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ABSTRACT. Cactus group is the fundamental group of the real locus of the Deligne-Mumford
moduli space of stable rational curves. This group appears naturally as an analog of the braid
group in coboundary monoidal categories. We define an action of the cactus group on the
set of Bethe vectors of the Gaudin magnet chain corresponding to arbitrary semisimple Lie
algebra g. Cactus group appears in our construction as a subgroup in the Galois group
of Bethe Ansatz equations. Following the idea of Pavel Etingof, we conjecture that this
action is isomorphic to the action of the cactus group on the tensor product of crystals
coming from the general coboundary category formalism. We prove this conjecture in the
case g = slp (in fact, for this case the conjecture almost immediately follows from the results
of Varchenko on asymptotic solutions of the KZ equation and crystal bases). We also present
some conjectures generalizing this result to Bethe vectors of shift of argument subalgebras and
relating the cactus group with the Berenstein-Kirillov group of piecewise-linear symmetries
of the Gelfand-Tsetlin polytope.

1. INTRODUCTION

1.1. Gaudin algebras. The Gaudin model was introduced in [11] as a spin model related to
the Lie algebra sly, and generalized to the case of arbitrary semisimple Lie algebras in [12],
13.2.2. The generalized Gaudin model has the following algebraic interpretation.

Let {z,}, a = 1,...,dimg, be an orthonormal basis of g with respect to the standard
invariant inner product. For any € U(g), consider the element @) =1® - -lerRle- -l c
U(g)®™ (x stands on the ith place). Let V) be an irreducible representation of a semisimple
(reductive) Lie algebra g with the highest weight A. For any collection of integral dominant
weights (A) = Aq,..., A, let V) =V, @ ---®@ V). We fix a collection z := (21, 22,..., %)
of pairwise distinct complex numbers. The Hamiltonians of Gaudin model are the following
commuting operators acting in the space Vj:

dim g ((l)l'a
M Hi=3 3 T
j#i a=1 7" J
We can treat the H; as elements of the universal enveloping algebra U(g)®™. In [9], the
existence of a large commutative subalgebra A(z) = A(z1, ..., 2,) C U(g)®" containing H; was

proved. This subalgebra commutes with the diagonal action of g on U(g)®" and in fact it is a
maximal commutative subalgebra in [U(g)®"]9.

For g = sly, the subalgebra A(z) C U(g)®" is generated by the elements H; and the center of
U(g)®™. In other cases, the algebra A(z) has also some new generators known as higher Gaudin
Hamiltonians. This algebra is known to be a polynomial algebra with 2 1 dimg + ”*1 rk g
generators. We will call A(z) the Gaudin algebra.

1.2. Bethe Ansatz conjecture. The main problem in Gaudin model is the problem of simul-
taneous diagonalization of (higher) Gaudin Hamiltonians. It follows from the [9] construction
1
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that all elements of A(z) C U(g)®" are invariant with respect to the diagonal action of g,
and therefore it is sufficient to diagonalize the algebra A(z) in the subspace Vf\mg C V, of
singular vectors with respect to the diagonal action of g. In many important cases, the Gaudin
eigenproblem is solved by the algebraic Bethe Ansatz method which provides an explicit (but
complicated) construction of joint eigenvectors for A(z) in Vimg , see [9] for more details. The
famous Bethe Ansatz conjecture states that this method always works, i.e. gives an eigenba-
sis for A(z) in Vf\mg . In particular, the conjecture says that, for generic z, the algebra A(z)

has simple spectrum in Vimg . The latter was proved in [21] for g = sly. More precisely, it

is proved that the space V‘;mg is always cyclic as A(z)-module, and hence A(z) has simple
spectrum whenever acts by semisimple operators. On the other hand, for real values of the
parameters z;, the algebra A(z) is generated by Hermitian (hence semisimple) operators, hence
has simple spectrum.

Generally, Bethe eigenvectors (and the corresponding eigenvalues) are not rational functions
of the z;’s, and hence there is a nontrivial Galois group action on Bethe eigenvectors. Our first
motivation for the present work is to understand this Galois group action.

1.3. Closure of the family A(z). The family A(z), as defined, is parameterized by a non-
compact complex algebraic variety of configurations of pairwise distinct points on the complex
line. On the other hand, every subalgebra is (in appropriate sense) a point of some Grassmann
variety which is compact. Hence there is a family of commutative subalgebras which extends
the family A(z) and is parameterized by some compact variety. Our second motivation for
the present work is to understand this compactification. According to Aguirre, Felder and
Veselov [1], the closure of the family of quadratic Gaudin Hamiltonians is parameterized by
the Deligne-Mumford compactification My 11 of the moduli space of stable rational curves
with n 4+ 1 marked points. We prove that the closure of the family A(z) is also parameterized
by Mo nt+1 (i-e. there are no additional blow-ups). Furthermore, we prove that the natural
topological operad structure on My 41 is compatible with that on commutative subalgebras
of U(g)®™. This allows to describe explicitly the algebras corresponding to boundary points of
Mo n+1 and to prove that they always have a cyclic vector in Vimg . We deduce from this the

simple spectrum property for the subalgebras attached to all real points of My p41.

This allows us to regard the eigenbasis (or, more precisely, the set of 1-dimensional
eigenspaces) of A(z) in Vii"g as a covering of the space My ,11(R). Denote the fiber of this
covering at a point z € My ,,11(R) by Bx(z). The fundamental group of My ,41(R) (called
pure cactus group PJy) acts on this set. This gives a homomorphism from PJ,, to the Galois
group of Bethe eigenvalues.

Remark 1.4. Generally, this Galois group is bigger than the image of PJ,. The smallest
ezample in which this occurs is g = sla, n = 3, Ay = Ao = A3 = 2: since My 4(R) = RP! we
have PJs = Z and hence its image is commutative. On the other hand, the Galois group is Ss
(this was recently shown by Azad Saifullin [24]).

1.5. Cactus group. The group PJ,, := w1 (Mo n+1(R)) can be described as follows. Let J,, be
the group with the generators s, 4, 1 < p < ¢ < n, and the defining relations

2 =
Pq

5p1,a15p2,g2 = SpargaSpr,an 1L @1 < P2;
5p1,415p2,q25p1,a1 = Spi+a1—az,p1+a1—p2 if p1 <pa<q2 <.

S e;

There is an epimorphism 7 : J, — S, which takes s, , to the involution reversing the seg-
ment {p,...,q} C {1,...,n}. According to [6, 5], J, is the orbifold fundamental group of
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Mo n+1(R)/Sy, and hence PJ, ~ Kerm. In [13] the groups J, and PJ, were named cactus
group and pure cactus group, respectively.

It was observed by Henriques and Kamnitzer in [13] that the groups J,, and PJ, natu-
rally arise in coboundary categories. That is, monoidal category with a functorial involutive
isomorphism sxy : X ® Y = Y ® X, called commutor, satisfying certain natural relations.
Coboundary category is an analog of braided monoidal category where the role of the braid
group B, is played by the cactus group J,,. In particular, the pure cactus group PJ,, acts by
endomorphisms of X; ® ... ® X, for any collection of objects of any coboundary category.

The main example of a coboundary category is the category of g-crystals for a Kac-Moody
algebra g. Loosely speaking, g-crystal is the ¢ — oo limit of a U,(g)-module. In this limit,
U, (g)-modules are replaced by colored oriented graphs with the vertices representing the basis
vectors and the edges representing the action of the Chevalley generators of U,(g). There is
a well-defined tensor product on g-crystals which is not symmetric, but tensor products of
the same objects in different order are still isomorphic. The commutor is a functorial choice
of such isomorphism satisfying some natural axioms. The commutor for the tensor product
of crystals for finite-dimensional g was first defined by Henriques and Kamnitzer in [13] in a
purely combinatorial way. Later in [16] Kamnitzer and Tingley gave an equivalent definition in
terms of the unitarized R-matrix. For general Kac-Moody algebra, the crystal commutor was
defined by Savage in [25].

Consider the tensor product By, ®...®B,, of the g-crystals with highest weights A1,..., Ap.
The commutor gives an action of the pure cactus group on the set By of highest elements of
this tensor product. Note that B, has the same cardinality as Bj(z).

Conjecture 1.6. (Pavel Etingof) The actions of PJ, on Bx(z) and on By are isomorphic.

