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We propose an ansatz which solves the Dyson-Schwinger equation for the real scalar fields in a

Poincaré patch of de Sitter space in the infrared limit. The Dyson-Schwinger equation for this ansatz

reduces to the kinetic equation, if one considers scalar fields from the principal series. Solving the latter

equation we show that under the adiabatic switching on and then off of the coupling constant, the Bunch-

Davies vacuum relaxes in future infinity to the state with the flat Gibbons-Hawking density of out-Jost

harmonics on top of the corresponding de Sitter invariant out vacuum.

DOI: 10.1103/PhysRevD.86.044031 PACS numbers: 04.62.+v, 11.10.Gh, 98.80.Cq

I. INTRODUCTION

The goal of the present paper is to understand the impact
of large infrared (IR) loop corrections on the vacuum states
in field theory on a Poincaré patch (PP) of de Sitter (dS)
space. In Ref. [1] a one-loop correction to the scalar field
Wightman function was calculated in PP over the Bunch-
Davies (BD) state [2]. The calculation was done in the
nonstationary (in-in or Schwinger-Keldysh) diagrammatic
technique. There are large IR contributions in the one-loop
correction even for the very massive fields.

They reveal themselves through particle creation–via the
vacuum averages haþai and haai, where a and aþ are
annihilation and creation operators. For example, for the
real massive scalar field theory with the ��3 self-interaction
one obtains that haþp api / �2 logðp�Þ and hapa�pi /
�2 logðp�Þ as the conformal time approaches future infinity,
� ! 0. Here, p is the modulus of the spatial comoving
momentum.

Similar IR contributions do appear in other field theories
in PP independently of the spin of the fields and self-
interaction potentials, as long as they do not respect con-
formal invariance [3–7].

In Ref. [8] the observations of Ref. [1] were generalized
to the other dS invariant states (so-called � vacua [9,10])
and to the states containing finite densities of particles.
Furthermore, in Ref. [8] a kinetic equation was derived. Its
solution sums up the leading IR contributions in all loops.
One of the goals of the present paper is to show explicitly
the latter statement, i.e., to derive that kinetic equation
directly from the Dyson-Schwinger (DS) equation of the
non-stationary diagrammatic technique. In the situation
when, due to the large IR effects, the in-out S-matrix
approach is not appropriate, the description of the physics
via the quantum kinetic (DS) equation is more suitable,
because the latter equation describes the time-evolution of
the state occupation numbers.

The situation with the kinetic theory in dS space
demands some clarification. The tree-level Wightman

function for any � vacuum respects the whole dS iso-
metry group [9,10] even if one restricts field theory to
the PP, which covers only half of dS. But there are gen-
erators of the dS isometry group which deform PP. As a
result, this symmetry is naively broken in the vertices of the
loop integrals to a subgroup, respecting only PP.
One can prove,1 however, that for the BD state the

variation of the loop contributions, under those isometry
transformations which deform PP, do vanish. Hence, the
exact Wightman function over the BD state depends only
on the dS invariant distance between its two arguments.
But for the other � vacua the isometry is broken in loop
integrals down to the subgroup in question.
In curved space-times (or in flat space curvilinear coor-

dinates) various coordinate systems frequently cover only
their parts. Hence, to do the calculations in such coordinates
one has to specify suitable conditions at the boundaries of
the corresponding patches. Obviously large IR effects are
sensitive to the boundary conditions. Hence, if one does not
perform a careful study of the matching between the bound-
ary conditions, one obtains different physical results by
doing calculations in different coordinate systems.
In particular, it happens that loop contributions in the

‘‘global’’ dS space are not just large, but they are explicitly
IR divergent even for the massive fields [1,14]. In this
respect, dS space is similar to the QED in strong background
electric fields [15]. The presence of such divergences shows
that the moment when the interactions or background field
are switched on cannot be taken to past infinity [1]. This puts
an obstruction for the dS isometry invariance of the corre-
lation functions in global dS and favors the conclusion that
the cosmological constant should be secularly screened by
large IR effects, at least with those boundary conditions
which do not put dS space on ‘‘life support’’ [1].

1We would like to thank A. Polyakov for giving us the idea for
this proof. Some elements of the proof can be found in
Refs. [11–13]. See also the discussion in the Appendix .
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The fact that dS isometry is respected in the loops over
the BD state is a good sign that the cosmological constant
cannot be secularly screened in PP, if the initial conditions
are just mild excitations over the BD state. But the pres-
ence of the large IR effects means that the BD state itself
gets modified.

Indeed, the one-loop correction G1ðZÞ to the BD
Wightman propagator G0ðZÞ is G1ðZÞ / �2 logðZÞG0ðZÞ,
when the hyperbolic distance is taken to infinity, Z ! 1
[1]. This is just the Fourier transform of �2 logðp�Þ cor-
rections. Thus, the factor �2 logðZÞ can be big and the loop
corrections are not suppressed even if �2 is small.

The question is, what is the dressed state?We show below
that this question is related to the following one: What is the
fate of small density perturbations over the BD vacuum in
future infinity? To address these questions we derive and
solve the kinetic equation which describes the dynamics of
such density perturbations and, as we have mentioned, by its
product sums the leading IR contributions.

From the solution we see that if one sets the BD state as
the initial one at past infinity, where it is the ground state of
the time-dependent free Hamiltonian, this state gets modi-
fied even if one switches off the coupling constant at future
infinity. It will appear that the result of the summation of all
loops will contain modifications of the BD propagator,
which do not vanish as � ! 0 in future infinity, but which
cannot be seen in the free, � ¼ 0, theory. This makes dS
space quite different from Minkowski or anti–ds spaces
[16], where adiabatic variations of the self-interactions do
not change the true vacuum state.

