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Abstract

In this study we investigate the processes of diffusion of impurity particles in the
media with stochastic characteristics.
The exact equation with fractal derivation for middle admixture concentration in

fibers with telegraph — type of curve angel is obtained.
Exact solution is found. Admixtures anomalous diffusion effect is shown.
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1. Introduction

In a number of researches of the last years [1 — 5, 7-9] effective approximate methods of the analysis of
process of diffusion of impurity particles in the environments with stochastic characteristics are
developed. In these researches - under stochastic fields, on the base of which there is a transport of
impurity, we understand either outside margin potential [1, 2], or permeability in the porous medias [3-
4, 7-9], or a bend angle of tubes in tubes [5]. The received approximate equations for average
concentration of impurity are contained by operators of fractional differentiation that specifies effects
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of the anomalous diffusion. However, these equations are received under strong assumptions: small
amplitudes of fluctuations of parameters of the environment for space scales large enough for
correlative length; and for time - a lot of big the diffusive time corresponding to correlative length.
Thus, it is rather difficult to estimate accuracy of the received equations and their solutions. In this
sense there is a necessity to have precisely solved model which will allow comparing the exact
decisions corresponding to considered model with structure of decisions, received by approximate
methods. Creation of exact model also is the purpose of the present research.

2. Main Research Hypotheses
As investigated model we will consider ensemble of thin tubes with the constant cross-section section,
located in a plane (x, y). It is supposed that tubes are filled by a liquid in which are impurity particles,
kinetics of which we are interested. The tube angle & of slope to an axis x is stochastic function of
coordinates with the set statistical properties which will be defined more low.

It is obvious that for any realization preservation of number of particles and Fick's law for a
stream of particles leads to the usual equation of diffusion:

2
apO(Z’t)_Doa pO(Z’t_)ZO, (—00<Z<°°), (1)

ot 9z

where p, (z,7) - density (concentration) of impurity, z — longitudinal coordinate (along a tube, ¢ — time
variable. Solution of this equation with Pemenue sroro ypaBuenus c initial conditions p, (z,0)=6(z),

rae &(z) - Dirac delta function (point source), and zero conditions for infinity o (+00,£)=0 looks
like:

— 1 _ Zz
polz.1)= \/4D0texp{ 4D0t}. )

Chosen normalizing on unit allows to treat p, (z,¢) and as concentration of impurity and as

density of distribution of probabilities of a finding of a particle in a point z at the moment of time .
We ought to find the concentration of impurity p(x, y,z) for the arbitrary space point (x,y).
For these we would use formulae:

px,y.0)= [ po(z.t)p(x, y/2)dz, (3)

where conditional density of distribution of probabilities on coordinates (x, y) for the given z along the
tube might be found as:
Pl y/z)=(8(x = x(2))(y - ¥(2))). 4)

Here x(z)zjcos 0(z)dz’, y(z)= I sin8(z')dz". Brackets <> in (4) mean the averaging on a
0 0

casual field 6(z).
For the further we would like to restrict for the case of diffusion along y, so we would be

interested for density function p(y,r)= j p(x, y,)dx . Taking into account (3) and (4), we found:

p(r1)= [ puletplof2lde: ply/2)=(8(y—(2)). ®

It is obvious that the results are determined by stochastic characteristics for the field 6(z). For
the further we suppose that 6(z) is telegraph type stochastic field [3]:
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0(z)=6(-1)"", (6)
where n(0,z) - number of reversal of sign in the interval (0,z). For non-intersecting intervals the
number of reversal of sign are independent and have the Poisson distribution:

(2, - z)f
k!

P(n(z,z,)=k)=e*oal 2220 (7)

with 4 - average reversal of signs for the unit lengths. Parameter u is connected with correlation
lengths [ for the stochastic field by [ =1/ (24£). Moreover, we would assume that @ in (6) — is the casual

variable with the density p(8)= %(5(9 -6,)+58(6+86,)).

3. Equation for p(y,r) Deriving
For the function p(y,7) we would like according with (5) determine p(y/ z). For these we would find
Fourier image for p(y/z):

plk/z)= %jw o(y/z)e™dy = 21 <exp(— iksin @ { (- 1)”<°’Z')dz’j> .