We prove this conjecture for g = sly in two different ways. The first way, suggested by
Pavel Etingof, is to use the Drinfeld-Kohno theorem in its “crystal” limit ¢ — oo. This relates
the Gaudin model (on the KZ side) with the crystal (on the quantum group side). In fact,
all necessary ingredients for this are already contained in the papers of Varchenko [28] and
Kamnitzer—Tingley [16]. The second way is to relate the monodromy of Bethe vectors with
the “hive” realization of the category of crystals from [14]. For g = sls, the eigenvectors of
A(z) at the vertices (i.e. 0-dimensional strata) of My ,4+1 are indexed by integer points of a
convex polytope depending on A and on the vertex. The transports along 1-dimensional strata
of My n+1(R) give some natural bijections between the sets of integer points of the polytopes
at different vertices of My 1. We show that these bijections come from piecewise linear
transformations of the corresponding polytopes, and relate them to the octahedron recurrence.
This gives another (purely combinatorial) proof of Conjecture 1.6.

1.7. The paper is organized as follows. In section 2 we recall some basic definitions and
well-known facts regarding the Deligne-Mumford compactification My 1. In section 3 we
summarize the known facts about the family of Bethe algebras A(z) and prove our first main
result that the closure of this family is parameterized by My 11 and that for every algebra

from the closure the module Vimg is cyclic. In sections 4 and 5 we summarize the necessary
ingredients (from [16] and [28], respectively) for the proof of Etingof’s conjecture. In section 6
we prove Etingof’s conjecture for g = slp (this is our second main result). In section 7 we
describe the piecewise linear transformations of the polytopes arising from our construction
and give a combinatorial proof of Etingof’s conjecture. Section 8 is devoted to conjectures
generalizing our results.
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2. THE SPACE My n41

2.1. Let My 41 denote the Deligne-Mumford space of stable rational curves with n+1 marked
points. The points of M 41 are isomorphism classes of curves of genus 0, with n + 1 ordered
marked points and possibly with nodes, such that each component has at least 3 distinguished
points (either marked points or nodes). One can represent the combinatorial type of such a
curve as a tree with n + 1 leaves with inner vertices representing irreducible components of
the corresponding curve, inner edges corresponding to the nodes and the leaves corresponding
to the marked points. Informally, the topology of My 1 is determined by the following rule:
when some of the distinguished points (marked or nodes) from the same component collide,
they bubble off into a new component.

The space My 41 is a smooth algebraic variety. It can be regarded as a compactification of
the configuration space Mg 41 of ordered (n + 1)-tuples (21, 22, ..., zn+1) of pairwise distinct
points on CP! modulo the automorphism group PGL2(C). Since the group PGLy(C) acts
transitively on triples of distinct points, we can fix the (n + 1)-th point to be co € CP! and
fix the sum of coordinates of other points to be zero. Then the space My ,4+1 gets identified

n

with the quotient Conf,,/C* where Conf,, := {(#1,...,2,) € C" | z; # 2z, >, % = 0}, and the
i=1

group C* acts by dilations. Under this identification of Mg 41, the space My 41 is just the
GIT quotient by C* of the iterated blow-up of the subspaces of the form {z;, = z;, = ... = 2;, }
in C*~1. The space My n+1 comes with the tautological bundles £; whose fiber is the line

representing the point z;. The total space M 1 of the tautological line bundle £,,; is then

just the blow-up, without taking the quotient. Conf,, is a Zariski open subset in My j,41.

The space My 41 is stratified as follows. The strata are indexed by the combinatorial
types of stable rational curves, i.e. by rooted trees with n leaves colored by the marked points
Z1,...,2n (the root is colored by z,41 = o0). Let T be such a tree, then the corresponding
stratum My is the product of Mg iy over all inner vertices I of T' with k(I) being the index
of I. In particular, O-dimensional strata correspond to binary rooted trees with n (ordered)
leaves. The stratum corresponding to a tree T lies in the closure of the one corresponding to a
tree T” if and only if 7" is obtained from T by contracting some edges.

2.2. Operad structure on M ,41. The spaces My 41 form a topological operad. This
means that one can regard each point of the space M 1 as an n-ary operation with the inputs
at marked points z1, ..., 2, and the output at z,y;. Then one can substitute any operation of
this form to each of the inputs. More precisely, for any partition of the set {1,...,n} into the
disjoint union of subsets My, ..., My with |M;| = m; > 1 there is a natural substitution map

k
Vs, M - Mog+1 X T[] Mom;+1 — Mo,ny1 which attaches the i-th curve C; € My ;41 to
i=1

the i-th marked point of the curve Cy € My ;41 by gluing the m; + 1-th marked point of each C;
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with the i-th marked point of Cp. One can extend the definition of My ,,+1 and take My o = pt
(defining the (unique) curve C' € My o also to be a point). Then the substitution maps with
m,; = 1 are still well-defined and moreover all substitution maps vx;as,,... M, are compositions
of the elementary ones with m; = ... =my_, = 1.

The compositions of the substitution maps are indexed by rooted trees describing the com-
binatorial type of the (generic) resulting curves. In particular, each stratum of My 41 is just
the image of the open stratum of an appropriate product [] Mo 41 under some composition
of substitution maps.

2.3. Charts on M ,,41. We will use the following set of charts which form an atlas on Mg ;1.
Let T be a tree as above and o be an ordering of its leaves. We call o compatible with T if
there is an embedding of T into the real plane such that all inner vertices of the tree are in the
lower halfplane, all leaves are on the horizontal line y = 0 and the z-coordinates of them are
ordered according to o.

To any binary rooted tree T compatible with the ordering ¢ one can assign a set of coordinates
in appropriate neighborhood Uy, of the corresponding O-dimensional stratum z;-. Let < be the
partial ordering of the vertices of 7' with the root being the minimal element. Let I(4,j) be the
maximal inner vertex comparable with the both leaves z; and z;. The coordinate ring of the open

subset Ur , C My n41 is generated by the functions % for all ¢, 7 such that I(i,5) £ I(k,)
and by z; — z; for all 4,j. We choose the coordinates u; on Ur, indexed by inner vertices I
of the tree T recursively as follows. Let I(I) € {1,...,n} be such that o(I(I)) is the maximal
index of the z;’s in the left branch at the vertex I. Analogously, define r(I) € {1,...,n} such
that o(r(I)) the minimal index of the z;’s in the right branch at the vertex I. For the root

vertex o, we set uy, 1= 2,(1,) — 21(1,); for any other vertex I let Iy, I, ..., Iy = I be the shortest

Zr (1) —R1(I)
Zr(I’) 721(11)

k—1
way from the root to I, then uy := (z,(1) — 2i(r)) 'Ho uI_Jl Equivalently, u; := where
5=

I’ is the preceding vertex (i.e. I' :=max{J € T | J < I}).
Let us describe the stratum My C Mg p4+1 corresponding to a rooted tree 7" in the local
coordinates determined by a binary rooted tree T'. The following is clear from the definitions:

Proposition 2.4. The stratum M;/ has a nonempty intersection with Ur , if and only if T' is

obtained from T by contracting some edges. In the latter case, ]\ff/T/ is a subset of Ur, defined
as follows: ur # 0 if the (unique) edge of T which ends at I is contracted in T, and uy = 0
else.

Remark 2.5. The space My 11 can be regarded as a closure of the complement of the hy-
perplane arrangement in C"~' formed by the hyperplanes {z; = z;} for all i,j. De Concini
and Procesi generalized this construction to any hyperplane arrangement. Namely, in [4] they
construct the wonderful closure of the complement to any hyperplane arrangement, which is
smooth and whose boundary is a divisor with normal crossings. They also defined the set of
charts generalizing Ut .

2.6. Reallocus of My 1. The space My 41 is a projective algebraic variety defined over any
field (in fact it is defined over Z), hence we can consider the real loci My 41 (R) and My 41 (R)

of the spaces My 41 and My 41, respectively. Note that the space Conf, (R) is disconnected,
and the connected components are the chambers Dy := {(21,...,2n) | 2Zo(1) < ... < Zo(n)} for

all permutations o € S,,. We have the atlas on My ,41(R) formed by the same charts Ur,.
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Remark 2.7. The open set U;{U = {(ur) € Ur,s | ur > 0 VI} is the chamber Dy = z51) <
oo < Zg(n) tn Conf,.

