
J Glob Optim (2012) 53:475–495
DOI 10.1007/s10898-012-9847-x

Extremal values of global tolerances in combinatorial
optimization with an additive objective function

Vyacheslav V. Chistyakov · Boris I. Goldengorin ·
Panos M. Pardalos

Received: 22 December 2011 / Accepted: 9 January 2012 / Published online: 28 January 2012
© Springer Science+Business Media, LLC. 2012

Abstract The currently adopted notion of a tolerance in combinatorial optimization is
defined referring to an arbitrarily chosen optimal solution, i.e., locally. In this paper we
introduce global tolerances with respect to the set of all optimal solutions, and show that
the assumption of nonembededdness of the set of feasible solutions in the provided relations
between the extremal values of upper and lower global tolerances can be relaxed. The equality
between globally and locally defined tolerances provides a new criterion for the multiplicity
(uniqueness) of the set of optimal solutions to the problem under consideration.

Keywords Combinatorial optimization problem · Additive objective function ·
Extremal values of tolerances

1 Introduction

Recently, tolerances have attracted more attention from the prospective to improve differ-
ent algorithms for solving computationally intractable classes of combinatorial optimization
problems [3,4,6,9,10]. The roots of these improvements come from, to the best of our
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knowledge, the well known Vogel’s Approximation Method [17] for the Transportation Sim-
plex Algorithm. The tolernaces have been used for a straightforward enumeration of the
k-best solutions [15], for some natural k, including the Max-Regret heuristic for solving the
Three-Index Assignment Problem [1]. The notion of a k-best solution contains the idea of a
complete enumeration of the whole set of feasible solutions in a non-decreasing order of their
objective function values. If such an enumeration has been done for a relaxed version of the
original combinatorial optimization problem, then the first feasible solution to the original
problem (i.e., the problem with nonrelaxed constraints) gives back an optimal solution to
the original problem. The smallest value of tolerances for an optimal solution to the relaxed
problem gives back the second optimal solution within the above mentioned order for the
enumerated values of the objective function.

Moreover, if the smallest value among all tolerances is strictly positive, then the set of
optimal solutions to the relaxed problem contains only one element, i.e., the optimal solution
is unique [4]. In order to check the uniqueness of the optimal solution (see e.g., [16]) we
should compute all upper and lower tolerances and choose the smallest one among all of
them. If an optimal solution to a combinatorial optimization problem is defined on a graph
G = (V, E) with |V | = n vertices and |E | = m edges, then the answers to the following
questions might be useful for the reduction of the computational complexity in finding the
smallest value of tolerances:

(i) is there a combinatorial optimization problem, for which the smallest value of upper
tolerances and the smallest value of lower tolerances are equal;

(ii) find necessary and sufficient conditions for a general class of combinatorial optimi-
zation problems, which, if satisfied, will guarantee the equality of smallest upper and
lower tolerances.

The purpose of this paper is to present a theory of global tolerances (i.e., those referring
to all optimal solutions) including all consequences related to commonly known tolerances
[2,4,5,7,11,12].

The paper is organized as follows. In Sect. 2 we discuss additive combinatorial optimi-
zation problems. In Sect. 3 we introduce global tolerances of the ground set elements and
present their principal properties and relationships with commonly known tolerances. Sec-
tion 4 is devoted to the reduction of the initial combinatorial optimization problem to an
equivalent problem with canonical data. In Sect. 5 we prove three main theorems concerning
the (in)equalities between the minimal global upper tolerance and the minimal global lower
tolerance, which naturally includes the notion of nonembeddedness of the set of feasible
solutions. The reduction to the problem with nonembedded feasible solutions is given in
Sect. 6. In Sect. 7 we prove a theorem on maximal values of global upper and global lower
tolerances. Finally, Sect. 8 concludes.

2 Additive combinatorial optimization problems

Let X be a finite set whose number of elements |X | ≥ 2, called the ground set, and S ⊂ 2X

be a nonempty collection of nonempty subsets of X . Given a nonnegative real valued func-
tion C : X → R, called the cost function (also representing weight, distance, time, etc.), we
denote by f = fC : S → R the set function defined by

f (S) = fC (S) =
∑

x∈S

C(x) for all S ∈ S ,

which will be called the additive objective function.
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A Combinatorial Optimization Problem determined by the data (X, C, S , fC ), abbrevi-
ated as COP (X, C, S , f ) or simply COP if no ambiguity arises, is to minimize or maximize
the objective function f on S . In order to be more specific, throughout the paper we con-
centrate on the minimization problem: find sets

S∗ ∈ S such that f (S∗) ≤ f (S) for all S ∈ S . (2.1)

Any such set S∗ is a (‘point’ of) minimum of f on S and

f ∗ = f (S∗) = min
S

f = min
S∈S

f (S)

is the minimal value of f on S , which is determined uniquely. Another terminology is that
S∗ from (2.1) is an optimal solution and f ∗ is the optimal value of the COP (X, C, S , f ).
In this respect, it is convenient to say that the collection S is the set of feasible solutions of
the COP and to denote by S ∗ the set of all optimal solutions of the COP (cf. (2.1)). Clearly,
S ∗ ⊂ S and |S ∗| ≥ 1. Since f (S∗) = f ∗ for all S∗ ∈ S ∗, this optimal value of the
COP (X, C, S , f ) will sometimes be denoted more explicitly as

f (S ∗) = f ∗ = min
S∈S

f (S). (2.2)

Classical examples of the COPs include, among others, the following.

(A) The Traveling Salesman Problem (TSP): given n ≥ 2 cities and distances C(i, j)
between i-th and j-th cities, find a closed tour of minimum length, which enters and
leaves each city exactly once. Formally, let G = (V, A) be a complete directed graph,
where V = {1, 2, . . . , n} is the set of vertices and A ⊂ V × V is the set of arcs
(i, j) ∈ A (also called edges if the graph is undirected). The COP corresponding to
the TSP is determined by the data (X, C, S , fC ), where X = A, C : A → R is a
nonnegative (cost, distance) function, S ⊂ 2A is the set of all cycles S of the form
S = {(i1, i2), (i2, i3), . . . , (in−1, in), (in, i1)} ⊂ A with all arcs (pairs) in S being
pairwise different (i.e., Hamiltonian cycles) and the objective function fC is given by
fC (S) = ∑

(i, j)∈S C(i, j) for S ∈ S .
(B) The Assignment Problem (AP): given a complete directed graph G = (V, A) as above

and a nonnegative cost function C on X = A, find a vertex permutation π∗ : V → V
such that

∑n
i=1 C(i, π∗(i)) is minimal among all such sums corresponding to all pos-

sible permutations of V . Note that a set S ⊂ A is a feasible solution of the AP (i.e.,
S ∈ S ) if it is of the form S = {(1, π(1)), (2, π(2)), . . . , (n, π(n))} for some permu-
tation π of V . Clearly, a Hamiltonian cycle corresponds to the cyclic permutation π of
V and vice versa.

(C) The Minimal Spanning Tree Problem (MSTP): construct a net of roads of minimum
cost, which connect n cities. Formally, let G = (V, E) be a complete undirected graph,
i.e. a graph with the set of edges E and C be a nonnegative cost function on X = E . A
subgraph T = (V, E ′) of G with E ′ ⊂ E is a tree if it is connected and |E ′| = n − 1.
The MSTP is to find a tree T ∗ = (V, E∗) such that

∑
x∈E∗ C(x) is minimal among all

such sums evaluated for all trees.

The union of the collection (or a subcollection of) S of feasible solutions to the COP and
its intersection are denoted as usual by

∪S =
⋃

S∈S

S = {
x ∈ X : x ∈ S for some S ∈ S

}
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and

∩S =
⋂

S∈S

S = {
x ∈ X : x ∈ S for all S ∈ S

}
,

respectively. Since S ∗ ⊂ S , we find

∪ S ∗ ⊂ ∪S and ∩ S ∗ ⊃ ∩S . (2.3)

Informally speaking, if, for example, the TSP is under consideration, then the union ∪S is
the collection of all arcs (edges), each of which belongs to at least one of the Hamiltonian
cycles, and the intersection ∩S is the set of all common arcs (edges) for all Hamiltonian
cycles.

The following simple observation concerning the set of feasible solutions will be used
below for the study of the uniqueness of optimal solutions:

∪ S = ∩S iff |S | = 1, and ∪ S �= ∩S iff |S | ≥ 2, (2.4)

where ‘iff’ stands for ‘if and only if’. In fact, if |S | = 1, then S = {S} for some S ∈ S , and
it follows from the definitions of ∪S and ∩S that ∪S = S = ∩S . Now, if ∪S = ∩S , then
we denote this common value by S and note that S = ∪S is nonempty (since S �= ∅ and
∅ /∈ S ). We assert that S = {S}: given T ∈ S , we have T ⊂ ∪S = S and S = ∩S ⊂ T ,
and so, T = S. Supposing |S | ≥ 2, we find S1, S2 ∈ S such that S1 �= S2, and so,
S1 ∪ S2 �= S1 ∩ S2 and ∪S ⊃ S1 ∪ S2 ⊃ S1 ∩ S2 ⊃ ∩S , i.e., ∪S �= ∩S . Finally, if
|S | < 2, then |S | = 1 (because S �= ∅), and so, by the above, ∪S = ∩S .

