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Classification of m-spin Klein surfaces @

S. M. Natanzon and A.M. Pratoussevitch

A Klein surface is a generalisation of a Riemann surface to the case of non-orientable
surfaces and/or surfaces with boundary [1], [4]. A Klein surface is a quotient P/7, where
7: P — P is an anti-holomorphic involution of a Riemann surface P. The category of
Klein surfaces is isomorphic to the category of real algebraic curves. A complete list
of topological invariants of a connected Klein surface P/7 consists of the (algebraic) genus
g = g(P), the number k = k(P/7) = |0(P/7)| of ovals, and the orientability ¢ = e(P/7).
An oval is a connected component of the boundary 9(P/7). The orientability e(P/7) of
the surface P/7 is = 1 if the surface is orientable (in which case 1 < k < g+1land k =g+1
mod 2) and & = 0 otherwise (in which case 0 < k < g). In addition to these invariants it
is convenient to consider the geometric genus g = g(P/7), which is equal to the number
of handles (for ¢ = 1) or to half the number of M&bius bands (for ¢ = 0) that need to
be attached to a sphere with holes in order to obtain a surface homeomorphic to P/7.
We will assume that g > 1 and hence g > 1.

An m-spin bundle on a Riemann or Klein surface S is a complex line bundle e: L — S
such that e®™: L®™ — § is isomorphic to the cotangent bundle. The moduli spaces of
m-spin bundles on Riemann surfaces have been described in [2], [7], [8]. These bundles
and their moduli spaces appear naturally in physics [9]. The moduli space of compact
Riemann surfaces P of genus g > 1 with an m-spin bundle is connected for odd m and
consists of two connected components for even m. These components are determined by
the Arf invariant § = §(P,e) € {0,1}. On a Riemann surface of genus g there are m?9
m-spin bundles, of which (for even m) there are 27'79m?9(29 4- 1) bundles with § = 0
and 27179m?9(29 — 1) bundles with § = 1. Our aim is to find topological invariants of
m-spin bundles on Klein surfaces of geometric genus g > 1, to determine the number
of such bundles, and to describe the moduli space of m-spin bundles on Klein surfaces.
The special case m = 2 was studied in [3] and [6].

Theorem 1. FEvery connected component of the moduli space of m-spin bundles on Klein
surfaces of genus g is homeomorphic to R37™3/Mod, where Mod is a discrete group.

Theorem 2. For odd m, there exists an m-spin bundle on a Klein surface P/T if and only
if g(P) = 1 mod m, in which case the number of such bundles is equal to m?. Moreover,
for odd m, the moduli space of m-spin bundles on Klein surfaces of genus g is connected.

From now on we will assume that m is even.

Theorem 3. For even m, there exists an m-spin bundle on a Klein surface P/T if and
only if g(P) =1 mod(m/2), in which case the number of such bundles with Arf invariant
§ is equal to: 1) m?/2 fore =k =0;2) 2°"?m? fore =0,k >0 orm=0mod 4, e = 1;
3) (21 4+ 1)m?/2 form=2mod 4,e =1,6 = 0; 4) (2"7* — 1)m9/2 for m = 2 mod 4,
e=1,6=1.
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The restriction of an m-spin bundle to an oval can be trivial or non-trivial. We denote
by ko = ko(P/7,¢e) and k1 = ki(P/7,e) the number of ovals on which the restriction of
the bundle is trivial and non-trivial, respectively.

Theorem 4. The moduli space of m-spin bundles of type (g,€,m,d, ko, k1) on Klein sur-
faces is non-empty if and only if kym/2 = (1 — g) mod m. For e = 0 the moduli space is
connected. On any Klein surface of type (g, ko + k1,0) there are (ﬁl)mg/2 bundles of type
(9707m167 k(),k‘l)-

From now on we will assume that m is even, € = 1, and kim/2 = (1 — g) mod m.
In this case there are additional topological invariants. One of them is the Arf invariant
0 = §(P/) of the Riemann surface P/7 \ 9(P/7). Furthermore, the ovals can be divided
into two classes. Two ovals ¢ and co are called similar if there is a simple closed curve
d that intersects c¢i1 and cz such that 7(d) = d and the restriction of the bundle to d
is non-trivial [5]. Let us choose one similarity class of ovals and denote by k§ and kY
the number of ovals in this class on which the restriction of the bundle is trivial and
non-trivial, respectively. Let ki = k; — kY. (The invariants (k9, kY, k¢, k1) are defined up
to k7 - k7))

Theorem 5. The moduli space of m-spin bundles with topological invariants
(g,8,m, ko, kY, ko, k1)

on Klein surfaces is connected. For m = 0 mod 4 or m = 2 mod 4 and ko > 0, bun-

dles of this type exist on a Klein surface if and only if § = 0, in which case their
number is 2~ Fm? (’gl)(:g)(:g) For m = 2mod 4 and ko = 0 the number of m-spin
0 1

bundles of type (g, g,m70,k?,07k%) on a Klein surface of type (g, kY + ki,1) is (27F +
—(g+k+1)/2\, g (k \ (ko) (k1) £... 5 —k _ o—(g+k+1)/2y, g (k \ (k0 (k1) £ 5
27D ma (7)) () (18) for 6 =0 and (27" — 27 @HEDE)ma (1) (18) (33) for 6 =1.
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