The space My 41 can be described as a cell complex. The cells of the codimension k are
indexed by pairs (T, 0) where T is a rooted tree (not necessarily binary) with k inner vertices
and n leaves colored by z1, ..., z,, and ¢ is a compatible ordering of its leaves up to the following
equivalence. Two orderings are equivalent if one is obtained from another by reversing the order
of the descendants of any inner vertex of T', except the root. The closure poset structure on
the pairs (T, 0) is defined as follows: (T,c0) < (T”,0’) if T is obtained from T by contracting
some edges and o is equivalent to ¢’ with respect to 7. In particular, the maximal elements of
this poset are indexed by the symmetric group S,,, and the corresponding open cells are D, .
Two open cells D, and D, have a common codimension one face if and only if ¢’c~! is an
involution in .S,, which reverses some segment {p,p+1,...,¢—1,¢q} C {1,...,n}. Clearly, for
any neighboring D, and D, there is a tree T' compatible with both ¢ and ¢’ such that /o !
reverses the order of all descendants of some inner vertex I € T. In particular, the differential
at 0 € Ur,, of the gluing function ¢ : Ur» — Ur, is just changing the sign of u;.

The vertices of My 41 correspond to binary rooted trees with a compatible ordering of leaves

up to equivalence. The edges of My 41 then correspond to almost binary trees (with exactly
one 4-valent inner vertex).

Remark 2.8. In [13, 15] the same cell complex is described in (equivalent) terms of ordered
bracketings. The cells of the codimension k are indexed by ordered bracketings of the product
T1Zg ... Ty, i.6. pairs consisting of a permutation o € S,, and a partial bracketing of the product
To(1)To(2) - - - To(n) With k pairs of brackets, up to the equivalence relation. Two bracketings
are equivalent if one is obtained from another by reversing the ordering inside any pair of
brackets, for example (x122(z3x4))(xs526) 18 equivalent to ((xszx4)zaxi)(xers). The closure
poset structure on the equivalence classes of bracketings is defined as follows: for equivalence
classes of ordered bracketings «, 8 one has o <  if there are representatives a,b of a, 3,
respectively, such that a is obtained from b by inserting some pairs of brackets. The vertices of

My n+1 are indexed by equivalence classes of complete ordered bracketings.

2.9. Cactus group. One defines the fundamental groupoid of ml (R) as follows. The

objects are the components of the open stratum of Mg ,,+1(R) which are the chambers D, for
all o € S,,. The mophisms from D, to D, are the homotopy classes of paths which connect some
inner points of the components D, and D, and cross the strata of codimension 1 transversely.
Since the symmetric group S,, acts simply transitively on the chambers, this groupoid is in fact

the orbifold fundamental group of My ,+1(R)/S,. Denote this group by J,. Clearly, the group
Jp, is generated by the homotopy classes of paths connecting neighboring open cells (i.e. the
open cells having common face of codimension 1). Thus there are the following generators of
In.

For positive integers p < ¢, denote by [p, q] the set {p,p+1,...,9 —1,q}. Let 5,, € S,, be
the involution reversing the segment [p, ¢] C [1,n]. The chambers D, and D, are neighboring
if 0’0~ is 5,4 for some p < ¢q. Denote by s, , the element of .J,, corresponding to the shortest
path from D, to D,/. Then the elements s, , with 1 < p < ¢ < n generate J,, and the defining
relations are

2 _ .
Spg = &

(2) Sp1,q15p2,q2 = Sp2,q25p1,q1 if ¢1 < pa;
5p1,a15p2,a25p1,a1 = Spr+a1—ga.p1+ar—pe i P1 < P2 < @2 < .
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We refer the reader to [13] and [6] for more details.

The fundamental group PJ,, := m1 (Mg 41 (R)) = m (ml (R)) is the kernel of the natural
homomorphism J,, — S, which maps s, 4 to 5, 4. By analogy with braid groups, PJ, is called

the pure cactus group. In fact My 41 (R) is a K(m,1) space for this group, see [6].
We will also use another set of generators of J,, namely, for k <[ < m let

(3) S[k,l,m] ‘= Sk,mSk,ISl+1,m-

Under the natural homomorphism J, — Sy, the generators s ; ., go to the permutation
transposing the segments [k, 1] and [l + 1, m].

3. GAUDIN SUBALGEBRAS

3.1. Notation. For a semisimple g, we denote by b, X, XV, A, A, TI, its Cartan subalgebra,
weight lattice, coweight lattice, root system, set of positive roots and set of simple roots,
respectively. We fix an invariant inner product (-,-) on X such that («,a) = 2 for short roots

a € A. This determines an invariant inner product on g which we also denote by (-,-). We set
dim g
the Casimir element C' = Z 22 € U(g) where {x,} is an orthogonal basis of g. We denote by
=1
¢(X) the eigenvalue of the Casumr operator of g on V), the irreducible representation with the
highest weight A. In particular, for g = slo we have ¢(\) = w
For any subset M C {1,2,...,n} denote by Ay, the diagonal embedding of U(g) into the
tensor product of the i-th copies of U(g) for all i € M, so for x € g we have Ay (z) =
5S> 2®. For M C {1,2,...,n} we denote by Cj; the image of the Casimir element C' under
ieM
the homomorphism Ay, : U(g) — U(g)®™

3.2. Let z = (21,...,2n) be a collection of pairwise distinct complex numbers. The quadratic
Gaudin Hamiltonians are the following commuting elements of the algebra U(g)®"

dim i) (4)
H ZZQ axaj _ 1] C C

— 2
A am1 AT

Clearly, H; commute with the diagonal g in U(g)®". Let us describe the maximal commutative
subalgebra A(z) C [U(g)®"])® containing H;.

3.3. Example. Let g = sls and ¢, f, h be its standard basis. Then C' =ef + fe + %hQ. The

() £(0) 4 (D) o(R) | 1R (5) (k) Lo o
algebra A(z) is generated by H; = Y ! +va_Zk+5h Poand € = @ F@) 4 pDel) 4
) ’

%h(i)h(i) for i = 1,...,n (the latter are the generators of the center of U(g)®"). The only

n

algebraic relation on the generators H;,C; is Y. H; = 0. Hence the Gaudin algebra is a
i=1

polynomial algebra with 2n — 1 generators.

3.4. Construction of the subalgebra A(z). We fix an invariant scalar product on g and
identify g* with g via this scalar product. Consider the infinite-dimensional ind-nilpotent Lie
algebra g_ := g® ¢t IC[t~!] — it is a "half” of the corresponding affine Kac-Moody algebra
g. The universal enveloping algebra U(g_) has a natural (PBW) filtration by the degree with
respect to the generators. The associated graded algebra is the symmetric algebra S(g—) by
the Poincaré-Birkhoff-Witt theorem.
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There is a natural grading on the associative algebras S(g_) and U(g_) determined by the
derivation Lg defined by

(4) Lo(g@t™) =mgat™ Vgegm=-1,-2,...
There is also a derivation L_; of degree —1 with respect to this grading:
(5) Ly(get™)=mgat™ !t Vgegm=—-1,-2,...

Let i1 : S(g) — S(g_) be the embedding, which maps g € g to g ® t~!. The algebra
of invariants, S(g)%, is known to be a free commutative algebra with rkg generators. Let
®;, 1 =1,...,rkg be some set of free generators of the algebra S(g)%. The following result is
due to Boris Feigin and Edward Frenkel, see [8] and references therein.

Theorem 3.5. There exist commuting elements S; € U(g—), homogeneous with respect to Ly,
such that grS; = i_1(®;). Moreover, the elements L* | S; pairwise commute for all k € 7, and
l=1,...,rkg.

Let U(g)®" be the tensor product of n copies of U(g). We denote the subspace 1 ® -+ ®
1®g®1®---®1 C U(g)®", where g stands at the ith place, by g(?. Respectively, for any
x € U(g) we set

(6) 2D =19 - ®lezrl®---©1c U
Let Ay @ U(g—) — U(g—)®" be the diagonal embedding (i.e. for x € g_, we have

n

Ap g (z) = Y 2@). To any nonzero w € C, we assign the homomorphism ¢,, : U(g_) —

i=1
U(g) of evaluation at the point w (i.e., for g € g, we have ¢, (g ® t"™) = w™g). For any
collection of pairwise distinct nonzero complex numbers z;,7 = 1,...,n, we have the following
homomorphism:

(7) Puw vy = () @ @ Py, ) © A[1,n] :U(g-) — U(9)®n~

More explicitly, we have
n
Bun o, (gD E™) =Y witg®.
i=1

Consider the following U(g)®"-valued functions in the variable w
Sl(w; Rly-ves Zn) = (bw—zl,“.,w—zn (Sl)

We define the Gaudin subalgebra A(z) C U(g)®" as a subalgebra generated by
Si(w;z1,...,2,) for all w € C\{z1,...,2,}. Due to Theorem 3.5, this subalgebra is
commutative. The subalgebra A(z) C U(g)®™ is also known as Bethe algebra.