A COP is degenerated (or of no interest) if either ∪S = ∩S (there is only one feasible
solution) or ∩S ∈ S (the set ∩S is always an optimal solution), and so, in what follows
we assume that

|S | ≥ 2 and ∩ S /∈ S . (2.5)

3 Global tolerances of the ground set elements

In this section we are interested in numerical characteristics of elements x ∈ X , which show
to what extent optimal solutions of the COP (minimizing f = fC ) are invariant with respect
to a change of the single cost C(x).

Let the COP (X, C, S , f ) be given.
By the global upper tolerance u(x) (global lower tolerance �(x)) of an element x ∈ X we

mean the maximum increase (maximum decrease, respectively) of the cost C(x) only, under
which optimal solutions of the initial (unperturbed) COP remain optimal solutions of the per-
turbed COP. More formally, given x ∈ X and α ∈ R, we define the perturbed cost function
Cx,α : X → R as follows: Cx,α(y) = C(y) if y ∈ X and y �= x , and Cx,α(x) = C(x) + α.
Then the global upper tolerance u(x) is the least upper bound of those α ≥ 0, for which any
optimal solution S∗ of the COP (X, C, S , f ) with f = fC is also an optimal solution of the
perturbed COP (X, Cx,α, S , fCx,α ). The global lower tolerance �(x) is expressed similarly
if we replace the perturbed COP above by the perturbed COP (X, Cx,−α, S , fCx,−α ).

In order to be able to calculate the tolerances, we introduce some further notation. Given
x ∈ X , we denote by χx : X → {0, 1} the characteristic function of the one-point set {x}
(i.e., χx (y) = 0 for y ∈ X, y �= x , and χx (x) = 1) and by δx : 2X → {0, 1} the Dirac
measure (or point mass) concentrated at x (i.e., given S ⊂ X , we have: δx (S) = 1 if x ∈ S,
and δx (S) = 0 if x /∈ S). Clearly, δx (S) = ∑

y∈S χx (y) for all S ⊂ X .
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Noting that the perturbed cost function Cx,α is of the form Cx,α = C + αχx on X for
x ∈ X and α ∈ R, we find that the corresponding perturbed additive objective function fCx,α

is given by:

fCx,α (S) =
∑

y∈S

Cx,α(y) =
∑

y∈S

C(y) + α
∑

y∈S

χx (y)

= fC (S) + αδx (S) = ( f + αδx )(S) for all S ∈ S ,

and so, fCx,α = f + αδx on S . Now, given x ∈ X , it follows from the definitions of the
global upper and lower tolerances that

u(x) = sup
{
α ≥ 0 : ( f + αδx )(S∗) = min

S
( f + αδx ) for all S∗ ∈ S ∗} (3.1)

and

�(x) = sup
{
α ≥ 0 : ( f − αδx )(S∗) = min

S
( f − αδx ) for all S∗ ∈ S ∗}, (3.2)

where S ∗ = {S∗ ∈ S : f (S∗) = minS f }. Clearly, u(x), �(x) ∈ [0,+∞], and these
values are independent of a particular optimal solution S∗ ∈ S ∗.

By virtue of (2.5), the set (∪S )\(∩S ) is nonempty, and the complement of this set in X
is, by deMorgan’s laws, given by

X\[(∪S )\(∩S )] = (X\(∪S )) ∪ (∩S ),

and so, we have the following decomposition of the ground set X :

X = [
(∪S )\(∩S )

] ∪ [
(X\(∪S )) ∪ (∩S )

] ≡ X1 ∪ X2, (3.3)

where the sets in square brackets on the right, denoted by X1 and X2, are disjoint. For the
TSP example, X1 is the set of all noncommon arcs in all Hamiltonian cycles, and X2 is the
set of all arcs outside of all Hamiltonian cycles, i.e., for any x ∈ X2 there is no Hamiltonian
cycle containing x .

In a similar manner, we have two more decompositions:

X=[
(∪S ∗)\(∩S )

] ∪ [
(X\(∪S ∗)) ∪ (∩S )

] ≡ X3 ∪ X4, (3.4)

X=[
(∪S )\(∩S ∗)

] ∪ [
(X\(∪S )) ∪ (∩S ∗)

] ≡ X5 ∪ X6. (3.5)

Similarly, for the TSP, X3 is the set of all arcs in all optimal Hamiltonian cycles without
all common arcs (if any) for all not necessarilly optimal Hamiltonian cycles, and X4 is the
set of all arcs outside any optimal Hamiltonian cycle.

The following notation will be needed below: given x ∈ X , we set

S+(x) = {S ∈ S : x ∈ S} and S−(x) = {S ∈ S : x /∈ S}. (3.6)

These subcollections of S are disjoint and their union is S . Note that δx = 1 on S+(x)

(provided S+(x) is nonempty) and δx = 0 on S−(x) in any case. Note also that if x ∈
(∪S )\(∩S ), then both these subcollections are nonempty. Moreover, if X �= ∪S and
x ∈ X\(∪S ), then S+(x) is empty and S−(x) = S , and if ∩S is nonempty and x ∈ ∩S ,
then S+(x) = S and S−(x) is empty.

The following lemma generalizes a result from [12] and shows how global upper and
lower tolerances of the ground set elements can be evaluated.

Lemma 1 Given a COP (X, C, S , f ) and x ∈ X, we have:
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(a) x ∈ (∪S ∗)\(∩S ) iff u(x) < +∞, and, moreover, u(x) = min
S−(x)

f − f ∗;
(b) x ∈ (∪S )\(∩S ∗) iff �(x) < +∞, and, moreover, �(x) = min

S+(x)
f − f ∗.

Proof (a) (⇒) Let α ≥ 0 be such that any S∗ ∈ S ∗ is a minimum of the function f + αδx

on S (cf. (3.1)), i.e.,

f ∗ + αδx (S∗) ≤ f (S) + αδx (S) for all S ∈ S . (3.7)

If there is S∗ ∈ S ∗ such that x /∈ S∗ (and so, δx (S∗)=0), or S ∈ S is such that x ∈ S
(and so, δx (S) = 1), then, by virtue of (2.1), inequality (3.7) holds for all α ≥ 0. Now,
since x ∈ ∪S ∗, there exists S∗ ∈ S ∗ such that x ∈ S∗. Since x /∈ ∩S , the set S−(x)

of those S ∈ S , for which x /∈ S, is nonempty. It follows from (3.7) that f ∗ + α ≤ f (S)

for all S ∈ S−(x), and so, α ≤ α0 = minS−(x) f − f ∗. By (3.1), we have u(x) ≤ α0.
The arguments above also show that inequality (3.7) holds for α = α0 as well, implying
u(x) = α0 (and so, the sign sup in (3.1) can be replaced by max) and u(x) < +∞.
(a) (⇐) On the contrary, if x /∈ (∪S ∗)\(∩S ), then, by virtue of (3.4), we have either
x ∈ X\(∪S ∗), i.e., x /∈ S∗ and δx (S∗) = 0 for all S∗ ∈ S ∗, or x ∈ ∩S , and so, x ∈ S
and δx (S) = 1 for all S ∈ S . It follows from (2.1) that inequality (3.7) holds for all α ≥ 0
implying u(x) = +∞, which contradicts the assumption.
(b) (⇒) Let α ≥ 0 be such that any S∗ ∈ S ∗ is a minimum of the function f − αδx on S
(cf. (3.2)), i.e.,

f ∗ − αδx (S∗) ≤ f (S) − αδx (S) for all S ∈ S . (3.8)

If there is S∗ ∈ S ∗ such that x ∈ S∗ (and so, δx (S∗)=1), or S ∈ S is such that x /∈ S
(and so, δx (S) = 0), then, by virtue of (2.1), inequality (3.8) holds for all α ≥ 0. Now,
since x ∈ ∪S , the set S+(x) of those S ∈ S , for which x ∈ S, is nonempty, and since
x /∈ ∩S ∗, there exists S∗ ∈ S ∗ such that x /∈ S∗. It follows from (3.8) that f ∗ ≤ f (S) − α

for all S ∈ S+(x), and so, α ≤ α1 = minS+(x) f − f ∗. By (3.2), we have �(x) ≤ α1.
The arguments above also show that inequality (3.8) holds for α = α1 as well, implying
�(x) = α1 (and so, the sign sup in (3.2) can be replaced by max) and �(x) < +∞.
(b) (⇐) On the contrary, if x /∈ (∪S )\(∩S ∗), then, by virtue of (3.5), we have either
x ∈ X\(∪S ), i.e., x /∈ S and δx (S) = 0 for all S ∈ S , or x ∈ ∩S ∗, and so, x ∈ S∗ and
δx (S∗) = 1 for all S∗ ∈ S ∗. It follows from (2.1) that inequality (3.8) holds for all α ≥ 0
implying �(x) = +∞, which contradicts the assumption. ��

As an immediate corollary of Lemma 1, (3.4) and (3.5), we have:

u(x) = +∞ iff x ∈ X4 = (X\(∪S ∗)) ∪ (∩S ); (3.9)

�(x) = +∞ iff x ∈ X6 = (X\(∪S )) ∪ (∩S ∗). (3.10)

The ground set X and the collection S of feasible solutions of the COP under consider-
ation are said to be canonical if

∪ S = X and ∩ S = ∅. (3.11)

In this case the COP (X, C, S , f ) will also be called canonical. Note that the subcollec-
tions S+(x) and S−(x) of S from (3.6) are nonempty for all x ∈ X . For x ∈ X we
denote by [S−(x)]∗ the set of all optimal solutions of the COP (X, C, S−(x), f ) and by
f ([S−(x)]∗) = minS−(x) f its optimal value (which is coherent with notation f (S ∗)
from (2.2)); similar meanings apply to [S+(x)]∗ and f ([S+(x)]∗).
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In the important particular case of a canonical COP Lemma 1, (3.9) and (3.10) give the
following easier version of Lemma 1:

Lemma 2 Given a COP (X, C, S , f ) satisfying (3.11) and x ∈ X, we have:

(a) x ∈ ∪S ∗ iff u(x) < +∞, and u(x) = f ([S−(x)]∗) − f (S ∗);
(a′) x /∈ ∪S ∗ iff u(x) = +∞;
(b) x /∈ ∩S ∗ iff �(x) < +∞, and �(x) = f ([S+(x)]∗) − f (S ∗);

(b′) x ∈ ∩S ∗ iff �(x) = +∞.

