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WEAK REGULARITY OF GAUSS MASS TRANSPORT

ALEXANDER V. KOLESNIKOV

Abstract. Given two probability measures µ and ν we consider a mass trans-
portation mapping T satisfying 1) T sends µ to ν, 2) T has the form T =

ϕ
∇ϕ

|∇ϕ|
, where ϕ is a function with convex sublevel sets. We prove a change of

variables formula for T . We also establish Sobolev estimates for ϕ, and a new
form of the parabolic maximum principle. In addition, we discuss relations to
the Monge–Kantorovich problem, curvature flows theory, and parabolic non-
linear PDE’s.

Keywords: optimal transportation, Monge–Kantorovich problem, Gauss curva-
ture flows, parabolic Monge–Ampère equation, Alexandrov maximum principle,
parabolic maximum principle, Sobolev and Hölder a priori estimates.

1. Introduction

In this paper we study a class of mass transportation mappings having the form

T = ϕ
∇ϕ
|∇ϕ|

with some potential ϕ. The mappings of this type have been introduced in [9], [8].
Assume we are given a couple of probability measures µ = ρ0 dx and ν = ρ1 dx.
It has been shown that, under general assumptions, there exists a unique ϕ with
convex sublevel sets At = {x : ϕ(x) ≤ t} such that

T : x→ ϕ(x) · n(x),

where n(x) is the normal vector to ∂At at x with t = ϕ(x) and T satisfies the
equality ν = µ ◦ T−1. We point out that the restriction of T to every level set ∂At
coincides (up to the factor t) with the Gauss map of ∂At. In what follows we use
the name “Gauss mass transport” for T .

Mappings of this kind are closely related to several areas of research. They can
be considered as “parabolic” analogs of optimal transportation mappings, which
attract attention of researchers from the most diverse fields, including probability,
partial differential equations, geometry, and infinite-dimensional analysis (see [36],
[37], and [7]). In addition, they arise naturally in the Gauss curvature flow theory.
Concerning transformations of measures of other related types, see [5], [6], [10].

The main goal of this paper is to establish some regularity properties of the
mapping T . More precisely, we prove that T satisfies a change of variables formula,
which can be considered as the weakest regularity property of T .

The corresponding result in the elliptic case (optimal mappings between mea-
sures with densities always satisfy a change of variables formula) belongs to McCann
[29]. This result turns out to be quite useful for different applications. Applications
of the change of variables formula include, for instance, the so-called above-tangent
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formalism which is a crucial technique in variational problems, PDE’s, and proba-
bility (see [37], [2], [4]).

The paper is organized as follows.
In Section 2, we briefly describe the main results of [9] that are used throughout.

These are the results on existence and uniqueness of Gauss maps, a description of an
important scaling procedure, and certain duality relations. In addition, we describe
the relations to curvature flows and the parabolic Monge–Ampère equation.

Our main result is proved in Section 3. We show that T satisfies the following
change of variables formula:

ρ1 ◦ T · J = ρ0 with J = detDaT,

whereDaT can be understood as the absolutely continuous part of the distributional
derivative of T . One has

J = ϕd−1|Daϕ|K,
where |Daϕ| is the absolutely continuous part of the full variation of the vector-
valued measure ∇ϕ and K is the Gauss curvature of ∂Aϕ(x).

In Section 4 we establish some natural Sobolev a-priori estimates for ϕ. We
emphasize that ϕ is not Sobolev but only BV in general. Under assumption that
ρ1 = C

rd−1 we show that for every p > 0

Cp,R

∫

A

|∇ϕ|p+1 dµ ≤
∫

A

∣

∣

∣

∇ρ0
ρ0

∣

∣

∣

p+1

dµ+

∫

∂A

K−pρp+1
0 dHd−1.

Another natural question arising in the study of the Gauss mass transport is the
validity of some parabolic analogs of the maximum principle. Applying the mass
transportation arguments one can establish (see Section 5) the following form of the
parabolic maximum principle: every smooth function f on a convex set A satisfies
the inequality

sup
A
f ≤ sup

∂A
f + C(d)

∫

C−f,l

|∇f |K dx,

where

C−f,l = {x : x ∈ At ∩ ∂ conv(At)}, At = {−f ≤ t}
is the set of contact points for the sublevel sets of −f , conv(At) is the convex enve-
lope of At, and K is the corresponding Gauss curvature. This estimate is naturally
related to the Gauss mass transport and the second-order nonlinear parabolic dif-
ferential operator f 7→ |∇f |K (similarly to the Monge–Ampère operator in the
classical maximum principle). The inverse mapping S = T−1 is associated with
another parabolic differential operator:

f 7→ fr · det
(

f · Id +D2
θf

)

rd−1
,

whereD2
θf is the Hessian on Sd−1. The corresponding maximum principle is proved.

In Section 7, we are concerned with the regularity of the parabolic Monge–
Ampère equation. In particular, we briefly explain how the arguments employed in
[34] can be extended to our situation to prove Hölder’s regularity of ϕ. Thus we
establish Hölder’s continuity of ϕ assuming that ρ1, ρ2 ∈ C2,α(A) and ∂A is smooth
and uniformly convex.

The author express his gratitude to Vladimir Bogachev for valuable suggestions
and remarks.
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2. Existence and basic properties

In what follows we denote by Hm the m-dimensional Hausdorff measure on R
d,

m ≤ d. For Lebesgue measure we also use common notation λ. We denote by Sd−1

the unit sphere in R
d (and by Sd−1

+ its upper-half). We also use the symbols Dθ,

D2
θ for the gradient and the Hessian on Sd−1.
It will be assumed throughout the paper that

A1) the measure µ is supported on a compact convex set A
A2) the measure ν is supported on BR = {x : |x| ≤ R} for some R > 0
A3) the measure µ is absolutely continuous with respect to λ|A and ν is abso-

lutely continuous with respect to λ|BR .

We start with a brief outline of two areas of research closely related to the Gauss
mass transport.

1) Optimal transportation.
Optimal transportation can be described as a problem of optimization of a certain

functional associated with a pair of measures. The quadratic transportation cost
W 2

2 (µ, ν) between two probability measures µ, ν on R
d is defined as the minimum

of the Kantorovich functional:

(1) m 7→
∫

Rd×Rd

|x1 − x2|2 dm(x1, x2), m ∈ P(µ, ν),

where P(µ, ν) is the set of all probability measures on R
d×R

d with the marginals µ
and ν; here |v| denotes the Euclidean norm of v ∈ R

d. The problem of minimizing
(1) is called the mass transportation problem. In many cases there exists a mapping
T : R

d → R
d, called the optimal transport between µ and ν, such that ν = µ ◦T−1

and

W 2
2 (µ, ν) =

∫

Rd

|x− T (x)|2 µ(dx).

If µ and ν are absolutely continuous, then, as shown by Brenier and McCann (see
[36]), there exists an optimal transportation T which takes µ to ν. Moreover, this
mapping is µ-unique and has the form T = ∇W , where W is convex. Assuming
smoothness of W , one can easily verify that W solves the following nonlinear PDE
(the Monge–Ampère equation):

detD2W =
ρ0

ρ1(∇W )
.

In fact, this equation is satisfied in a certain sense without any smoothness assump-
tions (see Section 3).

2) Geometric flows.
We refer to [16], [17] for an account in geometric flows. Let {Γt} ⊂ R

d be a
family of embedded hypersurfaces. Denote by V (x, t) the velocity in the direction
of the inward normal −n(x) at a point x ∈ Γt. We say that {Γt} satisfies a surface
evolution equation (or {Γt} is a geometric flow) if V satisfies

(2) V = f(x, t, n,Dn)

for some given function f . If f = H is the mean curvature, then Γt is called the
mean curvature flow. If f = K is the Gauss curvature, then Γt is called the Gauss
curvature flow.

The Gauss curvature flows have been introduced by Firey [15] as a model of
the wearing stone on a beach. The existence and uniqueness of a Gauss curvature
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flow starting from a smooth initial convex surface has been obtained by Tso [34] by
solving a corresponding parabolic Monge–Ampère equation. He proved, in partic-
ular, that Γt remains convex and shrinks to a point in finite time. The same result
for the mean curvature flow has been obtained by Huisken [21]. More on Gauss
curvature flows see in [3].

The main problem arising in respect with non-convex initial surfaces is the even-
tual singularity of the solution. It turns out that in general Γt becomes singular in
finite time. To overcome this problem several notions of generalized solutions have
been proposed. A weak notion of a solution to (2) have been introduced by Brakke
[11]. He proved the existence of the mean curvature flow for any initial data in
some generalized measure-theoretical sense. According to the level-set method (see
[17]), the family {Γt} is considered as level sets of some function u(t, x) satisfying a
nonlinear parabolic equation in viscosity sense. Finally, it is known that sometimes
the solutions to curvature flows can be obtained as scaling limits of certain ellip-
tic or parabolic equations. For instance, the mean curvature flow can be obtained
as a singular limit of the solutions to Allen–Cahn or Ginzburg–Landau equations
(see [22], [31]). It has been shown in [9] that Gauss curvature flows starting from
convex surfaces are singular limits of some optimal transportation problems. More
precisely, the following result has been proved in [9].

Theorem. Let A ⊂ R
d be a compact convex set and let µ = ρ0 dx be a

probability measure on A equivalent to the restriction of Lebesgue measure. Let ν =
ρ1 dx be a probability measure on BR = {x : |x| ≤ R} equivalent to the restriction of
Lebesgue measure. Then, there exist a Borel mapping T : A→ BR and a continuous
function ϕ : A → [0, R] with convex sub-level sets As = {ϕ ≤ s} such that ν =
µ ◦ T−1 and

T = ϕ · n Hd-almost everywhere,

where n = n(x) is a unit outer normal vector to the level set {y : ϕ(y) = ϕ(x)} at
the point x.

