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Abstract 

 

In this study we investigate the processes of diffusion of impurity particles in the 

media with stochastic characteristics. 

The exact equation with fractal derivation for middle admixture concentration in 

fibers with telegraph – type of curve angel is obtained. 

Exact solution is found. Admixtures anomalous diffusion effect is shown. 
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1.  Introduction 
In a number of researches of the last years [1 – 5, 7-9] effective approximate methods of the analysis of 

process of diffusion of impurity particles in the environments with stochastic characteristics are 

developed. In these researches - under stochastic fields, on the base of which there is a transport of 

impurity, we understand either outside margin potential [1, 2], or permeability in the porous medias [3-

4, 7-9], or a bend angle of tubes in tubes [5]. The received approximate equations for average 

concentration of impurity are contained by operators of fractional differentiation that specifies effects 
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of the anomalous diffusion. However, these equations are received under strong assumptions: small 

amplitudes of fluctuations of parameters of the environment for space scales large enough for 

correlative length; and for time - a lot of big the diffusive time corresponding to correlative length. 

Thus, it is rather difficult to estimate accuracy of the received equations and their solutions. In this 

sense there is a necessity to have precisely solved model which will allow comparing the exact 

decisions corresponding to considered model with structure of decisions, received by approximate 

methods. Creation of exact model also is the purpose of the present research. 

 

 

2.  Main Research Hypotheses 
As investigated model we will consider ensemble of thin tubes with the constant cross-section section, 

located in a plane (x, y). It is supposed that tubes are filled by a liquid in which are impurity particles, 

kinetics of which we are interested. The tube angle θ  of slope to an axis x is stochastic function of 

coordinates with the set statistical properties which will be defined more low. 

It is obvious that for any realization preservation of number of particles and Fick's law for a 

stream of particles leads to the usual equation of diffusion: 
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where ( )tz,0ρ  - density (concentration) of impurity, z – longitudinal coordinate (along a tube, t – time 

variable. Solution of this equation with Решение этого уравнения с initial conditions ( ) ( )zz δρ =0,0 , 

где ( )zδ  - Dirac delta function (point source), and zero conditions for infinity ( ) 0,0 =∞± tρ  looks 

like: 
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Chosen normalizing on unit allows to treat ( )tz,0ρ  and as concentration of impurity and as 

density of distribution of probabilities of a finding of a particle in a point z at the moment of time t. 

We ought to find the concentration of impurity ( )tyx ,,ρ  for the arbitrary space point ( )yx, . 

For these we would use formulae: 

( ) ( ) ( )∫
+∞

∞−

= dzzyxtztyx ,,,, 0 ρρρ , (3) 

where conditional density of distribution of probabilities on coordinates ( )yx,  for the given z along the 

tube might be found as: 

( ) ( )( ) ( )( )zyyzxxzyx −−= δδρ , . (4) 

Here ( ) ( )∫ ′′=
z

zdzzx
0

cosθ , ( ) ( )∫ ′′=
z

zdzzy
0

sinθ . Brackets ...  in (4) mean the averaging on a 

casual field ( )zθ . 

For the further we would like to restrict for the case of diffusion along y, so we would be 

interested for density function ( ) ( )∫
+∞

∞−

= dxtyxty ,,, ρρ . Taking into account (3) and (4), we found: 

( ) ( ) ( )∫
+∞

∞−

= dzzytzty ρρρ ,, 0 ; ( ) ( )( )zyyzy −= δρ . (5) 

It is obvious that the results are determined by stochastic characteristics for the field ( )zθ . For 

the further we suppose that ( )zθ  is telegraph type stochastic field [3]: 
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( ) ( ) ( )zn
z

,0
1−= θθ , (6) 

where ( )zn ,0  - number of reversal of sign in the interval ( )z,0 . For non-intersecting intervals the 

number of reversal of sign are independent and have the Poisson distribution: 
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with µ  - average reversal of signs for the unit lengths. Parameter µ  is connected with correlation 

lengths l for the stochastic field by ( )µ21=l . Moreover, we would assume that θ  in (6) – is the casual 

variable with the density ( ) ( ) ( )( )00
2

1
θθδθθδθρ ++−= . 