It will be shown in the next section that any COP can be reduced to a canonical COP with
the preservation of the global upper and lower tolerances. Now, under the assumption that
the COP under consideration is canonical, we explore the relationship of the global toler-
ances, introduced above, with the well known tolerances considered for different purposes
in [5,8,11,19].

Suppose that the COP (X, C, S , f ) is canonical. Given x ∈ X , the upper tolerance uS∗(x)

(lower tolerance �S∗(x)) of x ∈ X with respect to an optimal solution S∗ ∈ S ∗ of the COP
is the maximum increase (maximum decrease, respectively) of the cost C(x), under which
S∗ remains an optimal solution of the perturbed COP. Following the methodology of (3.1)
and (3.2), we find

uS∗(x) = sup
{
α ≥ 0 : ( f + αδx )(S∗) ≤ ( f + αδx )(S) for all S ∈ S

}
,

�S∗(x) = sup
{
α ≥ 0 : ( f − αδx )(S∗) ≤ ( f − αδx )(S) for all S ∈ S

}
.

The quantities uS∗(x) and �S∗(x) depend on a particular optimal solution S∗ of the COP. The
following lemma [5,12] is a local counterpart of Lemma 2, and it is established along the
same lines as Lemma 1.

Lemma 3 Given S∗ ∈ S ∗ and x ∈ X, we have:

(a) x ∈ S∗ iff uS∗(x) < +∞, and uS∗(x) = min
S−(x)

f − f ∗;
(a′) x /∈ S∗ iff uS∗(x) = +∞;
(b) x /∈ S∗ iff �S∗(x) < +∞, and �S∗(x) = min

S+(x)
f − f ∗;

(b′) x ∈ S∗ iff �S∗(x) = +∞.

The global tolerances are expressed by means of tolerances as follows.

Lemma 4 For each x ∈ X we have:

u(x) = min
S∗∈S ∗ uS∗(x) and �(x) = min

S∗∈S ∗ �S∗(x).

Proof Since the set under the supremum sign in (3.1) is contained in the set under the su-
premum sign defining uS∗(x), and likewise for (3.2) and �S∗(x), by the definition of the
supremum, we find u(x) ≤ uS∗(x) and �(x) ≤ �S∗(x) for all S∗ ∈ S ∗, which proves the
inequalities ≤ for the quantities above.

Now, we establish the inequality ≥ for the upper tolerances. Given x ∈ X , the following
two cases are possible: (i) x ∈ ∪S ∗, and (ii) x /∈ ∪S ∗. In the case (i) there exists S∗

1 ∈ S ∗
such that x ∈ S∗

1 , and so, by virtue of Lemmas 2(a) and 3(a), we have:

min
S∗∈S ∗ uS∗(x) ≤ uS∗

1
(x) = min

S−(x)
f − f ∗ = u(x).
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In the case (ii) we find x /∈ S∗ for all S∗ ∈ S ∗, and so, by Lemma 3(a′), uS∗(x) = +∞ for
all S∗ ∈ S ∗. Now, it follows from Lemma 2(a′) that

min
S∗∈S ∗ uS∗(x) = +∞ = u(x).

Let us prove the inequality ≥ for the lower tolerances. Given x ∈ X , we have two pos-
sibilities: (i) x /∈ ∩S ∗, and (ii) x ∈ ∩S ∗. In the case (i) there exists S∗

2 ∈ S ∗ such that
x /∈ S∗

2 , and so, Lemmas 3(b) and 2(b) imply

min
S∗∈S ∗ �S∗(x) ≤ �S∗

2
(x) = min

S+(x)
f − f ∗ = �(x).

In the case (ii) we find x ∈ S∗ for all S∗ ∈ S ∗, and so, by Lemma 3(b′), �S∗(x) = +∞ for
all S∗ ∈ S ∗. Now it follows from Lemma 2(b′) that

min
S∗∈S ∗ �S∗(x) = +∞ = �(x). ��

The remaining three propositions of this section expose yet further relationships between
the global tolerances and the tolerances.Note that these propositions are valid for COPs with
no requirements on the set of canonical feasible solutions (e.g., relaxed nonembeddedness).

Proposition 1 Given S∗
1 , S∗

2 ∈ S ∗, we have:

(a) S∗
1 ⊂ S∗

2 iff uS∗
2
(x) ≤ uS∗

1
(x) for all x ∈ X.

(b) S∗
1 ⊂ S∗

2 iff �S∗
1
(x) ≤ �S∗

2
(x) for all x ∈ X.

Proof (a) (⇒) Since X = S∗
2 ∪(X\S∗

2 ) = S∗
1 ∪(S∗

2\S∗
1 )∪(X\S∗

2 ), given x ∈ X , we have the
following three possibilities: (i) x ∈ S∗

1 , (ii) x ∈ S∗
2\S∗

1 , and (iii) x /∈ S∗
2 . In case (i) we

have x ∈ S∗
1 and x ∈ S∗

2 , and so, by Lemma 3(a), uS∗
1
(x) = minS−(x) f − f ∗ = uS∗

2
(x).

In case (ii) we have x ∈ S∗
2 and x /∈ S∗

1 , and so, by Lemma 3 (a), (a′), uS∗
2
(x) <

+∞ = uS∗
1
(x). In case (iii) we have x /∈ S∗

2 and x /∈ S∗
1 , and so, by Lemma 3(a′),

uS∗
2
(x) = +∞ = uS∗

1
(x).

(a) (⇐) Let x ∈ S∗
1 . By Lemma 3(a), uS∗

1
(x) < +∞, and since uS∗

2
(x) ≤ uS∗

1
(x), we have

uS∗
2
(x) < +∞, and again by Lemma 3(a), x ∈ S∗

2 , which proves the desired inclusion.
(b) (⇒) We have the same possibilities (i), (ii) and (iii) as in (a) (⇒) above and we apply

Lemma 3. (i) If x ∈ S∗
1 and x ∈ S∗

2 , then �S∗
1
(x) = +∞ = �S∗

2
(x). (ii) If x ∈ S∗

2 and
x /∈ S∗

1 , then �S∗
1
(x) < +∞ = �S∗

2
(x). (iii) If x /∈ S∗

2 and x /∈ S∗
1 , then �S∗

1
(x) =

minS+(x) f − f ∗ = �S∗
2
(x).

(b) (⇐) If x ∈ S∗
1 , then �S∗

1
(x) = +∞, and since �S∗

1
(x) ≤ �S∗

2
(x), then uS∗

2
(x) = +∞,

and so, x ∈ S∗
2 . Thus, S∗

1 ⊂ S∗
2 . ��

Proposition 2 Given S∗ ∈ S ∗, we have:

(a) u(x) = uS∗(x) for all x ∈ X iff ∪S ∗ = S∗ (i.e., S ⊂ S∗ for all S ∈ S ∗).
(b) �(x) = �S∗(x) for all x ∈ X iff ∩S ∗ = S∗ (i.e., S∗ ⊂ S for all S ∈ S ∗).

Proof (a) (⇒) Let x ∈ ∪S ∗. By the assumption and Lemma 2(a), uS∗(x) = u(x)<+∞,
and so, by Lemma 3(a), x ∈ S∗. Thus, ∪S ∗ ⊂ S∗, and so, ∪S ∗ = S∗.

(a) (⇐) If ∪S ∗ = S∗, then S ⊂ S∗ for all S ∈ S ∗, and so, by Proposition 1(a), uS∗(x) ≤
uS(x) for all S ∈ S ∗ and x ∈ X . Now, the definition of a minimum and Lemma 4
imply uS∗(x) = minS∈S ∗ uS(x) = u(x) for all x ∈ X .