If ϕ is smooth, the level sets of ϕ are moving according to the following Gauss
curvature flow equation:

(3) ẋ(s) = −sd−1 ρ1(sn)

ρ0(x)
K(x) · n(x)

where x(s) ∈ ∂AR−s, 0 ≤ s ≤ r, x(0) ∈ ∂A is any initial point satisfying ϕ(x(0)) =
R.

Remark 2.1. 1) The theorem does not guarantee that the boundary ∂A is
exactly the level set {ϕ = R}. Nevertheless, one can easily check that this
is indeed the case when A is strictly convex.

2) It is not clear in general whether {x : ϕ(x) = 0} contains a unique point or
just has Lebesgue measure zero.

3) The case ρ1 = 1
rd−1 , ρ0 = C corresponds to the standard Gauss curvature

flow. The asymptotic behavior of ∂Ar for small values of r is a standard
problem in differential geometry. For the classical Gauss flow it is known
that ∂Ar is asymptotically spherical in shape for values of r close to 0 (see
[3]). This problem has not been studied so far for the flows of the type (3).

4) Potential ϕ is not Sobolev in general, but admits a bounded variation (BV)
(see [1]). The distributional derivative of ϕ can have a singular component
in the n-direction.
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In addition, T is unique and admits an inverse T−1 (see [9], Section 3).
Let us briefly describe the idea of the proof and some important related facts.

The potential ϕ is a pointwise limit of a sequence of functions {ϕt} with convex
sublevel sets. To construct ϕt we consider the optimal transportation ∇Wt of µ to
ν ◦ S−1

t , where St(x) = x|x|t. Let us set

Tt =
∇Wt

|∇Wt|
t

1+t

Clearly, Tt pushes forward µ to ν. ChooseWt in such a way that minx∈AWt(x) = 0.
Define a new potential function ϕt by

Wt =
1

t+ 2
ϕt+2
t .

Then one has

Tt = ϕt
∇ϕt

|∇ϕt|
t

t+1

.

It was shown in [9] that

lim
n→∞

ϕtn = ϕ, lim
n→∞

Ttn = T

almost everywhere (for a suitable subsequence tn → ∞).
The dual potentials

W ∗
t (y) = sup

x∈Rd

(

〈x, y〉 −Wt(x)
)

of the corresponding dual Monge–Kantorowich problem define via renormalization
another natural convergent sequence

Ht(y) =
W ∗
t (y|y|t)
|y|1+t .

It was shown in [9] that

Ht → H

pointwise, where

H(r, θ) : BR = [0, R]× Sd−1 → R,

H(r, θ) = sup
x : ϕ(x)≤r

〈θ, x〉.

We warn the reader that in [9] we deal with a slightly different potential ψt =
Ht(r, θ)r.

Let us describe the expression for T−1
t in terms ofHt. To this end we fix n ∈ Sd−1

and introduce local coordinates (θ1, · · · , θd−1) on S
d−1 in a neighborhood of n. We

assume everywhere below that

ei =
∂n

∂θi

constitute an orthonormal basis in the tangent space of Sd−1 at n. Then the
following relation holds

T−1
t (y) =

(

Ht +
r

t+ 1
(Ht)r

)

· n +

d−1
∑

i=1

(Ht)θi · ei.
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In the limit t→ ∞ one has

T−1(y) = H · n +

d−1
∑

i=1

Hθi · ei = H · n +DθH.

Remark 2.2. In what follows we often choose the following convenient local coor-
dinate system on Sd−1. We take the center of Sd−1 for the origin and introduce
the standard Euqlidean coordinates in R

d such that n becomes the North Pole:
n = (0, 0, . . . , 1). A neighborhood of n can be parametrized by

(θ1, . . . , θd−1) →
(

θ1, . . . , θd−1, (1−
d−1
∑

i=1

θ2i
)1/2

)

.

In particular, one has at n:

∂ei
∂θi

= −n,
∂ej
∂θi

= 0, i 6= j.

Clearly, (r, θ1, . . . , θd−1) is a parametrization of a cone with the vertex at the origin.

Now we describe the relation between the Gauss mass transport and the para-
bolic Monge–Ampère equation.

Several parabolic analogs of the elliptic Monge–Ampère equation have been in-
troduced by Krylov (see [25]). He also proved some forms of the parabolic maximum
principle (see also [35]).

Let µ = ρ0 dx be a probability measure on an strictly convex set A. Consider a
Gauss mass transportation

T = ϕ
∇ϕ
|∇ϕ|

sending µ to a measure ν = ρ1 dx on BR : = {x : |x| ≤ R}.
Example 2.3. Assume d = 2 and fix a standard coordinate system (x1, x2). Assume
that the functions below are smooth. Introduce the global polar coordinate system
(r, θ). One has

T−1 = H · n +Hθ · v,
n =

(

cos θ, sin θ
)

, v = (− sin θ, cos θ).

Let us compute the derivative of T−1 in polar coordinates:

T−1
r = Hr · n +Hθr · v

T−1
θ = H · ṅθ +Hθ · n +Hθ · v̇θ +Hθθ · v = (H +Hθθ) · v.

Taking into account that detD(r, θ) = 1
r one gets detDT−1 = Hr(H+Hθθ)

r . Finally,
by the change of variables formula

(4) ρ1 = ρ0(H · n +Hθ · v)
Hr(H +Hθθ)

r
.

Let us describe a standard trick which allows to rewrite (4) in the form of the
parabolic Monge–Ampère equation. Introduce another variable on x2 < 0:

z = −ctg θ, π ≤ θ ≤ 2π.

Thus θ = arcctg(−z). Instead of H it is convenient to work with

u =
√

1 + z2 H.
6



Note that u is just the restriction of the corresponding 1-homogeneous support
function HAr with a fixed r to the line x2 = −1. In particular, u is convex in z.
Taking into account that ∂

∂z = 1
1+z2

∂
∂θ , one can easily compute

uz =
zH +Hθ√

1 + z2
, uzz =

H +Hθθ

(1 + z2)
3
2

.

Finally, we set
T = T−1 ◦ (r, arcctg(−z)).

Writing this mapping in coordinates (x1, x2) as a function of (z, r), one gets

T −1 = (uz, zuz − u) = (uz, u
∗(uz)),

where u∗ is convex conjugated to u with respect to z-variable

u∗(z, r) = sup
x∈R1

(

xz − u(z, r)
)

.

The change of variables formula takes the form

(5) ur · uzz =
1

ρ0(uz, zuz − u)

r

1 + z2
ρ1

( rz,−r√
1 + z2

)

, (z, r) ∈ R
+ × R.

Note that (5) can be considered as a parabolic Monge-Ampère equation.
In addition, (5) can be easily interpreted from the point of view of mass trans-

portation. Indeed, let us set

ν̃ =
r

1 + z2
ρ1

( rz,−r√
1 + z2

)

drdz.

Then ν̃ is a measure on R × [0, R] which coincides with the image of ν under the
mapping

(x, y) 7−→ (rz,−r)√
1 + z2

.

Further, µ is the image of ν̃ under T −1. Function u is convex in z and increasing
with respect to r.

All these computations can be generalized to the multidimensional case. One

has T−1 = H · n +
∑d−1
i=1 Hθi · ei = H · n +DθH and

(6) ρ1 = ρ0(T
−1)

Hr · det(H · Id +D2
θH)

rd−1
.

Here D2
θH denotes the Hessian of H on the unit sphere. For computing D2

θH it is
convenient to deal with the local polar coordinate system as described above. In
this case D2

θH(n) can be represented just by the matrix (∂2θiθjH). Note that

det(H · Id +D2
θH) =

1

K(T−1)
, Hr =

1

|∇ϕ(T−1)| .

Finally, let us define coordinates (z, r) and the corresponding chart

V (z, r) : {−R < xd < 0} → BR,
(

x1, . . . , xd
)

=
r

√

1 + z21 + · · ·+ z2d−1

(

z1, . . . , zd−1,−1
)

= V (z, r).

Now we introduce a new potential u

u =
√

1 + z21 + · · ·+ z2d−1 S

7



and verify the following proposition by direct computations.

Proposition 2.4. Assume that T is smooth. The following representations hold
on −R < xd < 0:

1)

T −1 =
(

∇zu,
〈

z,∇zu
〉

− u
)

=
(

∇zu, u
∗(∇zu)

)

,

where

u∗(z, r) = sup
x∈Rd−1

(

〈x, z〉 − u(z, r)
)

,

T −1 = T−1 ◦ V (z, r).

2)

det
(

H · Id +D2
θH

)

= (1 + z21 + · · ·+ z2d−1)
3
2 (d−1) detD2

zu

3) the change of variables takes the form

ur · detD2
zu =

ρ̃1

ρ0(∇zu,
〈

z,∇zu
〉

− u)
,

where

ρ̃1 =
[ r

1 + z21 + · · ·+ z2d−1

]d−1

ρ1

( rz1, · · · , rzd−1,−r
√

1 + z21 + · · ·+ z2d−1

)

.

More on the parabolic Monge–Ampère equation see in Section 7.

3. Change of variables

Let A be any convex compact set of positive volume and let T : A → B be a
Gauss mass transport between two given probability measures µ and ν satisfying the
assumptions specified in the introduction. To prove the change of variables formula
for the Gauss mass transport we need to define the Gauss curvature for sufficiently
”large” amount of points x ∈ ∂A. To this end we consider the corresponding
support function

HA(θ) = sup
x∈A

〈θ, x〉.