To avoid confusion at this point, let us clarify our state-
ment. For the fixed comoving momentum p past infinity in
the expanding PP, � ! 1, corresponds to the UV limit of
the physical momentum, p�. At the same time future
infinity, � ! 0, corresponds to the IR limit of the physical
momentum. So if one starts at past infinity with the BD
state, the correlation functions have proper Hadamard UV
behavior. What we observe, however, is that for fixed p as
time goes by, � ! 0, the IR behavior of the correlation
functions is changed (without changing their UV proper-
ties) and is described by a different state–flat density of
out-Jost harmonics on top of the corresponding vacuum.

The phenomenon we observe is a more complicated
version of the following one. Consider a simple linear
oscillator. In the perfectly linear case the oscillator will
remain in an excited state forever, if it was originally in
such a state. However, if one will switch on an interaction
of the oscillator to an external field and then switch it off,
the oscillator will relax to the ground state. That will
happen independently of the type of the interaction or the
type of the external field. The crucial difference of the dS
system from the simple oscillator one is that in the case of
the dS system the oscillator frequency changes in time. As
a result, even if one had started at past infinity with the
ground state of future infinity, the system would deviate

form this state at the intermediate times and then relax back
into it in the future.
In Sec. II we propose the dS invariant Kadanoff-Baym

equation which may be suitable to sum the dS invariant IR
corrections exactly over the BD state. This section just
gives an idea of what kind of problem has to be solved if
one would like to respect dS isometry exactly. However,
we find it rather unphysical to address the question of the
stability of the system in the circumstances when all the
symmetries are respected exactly. We propose to consider
slight excitations above the highly symmetric state and to
trace where they evolve in future infinity. For that reason,
in Sec. III we derive the kinetic equation which does not
respect dS isometry, but, unlike the full DS equation, is
suitable for the separation of the IR renormalization form
the UVone. The same equation was derived in Ref. [8]. It
was shown there that its collision integral is annihilated by
the Gibbons-Hawking density of out-Jost states on top of
the out vacuum. The same state annihilates the collision
integral of the Kadanoff-Baym equation of Sec. II up to
subleading terms in the IR limit.
To make the paper self-contained we present the general

discussion of the scalar fields in PP in the Appendix . All
the notations, which are not defined in the main text, can be
found in the Appendix .

II. TOWARDS AN INVARIANT KADANOFF-BAYM
EQUATION FOR THE BD STATE

In this paper we are going to study the following field
theory:

L¼
ffiffiffiffiffiffi
jgj

q �
g��

2
@��@��þm2

2
�2þ�

3
�3þ . . .

�
: (1)

Dots here stand for the higher self-interaction terms, which
make the theory stable. The reason that we are going to
consider the below formulas which are only due to the
unstable cubic part of the potential is just to simplify them.
This instability does not affect our conclusions [8].
For the BD state the one-loop correction to the Wightman

functionG�þ was calculated in Ref. [1] (see also Ref. [17]).
The result for the sum of the tree-level and one-loop con-
tributions in the IR limit, Z ! 1, is as follows:

G0þ1�þ ðZÞ�
�
1��2ð1�e�2��Þ

4�

��������
2Z 1

0
dxxðD�3Þ=2�i�h2ðxÞ

��������
� logðZÞ

�
G0�þðZÞ: (2)

All notations in this formula and in the formulas that follow
are given in the Appendix .
For large enough D the theory in question becomes

nonrenormalizable. But in the IR limit we do not care
about UV divergences and renormalizability of the theory
in question. We assume that all couplings in all equations
below take their physical values; i.e., all UV divergent
(� �2 log�) or finite (�2) contributions are absorbed into
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their renormalization. For the propagators which have
proper Hadamar behavior, the UV divergences in dS space
are the same as in the flat one. Because of that we prefer to
consider the BD state (or mild density excitations above it)
as the initial state of our system. But below we are keeping
track of only the leading large IR contributions.

As seen from (2), loops are not suppressed in comparison
with the tree-level contribution for large enoughZ. One has to
understand what is the result of the summation of the leading
IR contributions at all loops. The answer to this question can
be obtained from the solution of the DS equation:

ĜðZXYÞ ¼ Ĝ0ðZXYÞ þ �2
Z
½dW�

�
Z
½dU�Ĝ0ðZXWÞ�̂ðZWUÞĜðZUYÞ; (3)

where ĜðZÞ is the matrix of the exact propagators, while

Ĝ0ðZÞ is the matrix of the tree-level ones. All propagators
in (3) are functions of the invariant distance, because we are
quantizing over the BD state.

Having in mind the physical and mathematical origin of
the large IR effects [8], we have simplified the complete
system of DS equations in (3). We have assumed that the
vertex � does not receive any new large IR contributions on
top of those which are caused by the contributions con-
tained in the two-point functions.

Equation (3) is not suitable for the summation of only
large IR contributions �2 logðZÞ, because it does not sepa-
rate the UV from the IR renormalization. One needs an
equation which sums up only the leading IR contributions
and does not even see the contributions which are either
suppressed by the higher powers of � or even UV divergent
(� �2 log�). The proper equation is the kinetic one of
Sec. III. However, it does not respect dS isometry, even
though one would like to sum the dS invariant contribu-
tions for the BD state.

