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The preemptive single machine scheduling problem of minimizing the total weighted completion time
with arbitrary processing times and release dates is an important NP-hard problem in scheduling theory.
In this paper we present an efficient high-quality heuristic for this problem based on the Weighted Shortest
Remaining Processing Time (WSRPT) rule. The running time of the suggested algorithm increases only
as a square of the number of jobs. Our computational study shows that very large size instances might be
treated within extremely small CPU times and the average error is always less than 0.1%.
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1. Introduction

In this paper we present an efficient heuristic, which returns high-quality solutions for the pre-
emptive single machine scheduling problem of minimizing the total weighted completion time
with arbitrary processing times and release dates. The problem is defined as 1|pmtn; rj| ∑ wjCj in
Graham’s notation [13]. The suggested heuristic is flexible and can potentially be applied to more
complex scheduling problems with many constraints. It is very efficient and can be performed
many times for solving subproblems in metaheuristic approaches and exact branch-and-bound,
branch-and-cut, branch-and-price, data correcting [12], tolerance-based [9], and other enumer-
ation type algorithms (see, e.g. [23]). It is also applicable for very large size instances, which
cannot be treated by either general purpose software or the most efficient available specialized
algorithms [1]. The considered 1|pmtn; rj| ∑ wjCj problem is known to be NP-hard [16], and
solving it for large number of jobs or long processing times might be CPU time consuming.

Heuristic approaches to theoretical problems are also important for more complicated prac-
tical problems in scheduling theory. For instance, there are a lot of single machine scheduling
approaches that are successfully applied in multi-machine environment [19,22]. There are many
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examples when solving an NP-hard scheduling problem is reduced to solving many relaxed prob-
lem instances by means of exact enumeration algorithms [3,20]. Calculation of an exact solution
can be significantly sped up by using a good heuristic in branch-and-bound approaches [14].
Heuristic algorithms for not complicated scheduling problems usually have a guaranteed analytical
estimation of their accuracy [10,11].

Many practical applications of scheduling problems have been indicated by the so-called online
scheduling algorithms [2]. Nowadays online scheduling algorithms are of significant importance
in the field of manufacturing and service industries due to the volatile competitive industrial
environment. In the online scheduling environment new jobs appear at random time moments
unknown beforehand. The number of jobs is not known in advance, and no information is known
about any future jobs.

Our heuristic is an online scheduling algorithm. It applies the weighted shortest remaining
processing time (WSRPT) rule to find high-quality solutions to the 1|pmtn; rj| ∑ wjCj scheduling
problem. This means that the schedule is built consequently, and for every time moment we take
the job, which currently has the shortest weighted remaining processing time among all the jobs
available at this time moment. The computational study shows that our WSRPT heuristic finds
solutions extremely close to an optimal one.

The suggested algorithm is also applicable to scheduling problems with availability constraints
like the 1; NC|pmtn; rj| ∑ wjCj problem that is also NP-hard [21,22]. In this case the remain-
ing processing time in the WSRPT rule should be increased by the total length of periods of
unavailability intersecting with the processing period.

In this paper we are not going to overview the computational complexity of scheduling problems
related to 1|pmtn; rj| ∑ wjCj. Such details can be found at the website of Brucker and Knust [6]
(see also [15]). Historical roots of this problem can be found in [13,17,18], and overviews in [5,8].
Our flexible and efficient heuristic approach is motivated by practical applications, which really
need this flexibility and efficiency [4].

The paper is organized as follows. In the next section we provide the Boolean Linear Program-
ming (BLP) model for the considered problem and report the threshold parameter values, for
which the largest size instances can be solved to optimality by means of the CPLEX 12 software.
Section 3 contains a description of our WSRPT heuristic and the local optimality theorem as a
motivation for this approach. The computational study of the heuristic is presented in Section 4,
and the final section concludes the paper with a short summary.

