of matrix (12) in the result Y= [c, s]T. This
result is used to calculate vector (15) for module OCA3
to generate evaluated control signs and to send them
to the off-diagonal PEs in the same row and the same
columnon-the-fly. As soon as the control signs are
available, the off-diagonal processors can perform the
CORDIC applications for 2×1 quaternion vector as
shown in Fig.3, where

Y=PX,forX= [𝒂𝒂𝑟𝑟𝑟𝑟 , 𝒂𝒂𝑐𝑐𝑐𝑐]T, l=c+1,c+2,…,m,
and for X= [𝒂𝒂𝑒𝑒𝑒𝑒 , 𝒂𝒂𝑒𝑒𝑒𝑒]T, e=1,2,…,r-1 (17)

However, to organize a parallel processing for all PEs
we should use the TPR for off-diagonal PEs as well.

www.seipub.org/pccr Parallel and Cloud Computing Research (PCCR) Volume 1 Issue 3, October 2013

46

Each off-diagonal PE represents a submatrix

𝑨𝑨𝟐𝟐𝟐𝟐𝟐𝟐 = �
𝒂𝒂𝟏𝟏𝟏𝟏 𝒂𝒂𝟏𝟏𝟏𝟏
𝒂𝒂𝟐𝟐𝟐𝟐 𝒂𝒂𝟐𝟐𝟐𝟐� (18)

as a sum (16) and then executes TPR:

[𝒓𝒓1, 𝒕𝒕1]𝑇𝑇 = P(Ө−)[𝒑𝒑1,𝒒𝒒1]𝑇𝑇 ,
[𝒓𝒓1, 𝒕𝒕1]𝑇𝑇 = P(Ө+)[𝒑𝒑2,𝒒𝒒2]𝑇𝑇 , (19)

where p1=(a11+a22)/2, q1=(a21- 𝒂𝒂𝟏𝟏𝟏𝟏�����)/2, p2=(a22-a11)/2,
q2=(a21+𝒂𝒂𝟏𝟏𝟏𝟏�����)/2,Ө+ =Ө1 + Ө2, Ө−=Ө2 − Ө1. Angle Ө2
comes from column diagonal PE and the angle Ө1is
comes from row diagonal PE. These angles should be
represented as two parallel sequences of sets of control

signs {αi…ρi}θ (0, ni =), and in each iteration I the
OCA module should execute one rotation with set
�α𝑖𝑖 … ρ𝑖𝑖 � of Ө2 and one rotation with set �α𝑖𝑖 … ρ𝑖𝑖 � of
Ө1 changing or not all signs to opposite values for
addition or for subtraction:

�α𝑖𝑖 … ρ𝑖𝑖 �θ+/− =

{α𝑖𝑖2 , (±α𝑖𝑖1) … ρ𝑖𝑖2 , �±ρ𝑖𝑖1�} (0, ni =) (20)
 Therefore, all off-diagonal PEs spend twice time for
rotation with scaling factor k2.

Then the transformed matrix 𝑨𝑨′𝟐𝟐𝟐𝟐𝟐𝟐 is obtained as:

𝒂𝒂′𝟏𝟏𝟏𝟏 = 𝒓𝒓𝟏𝟏 − 𝒓𝒓𝟐𝟐,𝒂𝒂′𝟏𝟏𝟏𝟏 = −𝒕𝒕𝟏𝟏 + 𝒕𝒕𝟐𝟐,
𝒂𝒂′𝟐𝟐𝟐𝟐 = 𝒕𝒕1 + 𝒕𝒕2,𝒂𝒂′𝟐𝟐𝟐𝟐 = 𝒓𝒓𝟏𝟏 + 𝒓𝒓𝟐𝟐.

The hardware implementation of off-diagonal PE is
shown in Fig.6.

FIG. 6.OFF-DIAGONAL PE OF THE SVD ARRAY

Thus, the proposed algorithm provides the following
levelsof processing:

- transformation ofall elements of the given
matrix;

- overlapping in time of the rotation angle
calculation androtation implementation;

- replacement of sequential two-sided rotations
with two parallel one-sided rotations;

- simultaneous transformation of elements of 8-
D vectors.

It is important to stress that the diagonal of resulting

quaternion matrix has real components only.