 

 

3.  Equation for ( )ty,ρ  Deriving 

For the function ( )ty,ρ  we would like according with (5) determine ( )zyρ . For these we would find 

Fourier image for ( )zyρ : 
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Here the brackets assumes the double averaging for the sign reversal with the help of Poisson 

distribution (7) and for θ  with the help of the density, so 
θn

...... = . 

We also would find the average for Fourier image for the fixed θ . For these we would put the 

function: 
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Here ( )zФ  and ( )zΨ  are connected by differential equation: 

( )zik
dz

dФ
Ψ−= θsin . (9) 

For the Ψ  we will take into account that for any functional (function of function) 
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where the upper «+» is for 0>z , and «–» – for 0<z . So we have 

( )zФik
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d
θµ sin2 −Ψ±=

Ψ
. (10) 

Solutions for (9) and (10) with the obvious initial conditions ( ) 10 =Ф  and ( ) 10 =Ψ  are the 

following: 
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By the averaging procedure for θ  with (8) and taking into account ( ) ( )
θπ

ρ zФzk
2

1
= , we 

have the final representation for Fourier image 
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where 00 sinθ=a  - amplitude of fluctuations for telegraph stochastic field. 

The reverse Fourier transformation [6] gives: 
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where ( )uI0  и ( )uI1  - modified Bessel functions, ( )xΘ  - unit function. 

Учитывая (12), (2) и (5), находим плотность распределения 
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We can observe that density ( )ty,ρ  reduces when y, t increases. We put below the figure for 

( )ty,ρ . For convenience we put the dimensionless variables t′ , y′ , z′ , where ( ) τµ '4 0

2
tDtt =′= , 

( ) layayy 00 2 ′=′= µ , ( ) lzzz ′=′= µ2 . So instead (13) we have: 
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Figure 1: Dependence of reduced concentration ( )ty ′′,ρ  of normalized coordinate y′ . Line 1 means t’=0.1; 

line 2 – t’=0.5; line 3 – t’=2; line 4 – t’=10. 

 

 
 

For the equation for (13) we would use Fourier – Laplace variables ( )qk , : it means the Fourier 

transformation for coordinate y and Laplace transformation for time. We also use: 
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( ) ( ) ( )∫
+∞
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= dzzkqzqk ρρρ ,, 0 , (14) 

where ( )zkρ  is determined by (11), and so for ( )qz,0ρ  by using (2) we have: 
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Using (15) and (11) for (14), finally we have: 
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where ( ) πϕ 21=k  - Fourier image for initial distribution ( ) ( ) ( )yyy δρϕ == 0, . We rewrite (16) as 

following: 
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By passing in (17) for initial variables y and t, we have: 
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where 21

tD  - fractional operator for time of the order 21  in Riemann – Liouville sense [6]. The 

analogous equations are used in [3-5, 7-9]. The differences are determined by the concrete model and 

stochastic field behavior. We would like to mention that equation (18) is the exact one and for above 

cited researches the approximations were used for the length (more than correlation length) and for 

time (more than diffusion time which corresponds for correlation length). 

 

 

4.  Abnormal Diffusion 
From (18) it is obvious that when we have no fluctuations ( )00 =a we have ( ) ( ) ( )yyty δρρ == 0,,  and 

there is no transport of porosity for direction y. Transport of porosity is determined by fluctuations. So 

here we have only abnormal diffusion. For the characteristics of the abnormal diffusion we can receive 

the average number displacement for the particle for the time t. For the typical medias, like (1) it looks 

usually like 2
y ~ t  for all times. In stochastic medias like we have it not so (formally we have another 

type of fractional differential operators 

Let us determine ( )ty
2 . From (16) by using Fourier transformations we have: 
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From this distribution we have 
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The reverse Laplace transform for (19) gives: 
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where ( ) ∫
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 - probability integral, ( )µ21=l  - correlation length, 0
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Dl=τ  - diffusion 

time. From (20) for τ<<t  we have ( ) tDaty 0
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normalized diffusion coefficient 2
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means the abnormal slow diffusion. 

