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HIGHER DETERMINANTS AND THE MATRIX-TREE

THEOREM

YURII BURMAN

Introduction

The classical matrix-tree theorem was discovered by G. Kirchhoff in 1847, see
[1]. It relates the principal minor of the n× n Laplace matrix to a particular sum
of monomials indexed by the set of trees with n vertices. Kirchhoff’s theorem has
attracted much attention since then, and produced a wide-branching tree of new
proofs, generalizations, extensions, analogs and applications; a comprehensive sur-
vey of them is far beyond the scope of the current article. To name just a few, let us
mention the all-minors generalization [2], generalization to nonsymmetric Laplace
matrices [3, Section 5.3], to graphs with arbitrary 2-core [4], to the Laplacian of
the discrete line bundle with a connection [5, 6] (essentially anteceded in [7, Section
5]), an analog for Pfaffians [8], a generalization to matrices represented as functions
of rank 1 operators, including analogs to all Coxeter groups [9], and a hyperdeter-
minant version [10]. The original problem by G.Kirchhoff was to find resistance of
a resistor network, but later the theory found applications in so distant areas as
stochastic processes [11] and embedding graphs into surfaces [12].

The aim of this paper is to present a generalization of the (nonsymmetric) matrix-
tree theorem containing no trees and essentially no matrices. Instead of trees we
consider acyclic directed graphs with a prescribed set of sinks, and instead of de-
terminant, a polynomial invariant of the matrix determined by directed graph such
that any two vertices of the same connected component are mutually reacheable
(according to arrows). The exact formulation of the theorem is given in Section 1,
its proof in Section 2, Section 3 contains some corollaries and applications.
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1. Main theorem

Fix positive integers n and k and a field F. Denote by Gn,k the set of all directed
graphs with n vertices numbered 1, 2, . . . , n and k edges numbered 1, 2, . . . , k; graphs
G ∈ Gn,k are allowed to have loops, parallel edges (i.e. edges having the same
starting and terminal vertex) and isolated vertices (i.e. not incident to an edge).
By Gn,k denote a vector space over F spanned by Gn,k.

Let K be a associative commutative F-algebra, and let A be an n × n-matrix
with the matrix elements apq ∈ K. Then 〈A| : Gn,k → K is a F-linear map defined
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2 YU.BURMAN

on the generators as follows:

(1) 〈A|G〉 =
∏

e

ae
−
e+ ;

here the product is taken over all the edges e of G, and e− and e+ are the starting
and the terminal vertex of e. By abuse of notation we will be writing sometimes
〈A|G〉 if G contains less vertices than the size of A (the extra matrix elements of
A simply are not used) or even if G contains more vertices than the size of A, but
the extra vertices are all isolated.

Recall that the generators of Gn,k are graphs where all the edges and vertices
are numbered. The definition of 〈A|G〉 makes use of the vertex numbering, but not
of the edge numbering; so if the graphs G1, G2 ∈ Gn,k differ by edge numbering
only, then 〈A|G1〉 = 〈A|G2〉 for any A.

A loop-breaking operator is defined as a linear operator B : Gn,k → Gn,k acting
on the generators as follows: if G ∈ Gn,k is a graph with m loops attached to the
vertices i1, . . . , im (not necessarily distinct) then one has

(2) B(G) = (−1)m
∑

j1 6=i1
...

jm 6=im

Gj1,...,jm

where Gj1,...,jm is a graph obtained from G by replacement of the loops with the
edges (i1j1), . . . , (imjm). In particular, if G has no loops then B(G) = G. Also
B(G) = G by definition if n = 1 (G contains one vertex).

For two vertices a, b in a directed graph G write a ∼ b if G contains a directed
cycle passing through a and b (equivalently, there is a directed path joining a with b
and a directed path joining b with a); also a ∼ a by definition for any a. Obviously,
∼ is an equivalence relation; so, the set of vertices of any directed graph G is split
into equivalence classes V1, . . . , VN . If N = 1 (any two vertices of G belong to a
directed cycle) then G is called strongly connected. Denote by C(G) the graph
with the vertices V1, . . . , VN ; vertices Vi and Vj . i 6= j, are joined by an edge if G
contains an edge (ab) with a ∈ Vi and b ∈ Vj .

A directed graph G is called acyclic if it has no directed cycles (in particular, no
loops); an equivalent definition is that G = C(G). Apparently, for any graph G the
graph C(G) is acyclic (and contains no parallel edges).