(b) (⇒) Let x ∈ S∗. By the assumption and Lemma 3(b′), �(x) = �S∗(x) = +∞, and so,
by Lemma 2(b′), x ∈ ∩S ∗. Thus, S∗ ⊂ ∩S ∗, and so, S∗ = ∩S ∗.
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(b) (⇐) If ∩S ∗ = S∗, then S∗ ⊂ S for all S ∈ S ∗, and so, by Proposition 1(b), �S∗(x) ≤
�S(x) for all S ∈ S ∗ and x ∈ X . Now, the definition of a minimum and Lemma 4
imply �S∗(x)= minS∈S ∗ �S(x)= �(x) for all x ∈ X . ��

The following straightforward corollary of Proposition 2 concerns a characterization of
the uniqueness of optimal solutions of the COP (X, C, S , f ).

Proposition 3 Let the COP (X, C, S , f ) be canonical.

(a) |S ∗| = 1 iff for some S∗ ∈ S ∗ we have: u = uS∗ and � = �S∗ on X.
(b) |S ∗| ≥ 2 iff for all S∗ ∈ S ∗ we have: u �= uS∗ or � �= �S∗ on X.

Proof (a) If |S ∗| = 1, then S ∗ = {S∗} for some S∗ ∈ S , and so, the equalities u = uS∗
and � = �S∗ follow from (3.1), (3.2) and the definitions of uS∗ and �S∗ . Now, suppose
that for some S∗ ∈ S ∗ we have u(x) = uS∗(x) and �(x) = �S∗(x) for all x ∈ X . Then
Proposition 2 implies ∪S ∗ = S∗ = ∩S ∗, and so, S ∗ = {S∗}.

(b) This is the negation of the assertion in (a). ��

4 Reduction to the canonical problem

The aim of this section is to show that any COP can be reduced to a canonical COP. As a
motivation, we note that it follows from (3.3) to (3.5) and (2.3) that

X4 ∩ X6 = [
(X\(∪S ∗)) ∪ (∩S )

] ∩ [
(X\(∪S )) ∪ (∩S ∗)

]

= [
(X\(∪S ∗)) ∩ (X\(∪S ))

] ∪ [
(X\(∪S ∗)) ∩ (∩S ∗)

]

∪ [(∩S ) ∩ (X\(∪S ))] ∪ [
(∩S ) ∩ (∩S ∗)

]

= (X\(∪S )) ∪ (∩S ) = X2.

Thus, if X2 is nonempty, then (3.9) and (3.10) yield

u(x) = +∞ = �(x) for all x ∈ X4 ∩ X6 = X2,

where X2 does not depend on the set S ∗ of optimal solutions of the initial COP. This means
that elements of X2 do not lead to any feasible solution and, hence, may waste the compu-
tational efforts within any optimization procedure. In fact, if x ∈ X\(∪S ), then the value
C(x) does not contribute to the sum f (S) = ∑

y∈S C(y) for all S ∈ S (note also that
δx (S) = 0 for all S ∈ S , cf. (3.1), (3.2)). On the other hand, if ∩S is nonempty, then, since
S = (∩S ) ∪ (S\(∩S )) for all S ∈ S , we have (by the additivity of f )

f (S) = f (∩S ) + f (S\(∩S )), (4.1)

and so, f (∩S ) is the common contribution to any sum f (S), where f (∩S ) is independent
of a particular x ∈ ∩S (note that δx (S)= 1 for all S ∈S ).

We are going to show that any COP (X, C, S , f ) satisfying (2.5) can be reduced to an
equivalent COP (X ′, C ′, S ′, f ′) with canonical ground set X ′ and the set of feasible solu-
tions S ′ (cf. (3.11)) in such a way that the upper and lower tolerances of the initial COP and
the reduced COP coincide in the sense to be made precise below.

In order to do this, suppose that |S | ≥ 2, ∩S �= ∅ and ∩S /∈ S .
We set X ′ = X1 = (∪S )\(∩S ) (cf. (3.3)), and so, by (2.5),

1 ≤ |X ′| = |∪ S | − |∩ S | < |∪ S | ≤ |X |.
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It will be convenient to introduce the (so called) ‘prime operation’ on S defined as follows:
given S ∈ S , we set S′ = S\(∩S ). We also let

S ′ = S \(∩S ) = {S′ ⊂ X : S′ = S\(∩S ) for some S ∈ S }. (4.2)

Clearly, S ′ ⊂ 2X ′
is a nonempty collection of nonempty subsets of X ′ (note that if S ∈ S ,

then S′ = S\(∩S ) ⊂ (∪S )\(∩S ) = X ′) and, because ∩S /∈ S , we find |S ′| = |S |.
The ‘primed’ cost function C ′ : X ′ → R, given by C ′(x) = C(x) for all x ∈ X ′, is the
restriction of C (from X ) to X ′, and so, we keep the notation C for it as well. Finally, the
‘primed’ objective function f ′ = f ′

C : S ′ → R acts according to the rule: if S′ ∈ S ′, then
S′ = S\(∩S ) for some S ∈ S , and so,

f ′(S′) = f ′
C (S′) =

∑

x∈S′
C(x) = fC (S\(∩S )) = f (S\(∩S )). (4.3)

We assert that the COP (X ′, C, S ′, f ′) is the desired reduced COP.
Clearly, X ′ and S ′ are canonical, i.e., ∪S ′ = X ′ and ∩S ′ = ∅; in fact,

∪S ′ = ∪(S \(∩S )) = (∪S )\(∩S ) = X ′

and

∩S ′ = ∩(S \(∩S )) = (∩S )\(∩S ) = ∅.

Now we study the relations between the optimal solutions of the COP (X, C, S , f ) and
the reduced COP (X ′, C, S ′, f ′).

We denote by S ′∗ the set of all optimal solutions of the reduced COP, i.e.,

S ′∗ =
{

S′ ∈ S ′ : f ′∗ = f ′(S′) = min
S ′ f ′},

where f ′∗ is the optimal value of the reduced COP. As a consequence of (4.1), we have

Lemma 5 (a) If S∗ ∈ S ∗, then S∗′ = S∗\(∩S ) ∈ S ′∗ and

f ′∗ = f ′(S∗′) = f (S∗\(∩S )) = min
S∈S

f (S\(∩S )).

(b) If S′∗ ∈ S ′∗, then S∗ = S′∗ ∪ (∩S ) ∈ S ∗ and

f ∗ = f (S∗) = f (S′∗ ∪ (∩S )) = min
S′∈S ′ f (S′ ∪ (∩S )).

(c) f ∗ = f (∩S ) + f ′∗.

Proof (a) Suppose S∗ ∈ S ∗, i.e., condition (2.1) is satisfied. Let S′ ∈ S ′ be arbitrary.
Then there exists S ∈ S such that S′ = S\(∩S ). Inequality f (S∗) ≤ f (S) and (4.1)
imply

f (∩S ) + f (S∗\(∩S )) = f (S∗) ≤ f (S) = f (∩S ) + f (S\(∩S )), (4.4)

and so, (4.3) yields

f ′(S∗′) = f (S∗\(∩S )) ≤ f (S\(∩S )) = f ′(S′). (4.5)

The arbitrariness of S′ ∈ S ′ implies S∗′ ∈ S ′∗, i.e., by virtue of (4.3), f ′∗ = f ′(S∗′) =
f (S∗\(∩S )). Since S∗ ∈ S , we have minS∈S f (S\(∩S )) ≤ f (S∗\(∩S )), and it
follows from (4.5) that the reverse inequality holds as well, and so, f (S∗\(∩S )) =
minS∈S f (S\(∩S )).
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(b) Now, let S′∗ ∈ S ′∗ and S∗ = S′∗ ∪ (∩S ), and let S ∈ S be arbitrary. Defining
S′ ∈ S ′ by S′ = S\(∩S ) and noting that S∗′ = S∗\(∩S ) = S′∗ ∈ S ′∗, we find
f ′(S′∗) ≤ f ′(S′), i.e., by virtue of (4.3),

f (S∗\(∩S )) = f ′(S′∗) ≤ f ′(S′) = f (S\(∩S )).

Adding f (∩S ) to both sides of this inequality and taking into account (4.1), we get
f (S∗) ≤ f (S). The arbitrariness of S ∈ S implies S∗ ∈ S ∗, and so, f ∗ = f (S∗) =
f (S′∗ ∪ (∩S )). Since S′∗ ∈ S ′ and S′ ∪ (∩S ) ∈ S for all S′ ∈ S ′, we have

min
S′∈S ′ f (S′ ∪ (∩S )) ≤ f (S′∗ ∪ (∩S )) ≤ min

S′∈S ′ f (S′ ∪ (∩S )).

(c) It follows from (4.4) and (4.5) that f ∗ ≤ f (∩S ) + f ′(S′) for all S′ ∈ S ′, and so,
f ∗ ≤ f (∩S ) + f ′∗. On the other hand, by virtue of (4.1), given S ∈ S , we find
S\(∩S ) ∈ S ′ and

f (∩S ) + f ′∗ ≤ f (∩S ) + f (S\(∩S )) = f (S),

and so, f (∩S ) + f ′∗ ≤ f ∗, which was to be proved. ��
Lemma 5 can be interpreted in the following way: if we set S ∗′ = S ∗\(∩S ) (similar

to (4.2)), then

S ′∗ = S ∗′. (4.6)

In fact, if S′ ∈ S ′∗, then, by Lemma 5(b), S∗ = S′∪(∩S ) ∈ S ∗, and S′ = S∗′ = S∗\(∩S ),
and so, S′ ∈ S ∗′, which establishes the inclusion ⊂. Now, if S′ ∈ S ∗′, then there exists
S∗ ∈ S ∗ such that S′ = S∗\(∩S ), and so, by Lemma 5, S′ ∈ S ′∗, which proves the
inclusion ⊃.