 

 

5.  Details of Deriving 

For the details of displacement ( )ty
2  deriving we would use (18)-type relation: 
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where 21

tJ  - fractional operator for time of the order 21  in Riemann – Liouville sense. By using on 

both parts of (21) by 21

tD  operator and taking into account 2121

tt JD  - unit operator, we would receive 

(18). If we multiply (21) by 2y  and integrate the result on y  for ( )∞∞− ; , we receive: 
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Looking at (22) we have the initial condition ( ) 2

0020 aDV = , because we have zero integral of 
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21  for 0=t . By acting with operator 21

tD  on both parts of (22), we have: 
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By substituting the above in to (23), we have finally: 
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This is non-uniform linear equation of the first order. It’s solution for the ( ) 2

0020 aDV =  looks 

like: 
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By integrating (26) for time t  interval ( )t;0 , we have (20) for ( )ty
2 . 

Let us give the graphic for ( )ty
2 . For convenience we put the dimensionless variables t′ , y′ , 

where ( ) τµ '4 0

2
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Figure 2: Dependence for ( ) ( )'2
ty′  of t’. For small time ( ) '~

2
ty′ , for large time ( ) '~

2
ty′ . 

 

 
 

Let us also mention that the transport of porosity particles along x for our model is determined 

by standard diffusion with normalized diffusion coefficient ( )2

000

2

0 1cos aDDD −== θ . From (5) we 

have ( ) ( ) ( )∫
+∞

∞−

= dzzxtztx ρρρ ,, 0
, where ( ) ( )( ) ( )0cosθδδρ zxzxxzx −=−= , which gives solution 

( ) 







−=

Dt

x

Dt
tx

4
exp

4

1
,

2

π
ρ , that corresponds standard diffusion ( ) ( )

0
,,

2

2

=
∂

∂
−

∂

∂

x

tx
D

t

tx ρρ  for initial 

conditions ( ) ( )xx δρ =0, . 

 

 

References 
[1] Dean D.S., Drummong L.L. and Horgan R.R., Perturbations schemes for flow in random 

media. J. Phys. A: Math. Gen. 1994. V.27. P.5135 – 5144. 

[2] Stepanyants Y.A., Teodorovich E.V., Effective hydraulic conductivity of randomly 

heterogeneous porous medium. Water Research. 2003. V.39 (3). N.12. P. 1 – 11. 

[3] Erochenkova G., Lima R., A fractional diffusion equation a marker in porous media. Chaos. 

2001. V.11. N.3. P. 495 – 499. 

[4] Logvinova K., Neel M.-Cr., Fractional diffusion in heterogeneous media: iterative metod. 

Izvestia Ingeneronoi akademii nauk: Applied mathematics and Mechanics. 2004. Т.7. С.33 – 

44. (in Russian) 

[5] Logvinova K.V., Neel M.-Cr., A fractional equation for anomalous diffusion in a randomly 

heterogeneous porous media. Chaos. 2004. V.14. N.4. P. 982 – 987. 

[6] Samko S., Kilbas A. and Marichev O. Fractional integrals and derivatives: Theory and 

applications. Gordon and Breach Science Publishers. 1993. 996 P. 

[7] Kozyrev O. and Logvinova K. Models for the Average of the Solutions to a P.D.E. with 

Stochastic Coefficients. European Journal of Scientific Research, 2010. Т. 45. № 3. P. 383—

390. 

[8] Kozyrev O. and Logvinova K. Small Scale Models for the Spreading of Matter in Disordered 

Porous Media. European Journal of Scientific Research, 2010. Т. 45. № 1. P. 64—78. 

[9] Kozyrev O., Logvinova K. and Morozov V. Disordered Structures Models for Heterogeneous 

Media. European Journal of Scientific Research, 2011. Т. 49. № 3. P. 464—467 