Let Sli’m(zl, ..., 2n) be the coefficients of the principal part of the Laurent series of
Si(w; 21, ..., 2,) at the point z;, i.e.,
m=deg ®;
Si(w; 21, ...y 2n) = Z S (21, zm)(w—2) T+ 0(1) as w — ;.
m=1

Taking the generator S; corresponding to the quadratic Casimir element on S(g), one gets the
quadratic Gaudin Hamiltonians (1) as the residues of S;(wj;z1,..., z,) at the points z1, ..., z,.
The following result is well-known (see e.g. [3] for the proof).

Proposition 3.6. [3]
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(1) The elements S’li’m(zl, .oy 2zn) € U(g)®™ are homogeneous under simultaneous affine
transformations of the parameters z; — az; +b (i.e. S)™(az1 +b,...,az, +b) is
proportional to S} (z1,..., zn)).

(2) The subalgebra A(z) is a free commutative algebra generated by the elements
S (21y s 2n) € U(@)®™, wherei = 1,...,n—1,1=1,...,tkg, m = 1,...,deg &,
and by S]"IE* (21, ..., 2,) € U(g)®", where | =1,...,rkg.

(3) All the elements of A(z) are invariant with respect to the diagonal action of g.

(4) The center of the diagonal Ay ) (U(g)) C U(g)®™ is contained in A(z).

Remark 3.7. It is easy to see that one can replace Sln’deg P

of the center of Ap ,,)(U(g)).

Z1,.--,2n) 0 (2) by the generators

3.8. Operad structure on commutative subalgebras. For any partition of the set
{1,2,...,n} = My U...U My, define the homomorphism

Dy, U(9)%% — U()®",

taking () € U(g)®*, forz € g, i=1,...,k to 3 x(0).
JjeM;

For any subset M = {j1,...,5m} C {1,2,...,n}, with j1 < ... < jm, let Ips : U(g)®™ —
U(g)®" be the embedding of the tensor product of the copies of U(g) indexed by M, i.e.
IM(x(i)) = zUi) ¢ U(g)®" for any z € g, i = 1,...,m. Clearly, all these homomorphisms
are g-equivariant and every element in the image of Dy, . a, commutes with every element
of Ing, ([U(g)®™:]8) for i = 1,..., k. This gives us the following “substitution” homomorphism
defining an operad structure on the spaces [U(g)®"]?

k

k
(8) Vs My,..., My, = DMl,m,Mk ® ®IM1 : [U(g)®k]g ® ®[U(g)®7m]g — [U(g)@)n]g
=1 =1

Let Subalg,, be the set of commutative subalgebras in U(g)®" of the transcendence degree
"T_l dimg + "7'"1 rk g commuting with the diagonal g and containing the center of U(g)®™ and
of the diagonal U(g).

Proposition 3.9. The homomorphism (8) defines a substitution map

k
Vkddr....a, : Subalgy x [ [ Subalg,,, — Subalg,,.
1=1

Moreover, Yy, v, (A(w); A(ug), - .., A(uk)) has the same Poincaré series as A(z).

Proof. Tt is easy to check that the resulting subalgebra commutes with the diagonal g and
contains the center of U(g)®™ and of the diagonal U(g). To check that it has right transcendence
degree and Poincaré series, we need the following

Lemma 3.10. (1) The homomorphism i, ..., factors as
k k
Year..ay,  [U(@)%F18 @ QU (8)2™1° = [U(8)*]® @209 0 QU (9)2™]® < [U(g)®"]°.
i=1 i=1

2) The algebras [U(g)®*]e, U(g)®™]8 and [U(g)®™]® are free as ZU(g)®*-modules.
(2) g [U(g) g g g

-

i=1
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Proof. By Kostant’s theorem [18], U(g) is a free ZU (g)-module, and one can choose a g-invariant
space of generators for it. Hence [U(g)®*]® and [U(g)®"]? are both free as ZU(g)®*-modules.

For the rest, it suffices to show that [U(g)®™]? is a free Ap ,,)(ZU(g))-module and that
the homomorphism Ap ) -id : U(g) ® [U(g)®™]® — U(g)®™ factors as U(g) ® [U(g)®™]? —
U(9) ®zu(g) [U(9)®™]® = U(g)®™. But this is a particular case of Knop’s theorem on Harish-
Chandra map for reductive group actions (see [17], items (d) and (e) of the Main Theorem).
Indeed, the Main Theorem of [17] states that for any reductive G and any smooth affine G-
variety X the algebra D(X)® of G-invariant differential operators and its commutant U(X)
in the algebra D(X) are both free modules over the center of D(X). Moreover, the product
D(X)%-U(X) C D(X) is the tensor product D(X)% ® zp(x)c U(X) of D(X)® and U(X) over
the center of D(X)%. To get the desired statement we just apply this to the G*(™+1_action on
X = G*™, where e x G*™ acts on G*™ from the right and G x e*™ acts on G*™ diagonally
from the left. Indeed, for this case we have D(X)Gx(mﬂ) is [U(g)®™]¢. By Theorem 10.1 of
[17], the center of [U(g)®™]¢ is ZU(g)®™ V) = Ay, (ZU(g)) ® ZU(g)®™ and the algebra
U(X) contains Apy ,,,)(U(g)) ® ZU(g)®™ as the subalgebra of e x G*™-invariants. Hence we

Apm (U(9) - [U(8)7™]° = (Apm(U(9) @ ZU(9)°™) @ zu(gyecntn [U(g)*"]* =
=U(g) ®zu(q) [U(g)*™]°.

0
k

The subalgebras Dy, ar (A(w)) and @ In(A(ur) ® ... ® A(ug)) both contain
i=1

D, v, (ZU(g)®F). Moreover both of these subalgebras are free modules over

Dur, . (ZU(g)®%). By Lemma 3.10, YesMy,..., M (A(w); A(ur), . .., A(ug)) is the tensor

.....

Hence both 7. (A(w); A(ur), ..., A(ux)) and A(z) are polynomial algebras with
(n —1)deg ®; + 1 generators of degree deg ®; for each central generator ®;. This proves the
statement on the Poincaré series. O

3.11. Closure of the family A(z). From Proposition 3.6 it follows that the commutative
subalgebras A(z) C U(g)®™ form a flat family parameterized by the configuration space M 1.
This means that for any positive integer N the intersection of A(z) with the N-th filtered
component PBW(N)U(g)®“ with respect to the PBW filtration of the universal enveloping
algebra U(g)®™ has the same dimension d(N). Hence there is a regular map from My ,+1

to the product of the Grassmannians ] Gr(d(M),PBW®)U(g)®") taking z € Mo 41 to
M<N

[T Az)NPBWMU(g)®m). Let Zy be the closure of the image of this map. Then there are
M<N
surjective restriction maps ryy 1 Zy — Zpy for any M < N. The inverse limit Z = lim Z is
—
well-defined as a pro-algebraic scheme. The restriction of the tautological vector bundle on the
Grassmannian gives a sheaf A of commutative algebras on Z

Proposition 3.12. The fiber of A at any point of Z is a commutative subalgebra in U(g)®"
which has the same Poincaré series as A(z) and coincides with A(z) for all z € My 41 C Z.

Proof. By definition, A is a sheaf of filtered vector spaces with the same Poincaré series as
A(z) which coincides with A(z) for all z € My ,+1 C Z. The conditions of being closed
under the associative product on U(g)®" and of being commutative are Zariski-closed on the
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Grassmannian Gr(d(N), PBW™U(g)®")), hence each fiber of A is a commutative subalgebra
in U(g)®". O

So we have a flat family of commutative subalgebras A(z) C U(g)®" parametrized by z € Z,
and in fact Z is the indexing space for all possible limiting subalgebras of the family A(z). The
construction of Z is very general (it is well defined for any flat family of subspaces in a filtered
space), but generally such scheme does not seem to have any good properties. Contrary, in our
case it turns to be a smooth algebraic scheme:

Theorem 3.13. (1) Z is a smooth algebraic variety isomorphic to Mo p41;

(2) for any z € Moy pni1 the corresponding commutative subalgebra A(z) C U(g)®" is a

polynomial algebra with "Tfl dimg + ”7“ rk g generators;

(3) the operad structures on My 41 and on Subalg, match, i.e. we have
‘A(’yk;M1 ----- Mk(w’ﬂ’aui)) = Vk; My, ..., Mk(‘A(w)“A(ﬂ)?v‘A(uik))

Remark 3.14. Aguirre, Felder and Veselov proved this in [1] for quadratic components of
A(z) generated by the elements H;(z). Also, in [3] a set-theoretical version of this Theorem
was proved, i.e. all the subalgebras A(z) corresponding to boundary points z € M, 1 were
explicitly described. Our proof uses the ideas of [3].