2. Problem formulation

The problem 1|pmtn; rj| ∑ wjCj can be described as follows. We are given n ≥ 2 jobs that need
to be processed on one machine. Each job j has an arbitrary processing time pj, release date rj,
and priority weight wj. The release date rj is the time moment, at which job j becomes available
for processing. The weight wj can be seen as a priority factor of job j. Preemptions are allowed,
which means that the processing of any job can be interrupted at any time and any number of
times in favour of other jobs. The objective is to process the jobs, such that the total weighted
completion time

∑
wjCj is minimized, where Cj is the completion time of job j. Also we assume

that there are no idle time intervals. This means that the release dates should be such, that there
exists a solution, in which at every time moment t = 1, 2, . . . ,

∑n
j=1 pj some job is processed on

the machine.
To find an exact solution to the 1|pmtn; rj| ∑ wjCj problem we present our BLP model. Let us

define T = ∑n
j=1 pj and pmax = max pj. In our BLP model parameters wj are replaced with wjkt

parameters. We divide every job j into pj unit parts k ∈ {1, 2, . . . , pj}, and each of these parts k
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should be processed at some time moment t ∈ {1, 2, . . . , T}. The following indices and parameters
are used in the BLP model.

j ∈ {1, 2, . . . , n} job index;

k ∈ {1, 2, . . . , pj} job part index;

t ∈ {1, 2, . . . , T} time index;

∀k = 1, 2, . . . , pj − 1 wjkt =
{

0 for rj + k ≤ t ≤ T − pj + k;

∞ otherwise.

wjpjt =
{

wjt for rj + pj ≤ t ≤ T ;

∞ otherwise.

The decision variables are

xjkt =
{

1 if the k-th part of job j is assigned to time moment t;

0 otherwise.

The BLP model is as follows

min
n∑

j=1

pj∑
k=1

T∑
t=1

wjktxjkt (1)

subject to
T∑

t=1

xjkt = 1, j = 1, . . . , n, k = 1, . . . , pj; (2)

n∑
j=1

pj∑
k=1

xjkt = 1, t = 1, . . . , T ; (3)

T∑
i=t+1

pj−1∑
k=1

xjki ≤ pj(1 − xjpjt), j = 1, . . . , n, t = 1, . . . , T − 1; (4)

xjkt ∈ {0, 1}, j = 1, . . . , n, k = 1, . . . , pj, t = 1, . . . , T . (5)

The objective function (1) is the total weighted completion time. Constraints (2) require that
every part k of every job j is assigned to exactly one time moment t ∈ {1, 2, . . . , T}. Constraints (3)
require that at every time moment t only one job part k is processed. Constraints (4) require that
the last (pj-th) part of every job j is scheduled after all its previous parts k = 1, 2, . . . , pj − 1.

To find out how large instances could be solved exactly by means of this BLP model we test
it on randomly generated instances. These instances are generated in the same way as suggested
in [1]:

(1) wj is randomly selected from interval [1, 100];
(2) pj is randomly selected from interval [1, 100];
(3) rj is randomly selected from interval [0, T − pj];
(4) If the generated instance has no solutions without idle time intervals, it is regenerated until it

has such a solution.

For different number of jobs n = 5, 10, 15, 20, 25 we generate 50 instances, solve every instance
using the CPLEX software with our BLP model, and measure an average time in seconds. The
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results for different values of n are given in Table 3 (‘exact model’ column). It is easy to see that
the exact solution of this problem requires considerable time, which quickly increases when n
is increased. While all the 50 generated instances for n = 5 and n = 10 are solved in less than
30,000 s, for n = 15 there are three instances, which have failed to be solved to optimality within
this time limit (see ‘timeouts’ column in Table 3), for n = 20 there are already 6 timeouts, and for
n = 25 there are 24 timeouts. The average time for the instances, which have been solved within
30,000 s, is given in column ‘mean’. It quickly increases from 1 s for n = 5 to more than 20,000 s
for n = 25.

