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Abstract—In this paper we consider sequences of functions that are defined on a subset of the real
line and take on values in a uniform Hausdorff space. For such sequences we obtain a sufficient
condition for the existence of pointwise convergent subsequences. We prove that this generalization
of the Helly theorem includes many results of the recent research. In addition, we prove that the
sufficient condition is also necessary for uniformly convergent sequences of functions. We also obtain
a representation for regular functions whose values belong to the uniform space.
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1. INTRODUCTION

According to the classical Helly selection principle [1] ([2], P. 208, lemma 2), each infinite uniformly
bounded family of monotone real functions defined on a segment [a, b] from R contains a pointwise
convergent on [a, b] subsequence. This Helly theorem is also valid for an arbitrary nonempty subset T
from R (see, e.g., [3]) and for a uniformly bounded sequence of functions with uniformly bounded Jordan
variations. Most generalizations of the Helly selection principle are based on the uniform boundedness
of a sequence of functions and their generalized variations (see [4–7] for real-valued functions and [3,
8–16] for functions that take on values in a metric or Banach space). Such selection principles have
many applications [3, 8–10, 12–14], because they are efficient in proving the existence theorems; for
example, they are widely used in the convergence theory for Fourier series and in the theory of stochastic
processes. Generalizations of the Helly theorems are also applied in the multivalued analysis for proving
the existence of regular selections for multifunctions of bounded generalized variation, and in studying
nonlinear superposition operators [3].

In [17, 18] one first presents a selection principle for one-variable functions with values in a uniform
space. This principle implies most known generalizations of the Helly theorem with restrictions on
generalized variations [3–16]. Moreover, the restriction on the modulus of variation of functions from
the initial sequence that is a base of the selection principle proposed in [17, 18] is not only a sufficient
condition for the existence of a pointwise convergent subsequence, but also the necessary condition for
the uniform convergence of the sequence of functions (as distinct from the known selection principles
[3–16]).

In this paper we generalize the Helly theorem for a sequence of functions with values in a Hausdorff
uniform space; the obtained result includes the selection principle proposed in [17, 18].

Section 2 contains the main definitions and statements of the obtained results. In Section 3 we
adduce some auxiliary assertions and study regular functions with respect to a dense subset of the
definition domain. In Section 4 we prove the basic theorems and compare the main result (Theorem 1)
with the selection principle proposed in [17, 18].

Results of this paper were announced in [19, 20].

*E-mail: tretyachenko_y_v@mail.ru.
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2. MAIN DEFINITIONS AND RESULTS

In what follows we assume that (X,U) is a Hausdorff uniform space with a set of pseudometrics
{dp}p∈P of uniformity U ([21], Chap. 6), where P is some index set; in particular, each pseudometric dp

is uniformly continuous on X × X with respect to the product uniformity ([21], P. 243, theorem 11), i.e.,
Vp,r ∈ U for each r > 0, where Vp,r = {(x, y) ∈ X × X | dp(x, y) < r}. Recall that if {dp}p∈P is a set of
pseudometrics of a uniformity U , then the family {Vp,r | p ∈ P, r > 0} is a base of the uniformity U , i.e.,
for any U ∈ U there exist p ∈ P and r > 0 such that Vp,r ⊂ U ([21], P. 250, theorem 19). A uniform space
(X,U) is said to be a Hausdorff (or separable) one, if conditions x, y ∈ X and dp(x, y) = 0 satisfied for
all p ∈ P imply that x = y. A sequence of elements {xj}∞j=1 of a uniform space (X,U) converges to an
element x ∈ X (as j → ∞), if lim

j→∞
dp(xj , x) = 0 for all p ∈ P. Since X is Hausdorff, this limit element x

is unique. A subset Y ⊂ X of a uniform space (X,U) is called relatively sequentially compact, if each
sequence of elements of Y contains a subsequence that converges in X to some element of X.

Let XT stand for the set of all functions f : T → X that act from a nonempty subset T ⊂ R in X.
Recall also that a sequence of functions {fj} ≡ {fj}∞j=1 ⊂ XT converges pointwise on T to some

function f ∈ XT (we write fj → f on T as j → ∞) if lim
j→∞

dp(fj(t), f(t)) = 0 for all p ∈ P and t ∈ T ;

but if lim
j→∞

sup
t∈T

dp(fj(t), f(t)) = 0 for all p ∈ P, then {fj} converges uniformly on T to the function f . A

sequence {fj} ⊂ XT is said to be pointwise relatively sequentially compact, if the sequence {fj(t)}
is relatively sequentially compact with any t ∈ T .

In order to formulate a generalization of the Helly theorem and other results of this paper, we introduce
the value {Np(ε, f, T )}p∈P .