One possible variant is as follows. We apply the Klein-
Gordon operator to both sides of (3) to get rid of its
dependence on the initial value of the propagator. This
operator, when acting on the function of Z, is equivalent
to hðgÞ þm2 ¼ ðZ2 � 1Þ@2Z þDZ@Z þm2, which con-
verts the DS equation into an integro-differential equation
of the Kadanoff-Baym form. Recalling that the tree-level
Wightman functions, G0þ� and G0�þ, solve the homoge-
neous equation, while the Feynman propagators, G0þþ and
G0��, solve the inhomogeneous one, we obtain the follow-
ing equation for the Wightman function G�þðZXYÞ:
½Z2

XY@
2
ZXY

þDZXY@ZXY
þm2�G½ZXY�

¼ �2
Z
½dW�G2½ZXW þ i��G½ZWY þ i�sgnð�w ��yÞ�

þ�2
Z
½dW�G2½ZXW þ i�sgnð�x ��wÞ�G½ZWY � i��;

(4)

in the limit ZXY ! 1. However, we do not see that this
equation sums up only the leading IR terms and nothing
else. One possible way to move further is to apply the
ansatz GðZÞ ¼ fðZÞG0ðZÞ for Z ! 1, where fðZÞ is slow
in comparison with G0ðZÞ. But instead we are going to find
the stationary IR solution of this equation by approaching
the problem from a different perspective.
As a side remark let us mention that it was argued

in Ref. [18] that the result of the summation of the IR
contributions should be the propagator built with the
use of the exact Hartle-Hawking state, the one which is
obtained via analytical continuation from the sphere
and constructed with the use of the exact Hamiltonian.
Obviously such a state depends on the coupling con-
stant �.
The exact state in dS should as well depend on �, but

besides that we encounter a new phenomenon, which
cannot be grasped through the analytical continuation
from the sphere. We are going to show that the IR sta-
tionary solution of (4), the one which annihilates its rhs up
to subleading terms, does not depend on the coupling
constant. That is, even if we start from the BD state
(ground state of the free Hamiltonian on the sphere) and
then adiabatically switch on interactions and eventually
switch them off the theory relaxes to another state inde-
pendently from the self-interactions.
In the next section we will propose the result of the IR

dressing of the BD propagator, which, however, will not
allow us to fix the function fðZÞ. Because wewill be able to
find the propagator at the stationary state, which is reached
as Z ! 1, but wewill not be able to find the route it uses to
approach stationarity in a dS invariant way, we will not be
able to find the expression for the propagator at finite
values of Z. We will find the form of its approach to the
stationarity only in the circumstances when the dS isome-
try is broken.
The hint for the expression of the stationary pro-

pagator comes from the following observations. First, the
dressed propagator should respect dS isometry. Second, it
should annihilate the rhs of (4) up to the suppressed terms.
These subleading terms can be absorbed into the finite
(� �2) and infinite (� �2 log�) UV renormalization.

III. SOLUTION OF THE DYSON-SCHWINGER
EQUATION IN THE IR LIMIT

Let us consider small density perturbation over any �
vacuum. Then the dS invariance of the propagators is
broken even at tree level, but we still have large IR
contributions. To sum them up one has to solve the DS
equation as well, but this time it does not respect dS
isometry.
Because of the relation G0þ� þG0�þ ¼ G0þþ þG0��, it

is convenient to perform the Keldysh rotation [19,20] to
the new basis: DK

0 ðX; YÞ ¼ � i
2 ½G0þ�ðX; YÞ þG0�þðX; YÞ�,

DR
0 ðX; YÞ ¼ 	ð�y � �xÞ½G0�þðX; YÞ �G0þ�ðX; YÞ�, and
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DA
0 ðX; YÞ ¼ 	ð�x � �yÞ½G0þ�ðX; YÞ �G0�þðX; YÞ�. Here

DR;A are retarded and advanced Green functions. They
carry information about the quasiparticle spectrum of the
theory. At the same time the Keldysh propagator DK

describes the state of the theory. Thus, our main concern
below should be the solution of the DS equation for the
Keldysh propagator DK.

Because of spatial homogeneity of PP and due to its
rapid expansion, which is supposed to fade away any initial
inhomogeneity, we find it convenient to perform the
Fourier transform of all quantities along the spatial direc-

tions: DK;R;A
p ð�1; �2Þ �

R
dD�1xei ~p ~xDK;R;Að�1; ~x;�2; 0Þ.

Then the Fourier transformed form of the DS equation
for DK is as follows2:

DK
p ð�1; �2Þ ¼ DK

0pð�1; �2Þ þ �2
Z dD�1 ~q

ð2�ÞD�1

ZZ 0

1
d�3d�4

ð�3�4ÞD
�
DR

0pð�1; �3ÞDK
q ð�3; �4ÞDK

p�qð�3; �4ÞDA
pð�4; �2Þ

þ 2DR
0pð�1; �3ÞDR

q ð�3; �4ÞDK
p�qð�3; �4ÞDK

p ð�4; �2Þ þ 2DK
0pð�1; �3ÞDK

q ð�3; �4ÞDA
p�qð�3; �4ÞDA

pð�4; �2Þ

� 1

4
DR

0pð�1; �3ÞDR
q ð�3; �4ÞDR

p�qð�3; �4ÞDA
pð�4; �2Þ � 1

4
DR

0pð�1; �3ÞDA
q ð�3; �4ÞDA

p�qð�3; �4ÞDA
pð�4; �2Þ

�
:

(5)

Note that we are looking for the kinetic equation whose
collision integral is defined at the �2 order. In such an
approximation DK

0p can be substituted by DK
p under the

integral on the rhs of (5).
We propose the following ansatz to solve (5):

DK
p ð�1; �2Þ ¼ ð�1�2ÞðD�1Þ=2dKðp�1; p�2Þ;

dKðp�1; p�2Þ ¼ 1

2
hðp�1Þh�ðp�2Þ½1þ 2nðp�12Þ�

þ hðp�1Þhðp�2Þ
ðp�12Þ þ c:c:; (6)

where �12 ¼ ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
. Additionally, we use the tree-level re-

tarded and advanced propagatorsDR
pð�1;�2Þ¼	ð�1��2Þ�

ð�1�2ÞðD�1Þ=2d�ðp�1;p�2Þ, DA
pð�1; �2Þ ¼ �	ð�1 � �2Þ

ð�1�2ÞðD�1Þ=2d�ðp�1; p�2Þ, where d�ðp�1; p�2Þ ¼ 2 Im
½hðp�1Þh�ðp�2Þ�. In (6) nðp�Þ and 
ðp�Þ are unknown
functions to be defined by the equations under derivation.