Finally, we show that the corresponding global tolerances for the initial and reduced COPs
coincide for all x ∈ X ′ = X1, i.e.,

u′(x) = u(x) and �′(x) = �(x) for all x ∈ X ′,

where u′(x) is the global upper tolerance and �′(x) is the global lower tolerance of x with
respect to the COP (X ′, C, S ′, f ′).

Observe that, by virtue of (4.6),

∪S ′∗ = ∪S ∗′ = (∪S ∗)′ = (∪S ∗)\(∩S )

and, similarly, ∩S ′∗ = (∩S ∗)\(∩S ). Taking into account that ∩S ′ = ∅, ∪S ′ = X ′ =
(∪S )\(∩S ) and ∩S ⊂ ∩S ∗, it follows that (cf. (3.4) and (3.5))

X ′
3 = (∪S ′∗)\(∩S ′) = (∪S ∗)\(∩S ) = X3,

X ′
5 = (∪S ′)\(∩S ′∗) = [

(∪S )\(∩S )
]\[(∩S ∗)\(∩S )

]

= (∪S )\((∩S ) ∪ (∩S ∗)) = (∪S )\(∩S ∗) = X5

and

(∪S ′∗)\(∩S ′∗) = [
(∪S ∗)\(∩S )

]\[(∩S ∗)\(∩S )
] = (∪S ∗)\(∩S ∗),

where we note also that (∪S ∗)\(∩S ∗) = X3 ∩ X5.
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By virtue of (3.4) and (3.9), it suffices to prove that u′(x) = u(x) only for elements
x ∈ X ′

3 = X3, and by virtue of (3.5) and (3.10), it suffices to show that �′(x) = �(x) for all
x ∈ X ′

5 = X5. Applying Lemma 1(a),(b), we have

u′(x) = min
(S ′)−(x)

f ′ − f ′∗ and u(x) = min
S−(x)

f − f ∗, x ∈ X ′
3 = X3,

and

�′(x) = min
(S ′)+(x)

f ′ − f ′∗ and �(x) = min
S+(x)

f − f ∗, x ∈ X ′
5 = X5.

Now the desired equalities of tolerances will readily follow from Lemma 5(c) if we show
that (see below)

min
S−(x)

f = f (∩S ) + min
(S ′)−(x)

f ′, x ∈ X ′
3 = X3, (4.7)

and

min
S+(x)

f = f (∩S ) + min
(S ′)+(x)

f ′, x ∈ X ′
5 = X5. (4.8)

In fact, it follows from (4.7) and Lemma 5(c) that

u′(x) = min
(S ′)−(x)

f ′ − f ′∗ = min
S−(x)

f − f (∩S ) − f ′∗ = min
S−(x)

f − f ∗ = u(x),

and similar arguments apply to show that �′(x) = �(x).

Proof of (4.7). First, we prove the inequality ≥. If S ∈ S−(x), then S ∈ S and x /∈ S, and
so, S′ = S\(∩S ) ∈ S ′ and x /∈ S′, i.e., S′ ∈ (S ′)−(x). By virtue of (4.1), this implies

f (S) = f (∩S ) + f ′(S′) ≥ f (∩S ) + min
(S ′)−(x)

f ′,

and the desired inequality follows from the arbitrariness of S. In order to establish inequality ≤
in (4.7), we let S′ ∈ (S ′)−(x). Then S′ ∈ S ′ and x /∈ S′, and so, there exists S ∈ S such that
S′ = S\(∩S ). We assert that x /∈ S, so that S ∈ S−(x); in fact, x /∈ S′ = S\(∩S ) implies
x /∈ S or x ∈ ∩S , and the latter inclusion is impossible because x ∈ X3 = (∪S ∗)\(∩S ).
Now, it follows from (4.1) that

min
S−(x)

f ≤ f (S) = f (∩S ) + f ′(S′),

and it remains to take into account the arbitrariness of S′. ��
Proof of (4.8). (≥) If S ∈ S+(x), then S ∈ S and x ∈ S, and so, S′ = S\(∩S ) ∈ S ′.

Since x ∈ X5, we have x /∈ ∩S ∗, but (cf. (2.3)) ∩S ∗ ⊃ ∩S , and so, x /∈ ∩S , which
implies x ∈ S ′, i.e., S′ ∈ (S ′)+(x). By (4.1), we find

f (S) = f (∩S ) + f ′(S′) ≥ f (∩S ) + min
(S ′)+(x)

f ′,

and it remains to take the minimum over all S ∈ S+(x).
(≤) If S′ ∈ (S ′)+(x), then S′ ∈ S ′ and x ∈ S′, and so, there exists S ∈ S such that

S′ = S\(∩S ). It follows that x ∈ S, S ∈ S+(x) and, by (4.1),

min
S+(x)

f ≤ f (S) = f (∩S ) + f ′(S′),

and it remains to take into account the arbitrariness of S′ ∈ (S ′)+(x).

��

123



J Glob Optim (2012) 53:475–495 487

5 Minimal values of upper and lower tolerances

Throughout the rest of the paper we assume that the COP (X, C, S , f ) is canonical
(cf. (3.11)), |X | ≥ 2 and |S | ≥ 2.

The next lemma is a consequence of Lemma 2 and is preparatory for our first main result
(Theorem 1).

Lemma 6 Given a canonical COP (X, C, S , f ) and x ∈ X, we have :

(a) u(x) = 0 iff x ∈ (∪S ∗)\(∩S ∗) iff �(x) = 0 (in this case |S ∗| ≥ 2);
(b) x ∈ ∩S ∗ iff 0 < u(x) < +∞;
(c) x /∈ ∪S ∗ iff 0 < �(x) < +∞.

As for the uniqueness of optimal solutions of the COP, we have:

(d) |S ∗| = 1 iff 0 < u(x) < +∞ for all x ∈ ∪S ∗;
(e) |S ∗| = 1 iff 0 < �(x) < +∞ for all x ∈ X\(∩S ∗).

Proof (a) Let x ∈ (∪S ∗)\(∩S ∗). Since x /∈ ∩S ∗, there exists S∗
1 ∈ S ∗ such that x /∈ S∗

1 ,
and so, S∗

1 ∈ S−(x), and since x ∈ ∪S ∗, Lemma 2(a) implies

0 ≤ u(x) = min
S−(x)

f − f ∗ ≤ f (S∗
1 ) − f ∗ = 0.

Similarly, x ∈ ∪S ∗ implies the existence of S∗
2 ∈ S ∗ such that x ∈ S∗

2 , so that we find
S∗

2 ∈ S+(x). Now, condition x /∈ ∩S ∗ and Lemma 2(b) yield

0 ≤ �(x) = min
S+(x)

f − f ∗ ≤ f (S∗
2 ) − f ∗ = 0.

Suppose u(x) = 0. The finiteness of u(x) and Lemma 2(a) imply x ∈ ∪S ∗ and
minS−(x) f = f ∗, and so, f (S1) = f ∗ for some S1 ∈ S−(x). It follows that S1 ∈ S ∗
and x /∈ S1, i.e., x /∈ ∩S ∗. Thus, x ∈ (∪S ∗)\(∩S ∗). Now, assume that �(x) = 0. By
Lemma 2(b), we have x ∈ X\(∩S ∗) and minS+(x) f = f ∗, and so, f (S2) = f ∗ for
some S2 ∈ S+(x). Therefore, S2 ∈ S ∗ and x ∈ S2, and so, x ∈ ∪S ∗. This again implies
x ∈ (∪S ∗)\(∩S ∗).

(b) (⇒) By Lemma 2(a), we find u(x) < +∞, and item (a) of this lemma gives (by
contradiction) u(x) > 0.

(b) (⇐) Condition u(x) < +∞ and Lemma 2(a) yield x ∈ ∪S ∗. Since u(x) > 0, item
(a) of this lemma implies (by contradiction) x ∈ ∩S ∗.

(c) (⇒) Since x /∈ ∪S ∗, we have x /∈ ∩S ∗, and so, by Lemma 2(b), �(x) < +∞. It
follows from item (a) above (by contradiction) that �(x) > 0.

(c) (⇐) Since �(x) < +∞, Lemma 2(b) implies x /∈ ∩S ∗. Now, condition �(x) > 0
and item (a) above give (by contradiction) x /∈ ∪S ∗.

(d), (e) (⇒) If |S ∗| = 1, then S ∗ = {S∗} for some S∗ ∈ S , and so (cf. (2.4)), ∪S ∗ =
S∗ = ∩S ∗. If x ∈ ∪S ∗, then, by item (b) above, 0 < u(x) < +∞; and if
x /∈ ∩S ∗, then, by item (c) of this lemma, 0 < �(x) < +∞.

(d) (⇐) For any x ∈∪S ∗ we have 0<u(x)<+∞, and so, item (b) of this lemma implies
x ∈∩S ∗. Thus, ∪S ∗ = ∩ S ∗ (cf. (2.4)), and so, S ∗ = {S∗} with S∗ = ∩ S ∗.