Here we assume that θ ∈ R
d. Clearly, HA is 1-homogeneous and convex. Hence,

by the Alexandrov theorem HA is almost everywhere twice differentiable. Recall
that every convex function V is a.e. twice differentiable in the Alexandrov sense,
i.e. for almost all x there exists a matrix D2

aV (x) (the absolutely continuous part
of the second distributional derivative) such that

(7)
∣

∣V (y)−V (x)−〈∇V (x), y−x〉− 1

2
〈D2

aV (x) y−x, y−x〉
∣

∣ = o(|y−x|2), y → x

(see [14]).

Remark 3.1. A parabolic analog of the Alexandrov theorem for monotone-convex
functions was proved by Krylov (see [25]).

Definition 3.2. In what follows we say that f : M → R, where M is a Borel set is
differentiable at x ∈M in the sense of Alexandrov if (7) holds for y ∈M .

8



In particular, homogeneity implies that for every fixed r > 0 the function HA|∂Br

is twice differentiable for Hd−1-almost all x ∈ ∂Br.
Recall that H is defined as follows:

H(r, θ) = sup
θ∈Sd,x∈Ar

〈θ, x〉.

Lemma 3.3. For µ-almost all x ∈ A and all 0 < r ≤ R the function H |∂Br is
twice differentiable at r · n(x) in the Alexandrov sense.

Proof. It was noted above that H |∂Br is twice differentiable in the Alexandrov sense
for Hd−1-almost all y ∈ ∂Br. Hence by Fubuni’s theorem the set of all y such that
H |∂Br(y), r = |y| is not twice differentiable in the Alexandrov sense has ν-measure
zero. The claim follows from the fact that T pushes forward µ to ν. �

Next we want to define the Gauss curvature for an arbitrary convex surface ∂A
Hd−1-almost everywhere. Let us recall how the Gauss curvature can be defined in
the smooth case.

Assume that ∂A is a level set of some smooth function F . Then

n(x) : =
∇F (x)
|∇F (x)| .

Let {e1, e2, . . . , ed−1} be an orthonormal basis such that n⊥ei for every 1 ≤ i ≤ d−1.
Then

K(x) = detDn(x),

where D is the differential operator on the tangent space to ∂A. Computing this
expression in Euclidean coordinates one gets

K = detAi,j , where

(8) Ai,j(x) =
1

|∇F (x)| 〈D
2F (x)ei, ej〉, 1 ≤ i, j ≤ d− 1.

In particular, this formula is applicable when the surface is represented locally as
the graph of a convex function

F =W (x1, . . . , xd−1)− xd,

where {ei} can be obtained by an orthogonalization procedure from a basis tangent
to F at some point.

It is convenient to compute the Gauss curvature in terms of the support function.
The following lemma (well known for smooth surfaces) gives another practical way
of computing.

Lemma 3.4. Let ∂A be a convex surface which coincides with a graph of some
convex function W (x1, . . . , xd−1) in a neighborhood Ω of x0 and n(x0) is unique
at x0. Then the following are equivalent

1) W is differentiable at x0 in the Alexandrov sense and D2
aW (x0) is nonde-

generate,
2) H |Sd−1

is differentiable at n(x0) in the Alexandrov sense and

det
(

H · Id +
(

D2
θ

)

a
H
)

◦ n(x0) 6= 0.
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Proof. Choosing an appropriate coordinate system, we may assume without loss of
generality that x0 = 0, W (0) = 0 and ∇W (0) = 0. Let us assume for a while that
W is smooth and D2W > 0 in Ω. Introduce local coordinates (θ1, · · · , θd−1) on
Sd−1 satisfying the equality

TW =
1

√

1 + |∇W |2
(

Wx1 , . . . ,Wxd−1
,−1

)

=
(

θ1, θ2, . . . , θd−1,−

√

√

√

√1−
d−1
∑

i=1

θ2i

)

.

Clearly, the first d− 1 basis vectors of the ambient space constitute an orthogonal
basis in the tangent space to Sd−1 at x0. Note that

∇W (x) =
θ

√

1− |θ|2
,

where θ = (θ1, . . . , θd−1), x = (x1, . . . , xd) and

H =

d−1
∑

i=1

θixi −
√

1− |θ|2xd.

Set W ∗(x) = supy∈Ω(〈x, y〉 −W (y)). Since ∇W and ∇W ∗ are reciprocal, one has

x = ∇W ∗
( θ
√

1− |θ|2
)

.

Taking into account that xd =W (x), one has

H =
〈

θ,∇W ∗
( θ
√

1− |θ|2
)〉

−
√

1− |θ|2 ·W
(

∇W ∗
( θ
√

1− |θ|2
))

.

Hence

H(θ) =
√

1− |θ|2 W ∗
( θ
√

1− |θ|2
)

on TW (Ω). This is equivalent to

W ∗(x) =
√

1 + |x|2 H
( (x,−1)
√

1 + |x|2
)

on Ω. By approximation arguments these relations remain valid for every convex
W in Ω. Now assume that H is twice Alexandrov differentiable at 0. Clearly,
H(0) = 0, ∇H(0) = 0. The same holds for W ∗. Using Alexandrov differentiability
of H , we get

W ∗(x) =
(x2

2
H(0,−1) +

1

2
〈
(

D2
θ

)

a
H(0,−1)x, x〉

)

+ o(x2).

This means that D2
aW

∗ = H · Id +
(

D2
θ

)

a
H . We get 1) by the duality relations for

convex functions (see, for instance, [29]). The opposite implication follows by the
same arguments. �

Clearly, if the surface is smooth and strictly convex, in the situation of the
Lemma 3.4 one has

K =
1

det
(

H · Id +D2
θH

)

◦ n .
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Definition 3.5. Let A be an arbitrary convex surface. We call the following
quantity K ”Gauss curvature of ∂A at x”

(9) K(x) : =
1

det
(

H · Id +
(

D2
θ

)

a
H
)

◦ n(x)
if there exists a unique normal n(x), H is twice Alexandrov differentiable at n(x)
and H · Id +

(

D2
θ

)

a
H is nondegenerate.

If n(x) is unique, but H is not twice Alexandrov differentiable at n(x), we set
K(x) = 0. The latter is equivalent to detD2

aW (x1, . . . , xd−1) = 0 if ∂A coincides
locally with a graph of W : Rd−1 → R.

Remark 3.6. Clearly, by Lemma 3.4 K(x) is well-defined for Hd−1|∂A-almost all x,
since W is Hd−1-a.e. differentiable.

Remark 3.7. In the special coordinate system considered in the proof of Lemma 3.4
one hasK = detD2

aW . Following the proof of Lemma 3.4 one can easily understand
that (8) holds almost everywhere in a non-smooth setting with F =W − xd if the
second derivative of W is understood in the Alexandrov sense.

Recall an important result of McCann [29].

Theorem (McCann). (Change of variables formula for convex func-
tions.) Let µ = f dx and ν = g dx be two probability measures and V be a convex
function such that ν = µ ◦ ∇V −1. Then for µ-almost all x one has

g(∇V ) detD2
aV = f,

where D2
aV is the second Alexandrov derivative of V .

In the following proposition we deal with the Gauss map n: ∂A → Sd−1 (non
multivaled!) which is Hd−1-a.e. well defined.

Proposition 3.8. For every At = {x : ϕ(x) ≤ t} the measure
(

K ·Hd−1|∂At

)

◦n−1

is absolutely continuous with respect to Hd−1 and the following change of variables
formula holds for every bounded Borel function f : Sd−1 → R:

∫

∂At

f(n)K dHd−1 =

∫

n(∂At)

f dHd−1.

Proof. It is sufficient to prove this result for ∂At ∩ V instead of ∂At, where V is
a small neighborhood of a point x0 ∈ ∂At with unique n(x0). Fix such a point
and choose a coordinate system in such a way that n(x0) = ed and the surface ∂At
coincides (locally) with the graph of a convex function W : U ⊂ R

d−1 → R, where
U is an open ball containing 0 and W attains its minimum at 0. In addition, we
may assume that ∂W (U) is a bounded set. Let U be a local chart of ∂At ∩ V and
parametrize a part of ∂At ∩ V in the following way

U ∋ (x1, . . . , xd−1) → (x1, . . . , xd−1,W (x)).

Since W is Lipschitz on U, the surface measure Hd−1 on ∂At ∩V can be computed
in this chart by m0 = (1 + |∇W |2) 1

2Hd−1. The Gauss map n is given by

n =
1

√

1 + |∇W |2
(−∂x1W, . . . ,−∂xd−1

W, 1).

This holds for almost every (x1, . . . , xd−1).
11



Identify the half-sphere Sd−1∩{xd ≤ 0} with its projectionBd−1
1 on (x1, . . . xd−1)

and n with the mapping ñ : − ∇W√
1+|∇W |2

taking values in Bd−1
1 . Note that the

surface measure on Sd−1 can be computed in the local chart

(x1, . . . , xd−1) → (x1, . . . , xd−1,
√

1− x21 − . . .− x2d−1)

by m1 = 1√
1−|x|2

Hd−1.

Note that ñ = F ◦ ∇W is the composition of ∇W with the smooth mapping

F (x) = − x
√

1 + |x|2

which is nondegenerate everywhere.
Writing the local chart expressions we get that the claim is equivalent to the

equality m1|ñ(M+) = (K ·m0)|M+ ◦ ñ, where M+ = {x ∈ V : detD2
aW > 0}.

Note that K is well-defined on M+. By Remark 3.7 we have

K = detDañ = detDaW · detDF (x) ◦ (∇W ).

By the result of McCann the optimal transport ∇W pushes forward

detD2
aW · Hd−1|M+

to Hd−1|∇W (M+). Hence we obtain that the image of the measure

K(1 + |∇W |2) 1
2Hd−1|M+ = K ·m0|M+

under ∇W coincides with

detF (x)(1 + |x|2) 1
2Hd−1|∇W (M+).