The singular values and eigenvalues are the same for
Hermitian matrices. So, the eigenvectors for the matrix
A, which will be identified by B, can be obtained
following the iterative process also proposed by Jacobi.
Obtaining the matrix B is executed simultaneously
with calculating the singular values (see Bravo [2008]).
The matrix of eigenvectors (columns of B) associated
to the eigenvalues of A, is also based on the
decomposition of the matrix in submatrices of 2×2
elements. In this case, the input matrix to be
subdivided is the identity matrix. Successive iterations
will be applied, until the eigenvectors associated are
found. To implement them, another (the second)
processor array of size m/2×m/2 can be used with no
difference between diagonal PEs and off-diagonal PEs.
The equation to compute for each processor is the
following:

𝑩𝑩𝑟𝑟𝑟𝑟
(𝑠𝑠+1) = 𝑩𝑩𝑟𝑟𝑟𝑟

(𝑠𝑠)𝑷𝑷𝑟𝑟𝑟𝑟
(𝑠𝑠), (21)

where 𝑷𝑷𝑟𝑟𝑟𝑟
(𝑠𝑠) is a matrix (12) and 𝑩𝑩𝑟𝑟𝑟𝑟

(𝑠𝑠) corresponds to
systolic eigenvector processor which performs the
CORDIC applications for two quaternion vectors with
two slight modified OCA modules as in Fig. 7.

The eigenvector PE executes the left-side
transformation instead of (21) as follows:

𝑪𝑪𝑟𝑟𝑟𝑟
(𝑠𝑠+1) = 𝑷𝑷𝑟𝑟𝑟𝑟

(𝑠𝑠)𝑪𝑪𝑟𝑟𝑟𝑟
(𝑠𝑠),

where 𝑪𝑪𝑟𝑟𝑟𝑟 = � 𝒃𝒃𝑟𝑟𝑟𝑟 −𝒃𝒃𝑟𝑟𝑟𝑟
−𝒃𝒃𝑐𝑐𝑐𝑐 𝒃𝒃𝑐𝑐𝑐𝑐

�. The result of (21) can be

achieved with sign changing for elements brc and bcr.

OCA
apply

7

-

θ}ip...i{α

OCA
apply

7θ}ip...i{α

-

-

-

1s
rrb +s

rrb
s
rcb

s
crb
s
ccb

1s
rcb +

1s
crb +

1s
ccb +

8

8

FIG. 7. EIGENVECTOR PE OF THE SVD ARRAY

The sequence of control signs for rotations is taken
from corresponding DPEs of the first processor array
in the same row on-the-fly. After each iteration, a
process of rearrangement of the elements of each 𝑩𝑩𝑟𝑟𝑟𝑟

(𝑠𝑠)
is made similar to the calculation of eigenvalues. After
the same number of iterations as that in the
eigenvalues calculation, the columns of resulting
matrix B are the eigenvectors associated to the
eigenvalues determined by the first array.

Parallel and Cloud Computing Research (PCCR) Volume 1 Issue 3, October 2013 www.seipub.org/pccr

 47

Error Analysis and Simulation Results

Following Hu [1992] and Paul [1995], we can analyse
two types of quantization error: an approximation
error due to the quantized representation of rotation
angle and a rounding error due to the finite precision
representation in fixed point arithmetic.

For fixed point arithmetic, all numbers have to be
restricted to -1< x <1. Again, the number possesses h
digits and machine accuracy is given by 𝜀𝜀𝐹𝐹𝐹𝐹 = 2-h-1. If
the result of the fixed point computation lies within
the range, z = Fi(x ± y) = x ± y holds (Paul [1995]). We
use only operations op є {+,-, shift} calculated with a
rounding error according to z = Fi(x op y)= x op y + 𝜀𝜀𝐹𝐹𝐹𝐹 .
Therefore, if an error vector (see Hu [1992]) in each
step due to rounding is

𝑒𝑒(𝑖𝑖) = [𝑒𝑒1𝑖𝑖 , 𝑒𝑒2𝑖𝑖 , 𝑒𝑒3𝑖𝑖 , 𝑒𝑒4𝑖𝑖 , 𝑒𝑒5𝑖𝑖 , 𝑒𝑒6𝑖𝑖 , 𝑒𝑒7𝑖𝑖 , 𝑒𝑒8𝑖𝑖]𝑇𝑇 ,
an upper bound for its absolute rounding error is:

׀𝑒𝑒(𝑖𝑖)׀ ≤ √8𝜀𝜀𝐹𝐹𝐹𝐹 = 2√2𝜀𝜀𝐹𝐹𝐹𝐹 (22)
Rotation angle θ is calculated as a sequence of sets