This ansatz is inspired by the following observations.
The retarded and advanced Green functions can be found
as classical objects if the spectrum of quasiparticles is
known. The ansatz for the Keldysh propagator follows
from the interpretation of nðp�Þ as the particle density,
haþp api, and of 
ðp�Þ as the anomalous quantum average,

hapa�pi [8]. We assume that in future infinity n and 
 are

independent of the spatial coordinates. Furthermore, due to

the symmetry of the PP under simultaneous rescalings of
its coordinates, � ! l� and ~x ! l ~x, we expect that in
future infinity n and 
 should be functions of the physical
momentum p� only: npð�Þ ¼ nðp�Þ and 
pð�Þ ¼ 
ðp�Þ.
It is known in condensed matter physics that nonvanish-

ing 
 signals that one has chosen wrong harmonics to
describe the quasiparticle spectrum. In addition, for con-
stant 
 one can always set it to zero by performing
Bogolyubov transformation which leads to the same ansatz
(6), but with harmonics corresponding to a different �
vacuum and a different value of n. Because of these
observations we do not specify harmonics until the end
where we check the IR behavior of 
ðp�Þ for the various
choices of them.
For general values of �1 and �2 the ansatz (6) does not

solve the DS equation in question. However, in the limit
p�1;2 ! 0 and �1=�2 ¼ const, one can neglect the differ-

ence between �1 and �2 in the expressions which follow.
That can be done if one keeps track only of the leading
large IR contributions.
As a result one can substitute the average conformal

time �12 ¼ ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
, instead of both �1 and �2 for the

limits of integrations over �3 and �4. Then the ansatz in
question reproduces itself under substitution into the DS
equation if n and 
 obey the following:

nðp�12Þ�nð0Þp ��2
Z dD�1q

ð2�ÞD�1

ZZ �12

1
d�3d�4ð�3�4ÞðD�3Þ=2

�
��
dKðq�3;q�4ÞdKðjp�qj�3;jp�qj�4Þþ1

4
d�ðq�3;q�4Þd�ðjp�qj�3;jp�qj�4Þ

�d�ðq�3;q�4ÞdKðjp�qj�3;jp�qj�4Þ½1þ2nðp�13Þ�
�
h�ðp�3Þhðp�4Þ

þ4	ð�4��3ÞdKðjp�qj�3;jp�qj�4ÞRe½d�ðq�3;q�4Þhðp�3Þhðp�4Þ
ðp�42Þ�
�

(7)

2Feynman rules can be found in Ref. [21].
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and


ðp�12Þ � 
ð0Þ
p � �2

Z dD�1q

ð2�ÞD�1

ZZ �12

1
d�3d�4ð�3�4ÞðD�3Þ=2

�
��
dKðq�3; q�4ÞdKðjp� qj�3; jp� qj�4Þ þ 1

4
d�ðq�3; q�4Þd�ðjp� qj�3; jp� qj�4Þ

þ d�ðq�3; q�4ÞdKðjp� qj�3; jp� qj�4Þ½1þ 2nðp�13Þ�
�
h�ðp�3Þh�ðp�4Þ

þ 4	ð�4 � �3ÞdKðjp� qj�3; jp� qj�4Þd�ðq�3; q�4Þh�ðp�3Þhðp�4Þ
ðp�42Þ
�
; (8)

where nð0Þp and 
ð0Þ
p define the initial propagator

DK
0pð�1; �2Þ. Their presence is the drawback of the integral

form of the equations under consideration, because then
the equation itself depends on the initial conditions. The
integro-differential form of these equations is just the
system of kinetic equations for n and 
 together, which
was derived using different methods in Ref. [8].

In the derivation of (7) and (8) we have used the
following relations d�ðp�1; p�2Þ ¼ �d�ðp�2; p�1Þ ¼
�½d�ðp�1; p�2Þ�� and

R
dD�1 ~qfðq;jp�qjÞ¼R

dD�1 ~qf
ðjp�qj;qÞ. Additionally, we assumed that nðp�Þ
and 
ðp�Þ are slow functions in comparison with
hðp�Þ. Then one can safely change their positions under
the d�3 and d�4 integrals, which we frequently do in the
equations below. This is due to the usual separation of

scales, which lies in the basis of kinetic theory [20]. In
our case this approximation is correct only for the fields
from the principal series, m> ðD� 1Þ=2, for which the
harmonics hðp�Þ oscillate at future infinity.
However, the ansatz (6) solves (5) as well for the scalars

from the complementary series, m � ðD� 1Þ=2. For them
the harmonics do not oscillate at future infinity. The main
problem with the situation when hðp�Þ is as slow as nðp�Þ
and 
ðp�Þ is that then one cannot derive the kinetic
equation of the usual form. More complicated integro-
differential equations are available whose solution and
physical interpretation are not yet known to us.
To simplify (7) and (8) we change the variables as

q�1;2;3;4 ¼ x1;2;3;4 and use some approximations [8] to

arrive at

nðp�12Þ � nð0Þp þ �2SD�2

ð2�ÞD�1

Z 1=�12

p

dq

q

ZZ 0

1
dx3dx4ðx3x4ÞðD�3Þ=2 �

��
½dKðx3; x4Þ�2 þ 1

4
½d�ðx3; x4Þ�2

� d�ðx3; x4ÞdKðx3; x4Þ
�
1þ 2n

�
p

q
x13

���
� h�

�
p

q
x3

�
h

�
p

q
x4

�

þ 4	ðx4 � x3ÞdKðx3; x4ÞRe
�
d�ðx3; x4Þh

�
p

q
x3

�
h

�
p

q
x4

�



�
p

q
x42

���
and


ðp�12Þ � 
ð0Þ
p � �2SD�2

ð2�ÞD�1

Z 1=�12

p

dq

q

ZZ 0

1
dx3dx4ðx3x4ÞðD�3Þ=2

��
½dKðx3; x4Þ�2 þ 1

4
½d�ðx3; x4Þ�2

þ d�ðx3; x4ÞdKðx3; x4Þ
�
1þ 2n

�
p

q
x13

���
� h�

�
p

q
x3

�
h�
�
p

q
x4

�

þ 4	ðx4 � x3ÞdKðx3; x4Þd�ðx3; x4Þh�
�
p

q
x3

�
h

�
p

q
x4

�



�
p

q
x42

��
: (9)