Now applying the standard change of variables formula we get that the image of

detF (x)(1 + |x|2) 1
2Hd−1|∂W (M+)

under y = F (x) coincides with 1√
1−|y|2

Hd−1|ñ(M+) = m1|ñ(M+). The proof is com-

plete. �

The fact below follows easily from the McCann’s theorem.

Corollary 3.9. If V is a convex function satisfying detD2
aV |M = 0 for some set

M with λ(M) > 0, then the image of λ|M under ∇V is singular to λ.

The proof of the following lemma can be found, for instance, in [7].

Lemma 3.10. If V is a convex function satisfying D2
aV > 0 on M , then λ|M ◦

∇V −1 is an absolutely continuous measure.

We prove an analog of the McCann’s theorem for the Gauss mass transport.
We start with a change of variables formula for the mapping T −1 defined by a
monotone-convex potential u. Since u and H are related by a smooth change of
variables, it gives immediately a change of variables formula for H .

Remark 3.11. We recall that u(z, r) (see Section 2) is convex in z and increasing
in r. Hence one can define ur and (D2

z)au Hd-almost everywhere, where ur means
a partial derivative of u in the classical sense.
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Theorem 3.12. (Change of variables formula for u) The potential u satisfies
the change of variables formula for Hd-almost all (z, r) ⊂ R

d−1 × [0, R]

ur · det (D2
z)au =

ρ̃1
ρ0(T −1)

,

where

ρ̃1 =
[ r

1 + z21 + . . .+ z2d−1

]d−1

ρ1

( rz1, . . . , rzd−1,−r
√

1 + z21 + . . .+ z2d−1

)

.

Proof. Fix an orthogonal coordinate system (x1, . . . , xd) and denote by ẽi the corre-
sponding basis. Recall that mapping T −1 sends ν̃ = ρ̃1dx|Rd×[0,R] to µ|T −1({xd<0})

and admits a.e. the representation

T −1 =

d−1
∑

i=1

uzi · ẽi + u∗(∇zu) · ẽd,

where u∗(z) = supx∈Rd−1

(

〈x, z〉 − u(x)
)

. Let us represent T −1 as the composition

of two mappings T −1 = S2 ◦ S1, where S1 : R
d−1 × [0, R] → R

d−1 × [0, R] has the
form

S1(z, r) = (∇zu, r)

(all expressions are written in the Euclidean (z, r)-coordinates!) and

S2(z, r) =

d−1
∑

i=1

zi · ẽi + u∗(z, r) · ẽd.

Let us show that det
(

D2
z

)

a
u > 0 almost everywhere. Indeed, set

M : = {(z, r) : det
(

D2
z

)

a
u = 0}.

Assume that λ(M) > 0. Then by Corollary 3.9 and Fubini’s theorem

ν̃ = ρ̃1 · Hd−1|M ◦ S−1
1

is a singular measure. Let us disintegrate ν̃ along the r-axis:

ν̃(r, z) = νz(dr) · µ0(dz).

Here µ0 is the projection of ν̃ onto R
d−1 and νz(dr) are the corresponding condi-

tional measures.
Denote by ν̃0 the projection of ν̃ onto (z1, . . . , zd−1). It follows from the relation

ν̃ ◦ S−1
2 = µ|T −1({xd<0}) that the image of ν̃0 =

(∫

νz(dr)
)

· µ0(dz) under

(10) (z1, . . . , zd−1) →
d−1
∑

i=1

zi · ẽi

coincides with the projection of µ|T −1({xd<0}) onto (x1, . . . , xd−1). Since the latter
admits a Lebesgue density and (10) is smooth and nondegenerate, one gets that
µ0(dz) admits a Lebesgue density f0(z). Hence for Hd−1-almost all z the one-
dimensional measure νz(dr)|S1(M) is singular. Note for Hd−1-almost every fixed
z the mapping r 7→ u∗(z, r) pushes forward νz(dr)|S1(M) to a one-dimensional
absolutely continuous measure. Since νz(dr)|S1(M) is a singular measure, one has

u∗r(r, z) = −∞
(note that u∗ is decreasing in r) for Hd−1-almost all z and νz(dr)S1(M)-almost all
r. This follows by duality from Corollary 3.9.
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Next we note that

u∗r(∇zu, r) = −ur(z, r)
λ-a.e. Indeed, in the case of smooth functions with non-degenerated second deriv-
ative it follows by differentiating the duality relation

u∗(∇zu, r) + u = 〈∇zu, z〉
in r. The general case easily follows by approximations.

Thus ur = ∞ ν̃-almost surely on M . But this contradicts the assumption
λ(M) > 0.

Since det
(

D2
z

)

a
u > 0, by Lemma 3.10 the image ν̃ under S1 is absolutely contin-

uous. Then one can apply the McCann’s change of variables formula for H1-almost
every fixed value of r. Applying the same theorem once again to S2 (for Hd−1-
almost every fixed z) one gets the result. �

Corollary 3.13. (Change of variables formula for H) Since T −1 and T−1

are related by a smooth change of variables, one immediately gets

ρ1 = ρ0(T
−1)

Hr · det(H · Id +
(

D2
θ

)

a
H)

rd−1

Hd-almost everywhere on BR.

Corollary 3.14. The Gauss curvature K(x) = det(H ·Id+
(

D2
θ

)

a
H) is well-defined

and positive for µ-almost all x.

Recall thatDϕ denotes the generalized derivative of ϕ in the distributional sense.
Since ϕ has convex sublevel sets, it is a BV function (see [1]). Hence Dϕ can be
understood as a vector-valued measure satisfying

∫

〈Dϕ, ξ〉 dx = −
∫

ϕ divξ dx

for every smooth compactly supported vector field ξ. We denote by ‖Dϕ‖ the
corresponding total variational measure and by |Daϕ| its absolutely continuous
component and by |Dsϕ| its singular component.

Theorem 3.15. (Change of variables formula for ϕ) The following change of
variables formula holds for µ-almost all x ∈ A:

(

K|Daϕ|ϕd−1
)

(x) ρ1(T (x)) = ρ0(x).

Proof. Let Ã ⊂ A be a set, where K is well-defined and positive. By the previous
corollary µ(Ã) = 1. Let us show that |Dsϕ|(Ã) = 0. Indeed, otherwise we can find

a set Ms ⊂ Ã with λ(Ms) = 0 and |Dsϕ|(Ms) > 0. By the coarea formula for BV
functions (see [1], p. 159)

0 <

∫

Ms

K d|Dsϕ| =
∫

Ms

K d‖Dϕ‖ =

∫ r

0

∫

∂At∩Ms

K dHd−1dt.

By Proposition 3.8 and Fubini’s theorem the latter equals
∫ r

0

∫

∂Bt∩T (Ms)

t−(d−1) dHd−1dt =

∫

T (Ms)

|y|−(d−1)dHd.

Since T pushes forward µ to ν, one has λ(T (Ms)) = 0. We get a contradiction.
14



Applying again the coarea formula for BV functions we get
∫

Ã

ξ(T )K |Daϕ|dx =

∫ r

0

∫

∂At∩Ã

ξ(T )K dHd−1dt,

for any Borel bounded function ξ. By Proposition 3.8
∫

∂At∩Ã

ξ(T )K dHd−1 =

∫

Bt

ξ(y) dHd−1(y)

for almost all t ∈ [0, R]. Since T takes ρ0dx to ρ1dx, one gets
∫

Br

ξ(y)
K|Daϕ|
ρ0

◦ T−1(y) ρ1(y)dy =

∫ r

0

(

∫

Bt

ξ(y) dHd−1(y)
)

|t|−(d−1)dt,

Hence, for µ-almost all y ∈ Br, one has K|Daϕ|
ρ0

◦ T−1(y) ρ1(y) = |y|−(d−1). The

proof is complete. �

Corollary 3.16. Comparing different change of variables formulae, one gets

|Daϕ| =
1

Hr(T )

µ-almost everywhere.

4. Sobolev estimates for ϕ

The main goal of this section is to establish some natural Sobolev estimates for
ϕ (Theorem 4.5). The proof is based on the integration-by-parts and change of
variables formulae.

Before proving Theorem 4.5 we establish some |∇ϕ|L∞ -bounds with the help of
the classical maximum principle. These estimates have an interest in their own,
they will also serve as an intermediate step in Theorem 7.1.

It will be assumed below that Hr, Hθ, Hθθ are continuous and continuously dif-
ferentiable in r (except, maybe, the origin) up to the boundary. We also assume
without loss of generality that H ≥ 0 and H(0) = 0 (this can be achieved just
by shifting A and assuming that ϕ(0) = 0). The estimates obtained below do not
depend, however, on higher derivatives (see in this respect Remark 4.4).

Let us set
P = ρ1r

d−1.

Since H is smooth, it satisfies

P = ρ0(T
−1) Hr · det(H · Id +D2

θH)

up to ∂BR. We recall that Hr = 1/|∇ϕ(T−1)|.
Proposition 4.1. a) Assume that for some C > 0

|∇ρ0| ≤ Cρ
1+ 1

d
0 , P ≤ C,

and there exists u : (0, R] → R with u ∈ L1([a,R]) for every R > a > 0 such that

Pr
P

≤ u(r).

In addition, assume that ∂A is smooth, λ0 = infx∈∂AK(x) > 0 and ρ0|∂A ≤ C,
P |∂BR ≥ 1

C . Then

Hr ≥ D1 exp
(

−
∫ R

r

u(s)ds
)

.
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In particular

|∇ϕ| ≤ D2 exp
(

∫ R

ϕ

u(s)ds
)

with D1, D2 depending on d, C, λ0, R.
b) Assume that for some C > 0

|∇ρ0|
ρ0

≤ C, ρ0 ≥ 1

C
, P ≤ C

and
Pr
P

≥ −C.