(e) (⇐) For any x /∈ ∩S ∗ we have 0 < �(x) < +∞, and so, by item (c) above,
x /∈ ∪S ∗. It follows that ∩S ∗ ⊃ ∪S ∗, and so, ∩S ∗ = ∪S ∗. Thus, S ∗ = {S∗}
with S∗ = ∪S ∗. ��

Our first main result is the following
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Theorem 1 Given a canonical COP (X, C, S , f ) and S∗ ∈ S ∗, if feasible solutions from
S are nonembedded (i.e., S1\S2 �= ∅ for all S1, S2 ∈ S , S1 �= S2), then

min
y∈X\S∗ �(y) = min

y∈X\(∩S ∗)
�(y) = min

x∈∪S ∗ u(x) = min
x∈S∗ u(x). (5.1)

Proof First, we show that

min
y∈X\S∗ �(y) ≤ min

x∈∪S ∗ u(x). (5.2)

For this, it suffices to verify that for each x ∈ ∪S ∗ there exists y ∈ X\S∗ such that �(y) ≤
u(x). Let x ∈ ∪S ∗. By Lemma 2(a), there exists S1 ∈ S−(x) such that u(x) = f (S1)− f ∗.
By the nonembeddedness, S1\S∗ �= ∅. Choose a y ∈ S1\S∗. Then y ∈ S1 and y /∈ S∗, and
so, S1 ∈ S+(y) and y /∈ ∩S ∗. It follows from Lemma 2(b) that

�(y) = min
S+(y)

f − f ∗ ≤ f (S1) − f ∗ = u(x).

Now, we prove that

min
x∈S∗ u(x) ≤ min

y∈X\(∩S ∗)
�(y). (5.3)

It suffices to show that for each y ∈ X\(∩S ∗) there exists x ∈ S∗ such that inequality u(x) ≤
�(y) holds. If y ∈ X\(∩S ∗), then, by virtue of Lemma 2(b), we have �(y) = f (S2)− f ∗ for
some S2 ∈ S+(y). By the nonembeddedness, S∗\S2 �= ∅. Fix an x ∈ S∗\S2. Then x ∈ S∗
and x /∈ S2, and so, x ∈ ∪S ∗ and S2 ∈ S−(x). It follows from Lemma 2(a) that

u(x) = min
S−(x)

f − f ∗ ≤ f (S2) − f ∗ = �(y).

The desired equality (5.1) now follows from (5.2) and (5.3) if we take into account that

min
x∈∪S ∗ u(x) ≤ min

x∈S∗ u(x) and min
y∈X\(∩S ∗)

�(y) ≤ min
y∈X\S∗ �(y). �

Remark 1 If |S ∗| ≥ 2, then, by (2.4), ∪S ∗ �= ∩S ∗, and so, (∪S ∗)\(∩S ∗) contains an
element x0, for which, by Lemma 6(a), we have �(x0) = 0 = u(x0). Thus, all values in (5.1)
are equal to zero. In particular, it is interesting to note that

min
y∈X\S∗ �(y) = 0 = min

x∈S∗ u(x) for all S∗ ∈ S ∗.

Now we study the case when feasible solutions from S are not necessarily nonembedded
(see also Sect. 6).

Theorem 2 Given a canonical COP (X, C, S , f ), we have:

min
y∈X\(∩S ∗)

�(y) ≤ min
x∈∪S ∗ u(x) ≤ min

y∈X\[(∩S ∗)∪(∪S0)] �(y),

where S0 ={S0 ∈ S : ∪S ∗ ⊂ S0} (min ∅ = + ∞). In particular, if feasibile solutions S
are nonembedded, then S0 = ∅ and miny∈X\(∩S ∗) �(y) = minx∈∪S ∗ u(x).

Proof In order to prove the left hand side inequality, it suffices to show that for each x ∈ ∪S ∗
there exists y ∈ X\(∩S ∗) such that �(y) ≤ u(x).

Let x ∈ ∪S ∗ be arbitrarily fixed. By Lemma 2(a), there exists a set S1 ∈ S−(x), i.e.,
S1 ∈ S with x /∈ S1, such that u(x) = f (S1) − f ∗. We have two possibilities: either
|S ∗| = 1 or |S ∗| ≥ 2.
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First, suppose |S ∗| = 1, and so, S ∗ = {S∗} for some S∗ ∈ S . Noting that ∩S ∗ = S∗,
we assert that

S1\(∩S ∗) = S1\S∗ �= ∅. (5.4)

In fact, on the contrary assume that S1\S∗ is empty, and so, S1 ⊂ S∗. Since S∗ ∈ S ∗, we
have f (S∗) ≤ f (S1), and since the cost function C is nonnegative and S1 ⊂ S∗, we find

f (S1) =
∑

z∈S1

C(z) ≤
∑

z∈S∗
C(z) = f (S∗).

Thus, f (S1) = f (S∗) = f ∗, and so, S1 ∈ S ∗. It follows from x ∈ ∪S ∗ = S∗ and x /∈ S1

that S1 �= S∗, which contradicts the uniqueness of the optimal solution S∗. The inequality
�(y) ≤ u(x) for some y ∈ X\(∩S ∗) will be established in a more general case below
(see (ii)).

Now, suppose |S ∗| ≥ 2. Two cases are possible: either (i) S1\(∩S ∗) = ∅, or
(ii) S1\(∩S ∗) �= ∅ (this includes (5.4) as a particular case).

(i) In this case S1 ⊂ ∩S ∗, and so, S1 ⊂ S∗ for all S∗ ∈ S ∗. As above, we have
f (S∗) ≤ f (S1) ≤ f (S∗), implying f (S1) = f (S∗) = f ∗ and S1 ∈ S ∗. Since
x /∈ S1, then x /∈ ∩S ∗, but x ∈ ∪S ∗, and so, x ∈ (∪S ∗)\(∩S ∗). Setting y = x , by
Lemma 6(a), we find

�(y) = �(x) = 0 = u(x).

(ii) If S1\(∩S ∗) �= ∅, we fix a y ∈ S1\(∩S ∗). Then y ∈ S1 and y /∈ ∩S ∗, and so,
S1 ∈ S+(y). By Lemma 2(b) we conclude that

�(y) = min
S+(y)

f − f ∗ ≤ f (S1) − f ∗ = u(x).

This completes the proof of the left hand side inequality.
Now we prove the right hand side inequality. It suffices to show that for each y ∈

X\[(∩S ∗) ∪ (∪S0)] there exists x ∈ ∪S ∗ such that u(x) ≤ �(y).
Let y exposed above be arbitrarily fixed. Since y /∈ ∩S ∗, by virtue of Lemma 2(b), we

have �(y) = f (S2) − f ∗ for some S2 ∈ S+(y), i.e., S2 ∈ S and y ∈ S2. Now, since
y /∈ ∪S0, we have y /∈ S0 for all S0 ∈ S0. Taking into account that y ∈ S2, we find that
S2 /∈ S0, and so, (∪S ∗)\S2 �= ∅ and it contains an element x . Since x /∈ S2, we have
S2 ∈ S−(x), and since x ∈ ∪S ∗, by Lemma 2(a), we get

u(x) = min
S−(x)

f − f ∗ ≤ f (S2) − f ∗ = �(y).

Finally, suppose that feasible solutions from S are nonembedded. Then for any S ∈ S
we find (∪S ∗)\S = ⋃

S∗∈S ∗(S∗\S) �=∅, and so, S0 is empty. ��
Remark 2 As it was already mentioned in Remark 1, if |S ∗| ≥ 2, then

min
y∈X\(∩S ∗)

�(y) = 0 = min
x∈∪S ∗ u(x);

however, the right hand side inequality in Theorem 2 may be strict as Example 2 below shows.
Thus, Theorem 2 is of main interest when we have only one optimal solution: if S ∗ = {S∗},
then

min
y∈X\S∗ �(y) ≤ min

x∈S∗ u(x) ≤ min
y∈X\[S∗∪(∪S0)] �(y), (5.5)

where S0 = S0(S∗) = {S0 ∈ S : S∗ ⊂ S0}.
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Inequalities in Theorem 2 may be strict as the following examples show. In Examples 1
and 2 below we set X = {x1, x2, x3, x4}.
Example 1 Let C(x1) = C(x2) = 1, C(x3) = a > 1, C(x4) = b > 2 and S =
{S1, S2, S3, S4}, where S1 = {x1}, S2 = {x1, x2}, S3 = {x1, x3} and S4 = {x4}. Clearly,
the COP (X, C, S , f ) is canonical having the unique optimal solution S∗ = S1 with the
optimal value f ∗ = f (S1) = 1. By virtue of Lemmas 2 and 6, the global upper and lower
tolerances of elements from X are given as follows: u(x1) = f (S4) − 1 = b − 1, u(x2) =
u(x3) = u(x4) = +∞, �(x1) = +∞, �(x2) = f (S2) − 1 = 1, �(x3) = f (S3) − 1 = a
and �(x4) = f (S4) − 1 = b − 1. It follows that ∩S ∗ = S∗ = ∪S ∗ and

min
y∈X\S∗ �(y) = min

i=2,3,4
�(xi ) = �(x2) = 1 < b − 1 = u(x1) = min

x∈S∗ u(x),

and so, the left hand side inequality in Theorem 2 is strict. Note that S0 = {S1, S2, S3} and
∪S0 = {x1, x2, x3}, which shows that on the right hand side we have the equality:

min
x∈S∗ u(x) = u(x1) = b − 1 = �(x4) = min

y∈X\(∪S0)
�(y).