Proof. First, we will need the following description of some limits of some generators of the
subalgebras A(z).

Lemma 3.15. (1) Forl=1,...,tkg, m = 1,...,degS;, k = 1,...,n — 1, the elements

k

Y. Resy—yw, w™Si(w; w1, ..., wy,) are well-defined outside the hyperplanes {w; = w;}
j=1
for1 <i<k<j<n.

(2) Suppose that for some p € {1,...,k} we have wy = ... = wp. Then

k k

Zl Resy—w, w™Sj(w;wy, ..., wn) = Dp p) pr1,... 0 '21 Resy—w; w™ S (w; wp, Wpi1, ..., Wy)).
j= j=

k

(3) Foranyp >k the limit  lim Y Resy—w, w™Si(w; w1, ..., wy) is well-defined and

Wi —00 Vi>pj:1
equals Ijy ) (Si(w; w1, ..., wp)).
Proof. The first two assertions are obvious since the homomorphism ¢y, ... w—w, is well-

defined for all w; and when some of the w;’s coincide it just factors through the corresponding
diagonal embedding. The third one follows from the following obvious

Lemma 3.16. [23] The limit li_>m ¢ 1is the counit map e : U(g_) - C-1C Ul(g).
Indeed, we have
lim S; (IU; Wiy - - - 7wn) = lim d)w—wl,...,w—wn(sl) =

Wi —»00 Wi —»00

= (¢w—w1 R ® Gy, ®ER ... ® 6) © A{1,.‘.771}(51) = I(Sl(w; wy, .- - awn))

O

To prove the first two assertions of the Theorem, we produce, for any planar binary rooted
tree T, a set of generators of A(z) that are regular on Uy, and algebraically independent at
any point of Ur,. We can assume without loss of generality that o = e.
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Let us introduce some notation. We denote by < the partial order on the set of vertices
of T', where the root vertex is minimal. To any inner vertex I € T we assign the subsets
L(I),R(I),LR(I) C [1,n] formed by all leaves of T on the left branch of T" at I, right branch
of T at I and on both of them, respectively. We denote by [(I) the maximum of L(I) and by
r(I) the minimum of R(I).

Let I be an inner vertex of the tree T. Set k = I(I) then r(I) = k 4+ 1. To the vertex I and

(m)

a number m = 1,...,deg S; we assign the element S, ./, € A(z) defined as
Z1 — %k ZE — %k Zk4+1 — Rk Zn — 2k
ZTI' E Res ==, w™S)(w; e adian — ) =
W 1= Zk+1 — 2k Zk+1 T Rk Rk+1 T Rk Zk+1 — Rk
JEL(D) k+1— %k
Z1 — Rk Zp — Rk Rk4+1 — Rk Zn — 2k
= Res =z, w™S(w; s jadias e, ).
w=
2 s Mu " Tw' w7 s
JeL(l) J<1 J<I J<I J<I J<I

where L(I) stands for the left branch of T at I. By Proposition 3.6, the elements Sl(_’n;w)I € A(z)
together with the generators of the center of Ay ,,)U(g) C U (g)®" are algebraically independent
and generate A(z) for z € Ur\{3I : uy = 0} (i.e. on the intersection of Ur . with the open

stratum of My ,,41).

Now we can compute S LT, I at z € Uy, such that some of the u;’s vanish, i.e. z € MT/ CUr,es
for some non-binary tree T'. Let T(I) be the subtree containing I and bounded by all inner
vertices J such that uy = 0. Let Jy be the root of T(I) and Ji,...,J; be the leaves of

T(I), then by Lemma 3.15 Sl(??l = I R(Jy) © DLR(Jl))A_wLR(Jk)(S&TI))J) (informally, the leaves
not from LR(Jp) do not contribute to Sl(??l and the contributions of the leaves from the
same LR(J;) are equal). Hence S;??I € A(z) are well-defined. Note that Sl(,??l = IR ©

DrRr(1y),....LR(J) (S;TI))J) for all I form (together with the central generators of Apy ,U(g)) the
complete set of generators of the subalgebra obtained by the composition of the operations ~y
according to the tree T'. Hence they an algebraically independent system for every 2z € J\/[/T/ C
Ur,, and the third assertion of the Theorem is also proved. O

Now recall the result of Mukhin, Tarasov and Varchenko:

Theorem 3.17. [21] Let g = slyy. For any collection A of dominant integral weights, the space
V3™ is a cyclic module over A(z).

We generalize this theorem to any z € Moy n41.

Theorem 3.18. Let g =sly.

(1) For any collection X of dominant integral weights and any z € Mo n+1, the space vy
is a cyclic module over A(z).

(2) For any collection N\ of dominant integral weights, the algebra A(z) with real z has
simple spectrum in the space Vii"g.

sing

Proof. To prove the first assertion, we proceed by induction on n. Suppose that
z = Yy, M (Wsui,...,up). Then by Theorem 3.13 the corresponding subalgebra
A(z) is generated by Ins,(A(u;)) and Dy, . ar, (A(w)). Let Vy = @ Wy ® V(,) be the
decomposition of V, into the sum of isotypic component with respect to Dy, .. ar, (g®*) with
V() being the irreducible representation of g®* with the highest weight (v) = (v1,..., %)
and W, := Homgex(V{,), Vy) being the multiplicity space. By induction hypothesis, the



CACTUS GROUP AND MONODROMY OF BETHE VECTORS 13

k
multiplicity spaces W, are cyclic @ Ips, (A(u;))-modules. On the other hand, the space of
i=1

singular vectors of each V{,y is a cyclic Dy, ... a, (A(w))-module. Hence the entire module
V5™ is cyclic with respect to A(z).

“For real z the generators of A(z) act by Hermitian operators in any V), and hence are
diagonalizable, see e.g. Lemma 2 of [10]. Since there is a cyclic vector for the action of A(z) in
the space Vimg the joint eigenvalues of the generators on different eigenvectors are different. [

Corollary 3.19. For any collection A of dominant integral weights, the spectra of the algebras
A(z) with real z in the space V5™ form a unbranched covering of Mo n1(R).

Corollary 3.20. The pure cactus group PJ,, acts on the spectrum of A(z) in Vzmg for any
2 € My ny1(R). Moreover, the group J, acts on spectra of A(z) permuting the coordinates of z.

4. CACTUS GROUP AND CRYSTALS

We list here some results on crystal commutors due to Henriques, Kamnitzer and Tingley,
see [13, 16] for more details.

4.1. Crystal bases. Let C, be the field of rational functions of the formal variable q%. Con-
sider the quantum group Uy(g) corresponding to the Lie algebra g. It is a Hopf algebra over
C, with the standard Chevalley generators e;, f;,q", h € X" satisfying the following defining
relations

qz = l,h gt = ghighe;
q-eq
) ¢"fig™h =q M f
d;h; 7d~h'.

_ q k3 l—q K3 k3
eifj — fiei = 6 LI F

= gl@ohe;;

and g-Serre relations, see e.g. [19] for details. The comultiplication is defined on the generators
of Uy(g) as

A(g") =q" @ q";
(10) Ale;) = e @ ¢4 + 1@ e

A(f))=fi@1+q 4@ fi

The algebra U,(g) over the formal neighborhood of ¢ = 1 can be regarded as a deformation
of the universal enveloping algebra U(g) in the class of Hopf algebras. Moreover, for g being
not a root of unity, the category of finite-dimensional U,(g)-modules is semisimple, and the
irreducibles are indexed by the weight lattice of g. We denote by V| the irreducible Uy(g)-
module with the highest weight . It is a flat deformation of the U(g)-module V). Moreover,
V' decomposes into the direct sum of weight spaces (i.e. joint eigenspaces of ", h e XV),
VI =@ Vy(p). This is a flat deformation of the weight decomposition Vy = @ Vi ().

Define the divided powers of the generators e;, f;:

() _ & ) _
(11) e R i

fit

[nllg

)

” k__—k
where [nl], == [] L=L+.
oy 174

Let V7 be a finite-dimensional representation of U,(g). Denote by V9(u) C V9 the weight
space of the weight u. The Kashiwara operators é;, f; on V7 are defined as follows. Consider
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the Uy(slz) generated by e;, f;. The space V7 is decomposed into the direct sum of Uy(sls)-
modules, V? = @M, where M is the irreducible Uy(slz)-module of highest weight | € Z.