{αi...ρi}θ (0, ni =) with approximation error δ which is
bounded by the smallest rotation angle σ. That is:

 |δ|≤ σ =𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2−𝑛𝑛 (23)
The quantization error of an operation of vector
rotation is governed by (seeHu [1992]):

𝑌𝑌� = ��𝑅𝑅8,𝑖𝑖

𝑛𝑛−1

𝑖𝑖=0

�𝑋𝑋 + ���𝑅𝑅8,𝑗𝑗

𝑛𝑛−1

𝑗𝑗=𝑖𝑖

�
𝑛𝑛−1

𝑖𝑖=0

𝑒𝑒(𝑖𝑖) + 𝑒𝑒(𝑛𝑛) (24)

Scaling correction introduces an additive error (Paul
[1995]):

𝑌𝑌� = (1/𝑘𝑘)𝑌𝑌� + 𝐸𝐸𝜀𝜀𝐹𝐹𝐹𝐹 , (25)
where E= [1, 1, 1, 1, 1, 1, 1, 1]T. Taking into account (22),
the worst bound of (25) can be found (seeHu [1992])
with

�𝑘𝑘𝑌𝑌� − ()XRn

i i∏ −

=

1

0 ,8 �
2
≤ 2√2𝜀𝜀𝐹𝐹𝐹𝐹𝐺𝐺(𝑛𝑛), (26)

where

𝐺𝐺(𝑛𝑛) = �1 + � � �𝑅𝑅8𝑗𝑗 �2

𝑛𝑛−1

𝑗𝑗=𝑖𝑖

𝑛𝑛−1

𝑖𝑖=0
�

= 1 + �� �1 + 7 ∗ 2−2𝑗𝑗
𝑛𝑛−1

𝑗𝑗=𝑖𝑖

𝑛𝑛−1

𝑖𝑖=0

For m×m matrices A and P, the 2-norm of the absolute
error of one sweep of SVD calculation is given
(following Paul [1995]) by:

�𝐴𝐴(𝑠𝑠) − 𝑃𝑃(𝑠𝑠)∗𝐴𝐴(0)𝑃𝑃(𝑠𝑠)�
2

≤ √2𝜀𝜀𝐹𝐹𝐹𝐹𝐺𝐺(𝑛𝑛)�(2𝑚𝑚 − 4)𝑚𝑚(𝑚𝑚
− 1)

(27)

and an overall error for p sweeps holds:

�𝛬𝛬 − PAP)0(∗
�

2
≤ 𝑝𝑝𝜀𝜀𝐹𝐹𝐹𝐹𝐺𝐺(𝑛𝑛)�(2𝑚𝑚 − 4)𝑚𝑚(𝑚𝑚

− 1)/2,
(28)

where 𝜦𝜦–resulting diagonal matrix containing
eigenvalues of A. It is necessary to note that formulas
(27) and (28) can be used with assumption that
accuracy impacts of “cyclic-by-rows” ordering and
“Brent-Luk” ordering are the same.

Simulation was executed using C# in Visual Studio
2010,. NET Framework 4.0 environment. Fig. 8
illustrates the evaluation mode of OCA (Fig. 4) as an

average result of
)/(log 1

8

2
10 i

j
jie yyE ∑

=

=
 for 100 pairs of

quaternions with random elements in range ±1 where
yj,i denotes the jth component of a vector Yi at the
beginning of the (i+1)th iteration.

FIG. 8.ACCURACY OF OCA EVALUATION VS. NUMBER OF

ITERATIONS

FIG. 9.ACCURACY OF DIAGONALIZATION VS. NUMBER OF

SWEEPS

Following Bihan [2007], 1000 random Hermitian 15×15
quaternion matrices are taken for decomposition. In
Fig.9, the diagonalization results are shown as an

average value of)/(log 2110 SSED = for n=16, 24, 32,
40,48.

Table 1 displays the simulation results in contrast to
software implementation results of Jacobi SVD of
arbitrary 15×15 quaternion matrices in Table 2 from

www.seipub.org/pccr Parallel and Cloud Computing Research (PCCR) Volume 1 Issue 3, October 2013

48

Bihan [2007], where RRE is the relative reconstruction
error. Following Bihan [2007], in order to check the
accuracy of the decomposition, we reconstruct the
original matrix from the product (11), and calculate the
mean relative modulus error between the elements of
the original matrix and the reconstructed matrix. This
is calculated as the mean over all matrix elements of |q
– q’| / 0.5|q + q’|, where q is a quaternion element of
the original matrix and q’ is the corresponding element
of the reconstructedmatrix. We also note the largest
relative error across all elements of the matrix.