Here SD�2 is the volume of the (D� 2)-dimensional

sphere of unit radius and xij ¼ ffiffiffiffiffiffiffiffiffi
xixj

p
. In (9) we have

neglected p in comparison with q inside the integrals to

keep only the leading IR terms. See Ref. [8] for more

detailed discussion.

Now for the BD state hðxÞ / H ð1Þ
i�ðxÞ. Then the x3;4

integrals are saturated around x��, because of the rapid
oscillations of the Hankel function at large values of their
arguments. Hence, hðpx3;4=qÞ can be expanded around

zero, because p=q 	 1 in (9). Then, because H ð1Þ
i�ðxÞ

behaves as Cþxi� þ C�x�i�, when x ! 0, there are inter-
ference terms under the dq=q integral which do not depend
on q. As the result, both nðp�Þ and 
ðp�Þ behave as
�2 logðp�Þ in future infinity. Moreover, 
ðp�Þ is generated
even if it was set to zero at the initial stage [8]. Its presence
in future infinity signals that the backreaction on the BD
state (do not confuse it with the backreaction on the dS
geometry) is huge.
One should be a bit more careful with the similar ma-

nipulations for the other � vacua, because their harmonics
behave as linear combinations of eip� and e�ip� at large
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momenta. But careful study reveals the same picture for
most of them [8]. The explanation comes from the fact that
their harmonics hðxÞ also behave as linear combinations of
xi� and x�i� in future infinity.

Only for the out-Jost harmonics, hðxÞ / Ji�ðxÞ, which
behave as single waves xi�, the situation is different. In
particular, if one puts 
ðp�Þ to be zero it is not generated
back in (9). Or more precisely, contribution to it behaves
as �2, i.e., is negligible in comparison with �2 logðp�Þ.
That is because the integrand of dq=q, defining 
 in (9),
contains only q-dependent terms and, hence, the corre-
sponding integral is convergent as p� ! 0. At the same
time, for the harmonics in question nðp�Þ has contribu-
tions of the order of �2 logðp�Þ. (The physics for the
general � vacua was discussed in greater detail, e.g., in
Ref. [22]).

All in all, out-Jost harmonics represent the proper qua-
siparticle states in future infinity. Which means that for
out-Jost harmonics the ansatz (6) with 
ðp�Þ ¼ 0 does
reproduce itself after substitution into the DS equation.
This is possible if one neglects terms which are suppressed
in comparison with powers of �2 logðp�Þ. This is the
argument which favors the interpretation that, indepen-
dently of the initial state at past infinity of PP, the field
theory state flows in future infinity to the out vacuum with
some density of particles on top of it [8]. To support such a
conclusion we are going to show in a moment that for the
out-Jost harmonics 
ðp�Þ indeed flows to zero in future
infinity, even if it was not zero originally.
The kinetic equation is obtained from (9) when 
ðp�Þ is

set to zero, via application of the differential operator to
both sides:

dnðxÞ
d logðxÞ ¼ � �2SD�2

2ð2�ÞD�1�

Z 0

1
dx3x

ðD�3Þ=2
3

Z 0

1
dx4x

ðD�3Þ=2
4 � fRe½x�i�

3 Vðx3Þxi�4 V�ðx4Þ�½ð1þ nðxÞÞnðx3Þ2

� nðxÞð1þ nðx3ÞÞ2� þ 2Re½xi�3 Wðx3Þx�i�
4 Wðx4Þ�½nðx3Þð1þ nðx3ÞÞð1þ nðxÞÞ

� ð1þ nðx3ÞÞnðx3ÞnðxÞ� þ Re½xi�3 Vðx3Þx�i�
4 V�ðx4Þ�½ð1þ nðx3ÞÞ2ð1þ nðxÞÞ � nðx3Þ2nðxÞ�g: (10)

Here x ¼ p�12, VðxÞ ¼ ½h2ðxÞ � �e���

4 sinhð��Þjxj � . . .�,
and WðxÞ¼ ½jhðxÞj2� �e���

4sinhð��Þjxj� . . .�, where hðxÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

sinhð��Þ
q

Ji�ðxÞ with J being the Bessel function. Dots in

these expressions stand for a finite number of terms with
higher powers of 1=jxj. The presence of such contributions
makes the collision integral well defined after the Taylor
expansion of hðpx=qÞ and can be explained by the behavior
of the out-Jost harmonics in the limit x ! 1. All of this is
clarified in Ref. [8].

This is exactly the kinetic equation which was derived in
Ref. [8]. If one has started with a small density perturbation
over the BD vacuum, one can expect that nðp�Þ is small in
future infinity. As is explained in Ref. [8], in this case (10)
degenerates into a renormalization group type differential
equation. The latter one can be solved with the result:

nðp�Þ ¼ �2

�1

½Cðp�Þ� þ 1�;

�1 ¼ �2SD�2

ð2�ÞD�1�

��������
Z 1

0
dyyðD�3Þ=2�i�VðyÞ

��������
2

;

�2 ¼ �2SD�2

ð2�ÞD�1�

��������
Z 1

0
dyyðD�3Þ=2þi�VðyÞ

��������
2

;

(11)

where C is the integration constant, which depends on the
initial conditions.