Fix integers n ≥ 1, k ≥ 1, 0 ≤ s ≤ n, and 1 ≤ i1 < · · · < is ≤ n, and denote

by by AC
(i1,...,is)
n,k the set of all acyclic graphs with n vertices and k edges such that

the vertices i1, . . . , is, and only they, are sinks (have no edges starting from them;
isolated vertices are sinks, too). Also denote

x
(i1,...,is)
n,k

def
=

∑

G∈AC
(i1,...,is)

n,k

G ∈ Gn,k

Example 1. An acyclic graph has at least one sink in every connected component.

So, if G ∈ AC
(i1,...,is)
n,k then k ≥ n − β0(G) ≥ n − s, where β0(G) is the number

of connected components of G. If k = n − s then G is a forest with s connected
components. Every its component is a tree containing exactly one vertex ip, and
all the edges in this component are oriented towards ip.

A directed graph G is called strongly semiconnected if every its connected com-
ponent is strongly connected. (Equivalently, C(G) contains no edges). Again, fix n,
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k, s and i1, . . . , is and denote by SSC
(i1,...,is)
n,k the set of all strongly semiconnected

graphs G with n vertices and k edges, such that the vertices i1, . . . , is, and only
they, are isolated. Also denote

y
(i1,...,is)
n,k

def
=

∑

G∈SSC
(i1,...,is)

n,k

(−1)β0(G)G ∈ Gn,k.

Example 2. If G ∈ SSC
(i1,...,is)
n,k then every connected component h of G either is

an isolated vertex or contains at least as many edges as vertices. So, k ≥ n− s; if
k = n− s then G is a collection of oriented cycles (of any length, possibly including
1), and the isolated vertices i1, . . . , is. Such a graph G defines a transposition σ in
the set of all non-isolated vertices: if a 6= i1, . . . , is, then G contains exactly one

edge e with a = e−; then σ(a)
def
= e+. Apparently, (−1)β0(G) = (−1)s sgn(σ); here

sgn(σ)
def
= ±1 depending on the parity of σ. For the graph G there are (n−s)! ways

to number its edges; thus,

〈A|y
(i1,...,is)
n,n−s 〉 = (−1)s(n− s)! detAi1,...,is

where Ai1,...,is is the diagonal minor of the matrix A obtained by deletion of rows
and columns numbered i1, . . . , is. In particular, 〈A|y∅n,n〉 = n! detA. This allows

us to call the expression 〈A|y∅n,k〉 a higher determinant (of degree k) of the matrix

A, and 〈A|y
(i1,...,is)
n,k 〉, a higher minor.

The main result of this article is

Theorem 1. B(y
(i1,...,is)
n,k ) = x

(i1,...,is)
n,k .

We are going to prove it in Section 2.
Let w = {wij | 1 ≤ i 6= j ≤ n} be the set of independent variables; denote

by K the F-algebra of polynomials on all the wij . Let Ln(w) be a n × n-matrix
with the matrix elements ℓij = wij for i 6= j and ℓii = −

∑
p6=i wip; Ln(w) is called

a (nonsymmetric) Laplace matrix. For any graph G ∈ Gn,k the element B(G) is
a sum of graphs having no loops. Thus, 〈A|B(u)〉 for u ∈ Gn,k does not depend
on the diagonal elements of A. The definitions of the Laplace matrix and of the
loop-breaking operator imply now that

〈Ln(w)|u〉 = 〈Ln(w)|B(u)〉.

At the same time, once wij are independent variables, if 〈Ln(w)|G1〉 = 〈Ln(w)|G2〉
for G1, G2 ∈ Gn,k where the graphs G1 and G2 contain no loops then G1 = G2.
So, the following statement is equivalent to Theorem 1:

Theorem 1, second formulation. The higher minor of the Laplace matrix is

〈Ln(w)|y
(i1,...,is)
n,k 〉 = 〈Ln(w)|x

(i1,...,is)
n,k 〉.

Example 3. Let k = n − s. Then by Example 2 〈Ln(w)|y
(i1,...,is)
n,n−s 〉 = (−1)s(n −

s)! det(Ln(w))i1,...,is . A graph G ∈ AC
(i1,...,is)
n,n−s contains n− s edges, and there are

(n− s)! ways to number them. So,

〈Ln(w)|x
(i1 ,...,is)
n,n−s 〉 = (n− s)!