The comparison demonstrates that the Jacobi OCA
implementation with the proposed processor array
architecture needs almost the same number of sweeps
as that for software implementation.

TABLE 1. SIMULATION RESULTS.

Parameter Jacobi
OCA

Quaternion
Jacobi (Bihan

[2007])

Complex
Jacobi (Bihan

[2007])
Sweeps 6.1 6.4 6.6

Rotations 658 672 2869
RRE 1e-16 1.88е-15 2.37е-11

Conclusions

In this study, a novel algorithm for VLSI
implementation of Jacobi SVD for quaternion valued
matrices was presented. It has a potential of speeding
up important matrix algorithms such as calculation of
eigenvalues and eigenvectors for Hermitian matrices.
This algorithm can be used for triangularization of
non-Hermitian matrices before SVD calculation as well.
A possibility to speed up the process using TPR
method for quaternion matrices has been indicated.
The simple way to calculate a half angle in no evident
form (in an implicit fashion) has been developed. A
new organization of Jacobi SVD processor array to
implement directly a quaternion matrix diagonalization
without its decomposition into equivalent complex
matrix has been described. In addition to
diagonalization, the calculation of eigenvectors with
the second processor array in parallel has been shown.
Error analysis of the suggested algorithm is also given.
The simulation results have confirmed the possibility
to use OCA with suggested modifications for Jacobi
SVD.

It’s crucial to mention that all improvements over the
basic CORDIC processor (scaling iterations, redundant
arithmetic, high-radix arithmetic, approximate
CORDIC-based Jacobi algorithm (e.g. Gotze [1993],
etc.) may be incorporated into the offered processor

array as well. Processor arrays with hardware
implementation of Jacobi OCA can be fruitful in many
signal-processing problems requiring lots of parallel
computations.

REFERENCES

Bihan, N. L., and S. J. Sangwine. “Jacobi Method for

Quaternion Matrix Singular Value Decomposition.”

Applied Mathematics and Computation 187(2007): 1265-71.

Bravo, I. et al. “Novel HW Architecture Based on FPGAs

oriented to Solve the Eigen Problem.” IEEE Trans. on

VLSI Systems12(2008): 1722-25.

Brent, R. P., F.T. Luk, and C. Van Loan.“Computation of the

Singular Value Decomposition Using Mesh-connected

Processors”, Technical report, Cornell University, Ithaca, NY,

USA (1983).

Brent, R. P., F.T. Luk. “The Solution of Singular Value and

Symmetric Eigenvalue Problems on Multiprocessor

Arrays”, SIAM J. Sci. Statist. Comput., 6 (1985): pp.69-84.

Cavallaro, J. R., and F.T. Luk.“CORDIC Arithmetic for an

SVD Processor.” Journal of Parallel and Distributed

Computing3(1988): 271 – 90.

Delosme, J.-M. “Bit-level Systolic Algorithm for the

Symmetric Eigenvalue Problem.” Proc. Int. Conf. on

Application Specific Array Processors, Princeton, N.J.(1990):

770-81.

Doukhnitch, Evgueni, “Octonion CORDIC Algorithms for

DSP.” Proc. 6th Symp.on DSP for Communication Systems,

DSPCS’2002, Sydney, Australia(2002): 159-63.

EmreOzen. “Hardware-oriented Algorithm for Quaternion Valued

Matrix Decomposition.” IEEE Transactions on Circuits and

Systems--II: Express Briefs4(2011): 225-9.

Gotze, S. J., and P. M. Sauer. “An Efficient Jacobi-like

Algorithm for Parallel Eigenvalue Computation.” IEEE

Trans. on Computers 9 (1993): 1058-63.

Hsiao, S. F., and Delosme, J. M. “Parallel Singular Value

Decomposition of Complex Matrices Using Multidimensional

CORDIC Algorithms.” IEEE Trans. on Signal Processing 3

(1996): 685-97.

Hu, Y. H. “The Quantization Effects of the CORDIC

Algorithm.” IEEE Transactions on Signal Processing

4(1992): 834-44.

Janovska, D., and G. Opfer. “Givens Transformation Applied

to Quaternion Valued Vectors.” BIT Numerical Mathematics,

Parallel and Cloud Computing Research (PCCR) Volume 1 Issue 3, October 2013 www.seipub.org/pccr

 49

43(2003): 991–1002.