3. The WSRPT heuristic

In this section we justify the weighted shortest remaining processing time (WSRPT) rule based
on which we design our heuristic. Below we provide some theoretical results showing the local
optimality of this rule for the considered problem 1|pmtn; rj| ∑ wjCj.

Proposition 3.1 In an optimal schedule there are no ‘intersecting’ jobs: such jobs i and j, that
at first job j interrupts i and then i interrupts j. (See two examples in Figure 1, where ellipses
mean some jobs other than i and j.)

Proof We prove the proposition by contradiction. Assume that the statement of the proposition
is wrong and an optimal solution has intersecting jobs i and j as shown in Figure 1. Note that in
the general case there could be a number of other jobs in different parts of an optimal schedule
between jobs i and j. Such jobs are shown by ellipses in the figure.

Let us swap the first two parts of job j with the second part of job i in order to complete job i
earlier. We do this swap without moving any of the other jobs shown by ellipses in Figure 1. There
are two different cases shown in this figure. In the first case the second part of job i is shorter than
the first part of job j. In the second case it is longer. It is always possible to make this swapping
because we satisfy all the same release date constraints. For job i we do not move its first part
so its release date constraint is satisfied. For job j we move its first part righter so its release date
constraint is also satisfied. All the other jobs shown by ellipses are not moved.

The solutions for the two cases obtained after swapping the jobs are shown in Figure 2. In
the optimal solution (Figure 1) jobs i and j make the following contribution to the objective
function: witi + wjtj. In the solution in Figure 2 their contribution is wit′i + wjtj. Since t′i < ti this

tt i t j

i ... j ... j i ... j

tt i t j

i ... j ... j i ... j

Figure 1. Two instances with intersecting jobs.

t t ′i ti t j

i ... i j ... j j ... j

tt ′
i ti t j

i ... i ... i j ... j

Figure 2. The two instances after swapping of parts of the intersecting jobs.
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r j t j ti
i j ... j ... i

r j t j ti
i j ... j ... i

Figure 3. Two cases when job j interrupts job i after time moment rj .

r j t ′j t j ti
i j j i ... i ... i

r j t ′j t j ti
i j j ... j i ... i

Figure 4. The two cases after moving parts of jobs i and j.

contribution is less than in the optimal solution: wit′i + wjtj < witi + wjtj. All the other jobs stay
on the same positions in the schedule. So we have decreased the value of the objective function.
This contradicts with the optimality of the original solution and so our assumption is wrong and
the statement of the proposition is true. �

Proposition 3.2 In an optimal schedule any job i can be interrupted by another job j only at
time moment rj.

Proof We prove the proposition by contradiction. Assume that the statement of the proposition
is wrong and in an optimal solution job j interrupts job i after time moment rj. According to the
Proposition 3.1 job i cannot intersect with job j. So the two cases shown in Figure 3 are possible.
Note that there could be a number of other jobs in different parts of an optimal schedule between
jobs i and j. Such jobs are shown by ellipses in the figure.

Let us move all the parts of job j to the left so that it starts from time moment rj in order to
complete job j earlier. The part of job i in the interval from rj to the first part of job j should be
moved to the time moments freed after moving job j. We do this move without moving any of
the other jobs shown by ellipses in Figure 3. There are two different cases shown in this figure.
In the first case the second part of job j is shorter than the interval from rj to the first part of job
j. In the second case it is longer. It is always possible to make this movement because we satisfy
all the same release date constraints. For job i we do not move its first part so its release date
constraint is satisfied. For job j we move its first part to start from its release date rj. All the other
jobs shown by ellipses are not moved.