In addition, assume that ∂A is smooth, Λ0 = supx∈∂AK(x) < ∞, ρ0|∂A ≥ C,
P |∂BR ≤ 1

C and

H ≥ εr

for some ε > 0. Then

Hr ≤
D1

rd
, |∇ϕ| ≥ D2ϕ

d

with D1, D2 depending on d, C,R, ε,Λ0.

Proof. a) We are looking for the minimum of Hre
f on BR \ Br0 r0 > 0, where

f = f(r) is a radially symmetric function to be chosen later. Assume that the
minimum is attained at some point x0 /∈ ∂BR . We deal with the local coordinate
system (r, θ) as described at Section 2. Let us differentiate logHr + f(r) along r
and every θi at this point. One has

Hrθi = 0,
Hrr

Hr
≥ −fr.

The second differentiation yields Hrθiθi ≥ 0. Rotating the coordinate system when
necessary we may assume that D2

θθH is diagonal at x0. Differentiating the change
of variables formula in r yields

Pr
P

=
〈∇ρ0(T−1), Hr · n +

∑d−1
i=1 Hrθi · ei〉

ρ0(T−1)
+
Hrr

Hr
+

d−1
∑

i=1

Hr +Hrθiθi

H +Hθiθi

.

Hence

Pr
P

≥ Hr

[ 〈∇ρ0(T−1), n〉
ρ0(T−1)

]

− fr +Hr

d−1
∑

i=1

1

H +Hθiθi

≥ Hr

[ 〈∇ρ0(T−1), n〉
ρ0(T−1)

]

− fr + (d− 1)Hr

[ 1

det(H +D2
θθH)

]
1

d−1

≥ Hr

[ 〈∇ρ0(T−1), n〉
ρ0(T−1)

]

− fr + (d− 1)H
d

d−1
r

[ρ0(T
−1)

P

]
1

d−1

.

This implies

H
d

d−1
r ≤ 1

d− 1

[ P

ρ0(T−1)

]
1

d−1
[Pr
P

+ fr

]

−Hr
P

1
d−1

(d− 1)

[

〈∇ρ0(T−1), n〉ρ−
d

d−1

0 (T−1)
]

.
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Applying Hölder’s inequality one gets

H
d

d−1
r ≤ 1

d− 1

[ P

ρ0(T−1)

]
1

d−1
[Pr
P

+ fr

]

+
1

2
H

d
d−1
r

+ C1

[

P
1

d−1

∣

∣∇ρ0(T−1)
∣

∣ρ
− d

d−1

0 (T−1)
]d

.

where C1 depends only on d. Let f be of the type

f = −C2r −
∫ r

0

u(s)ds.

One gets

1

2
H

d
d−1
r ≤ − C2

d− 1

[ P

ρ0(T−1)

]
1

d−1

+ C1

[

P
1

d−1

∣

∣∇ρ0(T−1)
∣

∣ρ
− d

d−1

0 (T−1)
]d

.

Then it follows from the assumption of the proposition that the right-hand is neg-
ative for a sufficiently large C2 > 0. This contradicts the estimate Hr ≥ 0.

This means that

Hr exp
(

−C2r −
∫ r

0

u(s)ds
)

can attain its minimum only at ∂BR. Taking into account that

Hr|∂BR ≥ C3(C,R) inf
x∈∂A

K(x)

one gets the desired estimate.
b) In the proof we use an idea from [34]. We are looking for the maximum of

Hr

H − g(r)

on BR \Br0 , where g = ε
2r. Note that H − g ≥ ε

2r. Assume that logHr − log(H −
g(r)) attains its maximum at x0 with |x0| < R (otherwise the estimate is trivial).
Then at this point

Hrr

Hr
− Hr − g′

H − g
≤ 0,

Hrθi

Hr
− Hθi

H − g
= 0.

The second differentiation gives

Hrθiθi

Hr
≤ Hθiθi

H − g
.

Differentiating the change of variables formula one obtains

Pr
P

=
Hrr

Hr
+

d−1
∑

i=1

Hr +Hrθiθi

H +Hθiθi

+
1

ρ0(T−1)
〈∇ρ0(T−1), T−1

r 〉.

Hence
d−1
∑

i=1

Hr +Hrθiθi

H +Hθiθi

≤ Hr

H − g

d−1
∑

i=1

H − g +Hθiθi

H +Hθiθi

=
Hr

H − g

(

d− 1− g

d−1
∑

i=1

1

H +Hθiθi

)

≤ (d− 1)
Hr

H − g

(

1− g d−1

√

√

√

√

d−1
∏

i=1

1

H +Hθiθi

)

= (d− 1)
Hr

H − g

(

1− g
d−1
√
Hr

d−1

√

ρ0(T−1)

P

)

.
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Next using

T−1
r = Hr · n +

d−1
∑

i=1

Hrθi · ei

we get

1

ρ0(T−1)
〈∇ρ0(T−1), T−1

r 〉 = 〈∇ρ0(T−1), n〉
ρ0(T−1)

Hr +

d−1
∑

i=1

Hrθi

〈∇ρ0(T−1), ei〉
ρ0(T−1)

=
Hr

ρ0(T−1)

(

〈∇ρ0(T−1), n〉+ 1

H − g

d−1
∑

i=1

Hθi〈∇ρ0(T−1), ei〉
)

.

Taking into account the assumptions, boundedness of Hθi and H , we get

1

ρ0(T−1)
〈∇ρ0(T−1), T−1

r 〉 ≤ C1
Hr

H − g
.

Thus we obtain

Pr
P

≤ Hr − g′

H − g
+ (d− 1)

Hr

H − g

(

1− g
d−1
√
Hr

d−1

√

ρ0(T−1)

P

)

+ C1
Hr

H − g
.

Multiplying this inequality by H − g, using the assumptions of the theorem and
boundedness of H we get

−C(H − g) ≤ C2Hr − g′ − (d− 1)gH
d

d−1
r

d−1

√

ρ0(T−1)

P
.

Thus implies

H
d

d−1
r ≤ C4

(H − g)

g
+
C4

g

(

−g′ + C2Hr

)

≤ C5 + C6Hr

r
≤ 1

2
Hd/(d−1)
r + C7

(1

r

)d

.

Hence
( Hr

H − g

)d/(d−1)

≤ C8

rd+
d

d−1

.

This gives the desired result. �

Remark 4.2. The proof of a) can be generalized to the case of pre-limiting potentials
Ht (see Section 2). Since the computations are quite involved, we give only some
intermediate results. For simplicity let us skip the index t and write H instead of
Ht. Choose a function f in such a way that f(x) ∼ −(d− 1) ln(r− r0)

+ for x close
to ∂Br0 and assume that the minimum point x0 does not belong to ∂BR. One has

T−1 =
(

H +
r

t+ 1
Hr

)

· n +

d−1
∑

i=1

Hθi · ei.

The derivatives of T−1 at x0 satisfy

T−1
r =

( t+ 2

t+ 1
Hr +

r

t+ 1
Hrr

)

· n +

d−1
∑

i=1

Hrθi · ei.

T−1
θi

=
( r

t+ 1
Hrθi

)

· n +
∑

i6=j

Hθiθj · ej.+
( t

t+ 1
H +

r

t+ 1
Hr +Hθiθi

)

ei.

Choosing an appropriate basis, we may assume without loss of generality that

Hθiθj = 0
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for i 6= j. Then

detDT−1 =
( t+ 2

t+ 1
Hr +

rHrr

1 + t

)

d−1
∏

i=1

[( t

1 + t
H +

rHr

1 + t

)

+Hθiθi

]

+

−
d

∑

i=1

rH2
rθi

1 + t

∏

i6=j

([ t

1 + t
H +

rHr

1 + t

]

+Hθjθj

)

.

At the minimum point one has

(11)
Hrr

Hr
= −f ′, Hrθi = 0,

(12)
Hrrr

Hr
+ (f ′′ − (f ′)2) ≥ 0, Hrθiθi ≥ 0.

The reasoning from the above proposition leads to the following estimate:

(ρ1)r
ρ1

+
(d− 1)

r
≥ Hr

( t+ 2

t+ 1
− r

t+ 1
f ′
) 〈n,∇ρ0(T−1)〉

ρ0(T−1)

+
−(t+ 3)f ′ + r((f ′)2 − f

′′

)

(t+ 2)− rf ′

+ (d− 1)
H

d
d−1
r

r

(

1− rf ′

t+ 1

)[( t+ 2

t+ 1
− rf ′

1 + t

)]
1

d−1
[ρ0(T

−1)

ρ1

]
1

d−1

.

Choosing an appropriate f one gets the desired bound.

Corollary 4.3. Assume that

P < C,
1

C
≤ ρ0,

∂A is smooth and uniformly convex,
∣

∣

∣

∇ρ0
ρ0

∣

∣

∣
,
∣

∣

∣

Pr
P

∣

∣

∣
< C

and ρ0|∂A ≤ C, 1
C ≤ P |∂BR . Then D1ϕ

d < |∇ϕ| < D2 for some D1, D2 > 0
depending only on d, C and ∂A.

Remark 4.4. We have proved the above estimates assuming smoothness of H . But
the final results do not depend on the bounds of the derivatives of H . We give
some sufficient conditions for H to be smooth in Section 7. Applying smooth
approximations it is possible to show that the estimates remain true without extra
smoothness assumption of the solution. In particular, the upper bound on |∇ϕ|
implies the absence of a singular part for Dϕ.