Each v € M represents as v = fi(m)vl where v; is the highest weight vector of M;’. Then by
definition fiv = fi(m+1)vl and &;v = fi(m_l)vl.

Let C® C C, be the subring of rational functions which are regular at co and mg® C C° be
the maximal ideal of co. A crystal base of V7 is a pair (L, B) satisfying the following conditions:

(1) L C V?is a free CZ°-module such that V? = Cq ®cge L;

(2) B is a basis of L/mg°L;

3) L =@, L(p) and B = [[B(p) where L(p) = LNV (), B(p) = BN L(p) /mg®L(p);
(4) the operators &; and f; preserve the lattice L (and hence operate on L/mPL);

(5) &B c BU{0} and f;B C BL{0};

(6) for b,b' € B we have b’ = é:b if and only if b= f;b/.

This endows the set B with the (purely combinatorial) structure of a crystal. That is the
set of maps é;, f; : B — B U {0} satisfying certain axioms, see [13] for details. It is natural to
represent crystals as directed colored graphs, whose vertices are the elements of B and edges
of the i-th color are the maps é;. The crystal base for V¢ always exists, and the corresponding
crystal B is uniquely determined by V9. Thus we get a a category whose objects are crystals
of finite-dimensional representations of U,(g) and morphisms are maps respecting the crystal
structure. This category is semisimple in the sense that every object B is a direct sum (i.e. set-
theoretical union) of irreducibles By (i.e. crystals of irreducible Uy(g)-modules V!, X € X(g)),
#Hom(By, By) = 1 and Hom(B,,B,) = 0 for X # p.

4.2. Monoidal structure. Let (Li,B;) and (L2, Bs) be crystal bases for U,(g)-modules
M7y, M respectively. Then (L1 ® Lo, B1 ® Bs) is a crystal base of the tensor product My ® Ms.
This gives a structure of a crystal on By x Bo: set ¢(b) = max{k | fFb # 0}, £(b) = max{k | é¥b #
0}, then the maps é;, ﬁ on By x By are defined as

_ _ [ @b @by if i(b1) > ei(ba)
(12) éi(by @by) = { by ® &by if i(by) < &i(b2)

3 _ €;by ® by if golv(bl) > 61'(1)2)
(13) filbr@b2) = { br@eby if pib) < ei(ba)

Here by ® by = (bl,bg) € By x By for by € By,by € By, and b ® 0 := 0 =: 0 ® by. Thus the
category of crystals is naturally a monoidal category.

4.3. Example: sl, case. Let g = sl;. The irreducible Uy (sly)-modules are Vi with A € Z.
The vectors f(™uvy generate a Cg°-lattice Ly C V), and the projections of these vectors to
Lx/mg° Ly form a crystal basis. Hence the crystal of the irreducible U,(slz)-module V! has the
form

e — e — . .. —r 0
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The tensor product of two irreducible crystals has the form

° ) e —...— ©

\ 3

[ ] L] — [ ] —_— ... — [ ]
!

!

e — ... —_— & —) e — .. — e

Notice that the tensor products of given two sly-crystals in different order are isomorphic, but
the isomorphism is not the transposition of the multiples.

4.4. Braiding. The category of U,(g)-modules is braided, i.e. for any pair M;, My of U,(g)-
modules there is an isomorphism R : M; ® My — My ® My which is functorial and satisfies
the braid (Yang-Baxter) relation for any triple of U,(g)-modules. This isomorphism is not
an involution: for irreducible finite-dimensional U,(g)-modules V)?l and V)?Q , the operator
R?:V{ @Vl = VI @V{ acts on each irreducible component isomorphic to Vy! as the scalar
qcN—cA)—e(2) where ¢(\) = (A, A + 2p) is the value of the Casimir operator on the g-module
Vy. In particular, R? does not preserve any Cy°-lattice in V;’l & V/\q2 and hence does not give
any braiding on the category of crystals. In fact, there is no structure of a braided category on
the category of crystals, see [25]. However, there is a coboundary category structure of on the
category of g-crystals.

4.5. Coboundary categories. A coboundary category is a monoidal category C along with
natural isomorphisms sxy : X ® Y = Y ® X for all X,Y € Ob C satisfying the following
conditions:

(1) sx,y osy,x =1d, and

(2) the cactus relation: for all triples X,Y, Z € Ob €, the diagram

Xovez XY vyeoxez

ll@sxz JVSY(@X,Z

$X,ZQY

XRZIRQR)Y ———— 7Y X
commutes.

The collection of maps sx y is called a commutor.

Let Xi,...,X,, € Ob C. Then, according to [13], the morphisms X; ® ... ® X;, = X,(1) ®
... ® Xy (n), for all possible o € S, which are compositions of some sy y’s generate an action
of J,. Hence PJ, acts by endomorphisms of X; ®...® X, for any collection of objects of any
coboundary category.

4.6. Crystal commutor. Let ¢(\) = (A, A+ 2p) be the value of the Casimir operator on the
irreducible g-module V. It was noticed by Drinfeld that the morphism R : Vi @V{ — VI @V}

—e(M)te(Ap+e(rg)
2

acting as Rq on V-isotypic component of V/\q1 ® V/\q2 is involutive and defines a
structure of coboundary category on U,(g)-modules. The morphism R is called the unitarized
R-matrix.

One can define the unitarized R-matrix universally. Namely, there is an element r in the

completed tensor square of Uy(g) acting as the composition of the flip and the operator R in
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the tensor product of any pair of highest weight modules. Also, we have Drinfeld’s Casimir
operator ¢© in the completed Uy(g) acting as ¢“™ in any VY. So, R can be written universally
as chcgic12 oflipor.

Let Vfl ®...® V/\qn be a tensor product of irreducible U,(g)-modules. The action of the
cactus group J,, on this space is defined as follows: the generator s ; ,,) acts as the unitarized
R-matrix Ry jj(141,m) transposing the neighboring factors Vi ®@...®@V) and Vfl“ ®...0V] .

It was shown in [16] that this morphism sends a crystal base to a crystal base hence giving
a structure of a coboundary category on the category of g-crystals.

Remark 4.7. There are different definitions of the crystal commutor which work for any Kac-
Moody g and are equivalent to the definition above for finite dimensional g, see [25].

4.8. Example: sl; case. For g = sly, the tensor product By, ® B, is just the set [0, A;] X
[0, X2], the element (z,y) corresponds to the base vector f®vy, ® f®wvy,. The commutor
$:]0, A1 —=1] x [0, Ao —1] — [0, A1 —1] X [0, Ay — 1] is the following piecewise linear transformation:

(14) s(zy) =y+M—z-y)t+—(N—2-yt,2+ N —z—y)t — (M —2—y)4),
where we set (a)y := max(0,a). This map is uniquely determined by the following property:
each weight space of By, ® B, is ordered by the values of the first coordinate x; the commutor
s preserves weight spaces and reverses the ordering on each of them.

Now let us describe the action of the generators s, , € J, on Vq .® Vq . Choose a
complete bracketing of the tensor product containing the pair of brackets boundlng the segment
[p,q]. Let T be the corresponding binary rooted tree, I be its inner vertex corresponding to
this pair of brackets and > be the partial order on inner vertices of T.

Proposition 4.9. The morphism spq: Vi @ ..o V] @ ..oV ®...0V] -V ®...@
Vi®...oV{ ®...@V{ isgiven by the formula

LR(I) c;
Sp,q = H Rryir) - q H q*
J>I ie LR(I)
Proof. Straightforward from the definition of the unitarized R-matrix and the formula for the
action of S[g 1 m)- O
5. ASYMPTOTIC SOLUTIONS OF THE K7 EQUATION

We reproduce here the results of Varchenko [28]. These results play the key role in the proof
of the Etingof conjecture for sls.

Let Conf,, be the space of n-tuples of pairwise distinct complex numbers (z1,. .., 2z,) such
that Y z; = 0. Consider the Knizhnik-Zamolodchikov (KZ) connection on the trivial bundle
i=1

on Conf,, with the fiber Vii"g :

(15) fd—fZHdzz 7d7f2(0 — Oy — Cy)dlog(z; — zj).

1<J

Remark 5.1. Conf,, is the total space of the restriction of L,41 to the open stratum Mo py1.
The Gaudin model can be regarded as a limit of the KZ connection as kK — 0.