This solution has stable point �2

�1
�e�2��	1 for�
1,

which approximately annihilates the collision integral in
(10). The stable point is reached when the production of
particles is equilibrated by their decay [8]. In fact, from the

collision integral (10) it should be clear that �1 defines the
decay rate of the scalar particle into two, while �2 defines
the particle production rate. Note that logðp�Þ is decreas-
ing as we approach future infinity and nðp�Þ is the density
per volume which does not dependent on scale 1=� [8].
The most interesting fact, from the perspective of the

discussion above, is that the stable point in question does
not depend on �. [Of course, the way the solution (11)
approaches the stationarity (its value for nonzero p�) does
depend on �]. Furthermore, it is not hard to see now that by
product we have shown that the stationary state of the
kinetic equation (10) also annihilates, modulo subleading
terms, the rhs (collision integral) of (4).
The last thing which we have to check is the behavior at

future infinity of 
ðpÞ for the out-Jost harmonics, if it was
initially nonzero. We also assume that we have started from
its small value in past infinity and that it flows to zero in the
future. Under these assumptions, if one keeps only the
leading terms, the integro-differential form of the equation
for 
ðp�Þ from (9) degenerates to

d
ðp�Þ
dlogðp�Þ¼�3
ðp�Þ; �3¼4i�2SD�2

ð2�ÞD�1

�
ZZ 0

1
dx3dx4x

ðD�3Þ=2�i�
3 x

ðD�3Þ=2þi�
4 	ðx4�x3Þ

�Im½Vðx3ÞV�ðx4Þ�: (12)

Here, Re�3 ¼ �1 � �2 � ð1� e�2��Þ�1 > 0, and,
hence, the solution of this equation, 
ðp�Þ / ðp�Þ�3 ,
flows to zero in future infinity. That is, our assumption is
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self-consistent and (11) is stable under linearized pertur-
bations of 
ðp�Þ.

IV. CONCLUSIONS

We have found the result of IR dressing of the BD
vacuum in PP of dS. The dressed state is described by out-
Jost harmonics and corresponds to 
ðp�Þ ¼ 0 with
nðp�Þ � e�2��. Furthermore, the corresponding two-point
correlation function depends, in future infinity, only on the
time difference, �1=�2 ¼ et2�t1 , rather than on both of
the times (�1 and �2) independently, which means that
the dressed state also solves the kinetic problem in dS space.

Using the same methods as those which lead to (10),
one can derive the kinetic equation in the contracting PP,
ds2 ¼ dt2 � e�2td ~x2 ¼ 1

�2 ðd�2 � d~x2Þ, where 0 ! � ¼
et ! þ1. The solution of the latter equation for low
momenta p is [8]

nð�Þ � 1

A� �� log�
� 1

�� log�0

�

; (13)

and is independent of p. It is valid for �< �0 ¼
econst=�

2 
 1. Here A is an integration constant, which

depends on the initial state and �� / �2

m2 > 0 for m 

ðD� 1Þ=2.

One can see that the distribution in question grows with
time, due to the contraction of the space and constant
particle production, and moreover has a pole at some finite
�0. In this case the backreaction on the gravitational back-
ground should be strong. This observation means that in
global dS space the situation can be quite different form the
one in the expanding PP, at least because global dS con-
tains expanding and contracting PP simultaneously. Then
we have two competing processes–expansion of the space-
time and explosive particle production [8].

ACKNOWLEDGMENTS

We would like to acknowledge discussions with A.
Polyakov and I. Burmistrov. We would like to thank MPI,
AEI, Golm, Germany for hospitality during the final stage
of the work on this project. The work of E. T. A. was
partially supported by the grant ‘‘Leading Scientific
Schools’’ No. NSh-6260.2010.2 and No. RFBR-11-02-
01227-a. The work of Ph. B. was partially supported
by Grant No. RFBR-11-02-01120. This work was done
under the support of the grant from the Ministry of
Education and Science of the Russian Federation,
Contract No. 14.740.11.0081.

APPENDIX

The D-dimensional dS space is the hyperboloid, X2
� �

�X2
0 þ X2

i ¼ 1, (� ¼ 0; 1; . . . ; D and i ¼ 1; . . . ; D)

in the (Dþ 1)-dimensional Minkowski space ds2 ¼
dX2

0 � dX2
i . Throughout this paper we fix the curvature

of the hyperboloid to be 1. The expanding PP of this space
is defined by the coordinates

X0 ¼ sinhtþ ~x2

2
et; XD ¼ � coshtþ ~x2

2
et;

Xa ¼ etxa; a ¼ 1; . . . ; D� 1
(14)

and covers only half of dS space, X0 � XD ¼ et � 0. The
induced metric in these coordinates is ds2 ¼ dt2 �
e2td ~x2 ¼ 1

�2 ðd�2 � d~x2Þ, where �¼e�t¼1=ðX0�XDÞ.
The past infinity of the PP corresponds to t ! �1, i.e.,
to � ¼ þ1. This is the boundary of the PP inside global
dS space, X0 ¼ XD. The future infinity is at t ¼ þ1, i.e.,
at � ¼ 0. The dS isometry is just the rotation symmetry
group of the ambient Minkowski space, SOðD; 1Þ.
To quantize scalar fields in PP one has to specify the

time-dependent part of the harmonics gpð�Þ ¼
ffiffiffi
�

p
�ðD�1Þ=2
2

hðp�Þ inside the harmonic expansion �ð�; ~xÞ ¼R
dD�1p½apgpð�Þe�i ~p ~x þ aþp g�pð�Þei ~p ~x�. From the Klein-

Gordon equation in PP it follows that hðp�Þ has to solve

the Bessel equation with the index � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � ðD�1

2 Þ2
q

,

where m is the mass of the particle.
In time-dependent backgrounds there is no basis of

harmonics which can diagonalize the free Hamiltonian
once and forever. The choice of the harmonics in the
calculations corresponds to the choice of the background
state apjvaci ¼ 0, usually referred to as vacuum. BD

vacuum [2] corresponds to hðp�Þ ¼ e�ð��Þ=2H ð1Þ
i� ðp�Þ,

where H ð1Þ is the Hankel function of the first kind.
These harmonics behave as eip� at past infinity and diago-
nalize the free Hamiltonian only in that part of space-time.
The other so-called � vacua can be obtained form the

BD one via the corresponding Bogolyubov transformations
and correspond to the harmonics which are linear combi-

nations of the Hankel functions of both kinds H ð1Þ and
H ð2Þ. See, e.g., Ref. [10] for a similar discussion in the
global dS coordinates.
Because of the time dependence of the Hamiltonian one

has to apply the Schwinger-Keldysh diagrammatic tech-
nique instead of the Feynman one. In this technique every
particle is characterized by the matrix of four propagators
(see, e.g., Refs. [19,20]):

G0�þðX;YÞ¼ ih�ðXÞ�ðYÞi; G0þ�ðX;YÞ¼ ih�ðYÞ�ðXÞi;
G0þþðX;YÞ¼ hT�ðXÞ�ðYÞi¼	ð�y��xÞG0�þðX;YÞ

þ	ð�x��yÞG0þ�ðX;YÞ;
G0��ðX;YÞ¼ h �T�ðXÞ�ðYÞi¼	ð�y��xÞG0þ�ðX;YÞ

þ	ð�x��yÞG0�þðX;YÞ; (15)

which obey one relation G0þ� þG0�þ ¼ G0þþ þG0��.
Here ð �TÞT is the (anti)time ordering. Note that the
conformal time in our definition flows in the reverse
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direction (1 ! � ! 0) with respect to the ordinary
time t.

All these propagators can be written with the use of the
Wightman function G0ðX; YÞ � ih�ðXÞ�ðYÞi. The latter
solves the Klein-Gordon equation in the metric of PP.
This equation is invariant under the full dS isometry
although coordinates (14) are restricted only to half of
dS space. Hence, the solution of the Klein-Gordon equa-
tion should depend on the invariant distance between its
two arguments–the two points on the hyperboloid, X2

�¼1

and Y2
� ¼ 1. The convenient function of the latter

one on the hyperboloid is the so-called hyperbolic
distance Z ¼ �X�Y

�. As follows from (14) it is equal

to Z ¼ 1þ ð�x��yÞ2�j ~x� ~yj2
2�x�y

in PP.

The Klein-Gordon operator, when acting on the function
of Z rather than on the function of the two points X and Y
separately, is equivalent to hðgÞ þm2 ¼ ðZ2 � 1Þ@2Zþ
DZ@Z þm2 [9,10]. After the change of variables to x ¼
ð1þ ZÞ=2 the Klein-Gordon equation acquires the form of
the hypergeometric one. Its solution (away from the singu-
larity) is the following linear combination of the 2F1 hyper-
geometric functions:

G0ðZÞ ¼ A1F

�
D� 1

2
þ i�;

D� 1

2
� i�;

D

2
;
1þ Z

2

�

þ A2F

�
D� 1

2
þ i�;

D� 1

2
� i�;

D

2
;
1� Z

2

�
;

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 �

�
D� 1

2

�
2

s
: (16)

Here A1;2 are some constants which depend on the choice

of the �-vacuum state with respect to which the averaging
is done (see, e.g., Ref. [10]). For the BD vacuum, A2 ¼ 0.
To take care of the behavior of this function at its poles and
to obtain it as the quantum average h�ðXÞ�ðYÞi one has to
be more careful.

In fact, the Green function (16) has three singular points
in the complex Z plane: Z ¼ �1, 1,1. They correspond to
the usual singular points x � ð1þ ZÞ=2 ¼ 0, 1, 1 of the

hypergeometric equation. The singular behavior G0ðZÞ /
1=ðZ� 1ÞD=2�1 corresponds to the situation when X and Y
sit on the same light–cone–the standard UV singularity of
the propagator. Similar singularity of G0ðZÞ at Z ¼ �1
corresponds to the situation when X sits on the light cone
with the apex at the antipodal point of Y. The antipodal
point is obtained via the reflection at the origin of the
ambient Minkwoski space [10]. Finally, at infinity G0ðZÞ
has the branching point limZ!1G0ðZÞ / Z�ðD�1Þ=2
½C1Z

i� þ C2Z
�i�� with some constants C1;2.

To understand the behavior of G0ðZÞ at its poles it is
instructive to consider the Fourier transform of G0ðZÞ
along the homogeneous spatial directions:

h�ð�x; ~pÞ�ð�y;� ~pÞi �
Z

dD�1xei ~pð ~x� ~yÞG0ðZÞ

¼ ð�x�yÞðD�3Þ=2

2
hðp�xÞh�ðp�yÞ:

(17)

The appearance of different solutions of the Bessel equa-
tion in place of hðp�Þ here is in one-to-one correspondence
with the concrete values of A1;2 in (16) [10].