∑

(p1,q1),...,(pn−s,qn−s)

wp1q1 . . . wpn−sqn−s

where the set (p1, q1), . . . , (pn−s, qn−s) is included into the summation if the graph
with the edges (p1, q1), . . . , (pn−s, qn−s) is a s-component forest, each component
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containing exactly one vertex iα. So, this particular case of Theorem 1 (in the
second formulation) is just the classical Matrix-tree theorem (the “diagonal-minors”
version, see [2]). We will use the Matrix-tree theorem as the base of induction in
the proof of Theorem 1.

Remark . Theorem 1 includes the case s = 0. Since an acyclic graph must have a
sink, x∅

n,k = 0, so one has By∅n,k = 0. This is evident for k = n (a particular case

of Example 3): the Laplace matrix Ln(w) is degenerate (the sum of its columns is
0), so detLn(w) = 0. For other k the result does not seem to have an independent
proof which is simpler than a general proof of Theorem 1.

2. Proofs

Let G ∈ Gn,k, and E = {e1, . . . , em} be some set of its edges. Denote by µE(G)
the graph obtained from G by breaking every edge ei ∈ E and replacing it by a
loop attached to the the starting vertex (ei)− of ei. Apparently, the operation µE

has the following properties:

(1) β0(µE(G)) = β0(G \ E) (the graph G with all the edges ei ∈ E deleted).
(2) The sinks of G and µE(G) are the same.
(3) For any pair of directed graphs G,H ∈ Gn,k denote by (G|B|H) the coef-

ficient at G in B(H). Then (G|B|µE(G)) = (−1)#E, and (G|B|H) = 0 is
H 6= µE(G) for any E.

Fix, as above, the vertices i1, . . . , is. Call a set of edges E of the graph G

admissible if µE(G) ∈ SSC
(i1,...,is)
n,k . It follows from Property 2 above that an

admissible set of edges exists if the vertices i1, . . . , is, and only they, are the sinks
of G (sinks of a strongly semiconnected graph are exactly its isolated vertices). The

set of all admissible sets of edges of the graph G will be denoted Adm(i1,...,is)(G),
or just Adm(G).

For any set R of sets of edges of the graph G denote

Z(R)
def
=

∑

E∈R

(−1)#E+β0(G\E).

Properties 1 and 3 of the operator µE imply that the following statement is equiv-
alent to Theorem 1:

Theorem 1, third formulation. Z(Adm(G)) = (−1)k if G ∈ AC
(i1,...,is)
n,k and

Z(Adm(G)) = 0 otherwise.

We are going to prove Theorem 1 in its third formulation by a simultaneous
induction by n (the number of vertices) and k (the number of edges).

2.1. Induction base.

2.1.1. Vertices. The induction base are graphs with n = 2 vertices a and b and
arbitrary number of edges. Let the graph G contain p edges ab and q edges ba;
there are

(
p+q
p

)
such graphs that differ by edge numbering.

The graph belongs to AC
(i1,...,is)
n,p+q if and p = 0 or q = 0. In this case the only edge

set E ∈ Adm(G) consists of all the edges, so
∑

E∈Adm(G)(−1)#E+β0(G\E) = (−1)p

(#E = p, β0 = 2).
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Let p, q > 0. A set E of edges belongs to Adm either if it contains u < p edges
ab and v < q edges ba or if it consists of all the edges. In the first case there are(
p
u

)(
q
v

)
ways to choose edges for E. So, the sum in question is

Z(Adm(G)) =

(
p+ q

p

)(
(−1)p+q +

p−1∑

u=0

(
p

u

) q−1∑

v=0

(
q

v

)
(−1)u+v+1

)

=

(
p+ q

p

)(
(−1)p+q −

p−1∑

u=0

(
p

u

)
(−1)u

q−1∑

v=0

(
q

v

)
(−1)v

)

=

(
p+ q

p

)(
(−1)p+q − ((1− 1)p − (−1)p)((1 − 1)q − (−1)q)

)
= 0

(p, q > 0, so (1 − 1)p = (1− 1)q = 0).

2.1.2. Edges. It follows from Example 2 that the minimum number of edges in a
strongly semiconnected graph is k = n − s. It was shown in Example 3 that for
k = n− s Theorem 1 is equivalent to the Matrix-tree theorem of [2].

2.2. Induction step. Let the statement be proved for all graphs G containing less
than n vertices or n vertices and less than k edges.

Consider several particular cases.