Let V! be the irreducible Uy (slz)-module of highest weight A. For A = (Aq,..., \,), denote
by V{ the tensor product Vi @ ... @ V{ .
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To any permutation o € S,, we assign the connected component of Conf,, (R):
D, :={z € Conf, | Zg(i) > Zo(it1)st =1, .0 n— 1}.

For any planar binary rooted tree T compatible with the ordering o, we have the coordinates
uy on D,. The functions u; give a diffeomorphism D, — Rgal. The KZ equation in the
coordinates u; has the following form:

1
(16) v:d—ﬂZ(CLR(])— ‘ Z Cl)legU,[—FOJ(U,),
IeT t€LR(I)

where w(u) is a 1-form regular at u; = 0.

Remark 5.2. The operators Cpry — Cr(ry — Cr(r) pairwise commute and have simple joint

spectrum on Vii"g. Hence they also have simple joint spectrum on any weight subspace V()
with respect to the diagonal sly-action.

Let v € Vy(u) be a joint eigenvector of the operators Cpr;y — Cry — Cr(r)y with the
eigenvalues 2u7. To such v one assigns the asymptotic solution to the equation (16) on D, of
the form

(17) Yoro() = [[ ur (v+0(u)).
IeT

B

“r “r
We choose the branches of the functions u;* by the rule: arg(u,” ) = 0 on D,. It is shown in
[28] that ¥, 1, (u) has the following expansion with respect to k:

(19) Vo) = T[ " o) S froimalu)s,
j=0

IeT

where S(u) is a real analytic function well-defined at uy = 0, and f; ;7 (u) are Vy-valued real
analytic functions well-defined at u; = 0. In particular fo . 7.,(u) is a joint eigenvector for
H;(u) such that fo ,7,,(0) =v. The functions (18) form a basis of the space Sol, of solutions
of the KZ equation on D, (i.e. of the space of flat sections with respect to V).

According to the Drinfeld-Kohno theorem, to each sector D, € Conf,(R) one can assign an
isomorphism 7, between the space Sol,, of solutions of the KZ equation on D,, and the space V2,

for ¢ = exp(%), such that the transitions between the chambers are given by the R-matrices.
In [28] such isomorphisms 7, were explicitly constructed. More precisely, the collection of
isomorphisms 7, make the following diagram commutative (here the upper horizontal arrow is
the analytic continuation in counter-clockwise direction around the hyperplane z,(;) = 2g(i41)):

Sola— ? SOlsiyi+1O'

Jrﬂa J/ﬂ-si,H»lO'

q R; 11 q
Vor — Viimm
The isomorphisms 7, from [28] have the following nice additional property which is crucial

for Conjecture 1.6:

Theorem 5.3. [28] There is a normalizing constant N(k,T,v) such that the image of the
asymptotic solutions N(k,T,v)s 1, under my is a crystal base OfVZA'
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6. PROOF OF ETINGOF’S CONJECTURE FOR sls

Let g = slp. According to Theorem 5.3, each map 7, induces a bijection 75 : Bx|p, — Boa
which takes a Bethe eigenvector fo r,(u) to the corresponding element of the crystal basis.
Given an element g € J,,, consider a path in My ,,+1(R) representing it and connecting D, with
Dg,. Each element f € By|p, can be analytically continued along this path thus giving an
element g,,(f) € Bx|p,,. On the other hand, for any b € B, there is an element g(b) € Bg,a.

Theorem 6.1. ! For any g € J,,, the following diagram commutes.

Bylp, "~ Bilp,,

Ty l Tgo
B g B,
oA T Dgox

Proof. Let 0’ = s{;;,m)0, T be any tree compatible with sy, ; ) and I be the corresponding
inner vertex of T'. Let U, 1 be the corresponding chart. From Theorem 5.3, we see that, for
each asymptotic solution ¢, 1, on D,, the Vy-valued function fy , 7, on D, continues to U, r
as a well-defined real analytic function. Clearly, its restriction to D, C Uy is fo,0r,7,5. TO
prove the Theorem, it suffices to show that 7, (Yo 1) = E[k,hm]wg(d)a,qﬂ,v).

The asymptotic solution %, 71 ,(u) continues as a holomorphic function (in
153
counter-clockwise direction) to Uy r, and by our choice of the branch of u/

we have T’ (wa/,T,v) = o’ (qil”d)a',T,v) = To! (qi%(CLR(I)7CL(I)7CR(I))7/}U,T,@) =

q_%(cLRm_CL(U_CR(I))Wg/(wg,T_yv). By Drinfeld-Kohno theorem, the latter is equal to
N B B -

q_z(cLR(I) Crm CR(I))R[k,l,m]WU(wU,T,'u) = R[k,l,m]ﬂ-a(me,v)- U

Corollary 6.2. There is a bijection By(z) — By commuting with the action of PJ,,.

7. PIECEWISE LINEAR TRANSFORMATIONS.

We present here a more elementary proof of Conjecture 1.6 for g = sly using the description
of the coboundary category of sly-crystals from [14]. More precisely, in [14] Henriques and
Kamnitzer define (in a purely combinatorial way) some different coboundary category HIVES
where the associator and commutor are both nmontrivial and prove that it is equivalent to the
category of crystals. The general definition of HIVES is complicated, but for sly it simplifies
and gives the following. HIVES is a semisimple category whose simple objects L()) are indexed
by nonnegative integers A € Z>q. The tensor product L(A;) ® L(Az) is the union of L(x) where
A1 — A2l < < AL+ Az and Ay + A2 — g € 2Z. The occurrences of L(v) in the triple tensor
product (L(A1) @ L(Az)) ® L(A3) are thus indexed by the set M ., = {p | max(|A —
Aal, v — A3) < p < min(A; + A2, v + A3)}. The occurrences of L(v) in the same triple tensor
product with another bracketing L(A1) ® (L(A2) ® L(A3)) are indexed by the set MY \ | =
{p | max(|Az — Xal,|v — A1]) < p < min(A3 + Ao, v + A1)}. The associator (associativity
morphism) ¢ : L(A1) ® L(A\2)) ® L(A3) = L(A1) ® (L(A2) ® L(A3) is given by the map

VMO aons = MY oung) H max(A + Az, Ao +v) — p

The commutor (commutativity morphism) s : L(A\) ® L(A3) — L(A2) ® L(A1) is given by the
identity map on the set of occurrences of each L(u) (which is either empty or 1-element).

Theorem 7.1. [14] The category of sla-crystals is equivalent to HIVES.

LThis result together with the idea of the proof was suggested by Pavel Etingof.
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Let v be any ordered bracketing of the tensor product of L(A;). Then the set My
indexing the occurrences of L(v) in the tensor product of L()\;) according to the ordered brack-
eting v is the set of integer points of a convexr polytope. These polytopes are different for
different v, but always have the same number of integer points. Note that the polytopes de-
pend only on the equivalence class of an ordered bracketing, and hence we can regard these
polytopes as attached to the vertices (i.e. O-dimensional strata) of My ,+1(R). The associators
and commutors act by some piecewise linear transformations between the polytopes attached
to neighboring vertices of My ,11(R). In particular, for n = 3, the sets M(”/\V\Z))\3 and M)I\jl()\Q)\S)
are both segments of the length min(As + Aa, v + A1) — max(|As — Az2|, |¥ — A1]). The increas-
ing order on the highest weights u defines an orientation on these segments. The associator
P ]\4(”)\1)\2))\3 — MA”I()\Q)\S) reverses the (increasing) order on the set of integer points of the
segments. Clearly, ¢ is uniquely determined by this property.

Now let us see the same structure from the Gaudin algebras acting on the tensor product
Va=Vy ®...®V,,. To each ordered bracketing of the tensor product of irreducible finite
dimensional sly-modules Vi, ® ... ® Vi, we assign a basis of the space V5™ obtained by
iterating the decomposition of two irreducible sly-modules according to the bracketing. This
basis consists of joint eigenvectors for the operators C; € U(sl)®™ where J C [1,n] is the
set of indices inside a pair of brackets for all pairs of brackets. Note that the 0-dimensional
strata of My n4+1(R) correspond to complete ordered bracketings v of the set {A1,..., A} up
to transpositions of factors inside any pair of brackets, and the algebra generated by these
Casimirs is the Gaudin algebra corresponding to this stratum. Thus the eigenbasis for the

Gaudin algebra A(z,) is naturally indexed by My, | .