Theorem 4.5. Assume that ρ1 = C
rd−1 . Then for every p > 0 there exist Cp,R > 0

such that

(13) Cp,R

∫

A

|∇ϕ|p+1 dµ ≤
∫

A

∣

∣

∣

∇ρ0
ρ0

∣

∣

∣

p+1

dµ+

∫

∂A

|∇ϕ|pρ0 dHd−1,

(14) Cp,R

∫

A

|∇ϕ|p+1 dµ ≤
∫

A

∣

∣

∣

∇ρ0
ρ0

∣

∣

∣

p+1

dµ+

∫

∂A

K−pρp+1
0 dHd−1.
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Proof. Under assumptions of the theorem the change of variables formula reads as

CK|∇ϕ| = ρ0.

Computing DT is the standard frame {n, v1, · · · , vd−1}, we get

DT =

(

|∇ϕ| 0
bt A

)

,

where

b =
(ϕϕnvi

|∇ϕ|
)

, A =
(ϕϕvivj

|∇ϕ|
)

.

The Jacobian matrix of S = T−1 computed (r, θ) coordinates has the form (recall
that ∂n = ∂r and ∂θi = r∂vi )

DS =

(

Hr 0
ct B

)

,

with

c =
(

Hrθi

)

, B =
(H +Hθiθj

r

)

.

Recall that Hr(T ) =
1

|∇ϕ| . Since DS(T ) = DT−1, one can also assume that A and

B are diagonal (at a fixed point). Denote by λi the eigenvalues of A. Then using
DT ◦DS(T ) = Id one easily obtains

ϕϕnvi

|∇ϕ|2 +Hrθi(T )λi = 0.

Next we find

ϕnn = ∂n|∇ϕ| = ∂n(1/Hr(T )) = − 1

H2
r (T )

(

Hrr(T )|∇ϕ|+
d−1
∑

i=1

Hrθi(T )〈∂nn, vi〉
)

= − 1

H2
r (T )

(

Hrr(T )|∇ϕ|+
d−1
∑

i=1

Hrθi(T )
ϕnvi

|∇ϕ|
)

= − 1

H2
r (T )

(

Hrr(T )|∇ϕ| −
d−1
∑

i=1

ϕ
ϕ2
nvi

λi|∇ϕ|3
)

≥ −Hrr(T )

H3
r (T )

.

Taking into account that ϕ has convex level sets (hence div ∇ϕ
|∇ϕ| ≥ 0), we get

div
(

ϕ
∇ϕ
|∇ϕ| |∇ϕ|

p
)

≥ |∇ϕ|p+1 + pϕ|∇ϕ|p−1ϕnn ≥ |∇ϕ|p+1 − p
rHrr

Hp+2
r

◦ T.

Thus

(15) |∇ϕ|p+1 ≤ div
(

ϕ
∇ϕ
|∇ϕ| |∇ϕ|

p
)

+ p
rHrr

Hp+2
r

◦ T.

Integrate (15) over A with respect to µ. One obtains
∫

A

div
(

ϕ
∇ϕ
|∇ϕ| |∇ϕ|

p
)

ρ0 dx = R

∫

∂A

|∇ϕ|pρ0 dHd−1 −
∫

A

ϕ
〈∇ϕ,∇ρ0〉

|∇ϕ| |∇ϕ|p dx

≤ R

∫

∂A

|∇ϕ|pρ0 dHd−1 + ε

∫

A

|∇ϕ|p+1dµ+N(ε, p)

∫

A

ϕp+1
∣

∣

∣

∇ρ0
ρ0

∣

∣

∣

p+1

dµ.
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Applying the change of variables and integrating by parts we get

p

∫

A

rHrr

Hp+2
r

◦ T dµ = p

∫

BR

rHrr

Hp+2
r

dν = − p

p+ 1

∫

BR

〈∇H−p−1
r , x〉ρ1 dx

= − pR

p+ 1

∫

∂BR

H−p−1
r ρ1dHd−1 +

p

(p+ 1)

∫

BR

H−p−1
r ρ1 dx

=
p

(p+ 1)

∫

A

|∇ϕ|p+1 dµ− pR

p+ 1

∫

∂A

|∇ϕ|pρ0 dHd−1.

The obtained estimates imply immediately (13). Estimate (14) follows from (13)
and the change of variables formula. �

Remark 4.6. Estimates of these type are also available for the pre-limiting poten-

tials. For instance, for T = ϕ ∇ϕ
|∇ϕ| |∇ϕ|

1
1+t one has

ϕnn ≥
(1

p
|∇ϕ(S)|p

)

r
◦ T

for p = 2 + 1
1+t . Then one can show that for q > 0

∫

∂A

ϕ|∇ϕ|qρ0 dH1 +

∫

A

∣

∣

∣

∇ρ0
ρ0

∣

∣

∣

q+1

ϕq+1 dµ ≥ Cq

∫

A

|∇ϕ|q+1dµ.

Remark 4.7. The result can be easily generalized to the general case of a continuous
rotational invariant density ν = ρν dx = ρν(r) dx.

Indeed, take a mapping T sending ν to dx
r and having the form T (x) = f(r)xr .

The function f satisfies

rρν(r) = f ′(r).

Note that ψ ∇ψ
|∇ψ| , where ψ = f(ϕ) sends µ to dx

r . Applying (13) to ψ we get

C

∫

A

ϕp+1ρp+1
ν (ϕ)|∇ϕ|p+1 dµ ≤

∫

A

∣

∣

∣

∇ρ0
ρ0

∣

∣

∣

p+1

dµ+

∫

∂A

|∇ϕ|p+1ρ0 dHd−1.

Remark 4.8. It looks possible to prove L∞-bounds on |∇ϕ| using the parabolic
maximum principle (see the next Section) and assuming high integrability of |∇ρ0|.
Estimates of this type for the potential u have been obtained in [20]. Results from
[20] are not directly applicable to our situation, since we need to consider u in
unbounded domains.

5. Variants of the parabolic maximum principle

For every convex V we denote by |∂V |(B) the associated Monge–Ampère measure
of the set B, which is defined as follows:

|∂V |(B) = λ
(

{
⋃

x∈B

∂V (x)}
)

,

where ∂V is the subdifferential of V at x.
For smooth V one has

∂V = detD2V dx.

This means that ∇V sends ∂V to Lebesgue measure if detD2V 6= 0.
Recall that for every continuous function f on a convex set A one can define its

convex envelope f∗ which is the supremum of all affine functions less than f . The
set Cf = {x : f(x) = f∗(x)} is called the set of contact points of f .
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According to the elliptic maximum principle (also called Alexandrov maximum
principle or Alexandrov-Bakelman-Pucci principle) every continuous function f on
a convex set A ⊂ R

d satisfies

sup
A
f ≤ sup

∂A
f + C · diam(A)

[

∂f∗(Cf )
]

1
d

,

where C depends only on d. If f is twice continuously differentiable, this implies

sup
A
f ≤ sup

∂A
f + C · diam(A)

[

∫

D2f(x)≤0

| detD2f(x)|dx
]

1
d

,

where C depends only on d. Equivalently, passing to g = supA f − f , one gets that
for every non-negative g

inf
∂A

g ≤ C · diam(A)
[

∫

D2g(x)≥0

detD2g(x)dx
]

1
d

.

A parabolic version of the maximum principle was obtained by Krylov (see [25]).
Later Tso [35] simplified the proof in some special cases and gave extensions in
some particular cases.

In this section we prove some other variants of the parabolic maximum principle.

Definition 5.1. For a continuous function f defined on a convex set A consider
its sublevel set At = {f ≤ t} and the convex envelope conv(At) of At. Every point
x ∈ IntA satisfying x ∈ At ∩ ∂conv(At) for some t we call a contact point of At.
The set of all such points will be denoted by Cf,l.

We denote by Sd−1
+ the upper half of the unit sphere in R

d. For every set

Ω =
{

(r, θ) : R1 ≤ r ≤ R2, θ ∈ Q
}

, where Q ⊂ Sd−1
+ is a spherically convex set,

we denote by

∂pΩ = Q×R2 ∪ ∂Q× [R1, R2]

its parabolic boundary.

Theorem 5.2. 1) Let v be a twice continuously differentiable function on a
convex set A ⊂ R

d. Then there exists a constant C = C(d) depending only
on d such that

(16) sup
x∈A

v(x) ≤ sup
x∈∂A

v(x) + C(d)

∫

C−v,l

|∇v|Kdx.

where K(x) is the Gauss curvature of the set ∂ conv{y : v(x) ≤ v(y)} at x
2) Let Ω be a set of the type

Ω =
{

(r, θ) : R1 ≤ r ≤ R2, θ ∈ Q
}

with a spherically convex Q ⊂ Sd−1
+ satisfying dist(Q, ∂Sd−1

+ ) > 0. Then
for every twice continuously differentiable function f : Ω → R satisfying
supx∈∂pΩ f ≥ 0, one has

(17) sup
Ω
f ≤ C1 sup

∂pΩ
f + C2

[

∫

Γf

|fr det(f · Id +D2
θf)|

rd−1
dx

]
1
d

,

where Γf = {x ∈ Ω: fr ≤ 0, f · Id +D2
θf ≤ 0}, and constants C1, C2 > 0

depend only on d and Q.
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Proof. 1) Set f = (M − v)1/d, where M = supA v. The estimate (16) is equivalent
to

(18) inf
∂A
fd ≤ C

∫

Cf,l

fd−1|∇f |Kdx.

For every 0 < t < inf∂A f let us consider the set At = {x : f(x) ≤ t} ⊂ A and
its convex envelope conv(At). Since A is convex, conv(At) lies inside of A and, in
addition, dist(conv(At), ∂A) > 0. Set: Ct = ∂conv(At) ∩ At. Since f is smooth,
the image of Ct under the Gauss map n of ∂conv(At) covers the unit sphere. Hence
the image of

⋃

0<t<inf∂A f

Ct = Cf,l

under T = f · n coincides with {x : ‖x‖ ≤ inf∂A f}. One has detDT = fd−1|∇f |K.
The result follows from the change of variables formula.