/4
Here the brackets assumes the double averaging for the sign reversal with the help of Poisson
distribution (7) and for @ with the help of the density, so <> = <<>n>e

We also would find the average for Fourier image for the fixed &. For these we would put the
function:

?(z)= <exp[— ik sin ej (- 1)”(0’1"dz’j> u W(z)= <(— 1) exp(ik sin ej (- 1)”<°’z')dz’j> .

Here @(z) and ¥(z) are connected by differential equation:
4P _ _iksin 0¥(z). 9)
dz

For the ¥ we will take into account that for any functional (function of function)

A(Z,I(— 1)"(0’1')dz'J we have [3]:
0

J < (_1)n(O,Z)A> _ i2ﬂ<(_1)n(0,z)>n N <(_1)n(0,z)d_A> ,

dz n dz
where the upper «+» is for z >0, and «—» — for z <0. So we have
d¥y
(2). (10)

— =122 4¥ — ik sin 6D(z
dz

Solutions for (9) and (10) with the obvious initial conditions @(0)=1 and W(0)=1 are the
following:

@(z) 1[1—\/’uiikSiI_lieJexp(—|z|(/l+\/ﬂz—kzsinzﬁ))

2 1> —k*sin

+l{1+ \/ﬂiiksin@e}xp(_kwﬂ_ im0

1 —k’sin’
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By the averaging procedure for € with (8) and taking into account p(k/ z):i@ﬁ(z» g0 We

2
plk/z)= ﬂf{ sinhy42* — ajk’|
27

*1]. 11
T z} (1)

where a, =sin g, - amplitude of fluctuations for telegraph stochastic field.
The reverse Fourier transformation [6] gives:

oly/2)= 2# uz! (ﬂm]+ﬁll{ﬂﬁﬂ-®[m_%j
—ﬂz5(|z| |y|] |

where I, (u ) u I,(u) - modified Bessel functions, ®(x) - unit function.

have the final representation for Fourier image

+cosh u* —alk

(12)

VuuteiBas (12), (2) u (5), HaXOIUM TUIOTHOCTh PACTIPEICIICHUS

17 z z’ ), Y
t)= -exp| — Uz — -1 7" —— |dz. 13)
) am/Doty'/[%('u 4D0t] p( # 4D0tj {ﬂ al (

We can observe that density p(y,7) reduces when vy, ¢ increases. We put below the figure for

p(y,t). For convenience we put the dimensionless variables #°, y', z’, where t=t'/ (4,UZDO)=I'Z',
y=ya,/(2u)= y'aol , 2=7//(2u)= 7. So instead (13) we have:

o(y.1)= \/_ | (1+2t’j exp(—%/—(z;t),z]'lo(% (z’)z—(y')zde'.

¥

Figure 1: Dependence of reduced concentration ,O(y’, t’) of normalized coordinate y”. Line I means #’=0.1;
line 2 —¢t'=0.5; line 3 —¢’'=2; line 4 — t’=10.

Py't)

For the equation for (13) we would use Fourier — Laplace variables (k,g): it means the Fourier
transformation for coordinate y and Laplace transformation for time. We also use:
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plk.q)= +fpo(z,q)p(k/ 2)dz, (14)

where p(k/ z) is determined by (11), and so for o (z,q) by using (2) we have:

1 “12 |Z| 12
,q)=—— exp| ———= ) 15
po(Z Q) \/4_D0 q p{ \/Fo q (15)
Using (15) and (11) for (14), finally we have:
~ q"luyp, +4")
p(k’(I)_ 12 2,2 b q)(k)’ (16)
q+2u\D,q"" + D,ayk

where qo(k):l/ 27 - Fourier image for initial distribution ¢@(y)= p(y,0)=4J(y). We rewrite (16) as
following:

1
Pq—Q=- ql/Z[pq_¢+D0aok ,0] (17
244D,

By passing in (17) for initial variables y and ¢, we have:

dp 1 2 8p 2:0°p

——=———D -Dya , 18

a  2uD, ’ 9y’ (1%
where D!? - fractional operator for time of the order 1/2 in Riemann — Liouville sense [6]. The

analogous equations are used in [3-5, 7-9]. The differences are determined by the concrete model and
stochastic field behavior. We would like to mention that equation (18) is the exact one and for above
cited researches the approximations were used for the length (more than correlation length) and for
time (more than diffusion time which corresponds for correlation length).