7.2. Important example. Let n = 3, then My 4(R) = RP!. We define the coordinate on
RP! by t = ﬁ, then the 0-dimensional strata are the points 0,1, 00. Each of these points
correspond to some equivalence classes of ordered bracketing of A\ A2A3 in the following way:

0 — (MA2)A3 = (A2A1)A3 = Az(A1A2) = Az(A2h1);

1= A (A2A3) = M (Ash2) = (AaAs) A1 = (A3A2)Aq;

00 = (A1 A3) A2 = (AsA1) A2 = Aa(A1As3) = Aa(AsAq).

The basis of the v-weight subspace of Vf\mg corresponding to the point 0 is indexed by
the highest weights p such that max(|]A; — Ag|, [v — A3) < p < min(A; + Ay, v 4+ A3) and
max(|A\; — Aa|, |v — A3) — u is even. The eigenvalue of C13, the only nontrivial generator of the
corresponding Gaudin algebra, on such vector is w In particular, this eigenvalue is an
increasing function of u. The same is true for other 0-dimensional strata.

Proposition 7.3. The transport from the point 0 € My 4(R) = RP! to the point 1 € My 4(R) =
RP! along the interval (0,1) acts as v : ME aons = MY o)

Proof. The Bethe basis at each point ¢ € [0,1] is the eigenbasis for the operator H(t) :=
(1—1t)C12 —tCa3. For any ¢ this operator has pairwise distinct real eigenvalues on V", hence
the basis is determined by H(t), and moving ¢ along the segment [0,1] preserves the order
of the eigenvalues of H(t). We have H(0) = Cio and H(1) = —Cs3. Hence the transport
along the segment takes the spectrum of C15 in the increasing order to the spectrum of Cag in
the decreasing order. Thus the transport along [0, 1] acts as the associator in the category of
hives. d

Corollary 7.4. The transports along 1-dimensional strata of Mo n+1(R) act as associators
from [14].
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Corollary 7.5. The Conjecture 1.6 is valid for sls.

8. DISCUSSION.

8.1. Bethe Ansatz conjecture. The following statement is a variant of Bethe Ansatz con-
jecture.

Conjecture 8.2. Theorem 3.18 holds for arbitrary g.

In particular, this means that the spectrum of the Gaudin algebra A(z) is simple for any
2 € My n+1(R). Then for any collection of highest weights A1, ..., A, we have a finite covering of
the Deligne-Mumford moduli space My ,,+1(R) whose fiber is the spectrum of the corresponding
commutative algebra in space of highest vectors of the tensor product of irreducible g-modules
|7 VI 7\

n*

8.3. Opers and crystals. According to Feigin and Frenkel, the spectrum of the Gaudin
model is (modulo Bethe Ansatz conjecture) in 1-1 correspondence with the set of monodromy-
free “G-opers on P! with regular singularities of type \; at the marked points z; and a regular
singularity at co. One can define a monodromy-free oper on a nodal curve as a collection of
monodromy-free opers on on each component with regular singularities an the marked points
and at the nodes such that for any pair of intersecting components the corresponding opers
have the same type of singularity at the intersection point. Generalizing the second proof of
Theorem 6.1, one can define a coboundary monoidal category OPERS whose simple objects Ly
are indexed by the set of dominant integral weights A of g, and the tensor product is defined
by the following rule: Ly ® L, = @ M), x Ly,- where M)y, , is the set of monodromy-free
v

LG-opers on CP! having regular singularities with the residues A, u,v at the points 0,1, 0o,
respectively, and regular at other points (for a dominant integral weight v € X define the dual
weight v* € X by the property V5 = V,«). The set |J My ,,, x M, s can be regarded as the

1%
space of monodromy-free opers on the degenerate stable rational curve with 4 marked points
with regular singularities of residues A, p, d, € at the marked points. One can define a transport
of the set of opers along the shortest path in My 4(R) connecting two degenerate curves:

dj : UM)\,;L,V X Mu,6,6 — UM)\,V,e X M[,L,(s,l/'
1% 1%

We can also define a bijection
S M)\,u,l/ — M, v
as the map of the set of opers induced by the holomorphic automorphism z ~— (1 — 2) of CP*.

Conjecture 8.4. The above category with the maps ¥ as the associator morphisms and s :
My — My, as the commutor morphisms is a coboundary monoidal category. Moreover,
it is equivalent to the category of g-crystals.

Corollary 8.5. In particular, for g = sly, we get a bijection between Bethe vectors in the space
of invariants in the triple tensor product and the corresponding set of hives.

8.6. Shift of argument subalgebras. There should be an analog of Theorem 6.1 for shift-
of-argument subalgebra for arbitrary g, cf. [23, 10]. Namely, there is a family of maximal
commutative subalgebras A, C U(g) parameterized by regular elements p € b (in fact, the
subalgebra A, does not change under the dilations of ). The space P(h,¢y) parameterizing the
family A,, is noncompact. On the other hand, each subalgebra from this family is a point in
the appropriate Grassmannian which is compact. Hence there is a natural compactification of
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P(b,ey) parameterizing some commutative subalgebras of U(g) which have the same Poincaré
series as A,,.

Conjecture 8.7. This compactification is the De Concini-Procesi wonderful compactification
for the root hyperplane arrangement, see [4].

The set-theoretical version of this conjecture was proved by V.Shuvalov in 2002, see [26].

Conjecture 8.8. The algebras corresponding to the real points of the above compactification
act with simple spectrum on any finite-dimensional irreducible representation of g.

The conjecture is proved in type A (in fact one can deduce this from the same fact for
Gaudin algebras by Howe duality). Also, it is proved in [10] that for real points p € h,eq the
corresponding algebra A, has simple spectrum in any irreducible g-module V. So it remains
to show that this also holds for boundary points. This gives an action of the fundamental group
of the De Concini-Procesi wonderful compactification on the set of eigenvectors of A, in any
irreducible finite-dimensional representation V). On the other hand, there is an action of the
same fundamental group on the corresponding crystal, which can be obtained from Lusztig’s
braid group action on the irreducible representation of U,(g) on the irreducible representation
V by Drinfeld’s unitarization procedure and taking the limit ¢ — oo.

Conjecture 8.9. ? The above two actions of the fundamental group are isomorphic.

8.10. Relation to the results of D. Speyer and K.Purbhoo. In [27] Speyer defines a
covering of My ,+1(R) whose fiber at a generic point is an intersection of some Schubert varieties
in certain Grassmannian. On the other hand, Mukhin, Tarasov and Varchenko [21] prove that
there is a 1-1 correspondence between the Bethe vectors of the GL, Gaudin model and the
intersection of the same Schubert varieties in the same Grassmannian. So, it is natural to
expect that the following is true:

Conjecture 8.11. The covering of Mg n+1(R) from [27] is isomorphic to our covering of
Mo nt1(R) from Corollary 3.19.

Theorem 1.6 of [27] shows that the combinatorics of this covering can be described in terms
of GLy-crystals, so the analog of Etingof’s conjecture for this covering is mostly proved in [27].
In particular, we expect that Conjecture 8.11 implies Conjecture 1.6.

In [22], Purbhoo studies the monodromy problem for Wronskians, and the answer is given in
terms of Jeu de taquin (which is the same as crystal commutor for tautological representations
of GLy, due to [13]). On the other hand, the results of Mukhin, Tarasov and Varchenko imply
that the monodromy problem for Wronskians is the same as the monodromy problem for Bethe
eigenvalues for GLy Gaudin model with tautological representations of GLy. So we expect
that the results of [22] imply Conjecture 1.6 for tautological representations of GLy.

8.12. Berenstein-Kirillov group. Let g = gly and V), be the symmetric powers of the
standard representation V = CV. By the GLy — GL,, Howe duality one describes the spec-
trum of the algebra A(z) at the caterpillar point z of My 11 (i.e. z corresponding to the
stable rational curve having exactly 3 distinguished points and at least 1 marked point on each
component) as the set of Gelfand-Tsetlin tables for the group GL,. The latter is the set of
integral points of the Gelfand-Tsetlin convex polytope. So we have an action of the pure cactus
group on the Gelfand-Tsetlin polytope. On the other hand, Berenstein and Kirillov described
in [2] some group generated by involutions acting on the Gelfand-Tsetlin polytope by piecewise
linear transformations.

2This was independently conjectured by Joel Kamnitzer and Alex Weekes.
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Conjecture 8.13. Berenstein-Kirillov group is a quotient of the pure cactus group PJ,.

We checked this for Gelfand-Tsetlin polytopes corresponding to 2-row Young diagrams. It
turns out that the involutions generating Berenstein-Kirillov group come from the loops around
the RP!’s embedded as My 4(R) C Mg n11(R).
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