Moreover, since S1 ⊂ S2 ∩ S3, some feasible solutions from S are embedded into each other.

Example 2 Let C(x1) = C(x2) = C(x3) = 1, C(x4) = b > 2 and S = {S1, S2, S3, S4},
where S1 = {x1, x2}, S2 = {x2, x3}, S3 = {x1, x2, x3} and S4 = {x4}. The corresponding
COP is canonical with the set of optimal solutions S ∗ = {S1, S2} and the optimal value
f ∗ = f (S1) = f (S2) = 2. Again by Lemmas 2 and 6, we have: u(x1) = 0, u(x2) =
f (S4) − 2 = b − 2, u(x3) = 0, u(x4) = +∞, �(x1) = 0, �(x2) = +∞, �(x3) = 0 and
�(x4) = f (S4)−2 = b −2. We find S1 ∪ S2 = S3, S1 ∩ S2 = {x2}, S0 = {S3}, ∪S0 = S3,
and so,

min
x∈S1∪S2

u(x)= min
i=1,2,3

u(xi )= min{0, b − 2, 0}= 0<b − 2 = �(x4)= min
y∈X\S3

�(y),

implying that the right hand side inequality in Theorem 2 is strict. It turns out that the left
hand side inequality is the equality:

min
y∈X\(S1∩S2)

�(y) = min
i=1,3,4

�(xi ) = min{0, 0, b − 2} = 0 = min
x∈S1∪S2

u(x),

and that S does not satisfy the nonembeddedness condition.

Our next example shows that in the case when feasible solutions of the COP are not nec-
essarily nonembedded the minimal values of global upper and lower tolerances may still be
equal while minimal values of ordinary upper and lower tolerances are not.

Example 3 In this example we set X = {x1, x2, x3}, C(x1) = 0, C(x2) = 1, C(x3) = 2
and S = {S1, S2, S3}, where S1 = {x1, x2}, S2 = {x2} and S3 = {x3}. The corresponding
COP (X, C, S , f ) is canonical, S ∗ = {S∗

1 , S∗
2 } with S∗

1 = S1 and S∗
2 = S2 is the set of all

optimal solutions of the COP and f ∗ = f (S∗
1 ) = f (S∗

2 ) = 1 is the optimal value of the
COP.

First, we calculate the global tolerances. Since∪S ∗ = S1 and∩S ∗ = S2, Lemmas 2 and 6
imply the following values of global tolerances of elements from X : u(x1) = 0, u(x2) =
f (S3) − 1 = 1, u(x3) = +∞, �(x1) = 0, �(x2) = +∞ and �(x3) = f (S3) − 1 = 1. Thus,

min
y∈X\(∩S ∗)

�(y) = min{�(x1), �(x3)} = 0 = min{u(x1), u(x2)} = min
x∈∪S ∗ u(x).
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Now, let us evaluate the tolerances with respect to the optimal solutions S∗
1 and S∗

2 .
By Lemma 3, we have: uS∗

1
(x1)= min{ f (S∗

2 ), f (S3)} − 1 = 0, uS∗
1
(x2)= f (S3)−1 = 1,

uS∗
1
(x3) = +∞, �S∗

1
(x1) = +∞, �S∗

1
(x2) = +∞, �S∗

1
(x3) = f (S3) − 1 = 1, and

uS∗
2
(x1) = +∞, uS∗

2
(x2) = f (S3) − 1 = 1, uS∗

2
(x3) = +∞, �S∗

2
(x1) = f (S∗

1 ) −
1=0, �S∗

2
(x2) = +∞ and �S∗

2
(x3) = f (S3)−1 = 1. In particular, the equalities in Lemma 4

are clearly seen.
Also, we have:

min
y∈X\S∗

1

�S∗
1
(y) = �S∗

1
(x3) = 1 > 0 = min{uS∗

1
(x1), uS∗

1
(x2)} = min

x∈S∗
1

uS∗
1
(x)

and

min
y∈X\S∗

2

�S∗
2
(y) = min{�S∗

2
(x1), �S∗

2
(x3)} = 0 < 1 = uS∗

2
(x2) = min

x∈S∗
2

uS∗
2
(x).

By virtue of Proposition 3(b), the inequalities above imply the existence of more than one
optimal solution to the COP under consideration.

The last theorem of this section addresses the case when the cost function of the COP
under consideration is strictly positive.

Theorem 3 Given a canonical COP (X, C, S , f ) and S∗ ∈ S ∗, if the cost function C is
strictly positive on X, then

min
y∈X\S∗ �(y)≤ min

x∈∪S ∗ u(x) ≤ min
x∈S∗ u(x) ≤ min

y∈X\[(∩S ∗)∪(∪S0)] �(y)

≤ min
y∈X\[S∗∪(∪S0)] �(y).

where S0 = S0(S∗) = {S0 ∈ S : S∗ ⊂ S0}.
Proof In order to prove the first inequality, we show that for each x ∈ ∪S ∗ there exists
y ∈ X\S∗ such that �(y) ≤ u(x). Let x ∈ ∪S ∗. By Lemma 2(a), there exists S1 ∈ S−(x),
i.e., S1 ∈ S and x /∈ S1, such that u(x) = f (S1) − f ∗. From the strict positivity of C it
follows that S1 = S∗ or S1\S∗ �= ∅ (in fact, if S1 �= S∗ and S1 ⊂ S∗, then f (S1) < f (S∗),
which contradicts the optimality of S∗). If S1 = S∗, we set y = x , and so, condition x /∈ S1

implies y = x ∈ (∪S ∗)\(∩S ∗) and, by Lemma 6(a), �(y) = �(x) = 0 = u(x). If
S1\S∗ �= ∅, we choose a y ∈ S1\S∗, so that y ∈ S1 and y /∈ S∗, i.e., S1 ∈ S+(y) and
y /∈ ∩S ∗. It follows from Lemma 2(b) that

�(y) = min
S+(y)

f − f ∗ ≤ f (S1) − f ∗ = u(x).

The second inequality follows from the inclusion S∗ ⊂ ∪S ∗.
In order to prove the third inequality, we show that for each element y from the set

X\[(∩S ∗) ∪ (∪S0)] there exists x ∈ S∗ such that u(x) ≤ �(y). Let y be as in the previous
sentence. Since y /∈ ∩S ∗, Lemma 2(b) implies �(y) = f (S2) − f ∗ for some S2 ∈ S+(y),
i.e., S2 ∈ S and y ∈ S2. On the other hand, since y /∈ ∪S0, then y /∈ S0 for all S0 ∈ S0.
Thus, the inclusion y ∈ S2 implies S2 /∈ S0, and so, S∗\S2 �= ∅. Choosing an x ∈ S∗\S2,
we find x ∈ S∗ and x /∈ S2, i.e., x ∈ ∪S ∗ and S2 ∈ S−(x). Now, Lemma 2(a) yields

u(x) = min
S−(x)

f − f ∗ ≤ f (S2) − f ∗ = �(y).

The last inequality is a consequence of the inclusion ∩S ∗ ⊂ S∗. ��

123



492 J Glob Optim (2012) 53:475–495

6 ‘Reduction’ to nonembedded feasible solutions

In this section we are going to show that any canonical COP (X, C, S , f ) can be treated
as an ‘almost equivalent’ COP (X̃ , C̃, S̃ , f̃ ), whose feasible solutions from S̃ ⊂ S are
nonembedded. This is particularly important when the cost function C is strictly positive.
We will show that for the ‘tilde’ COP the global upper and lower tolerances are not less than
those for the original COP.

We denote by Sc the set of those elements from S , which cover some other elements
from S (the subscript ‘c’ stands for ‘cover’):

Sc = {
Sc ∈ S : Sc ⊃ S for some S ∈ S , S �= Sc

}
,

and we assume that Sc is nonempty. The complement of Sc in S is denoted by S̃ :

S̃ = S \Sc = {
S̃ ∈ S : S\S̃ �= ∅ for all S ∈ S , S �= S̃

};
note that sets from S̃ do not cover any other sets from S .

Clearly, Sc ∪ S̃ = S and Sc ∩ S̃ = ∅.
We set X̃ = ∪S̃ , and so, X̃ ⊂ X . Thus, S̃ ⊂ 2X̃ is a nonempty collection of nonempty

subsets of X̃ . Since Sc �= ∅ and |S | = |Sc| + |S̃ |, we have |S̃ | < |S |. The ‘tilde’ cost
function C̃ : X̃ → R, given by C̃(x) = C(x) for all x ∈ X̃ , is the restriction of C from
X to X̃ , and so, we keep the notation C for it as well. Also, the ‘tilde’ objective function
f̃ = f̃C : S̃ → R, given by f̃ (S̃) = f (S̃) for all S̃ ∈ S̃ , is the restriction of f from S to
S̃ , and so, we keep the notation f for it as well.