4. Abnormal Diffusion
From (18) it is obvious that when we have no fluctuations (a0 =0)we have p(y,7)= p(y,0)=6(y) and

there is no transport of porosity for direction y. Transport of porosity is determined by fluctuations. So
here we have only abnormal diffusion. For the characteristics of the abnormal diffusion we can receive
the average number displacement for the particle for the time ¢. For the typical medias, like (1) it looks

usually like y*> ~¢ for all times. In stochastic medias like we have it not so (formally we have another
type of fractional differential operators

Let us determine F(t) From (16) by using Fourier transformations we have:
245D, +4" y
ply.q)= T —|—|2qu2(qu +2/D, ) |.
2Dyl JDya
From this distribution we have
2Dya,

?(Q) 3/2( 1/2+2,U\/—)

The reverse Laplace transform for (19) gives:

ol 4]

(19)
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where ¢ (4 -«* 4 - probability integral, [ =1/ (24) - correlation length, 7 = lz/ D, - diffusion

2 u
=7l
time. From (20) for r<<7 we have y’(t)=2a.D,t, that corresponds for standard diffusion for

normalized diffusion coefficient D = Doag. But for t >> 7, we have 7(;) =4dall’ /L —2a.1*, which
T

means the abnormal slow diffusion.

5. Details of Deriving

For the details of displacement ?(t) deriving we would use (18)-type relation:

S R GNP L VAP en
"9t 2u+/D, BT

where J ,l/ * - fractional operator for time of the order 1/2 in Riemann — Liouville sense. By using on

both parts of (21) by D? operator and taking into account D"?J"* - unit operator, we would receive

(18). If we multiply (21) by y* and integrate the result on y for (—oo;00), we receive:
2
g2y N Dya, 1 (22)

v,
u 2D,

dy’ 7
where V =—— and ——dy=2.
dt __[oy dy’ Y

Looking at (22) we have the initial condition V(0)= 2D,a; , because we have zero integral of

JV?V for t =0. By acting with operator D"? on both parts of (22), we have:

Dya; 1 1
V= —- D
/u\/; \/; 2u~D,

where according to [6], we have D,l/zlz%. By using D'? for (23), and taking into account
Y4

(23)

;/ZV s

_ d
D"*t"? =0 and D!*D)? =owe have
t

1 oV
DV =— —. (24)
24, D, ot
By substituting the above in to (23), we have finally:
14 s 4D"a’u 1
——4u'DyV =——"—"2— (25)
o H T oot
This is non-uniform linear equation of the first order. It’s solution for the V(0)=2D,a; looks
like:
5 32 2, 1 I Y
vV = 64”LD°I|:2D0£1§ _ 4Di/;aoxu .([674/4 Dyt \d/%:| . (26)

By integrating (26) for time ¢ interval (0;¢), we have (20) for ?(l)
Let us give the graphic for y*(r). For convenience we put the dimensionless variables ', y,

where ¢ = t'/(4,u2D0)= 17, y=ya,/(2u)= y'a,l . For the case instead (20) we have:

G @)= 2| G- e (-0 ()
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Figure 2: Dependence for ( y’)2 (t') of . For small time ( y')2 ~t', for large time W ~ \/? .

Y2 (t)

t!

Let us also mention that the transport of porosity particles along x for our model is determined
by standard diffusion with normalized diffusion coefficient D = D,cos’ 8, = D, (1— aé). From (5) we

have ,(, )= TPO(Z,t)P (x/2)dz » Where p(x/z)=(8(x—x(z))) = 8(x — zcos§,), which gives solution

(t.0)= — L exp [ %), that corresponds standard diffusion oplx,1) _ popP (x.1) _ o for initial
p\x,t)= m P 4 D1 ot ox?

conditions p(x,0)=d(x).
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