2.2.1. G ∈ Gn,k is strongly connected (and therefore s = 0). Let e be an edge of G,
and not a loop. Denote by Adm+(G) ⊂ Adm(G) the set of all E ∈ Adm(G) such
that e ∈ E, and by Adm−(G) ⊂ Adm(G) the set of all E ∈ Adm(G) such that
e /∈ E.

The assertion E ∈ Adm+(G) is equivalent to (E \ {e}) ∈ Adm(G \ e), where
G \ e is the graph G with e deleted. So,

Z(Adm+(G)) = −Z(Adm(G \ {e})) = 0,

by the induction hypothesis.
If E ∈ Adm−(G) then E ∈ Adm(G/e) where G/e is the graph G with the

edge e contracted. If, vice versa, E ∈ Adm(G/e) then either E ∈ Adm−(G) or

E ∈ Adma→b(G) where by Adma→b(G) we denote the set of sets E of edges such
that C(µE(G)) contains a single edge joining a strongly connected component Va

containing a with the component Vb containing b. The graphs µE(G/e) and µE(G)
are homotopy equivalent, and therefore contain the same number of connected
components. Thus,

Z(Adm−(G)) = Z(Adm(G/e))−Z(Adma→b(G)) = −Z(Adma→b(G))

by the induction hypothesis.
Denote by V a partition Va ⊔Vb ⊔V3 ⊔· · · ⊔VN of the set of vertices of the graph

G such that a ∈ Va and b ∈ Vb. Also denote by AdmV (G) the set of edge sets E
such that Va, . . . , VN are strongly connected components of the graph µE(G) (i.e.
vertices of the graph C(µE(G))); then

Z(Adma→b(G)) =
∑

V

Z(AdmV (G)).

On the other hand,

(3) Z(AdmV (G)) = (−1)#EV Z(Adm(G \ EV ))
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where EV is the set of all edges f 6= e of G starting at the vertex f− ∈ Vi and
terminating at the vertex f+ ∈ Vj such that i 6= j. Since G is strongly connected,
EV 6= ∅ for any V , so the right-hand side of (3) is 0 by the induction hypothesis.

2.2.2. G ∈ Gn,k is strongly semiconnected. Let G1, . . . , GN be connected compo-
nents ofG. Then E ∈ Adm(G) if and only if E = E1∪· · ·∪EN whereEi ∈ Adm(Gi).
So,

Z(Adm(G)) = Z(Adm(G1)) . . .Z(Adm(GN )).

It follows from Section 2.2.1 that if at least one Gi contains more than one vertex
then Z(Adm(Gi)) = 0, hence Z(Adm(G)) = 0. If every component contains one
vertex then Z(Adm(G)) = 1.

2.2.3. General case. Let V1, . . . , VN be sets of vertices of strongly connected com-
ponents of the graph G; N ≥ 2. Then if E ∈ Adm(G) then EV ⊂ E in the notation
of Section 2.2.1, and E \ EV ∈ Adm(G \ EV ), so that

Z(Adm(G)) = (−1)#EV Z(Adm(G \ EV )).

If G is not strongly semiconnected then EV 6= ∅ and by the induction hypothesis
Z(Adm(G \ EV )) = 0 if #Vi > 1 for at least one i. If #Vi = 1 for all i, which

is equivalent to G ∈ AC
(i1,...,is)
n,k , then Z(Adm(G \ EV )) = 1, and the theorem is

proved.

3. Corollaries

3.1. Undirected graphs. Denote by Un,k the set of undirected graphs with n
vertices numbered 1, . . . , n and k edges numbered 1, . . . , k, and by Un,k, the vector
space spanned by Un,k. If A is a symmetric n×n-matrix then for any u ∈ Un,k one
can define 〈A|u〉 by (1) as before. Denote by LSn(w) the symmetric Laplace matrix,
i.e. the symmetric n×n-matrix obtained from Ln(w) by substitution wji = wij for
all 1 ≤ i < j ≤ n.

The loop-breaking operator B : Un,k → Un,k is defined by the same formula (2)
as for directed graphs. Apparently, 〈LSn(w)|u〉 = 〈LSn(w)|B(u)〉 for any u ∈ Un,k.

For a graph G ∈ Un,k and a set of vertices 1 ≤ i1, . . . , is ≤ n denote by
Ai1,...,is(G) the number of ways to orient the edges of G (not including loops) so

that the resulting directed graph would belong to AC
(i1,...,is)
n,k (i.e. becomes acyclic

and has i1, . . . , is, and only them, as sinks), and Ci1,...,is(G), the number of ways

to orient the edges of G so that the result would belong to SSC
(i1,...,is)
n,k .