J.I. Mars. “Singular Value Decomposition of Quaternion

Matrices: a New Tool for Vector-sensor Signal

Processing.” Signal Processing 7(2004): 1177–99.

Leo, S. D., G. Scolaric, and L. Solombrino. “Quaternionic

Eigenvalue Problem.” Journal of Mathematical Physics

43(2002): 5815–29.

Ma J., Parhi K. K., Deprettere E. F. “An Algorithm

Transformation Approach to CORDIC Based Parallel

Singular Value Decomposition Architectures.” Proc.

Asilomar Conf. on Signals, Systems and Computers, Pacific

Grove, CA(1999): 1401-5.

Meher, P. et al. “50 Years of CORDIC: Algorithms,

Architectures and Applications.” IEEE Trans. on Circuits

and Systems I: Regular Papers 9(2009): 1893 – 907.

Miron, S., N. L. Bihan, and J. I. Mars. “High Resolution

Vector-sensor Array Processing Using Quaternions.”

Proc. IEEE/SP 13th Workshop on Statistical Signal Processing

(2005): 918 – 23.

N.L. Bihan, and J.I. Mars. “Quaternion-MUSIC for Vector-

sensor Array Processing.” IEEE Transactions on Signal

Processing 4(2006): 1218–29. et al. “Multidimensional

Signal Processing Using Quaternions.” Proc. 3rd

Workshop on Physics Signal Image Processing, Grenoble,

France (2003): 57–60.

Paul, S., J. Gotze, and M. Sauer. “Error Analysis of CORDIC-

Based Jacobi Algorithms”, IEEE Trans. on Computers 7

(1995): 947-51.

Pei, S. C., J. H. Chang, J., and J. J. Ding. “Quaternion Matrix

Singular Value Decomposition and its Applications for

Color Image Processing.” Proc. Int. Conf. Image

Process.1(2003): 805–808.

Rader, C. M. “VLSI systolic arrays for adaptive nulling.”

IEEE Signal Processing Mag. 4 (1996): 29-49.

Rutishauser H., Contribution II/1, in: Handbook for Automatic

Computation, ed. J. H. Wilkinson, C. Reinsch, Springer,

1971.

Sangwine, S. J. “Fourier Transforms of Color Images Using

Quaternions, or Hypercomplex Numbers.” Electronics

Letters 21(1996): 1979-80.

S.-F., J.-M. and Delosme. “Householder CORDIC

Algorithms.”IEEE Trans. on Computers 8(1995): 900-1002.

S.J. Sangwine. “Quaternion Principal Component Analysis

of Color Images.” Proc. IEEE Int. Conf. Image Process.

(ICIP) 1(2003): 809–12.

Snopce, H., and I. Spahiu. “Parallelization of SVD of a

Matrix-systolic Approach.” Proc. of the 2010 International

Multiconference on Computer Science and Information

Technology (IMCSIT)(2010): 343 –48.

Strumpen, V., H. Hoffmann, and A. Agarwal. “A Stream

Algorithm for the SVD.” Technical report, Computer

Science and Artificial Intelligence Laboratory, Massachusetts

Institute of Technology (2003).

Ward, J. P. Quaternions and Cayley Numbers, Kluwer

Academic Publishers, 1997.

Yang, B., and J. F. Böhme. “Reducing the Computations of

the Singular Value Decomposition Array Given by Brent

and Luk.” SIAM J. Matrix Anal. Appl.4(1991): 713–25.

Zhang, F. Z. “Quaternions and Matrices of Quaternions.”

Linear Algebra Appl. 251(1997): 21–57.

Evgueni Doukhnitch received PhD and DSc from Taganrog
State Radio-Technical University, Russia. In 1999-2010, he
was with the Department of Computer Engineering, Eastern
Mediterranean University, Northern Cyprus, as a Professor.
Now he is a Professor at Computer Engineering Department,
Istanbul Aydin University, Turkey. His research interests are
in the areas of hardware-oriented algorithms, hardware
realization of linear algebra problems, and special-purpose
processors.

Vadim Podbelskiy received PhD and DSc from Moscow
Engineering Physic University, Russia. Now he is a
Professor at Software Engineering Department of the
Moscow National Research University-Higher School of
Economics, Russia. His research interests are in the areas of
applied mathematics, and simulation systems.