The solutions for the two cases obtained after moving the jobs are shown in Figure 4. In
the optimal solution (Figure 3) jobs i and j make the following contribution to the objective
function: witi + wjtj. In the solution in Figure 4 their contribution is witi + wjt′j . Since t′j < tj this
contribution is less than in the optimal solution: witi + wjt′j < witi + wjtj. All the other jobs stay
on the same positions in the schedule. So we have decreased the value of the objective function.
This contradicts with the optimality of the original solution. So our assumption is wrong and the
statement of the proposition is true. �

From Proposition 3.2 it follows that after a job is started it should not be interrupted up to the
closest release date. So in our algorithm we do not need to consider every time moment and apply
WSRPT rule to it. We should consider only time moments corresponding to release dates and to
completion dates. The next theorem shows the local optimality of the WSRPT rule.
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Definition 3.3 Scheduling of jobs j1, . . . , jk available at time moment t is called locally optimal
if it makes the smallest possible contribution to the objective function provided that all the other
jobs available only after time moment t are ignored.

Theorem 3.4 Consider an optimal schedule given up to time moment t at which there are k jobs
j1, . . . , jk available for processing (both already started and not yet started jobs) with remaining
processing times ρj1 , . . . , ρjk correspondingly. If these k jobs are the only jobs available for
processing in time interval from t to t + ∑k

i=1 ρji , then it is locally optimal to schedule these jobs
according to the WSRPT rule, i.e. in the decreasing order of the weight to remaining processing
time ratio (the first job to be scheduled should have the maximal value of wj/ρj).

Proof Since jobs j1, . . . , jk are available from time moment t and there are no jobs available after
it up to time moment t + ∑k

i=1 ρji , then according to Proposition 3.2 there will be no preemptions
in an optimal schedule at interval from t to t + ∑k

i=1 ρji . This means that the problem of optimal
scheduling of these jobs is equivalent to the scheduling problem 1‖ ∑

wjCj without preemptions
and release dates where the processing time of job j is equal to the remaining processing time ρj

in the original problem. The optimal solution for this problem is obtained by the WSPT rule [24].
So the jobs should be scheduled in the decreasing order of the weight to remaining processing
time ratio wj/ρj. �

Corollary 3.5 In an optimal schedule it is locally optimal not to interrupt processing of job j
at time moment t if and only if it has the maximum ratio wj/ρj among all the jobs available at
this time moment.

Proof According to Theorem 3.4, we should schedule job j first (which means that it is not
interrupted at time moment t) if it has the maximum ratio wj/ρj among all the available jobs.
Otherwise, we should interrupt it with another job which has the maximum weight to the remaining
processing time ratio. �

We illustrate the WSRPT rule by means of an example which also shows that the WSRPT
heuristic does not always return an optimal solution. Let the number of jobs be n = 4 and let the
processing times, weights and release dates be defined by Table 1. The WSRPT solution is also
given in Table 1 (numbers show the scheduled jobs). For the first two time moments t = 1, 2 the
only available job is job 1, so it occupies the first two cells. For time moment t = 3 we calculate
the weight to remaining time ratio for jobs 1 and 2: w1/ρ1 = 1

1 = 1.0, w2/ρ2 = 3
2 = 1.5. So job

Table 1. Processing times pj , weights wj ,
and release dates rj .

j 1 2 3 4

pj 3 2 2 2
wj 1 3 7 7
rj 1 3 4 4

WSRPT solution

1 1 2 3 3 4 4 2 1

Optimal solution

1 1 1 3 3 4 4 2 2
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2 is scheduled at t = 3. For t = 4 w2/ρ2 = 3
1 = 3.0, w3/ρ3 = 7

2 = 3.5, w4/ρ4 = 7
2 = 3.5. We do

not calculate the ratio for job 1 here because according to Proposition 3.1 it cannot intersect with
job 2. So job 3 is scheduled at t = 3 and according to Proposition 3.2 we complete it at t = 5
without interruption. For t = 6 w2/ρ2 = 3

1 = 3.0, w4/ρ4 = 7
2 = 3.5 (again job 1 is not considered

because of the intersection with job 2). So job 4 is scheduled at t = 6 up to its completion at
t = 7. At t = 8 only job 2 can be scheduled without intersections and at t = 9 job 1 is completed.
The value of the objective function for this solution is 1 · 9 + 3 · 8 + 7 · 5 + 7 · 7 = 117. But
the optimal schedule is (1, 1, 1, 3, 3, 4, 4, 2, 2) (Table 1) with the total weighted completion time
1 · 3 + 3 · 9 + 7 · 5 + 7 · 7 = 114.