2) Let us consider the set of vectors V satisfying

a)
〈

v, n
〉

< M, for all x ∈ Ω

and
b)

〈

v, n
〉

> m, for all x ∈ ∂pΩ,

with n = x
|x| , M = supx∈A f , m = supx∈∂A f . Since dist(Q, ∂Sd−1

+ ) > 0, the set of

vectors v satisfying b) is non-empty and has the form

(r, θ) : r > C(Q)m, θ ∈ Q̃

for some set Q̃ ⊂ Sd−1
+ and a constant C(Q) depending on Q. If M < C(Q)m, the

claim is proved. If not, then V is nonempty. Consider the set

B = {(r, θ) : C(Q)m < r < M, θ ∈ Q̃} ⊂ V.

Clearly,
C0(Q)(M − C(Q)m)d ≤ λ(B).

It remains to estimate λ(B). For every a ∈ B define Ma = {x : f(x) = 〈a, n〉}.
Conditions a) and b) imply thatMa is non-empty and contained inside of Ω. Hence,
there exists a point x0 ∈Ma in the interiour of Ω, where |x| attains its maximum.
One has at this point

f(x0) = 〈a, n〉,

fv(x0) = 〈a, nv〉 =
1

|x0|
〈a, v〉.

for every unit v⊥n. This implies that

Dθf = a− 〈a, n〉n.
In addition,

fr(x0) ≤ 0, D2
θf(x0) ≤ D2

θ

〈

a, n〉 = −〈a, n〉 · Id = −f(x0) · Id.
Hence B ⊂ Γf . Set:

S = f(x)n+ |x|
d−1
∑

i=1

fvi(x)vi = f(x)n+Dθf(x).

Note that S(x0) = a. This means that

S(Γf ) = B.
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By the change of variables formula

λ(B) ≤
∫

Γf

detDS dx =

∫

Γf

|fr det(f · Id +D2
θf)|

rd−1
dx.

The proof is complete. �

Remark 5.3. Inequality (17) implies a form of the parabolic maximum principle
(see [35]). Assume that sup∂pΩ′ f = 0. Then

(19) sup
Ω′

f ≤ C
[

∫

Γf

|fr det(f · Id +D2
θf)|

rd−1
dx

]
1
d

.

Set u =
√
1 + z2f , where z and x are related by the change of variables described

is Section 2. Using

det
(

f · Id +D2
θf

)

= det
(

(1 + z2)3/2D2
zu

)

and trivial uniform estimates one gets

(20) sup
Ω
u ≤ C(d,Q)

[

∫

Γu∩Ω

|ut · detD2
xu| dtdx

]
1
d

,

Γu = {ut ≤ 0;D2u ≤ 0}, for any u with sup∂pΩ u = 0 and a cylinder Ω = [0, R]×Q
with convex Q. To remove the restriction sup∂pΩ u = 0 one applies the estimate to
u = v − sup∂pΩ v.

Remark 5.4. The above variants of the parabolic maximum principle are naturally
related with transport mappings of the type

T = ϕ
∇ϕ
|∇ϕ| , S = H · n +DθH.

Both variants of mappings can be obtained from the ”elliptic” transportation ∇V
by scaling procedures (see Section 2). The transportation by gradients are natu-
rallly associated with the elliptic maximum principle. Is it possible to derive both
parabolic maximum principles from the elliptic one?

1) Elliptic maximum principle implies (16).
We prove that for every continuous f ≥ 0 on a convex set A ⊂ R

d satisfying
infx∈A f(x) = 0 and every 0 < p ≤ 1 there exists a constant C = C(d) depending
only on d such that

inf
∂A

fd(1+p) ≤ C diamdp(A) |∂W∗| ◦ S−1
p

(

CW
)

,

where CW is the set of contact points of W = p
p+1f

1+ 1
p and Sp(x) = x

|x|1−p . In

particular, if f is twice continuously differentiable, one has

(21) inf
∂A

fd(1+p) ≤ C diamdp(A)

∫

{x : D2f
1+ 1

p (x)≥0}

detD
(

f
∇f

|∇f |1−p
)

dx.

Clearly, letting p→ 0 we deduce an equivalent form of (16) from (21).
Proof: Let x0 be a point satisfying f(x0) = 0. If x0 ∈ ∂A there is nothing to

prove. Thus we assume that x0 /∈ ∂A. Let V be the convex function whose graph
is the upside-down cone with vertex (x0, 0) and base A with V = m on ∂M , where

m = infx∈Ω
p
p+1f

1+ 1
p (x). It is easy to check that

Bm/diam(Ω) ⊂ ∂V (x0) ⊂ ∂W∗(CW ).
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Note that the measure with density

ρ : = detD
( x

|x|1−p
)

is the image of Lebesgue measure under Sp. Hence
∫

B
m/diam(Ω)

ρdx ≤ |∂W∗| ◦ S−1
p

(

CW
)

.

The direct computation yields ρ = p rd(p−1). This immediately gives

C̃
( m

diam(Ω)

)dp

=

∫

B
m/diam(Ω)

ρ dx ≤ |∂W∗| ◦ S−1
p

(

CW
)

with C̃ depending only on d. This proves the first part.
Finally, (21) can be obtained by direct computations. We just notice that

{x : D2f1+ 1
p (x) ≥ 0} ⊂ CW .

2) Elliptic maximum principle implies (17) with Ω = BR and symmetric
f .

Let f : BR → R be a symmetric (f(−x) = f(x)) bounded function. Assume that
f is twice continuously differentiable at every x 6= 0 and infx∈Br f(x) ≤ 0. Then
there exists a constant C = C(d) depending only on d such that

(22) inf
∂BR

f ≤ C
[

∫

Γ−f

fr det(f · Id +D2
θf)

rd−1
dx

]
1
d

.

Proof: For every t > 0 consider

wt(x) = |x| f(x|x|− t
1+t )

defined on BR1+t . One has

R1+t inf
∂BR

f = inf
z∈∂BR

wt(|z|1+t) = inf
∂BR1+t

wt.

Since wt(0) = 0, by the elliptic maximum principle

inf
∂BR

f =
( inf∂BR1+t wt

R1+t

)

≤ C(d)
(

∫

Cwt

detD2wt dx
)

1
d

.

Indeed, wt is twice continuously differentiable everywhere in Br except, maybe, the
point x = 0. Without loss of generality one can assume that infBR wt < 0. Since
wt is continious, inf wt is attained at some point x̃. Since wt is symmetric, the
points (x̃, wt(x̃)) and (−x̃, wt(x̃)) belong to a horisontal supporting hyperplane to
the graph of wt. Since wt(0) = 0, clearly 0 /∈ Cwt . This justifies the above estimate.

Set: St(y) = y|y|t. Then
∫

Cwt

detD2wt dx =

∫

Cwt (St)⊂BR

detD2wt(St) detDSt dy

=

∫

Cwt (St)⊂BR

detD
(

∇wt(St)
)

dy.

Direct computations yield

∇wt(St) =
(

f +
rfr
1 + t

)

· n +Dθf.
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Hence

lim
t→0

detD
(

∇wt(St)
)

=
fr det(f +D2

θf)

rd−1
.

The proof is complete.
3) Does elliptic maximum principle imply (20)? There are good reasons

to believe that the elliptic maximum principle implies (20). This problem seems
to be rather involved technically and we do not consider it here. We just give a
proof in a particular simple case. Let f satisfy all the assumptions from item 2).
In addition, assume that f = C outside of Ω′ ∪ (−Ω′), where

Ω′ =
{

(r, θ) : 0 ≤ r ≤ R, θ ∈ Q′
}

and Q′ ⊂ Sd−1
+ satisfies dist(Q′, ∂Sd−1

+ ) > 0. By the previous result

inf
∂Ω′

f ≤ C
[

∫

Γ−f∩Ω′

fr det(f · Id +D2
θf)

rd−1
dx

]
1
d

.

Arguing as in Remark 5.3 we get that

inf
∂pΩ

u ≤ C(d,Q)
[

∫

Γ−u

|ut · detD2
xu| dtdx

]
1
d

,

holds for any bounded u : (0, R]× R
d−1, satisfying

1) u is smooth on (ε,R]× R
d−1

2) u is constant outside of Ω = (0, R]×Q with convex Q ⊂ R
d−1

3) infΩ u = 0.

Passing to u = supΩ ϕ− ϕ we obtain

sup
Ω
ϕ ≤ C(d,Q)

[

∫

Γϕ

|ϕt · detD2
xϕ| dtdx

]
1
d

for any smooth compactly supported ϕ with supp(ϕ) ⊆ Ω.

6. Isoperimetric inequality

We discuss two apparently different proofs of the isoperimetric Euclidean inequal-
ity for convex sets (it is well-known that the general case can be easily reduced to
the convex one). First of them due Gromov. It is worth mentioning (this was
pointed out to the author by S. Bobkov) that arguments of such type go back to
Knothe [24]. More precisely, it has been shown in [24] that the Brunn–Minkowsky
inequality can be proved by transportation arguments with the help of triangular
mappings. The second proof comes from the differential geometry. Our aim is to
reveal a remarkable similarity between probabilistic and geometrical points of view.

1) (Mass transportation. Probabilistic approach.) We follow the mass
transportation arguments but use the Gauss mass transport instead of optimal (or

triangular) one. Let A ⊂ R
d be a convex set and T = ϕ ∇ϕ

|∇ϕ| send Lebesgue measure

on A into Lebesgue measure on BR, where BR is a ball of the same volume. By
the change of variables (see the previous section)

ϕd−1|Daϕ|K = 1.