Corollary 1. BY
(i1,...,is)
n,k = X

(i1,...,is)
n,k where Y

(i1,...,is)
n,k

def
=

∑
G∈Un,k

(−1)β0(G)C(i1,...,is)(G)G

andX
(i1,...,is)
n,k

def
=

∑
G∈Un,k

Ai1,...,is(G)G. In particular, 〈LSn(w)|Y
(i1,...,is)
n,k 〉 = 〈LSn(w)|X

(i1,...,is)
n,k 〉.

Example 4. Let k = n + 1, and consider first a strongly connected graph H ∈
Gn,n+1. There are two types of such graphs:

(1) The 8-graph: a union of two directed cycles with one common vertex a and
without common edges.

(2) The Θ-graph: a union of three directed paths. Two of them start at a
vertex a and end at a vertex b, and the third starts at b and ends at a. The
paths have no common edges and no common vertices except a and b.
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A directed graph H ∈ SSC∅

n,n+1 consists of an arbitrary number of oriented cy-
cles and one strongly connected component with n1 vertices and n1+1 edges. Thus,
for an unidrected graph G ∈ Un,k one has C∅(G) 6= 0 if and only if G contains sev-
eral connected components homeomorphic to circles and one connected component
homeomorphic to either a wedge of two circes or to the union of three segments
with common endpoints. We will call G a 8-graph or a Θ-graph depending on the
character of this component. Denote by m(G) the number of circle components
that are not loops. Any such component has 2 strongly connected orientations
(clockwise and counterclockwise), the 8-graph has them 4 (each cycle should be
oriented clockwise or counterclockwise), and the Θ-graph has 6 (two lines directed
one way, and the third line, the opposite way). So,

Y ∅

n,n+1 = 4
∑

G is a 8-graph

2m(G)(−1)β0(G)G+ 6
∑

G is a Θ-graph

2m(G)(−1)β0(G)G.

3.2. Schrödinger matrices. Let diag(λ1, . . . , λn) denote the n × n-matrix with
λ1, . . . , λn on the main diagonal, all the other elements being 0. The matrix

Ln(w, λ)
def
= Ln(w)+diag(λ1, . . . , λn) is called a Schrödinger matrix by analogy with

the Schrödinger operator: a sum of the Laplace operator and the diagonal (multipli-
cation) operator. By dimensional reasons it is clear that actually any n× n-matrix
is a Schrödinger matrix for some wij , i 6= j, and λi; diagonal matrix elements are
related to these coordinates by a linear transformation: wii = λi −

∑
j 6=i wij .

Denote

ÃC
(i1,...,is)

n,k =
⋃

{j1,...,jt}⊆{i1,...,is}

AC
(j1,...,jt)
n,k

the set of all graphs G ∈ Gn,k containing no directed cycles and no sinks except
possibly i1, . . . , is; Also denote

x̃
(i1,...,is)
n,k

def
=

∑

G∈ÃC
(i1,...,is)

n,k

G =
∑

{j1,...,jt}⊆{i1,...,is}

x
(j1,...,jt)
n,k .

Corollary 2. The higher determinant of the Schrödinger matrix is 〈Ln(w, λ)|y
∅

n,k〉 =∑
s

∑
i1,...,is

λi1 . . . λis〈Ln(w, λ)|x̃
(i1 ,...,is)
n,k 〉.

Proof. Let G ∈ Gn,k have loops attached to the vertices p1, . . . , pN (where some pi
may coincide). Then

〈Ln(w, λ)|G〉 = (λp1 −
∑

q

wp1q) . . . (λpN
−
∑

q

wpN q)
∏

e is not a loop

we
−
e+

=
N∑

s=0

∑

{{i1,...,is}}⊆{{p1,...,pN}}

λi1 . . . λis〈Ln(w)|Gi1,...,is〉,

where Gi1,...,is is the graph G with the loops at the vertices i1, . . . , is deleted, and
double curly braces mean “sets with repetitions” where elements are allowed to
coincide (so that {{1, 1, 2}} ⊂ {{1, 1, 2, 3}} but {{1, 2, 2}} 6⊂ {{1, 1, 2, 3}}). One has

G ∈ SSC∅

n,k if and only if Gi1,...,is SSC
(j1,...,jt
n,k with {{j1, . . . , jt}} ⊆ {{i1, . . . , is}};

now the result follows from Theorem 1 in the second formulation. �
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