4. Computational experiments

The computational complexity of our heuristic is determined by the computational complexity of
the WSRPT rule which is O(n) on each step of the heuristic. Since there are no idle time intervals
the total number of steps is not greater than npmax. The WSRPT heuristic stores in memory at
most n wj/ρj ratios. So the heuristic has time complexity of O(n2pmax) and space complexity of
O(n).

The computational experiments are performed on Intel i7 machine with 2.50 GHz and 8 GB
of memory. Our heuristic is fast enough to solve problems with the number of jobs n = 1000
and the processing times up pj ∼ 1000 in 10 s. For the greater number of jobs n = 10,000 and
pj ∼ 10,000 the algorithm needs about 3 h. Average computation times for randomly generated
instances are given in Table 2. The average time is computed over 50 instances.

To test the quality of heuristic solutions we take n from set {5, 10, 15, 20, 25} and pj ∈ [1, 100].
For each n we randomly generate 50 instances in the way described above. Every instance is
solved exactly by CPLEX 12 software using the BLP model and by the WSRPT heuristic. Then
we compute the minimum, average, and maximum relative error of the heuristic solutions over
the 50 instances. The results are presented in Table 3. As it can be seen the WSRPT heuristic
finds solutions of high quality and the average error does not exceed 0.08% for any combination

Table 2. Computational time of the WSRPT heuristic.

n pmax Time (s) n pmax Time (s) n pmax Time (s)

500 400 0 2000 2000 79 10,000 400 406
500 1000 2 5000 400 98 10,000 1000 1043
1000 400 4 5000 1000 261 10,000 2000 2085
1000 1000 10 5000 2000 522 10,000 4000 4167
1000 2000 21 5000 4000 1043 10,000 10,000 10,427
2000 400 17 5000 10,000 2609 10,000 20,000 20,855
2000 1000 38

Table 3. Quality of the WSRPT heuristic.

Time, exact model (s) Time, heuristic (s) Error (%)

n Timeouts Min Mean Max Min Mean Max Min Mean Max

5 0 0.01 1 50 0 0 0 0 .06 2.4
10 0 1 31 280 0 .0001 .0002 0 .04 0.7
15 3 7 2455 >30,000 .0002 .0002 .0003 0 .06 0.7
20 6 15 8870 >30,000 .0002 .0003 .0004 0 .08 0.9
25 24 26 22,807 >30,000 .0005 .0005 .0006 0 .06 0.5
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of n and pj values. We have not considered large values for n because even for n = 25 half of the
instances have not been solved in 30,000 s (about 8 h) by the CPLEX. The 50 generated instances
for n = 25 have required more than 360 h (15 days) to be solved exactly. We present the results
only for pj ∈ [1, 100] because for smaller values of pj the average and maximal error are virtually
the same and for greater values the errors are even smaller.

5. Concluding remarks

In this paper we develop an efficient high-quality heuristic for the 1|pmtn; rj| ∑ wjCj scheduling
problem. The suggested heuristic is based on the WSRPT rule and has the computational com-
plexity of O(n2pmax) and the space complexity of O(n). The computational experiments show that
the average relative error of the solutions found by our heuristic is less than 0.1% for any size of
the tested problem instances. The quadratic computational complexity of our algorithm allows to
solve extremely large instances with thousands of jobs in a reasonable time. This provides new
avenue of research directions by means of incorporation of our heuristic within the well-known
exact enumeration type algorithms as well as within metaheuristics to find high-quality schedules
to more complicated practical scheduling problems including multi-machine scheduling, online
scheduling, scheduling with availability and other constraints.
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