Now, we study the properties of the ‘tilde’ COP (X̃ , C, S̃ , f ).
The key observation in establishing that the ‘tilde’ COP is canonical (and some other

properties) is the following

Lemma 7 For each Sc ∈ Sc there exists S̃ ∈ S̃ such that S̃ ⊂ Sc.

Proof Let Sc ∈ Sc. By the definition of Sc, there exists S1 ∈ S such that S1 ⊂ Sc and
S1 �= Sc. If S1 ∈ S̃ , we are through. Now, let S1 /∈ S̃ . Then S1 ∈ Sc, and so, as above,
there exists S2 ∈ S such that S2 ⊂ S1 and S2 �= S1. Again, if S2 ∈ S̃ , then we are through,
and if S2 /∈ S̃ , then S2 ∈ Sc, and so, there exists S3 ∈ S such that S3 ⊂ S2 and S3 �= S2.
We proceed this way further on constructing decreasing sets from S . If for some step we
have found S̃ ∈ S̃ such that S̃ ⊂ · · · ⊂ S2 ⊂ S1 ⊂ Sc, then we are through. Otherwise,
since Sc is a finite set, on a k-th step we end up with a one-point set Sk = {x} ∈ S such that
Sk ⊂ Sk−1 ⊂ · · · ⊂ S1 ⊂ Sc. It is clear that Sk ∈ S̃ , which completes the proof. ��

We assert that the COP (X̃ , C, S̃ , f ) is canonical: in fact, ∪S̃ = X̃ (by the defini-
tion); also, by Lemma 7, for each Sc ∈ Sc there exists S̃ ∈ S̃ such that S̃ ⊂ Sc, and so,
∩S̃ ⊂ S̃ ⊂ Sc, implying ∩S̃ ⊂ ∩Sc and

∩S̃ = (∩Sc) ∩ (∩S̃ ) = ∩S = ∅.

Clearly, feasible solutions from S̃ are nonembedded.
We denote by (S̃ )∗ the set of all optimal solutions of the ‘tilde’ COP, i.e.,

(S̃ )∗ =
{

S̃ ∈ S̃ : f̃ ∗ = f (S̃) = min
S̃

f
}
,

where f̃ ∗ is the optimal value of the ‘tilde’ COP. The interrelations of optimal solutions are
contained in the following
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Lemma 8 (a) If S∗ ∈ S ∗ is unique, then S∗ ∈ (S̃ )∗.
(b) (S̃ )∗ = S ∗ ∩ S̃ .
(c) f̃ ∗ = f ∗.

Proof (a) First, we show that S∗ ∈ S̃ . On the contrary, assume that S∗ ∈ Sc. Then there
exists S ∈ S such that S ⊂ S∗ and S �= S∗. Since C ≥ 0, then (as in the proof of
Theorem 2) S ∈ S ∗, which contradicts the uniqueness of S∗. Now, for any S̃ ∈ S̃ we
have S̃ ∈ S , and so, by (2.1), f (S∗) ≤ f (S̃), i.e., S∗ ∈ (S̃ )∗.

(b) (⊂) Let S̃∗ ∈ (S̃ )∗, i.e., S̃∗ ∈ S̃ and f (S̃∗) ≤ f (S̃) for all S̃ ∈ S̃ . Now, let
S ∈ S = S̃ ∪ Sc be arbitrary. It suffices to verify the inequality f (S̃∗) ≤ f (S) only
for S ∈ Sc. For such an S, by Lemma 7, there exists S̃ ∈ S̃ such that S̃ ⊂ S, and so,
f (S̃∗) ≤ f (S̃) ≤ f (S). Thus, S̃∗ ∈ S ∗, implying S̃∗ ∈ S ∗ ∩ S̃ .

(b) (⊃) If S∗ ∈ S ∗ ∩ S̃ , then S∗ ∈ S ∗ and S∗ ∈ S̃ , and so, for any S̃ ∈ S̃ we have
S̃ ∈ S and f (S∗) ≤ f (S̃), i.e., S∗ ∈ (S̃ )∗.

(c) Since f̃ ∗ = minS̃ f, f ∗ = minS f and S̃ ⊂ S , then f ∗ ≤ f̃ ∗. On the other hand,
the arguments in (b) (⊂) show that if S̃∗ ∈ (S̃ )∗, i.e., f̃ ∗ = f (S̃∗), then f (S̃∗) ≤ f (S)

for all S ∈ S , and so, f̃ ∗ ≤ f ∗. ��
Finally, we establish the relationships between the global tolerances of the original COP

and the‘tilde’ COP.
By Lemma 8(b), we find

∪(S̃ )∗ = ∪(S ∗ ∩ S̃ ) ⊂ ∪S ∗ and ∩ (S̃ )∗ = ∩(S ∗ ∩ S̃ ) ⊃ ∩S ∗.

If x ∈ ∪(S ∗ ∩ S̃ ), then, taking into account that (S̃ )−(x) = S−(x) ∩ S̃ , by Lemmas 2(a)
and 8(c), we have for the global upper tolerance ũ(x) with respect to the COP (X̃ , C, S̃ , f ):

ũ(x) = min
(S̃ )−(x)

f̃ − f̃ ∗ = min
S−(x)∩S̃

f − f ∗ and u(x) = min
S−(x)

f − f ∗.

In a similar manner, if x ∈ X̃\(∩(S ∗ ∩ S̃ )), then (S̃ )+(x) = S+(x) ∩ S̃ and

�̃(x) = min
(S̃ )+(x)

f̃ − f̃ ∗ = min
S+(x)∩S̃

f − f ∗ and �(x) = min
S+(x)

f − f ∗.

Thus, we have shown that

u(x) ≤ ũ(x) and �(x) ≤ �̃(x) for all x ∈ X̃ .

A simple remark is that if x ∈ ∪(S̃ )∗ is such that S−(x) ⊂ S̃ , then u(x) = ũ(x), and
similarly for �(x) = �̃(x) if S+(x) ⊂ S̃ .

In a particular case when C(x) > 0 for all x ∈ X , we have S ∗ ⊂ S̃ (and so, (S̃ )∗ = S ∗).
In fact, if (on the contrary) S∗ ∈ Sc for some S∗ ∈ S ∗, then there exists S ∈ S , S �= S∗,
such that S ⊂ S∗, and so, f (S) < f (S∗), which contradicts the optimality of S∗.

7 Maximal values of upper and lower tolerances

The case of maximal values of global upper and lower tolerances is more intricate and
involved. However, we have the following partial result (cf. Theorem 4). In the next theorem
we employ notations introduced before Lemma 2.

Theorem 4 Let the COP (X, C, S , f ) be canonical such that its feasible solutions from S
are nonembedded, and let S∗ ∈ S ∗ be the unique optimal solution of the COP. We have:
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(a) if

( ⋃

x∈S∗

(∪[S−(x)]∗)
)

\S∗ = X\S∗, then max
y∈X\S∗ �(y) ≤ max

x∈S∗ u(x);

(b) if S∗ ⊂
⋃

y∈X\S∗

(
X\(∩[S+(y)]∗) )

, then max
x∈S∗ u(x) ≤ max

y∈X\S∗ �(y).

Proof (a) It suffices to show that for each element y ∈ X\S∗ there exists x ∈ S∗ such
that �(y) ≤ u(x). Let y ∈ X\S∗. By the assumption, there exists x ∈ S∗ such that
y ∈ (∪[S−(x)]∗)\S∗ (the set on the right is nonempty due to the nonembeddedness
of feasible solutions S ), and so, there is S1 ∈ [S−(x)]∗ such that y ∈ S1 and y /∈ S∗.
Since S1 ∈ S+(y), it follows from Lemma 2(a), (b) that

u(x)= f ([S−(x)]∗) − f (S ∗) = min
S−(x)

f − f ∗ = f (S1) − f ∗

≥ min
S+(y)

f − f ∗ = f ([S+(y)]∗) − f (S ∗) = �(y).

(b) It suffices to establish that for each element x ∈ S∗ there exists y ∈ X\S∗ such
that u(x) ≤ �(y). Let x ∈ S∗. By the assumption, there exists y ∈ X\S∗ such that
x /∈ ∩[S+(y)]∗, and so, there is S2 ∈ [S+(y)]∗ such that x /∈ S2, i.e., S2 ∈ S−(x).
Now, it follows from Lemma 2(a), (b) that

�(y)= f ([S+(y)]∗) − f (S ∗) = min
S+(y)

f − f ∗ = f (S2) − f ∗

≥ min
S−(x)

f − f ∗ = f ([S−(x)]∗) − f (S ∗) = u(x).

This completes the proof of Theorem 4. ��

8 Conclusion

In this paper the theory of global tolerances of the ground set elements is developed and
the relationship with the commonly known tolerances is clarified. We show that it suffices to
study the global tolerances only for canonical combinatorial optimization problems. For such
problems (in)equalities for the minimal and maximal values of global upper tolerances and
global lower tolerances are established under the assumption of nonembeddedness of feasible
solutions as well as without it. We prove a new criterion characterizing the uniqueness of
optimal solution of the combinatorial optimization problem under consideration: the optimal
solution is unique if and only if for some optimal solution the upper and lower tolerances are
global ones. Examples are presented illustrating the sharpness of our results.
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