Hence by the arithmetic–geometric inequality

1 = detDaT ≤ 1

d− 1
TrDa

(

ϕ
∇ϕ
|∇ϕ|

)

,
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where DaT is the absolutely continuous part of the distributional derivative DT .
Clearly,

λ(A) ≤ 1

d− 1

∫

A

div T dx =
1

d− 1

∫

∂A

〈T, n〉 dHd−1 ≤ R

d− 1
Hd−1(∂A).

Taking into account that λ(A) = λ(BR) = cdR
d, one easily recovers the classical

isoperimetric inequality.
2) (Curvature flows. Geometric approach.) The same proof can be rewrit-

ten in the language of curvature flows. The curvature flow proofs are well-known
in differential geometry (see partial results on the Cartan–Hadamard conjecture in
[33], [30]). Let At = {x : ϕ(x) ≤ t}. For convenience we assume that ϕ is smooth
on {x : ϕ(x) > 0} (which is indeed the case for smooth strictly convex ∂A). Note
that At are expanding with the speed 1

|∇ϕ| . The enclosed volume λ(At) evolves

with the speed which can be exactly computed by the Gauss–Bonnet theorem

d

dt
λ(At) = td−1

∫

∂At

K dHd−1 = td−1Hd−1(Sd−1).

Hence
λ(At) = λ(Bt).

In the other hand, it is known that

d

dt
Hd−1(∂At) = td−1

∫

∂At

KH dHd−1,

where H is the mean curvature. By the arithmetic-geometric inequality K1/(d−1) ≤
H
d−1 . Hence

d

dt
Hd−1(∂At) ≥ (d− 1)td−1

∫

∂At

K
d

d−1 dHd−1.

By Hölder’s inequality

d

dt
Hd−1(∂At)

≥ (d− 1)td−1
(

∫

∂At

K dHd−1
)

d
d−1

(

Hd−1(At)
)−1/(d−1)

= (d− 1)td−1
(

Hd−1(Sd−1)
)

d
d−1

(

Hd−1(At)
)−1/(d−1)

.

Integrating in t one obtains

Hd−1(At) ≥ tdHd−1(Sd−1) = Hd−1(Bt).

The proof is complete.

7. On Hölder’s regularity of the Gauss mass transport

The elliptic and parabolic Monge–Ampère equations belong to the family of the
so-called fully nonlinear PDE’s. See [12] (and [19] for the special case of the Monge–
Ampère equation). A short survey [26] presents the developments of the main ideas
of the nonlinear PDE’s theory.

The connection between the variational Monge–Kantorovich problem and the
elliptic Monge–Ampère equation was revealed by Brenier (see [36]). In [34] the
existence of the Gauss curvature flow for smooth data was established by solving
the corresponding equation of the parabolic Monge–Ampère type.
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Contributions to the regularity theory of the elliptic Monge–Ampère equation
were made by many authors, including Alexandrov, Calabi, Yau, Pogorelov, Krylov,
Spruck, Caffarelli, Nirenberg, and Urbas. There are several approaches to the reg-
ularity theory of nonlinear equations. A classical one is based on differentiating of
the underlying equation. Taking the second derivative one obtains another equa-
tion which is linear with respect to higher derivatives. Then one applies a priori
estimates from the linear theory. This was a common way for studying the nonlin-
ear PDE’s before the results of Krylov, Safonov, and Evans on a priori estimates
for nonlinear uniformly elliptic operators. See [26] for details.

Unfortunately, the elliptic Monge–Ampère operator

u→ detD2u

is not uniformly elliptic even in the class of convex functions. This is the reason
why the Krylov–Safonov–Evans theory is not applicable directly. The regularity
problem for the elliptic Monge–Ampère equation was solved in sufficient generality
by Caffarelli. Combining the nonlinear regularity theory and deep geometric consid-
erations he proved, in particular, that the solution V of the optimal transportation
problem

g(∇V ) detD2V = f

for probability measures f dx and g dy with compact supports X and Y is (2+α)-
Hölder continuous inside of X provided f, g are Hölder continuous, bounded away
from zero and Y is convex.

Many regularity results for the Gauss curvature flows (see [34], [3]) were obtained
by using the classical way of differentiating the evolution equation. Similar to the
the elliptic case, the parabolic maximum principle plays a crucial role in the study
of this problem.

A parabolic analog of regularity theory for uniformly operators has been devel-
oped in [40].

The regularity of the parabolic Monge–Ampère equation was studied by Krylov
[25], Ivochkina, Ladyzhenskaya [23], Gutiérrez, Huang [20], R.H. Wang and G.L. Wang
[38], [39] (see [26] for references). Some interesting results were proved by prob-
abilistic methods (optimal control and stochastic differential equations), see [26],
[32]. A parabolic analog of the Caffarelli theory for the elliptic Monge–Ampère was
developed by R.H. Wang and G.L. Wang in [38], [39]. They studied the parabolic
Monge–Ampère equation

(23) ut detD
2
zu = f(t, z)

on the domain Q = Ω × [0, T ] with given values u = ϕ(t, z) on the parabolic
boundary ∂pQ. It was shown in [38] that under the assumptions that

1) Ω is compact, strictly convex with C2-boundary
2) f is positive Lipschitz continuous on Q
3) ϕ ∈ C2,1(Q) with ϕt > 0, D2

zϕ > 0 on Q

there exists a solution u ∈ C
1+α/2,2+α
loc for some α > 0. A measure-theoretic

interpretation (the parabolic Monge–Ampère measure) was given in [39].
For further generalizations and refinements, see [28]. Sobolev estimates for (23)

are obtained in [20].
We analyze below the regularity result of Tso. The reasoning from [34] can be

easily generalized to our situation with the help of our results from Section 4. We
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will not repeat the lengthy reasoning from [34] and give just a brief sketch of the
proof.

Let C̃k,α(BR) be the parabolic Hölder norm (see [34]) on functions

f(r, θ) : [0, R]× Sd−1 7→ R.

It was established in [34] that for ρ0 = 1, ρ1 = ρ1(θ) ∈ C2+α(Sd−1) with some
α > 0 and every R > r0 > 0 there exists C such that

|Hr|C̃β/2,β(BR\Br0 )
+ |D2

θH |C̃β/2,β(BR\Br0 )
< C

for some β > 0.
Using the estimate 0 < cr0 < Hr < Cr0 for smooth H from Section 4 and

repeating the arguments from [34] it is not hard to verify Theorem 7.1 below,
which is a generalization of Theorem 4.2 from [34]. Clearly, a solution H obtained
in this theorem coincides with the potential H of the corresponding Gauss mass
transport by the uniqueness theorem from [9].

Theorem 7.1. Assume that ρ1 ∈ C2,α(BR), ρ0 ∈ C2,α(A), A is uniformly convex
and HA ∈ C2,α(Sd−1). Then a solution H to (6) with H |∂A = HA exists. In
addition,

H ∈ C̃4,ε(BR \Br0)
for every r0 and

(24) |Hr|C̃β/2,β(BR\Br0 )
+ |D2

θH |C̃β/2,β(BR\Br0 )
< C

holds for some positive β, ε, C depending on r0, R, the curvature of ∂A, the Hölder
and uniform bounds on ρ0, ρ1.

Sketch of the proof: One proves the existence of a solution to (6).

1) The classical short-time existence result implies that a smooth (C̃4,ε) solution
to (6) with a given initial value H(R, θ) = HA(θ) exists for t ∈ [R − ε,R] (see, for
instance [16], Theorems 2.5.7, 2.5.9). Let [R∗, R] be the maximal existence interval.
Assume that R∗ > 0. Applying the change of variables formula, let us estimate the
volume enclosed by the hypersurface determined by H(R∗, θ). One concludes that
there exists a sphere contained in all hypersurfaces determined by H(r, θ), r > R∗.
Taking the center of this sphere as the new origin one can assume without loss of
generality that H is strictly positive on [R∗, R].

2) The results of Section 4 give 1
C < |Hr| < C for some C > 0 and every r ∈

[R∗, R]. Following [34] one obtains that Λ > H +D2
θH > λ for some constants 0 <

λ < Λ, t ∈ [R∗, R]. This can be shown by differentiating twice the equation in θ and
applying the classical maximum principle to a suitable function (see also Pogorelov-
type arguments in [18], Theorem 17.19). Alternatively, one can use Caffarelli’s
result [13] on bounds for principal curvatures of a smooth convex set under the
assumption that the corresponding Gauss curvature is positive and bounded.

3) Differentiate (6) in r. The Krylov–Safonov estimates (see [25]) imply that the
parabolic Hölder norm of Hr on [R∗, R] is under control. The same holds for Hθ.

4) It remains to prove Hölder’s continuity of H +D2
θH . The arguments follow

[34]. Let us indicate the main difference. To estimate oscillation of Hθθ (or uzz) we
need an estimate for the additional term

∣

∣ log ρ0(T
−1)(x)− log ρ0(T

−1)(y)
∣

∣ ≤ sup
|∇ρ0|
ρ0

|T−1(x)− T−1(y)|.
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(See [34], Theorem 4.1, (4.3)-(4.4)). Then we estimate T−1(x) − T−1(y) by a
parabolic Hölder norm of Hθ (see item 3)). Thus we get

HC̃1+δ/2,2+δ ≤ C
[

(

Hθ

)

C̃ε/2,ε + 1
]

for some δ, ε > 0. Then the parabolic interpolation inequalities (see [27], Theorem
8.8.1.) complete the proof.

5) Since we have managed to keep control on the norms of derivatives of H on
[R∗, R], the solution exists for r < R∗ by the short-time existence theorem. Hence
R∗ = 0. The proof is complete.

This work was supported by the RFBR projects 07-01-00536 and 08-01-90431-
Ukr, RF President Grant MD-764.2008.1, and the SFB701 at the University of
Bielefeld.
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