Let us consider the BD propagator. Its only singularity
inside the complex Z plane is at Z ¼ 1 and corresponds to
the limit p ! 1 in momentum space. In this limit the
Hankel functions behave as the plane waves. As it should
be, high momentum modes are not sensitive to the curva-
ture of the space-time; i.e., they coincide with the flat space
harmonics. For the inverse of the transformation (17) to be
well defined there should be an appropriate shift as �x �
�y ! �x � �y � i� in (17). The sign of this shift depends

on which one among �x and �y is greater. As the result for

the BD state [11],

G0þþ½Z� ¼ G0½Z� i��;
G0þ�½Z� ¼ G0½Z� i�sgnð�x � �yÞ�;
G0��½Z� ¼ G0½Zþ i��;
G0�þ½Z� ¼ G0½Zþ i�sgnð�x � �yÞ�:

(18)

Here G0ðZÞ is analytic on the complex Z plane with the
single cut going from Z ¼ 1 to infinity along the real axis.
The situation for the other � vacua is different because

in those situations harmonics are linear combinations of

the Hankel functions of the two kindsH ð1Þ andH ð2Þ. The
latter behave at large momenta as e�ip� instead of eip�. As
a result, for the other � vacua G0ðZÞ is defined on the
complex Z plane with two cuts connecting Z¼1 and
Z¼�1, correspondingly, to infinity and going, due to
the i� shifts, in the opposite halfs of the complex Z plane.
Let us say a few words about the one-loop contribution

to the propagators due to the ��3 self-interaction. In the
Schwinger-Keldysh diagrams there are two types of the
vertices: the ‘‘þ’’ and the ‘‘�’’ type, correspondingly. In
the ‘‘þ’’ (‘‘�’’) type vertex, only ‘‘þ’’ (‘‘�’’) ends of the
propagators can terminate. Correspondingly, the one-loop
correction can be written as

Ĝ 1ðZXYÞ ¼ �2
Z
½dW�

Z
½dU�Ĝ0ðZXWÞ�̂0ðZWUÞĜ0ðZUYÞ;

(19)

where

Ĝ0;1ðZÞ ¼
�
G0;1��ðZÞ G0;1

�þðZÞ
G0;1

þ�ðZÞ G0;1
þþðZÞ

�
; and

�̂
0ðZÞ ¼

� ½G0��ðZÞ�2 ½G0�þðZÞ�2
½G0þ�ðZÞ�2 ½G0þþðZÞ�2

�
;

(20)
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and the measure is ½dW� ¼ dðDþ1ÞW�ðW2
� � 1Þ	

ðW0 �WDÞ, which is equivalent to the measure d�
�D dD�1x

on PP. This formula for Ĝ1 is valid for any � vacuum. Note
that in (19) dS isometry is naively broken by the presence
of the Heaviside 	 function in the integration measure,
which restricts to the PP.

But let us examine how Ĝ1 does change under those
transformations of SOðD; 1Þwhich change the argument of
the 	 function. (Here we reproduce the arguments of

Polyakov [13]). Let us perform an infinitesimal rota-
tion around X0 towards, say, X1: XD ! XD � ’X1.
Taylor expanding the integration measure up to the

first order in ’, we get �
R½dW� . . . ¼ R

dðDþ1ÞW�

ðW2
� � 1Þ�ðW0 �WDÞ’W1 . . . ¼

R
dðW0 þWDÞdðD�1ÞW

�ðW2
� � 1Þ’W1 . . . .

Hence, the contribution of one diagram form (19) to the
variation of, say, G1þ� over the BD vacuum state is as
follows:

�fisrtG
1þ�ðX;YÞ¼�2’

Z
dðDþ1ÞW�ðW2

��1Þ�ðW0�WDÞW1

Z
½dU�

�G½ZXW� i��G2½ZWU� i��G
�
ZUY� i�sgn

�
1

U0�UD

� 1

Y0�YD

��

þ�2’
Z
½dW�

Z
dðDþ1ÞU�ðU2

��1Þ�ðU0�UDÞU1

�G½ZXW� i��G2½ZWU� i��G
�
ZUY� i�sgn

�
1

U0�UD

� 1

Y0�YD

��

¼�2’
Z
dðW0þWDÞdðD�1ÞW�ðW2

��1ÞW1

Z
½dU�

�G½ZXW� i��G2½ZWU� i��G
�
ZUY� i�sgn

�
1

U0�UD

� 1

Y0�YD

��

þ�2’
Z
½dW�

Z
dðU0þUDÞdðD�1ÞU�ðU2

��1ÞU1�G½ZXW� i��G2½ZWU� i��G½ZUY� i��: (21)

We are going to show now that both integrals in the
last expressions do vanish because the integrands of
dðW0 þWDÞ and dðU0 þUDÞ are analytical functions in
the lower complex ðW0 þWDÞ– and ðU0 þUDÞ planes,
correspondingly.

Let us examine first the situation with the dðW0 þWDÞ
integral. As we have pointed out above, its integrand is
analytical in the lower half Z plane, because the cut goes
just above the real axis due to the shift by i� in the
arguments of the propagators. At the same time ZXW ¼
�1

2ðX0�XDÞðW0þWDÞ� 1
2ðX0þXDÞðW0�WDÞþXaWa.

But W0 �WD ¼ 0, because of the presence of the
�ðW0 �WDÞ in the integration measure for �G1 and
X0 � XD � 0, because we are in PP. Hence, GðZÞ as the
function ofW0 þWD has the same analytical properties as
the function of ZXW . Furthermore, because propagators
have a powerlike decay as ðW0 þWDÞ ! 1, one can close
the integration contour by the infinite semicircle in the

lower half of the complex ðW0 þWDÞ plane. The integrand
is analytical inside the contour. Hence, the integral is zero.
Similar arguments work for the dðU0 þUDÞ integral.
Along the same lines one can show that all the contri-

butions to �G1þ� do vanish. That is true as well for the
infinitesimal rotations in the other directions. Hence, in the
case of the BD state G1þ�ðX; YÞ is invariant under the full
dS isometry and is the function of ZXY only. Similarly one
can prove the invariance of the one-loop contributions to
the other propagators in BD vacuum. Furthermore, one can
easily extend these arguments to higher loops.
But all this does not work for the other � vacua, because

in that case, as we have mentioned, tree-level propagators
have another cut going from Z ¼ �1 to infinity and it
should be shifted to the other half of the complex Z plane.
Hence, loop corrections to the propagators in � vacua
respect only that subgroup of all dS isometry, which leaves
the PP in question invariant.
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