For a natural number n ∈ N we denote by {Ii}n
1 ≺ T an ordered set of n non-overlapping segments

Ii = [si, ti] ⊂ R, i = 1, . . . , n, whose endpoints si and ti belong to T so that s1 < t1 ≤ s2 < t2 ≤ · · · ≤
sn−1 < tn−1 ≤ sn < tn (with n = 1 for brevity we write I = {Ii}1

1 and I ≺ T ). If Ii ∈ {Ii}n
1 , f ∈ XT ,

and p ∈ P, then we put |f(Ii)|p ≡ dp(f(si), f(ti)).

For p ∈ P, ε > 0, and f ∈ XT we define the value Np(ε, f, T ) ∈ {0} ∪N∪ {∞} by the following rule:

Np(ε, f, T ) = sup
{
n ∈ N | ∃ {Ii}n

1 ≺ T such that |f(Ii)|p > ε ∀ i = 1, . . . , n
}
, (1)

where sup ∅ = 0; here if ∅ = E ⊂ T and f ∈ XT , then we put Np(ε, f,E) = Np(ε, f |E , E), where
f |E : E → X is the restriction of the function f on the set E. In the case when T = [a, b] and X = R,
value (1) is considered in [22], Part III.

One of the most important properties of the value {Np(ε, f, T )}p∈P is the following one: With its help
one can describe regular functions, i.e., those that have one-sided left and right limits (we clarify their
meaning below). Let S be an everywhere dense subset of [a, b]. Denote by US([a, b];X) the set of all
functions f : [a, b] → X that satisfy the Cauchy conditions with respect to S

lim
S�s,t→τ−0

dp(f(s), f(t)) = 0 ∀ p ∈ P at each point τ ∈ (a, b] (2)

and

lim
S�s,t→τ+0

dp(f(s), f(t)) = 0 ∀ p ∈ P at each point τ ∈ [a, b). (3)

Then the following equality is valid (we adduce its proof below in Section 3):

US([a, b];X) =
{
f : [a, b] → X | Np(ε, f, S) < ∞ for all p ∈ P and ε > 0

}
. (4)

The following three theorems represent the main results of this paper. The first one is the selec-
tion principle for one-variable functions with values in a uniform space stated in terms of the value
{Np(ε, f, T )}p∈P .
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Theorem 1. Let∅ = T ⊂ R and let (X,U) be a Hausdorff uniform space with at most countable set
of pseudometrics {dp}p∈P of uniformity U . Let {fj} ⊂ XT be a pointwise relatively sequentially
compact sequence of functions such that

Np(ε) ≡ lim sup
j→∞

Np(ε, fj , T ) < ∞ for all p ∈ P and ε > 0. (5)

Then {fj} contains a subsequence that converges pointwise on T to some function f ∈ XT that
satisfies the condition Np(ε, f, T ) ≤ Np(ε) for all p ∈ P and ε > 0.

In the following theorem we prove that condition (5) is necessary for the uniform convergence of the
sequence {fj}.

Theorem 2. Let ∅ = T ⊂ R and let (X,U) be a Hausdorff uniform space with a (not necessarily
countable) set of pseudometrics {dp}p∈P of uniformity U . If a sequence {fj} ⊂ XT converges
uniformly on T to a function f ∈ XT such that Np(ε, f, T ) < ∞ for all p ∈ P and ε > 0, then
condition (5) is fulfilled; more precisely,

lim sup
j→∞

Np(ε, fj , T ) ≤ lim
δ→ε−0

Np(δ, f, T ) for all p ∈ P and ε > 0.

Recall that a sequence {fj} ⊂ XT converges almost everywhere (a. e.) on T to a function f ∈ XT

(as j → ∞) if there exits a set E ⊂ T of zero Lebesgue measure such that lim
j→∞

dp(fj(t), f(t)) = 0

for all p ∈ P and t ∈ T \ E. Theorem 1 immediately implies that if a sequence {fj} ⊂ XT satisfies
condition (5) with T \ E in place of T , where E ⊂ T is some set of zero Lebesgue measure, then some
subsequence in {fj} converges a. e. on T to a function f ∈ XT such that Np(ε, f, T \ E) < ∞ for all
p ∈ P and ε > 0. The following theorem is a selection principle for the convergence almost everywhere
in terms of the value {Np(ε, f, T )}p∈P for a one-variable function with values in a uniform space.

Theorem 3. Let T and (X,U) satisfy conditions of Theorem 1. Assume that a sequence of
functions {fj} ⊂ XT is such that for a. a. t ∈ T the set {fj(t)} is relatively sequentially compact
and for any δ > 0 there exists a measurable set Eδ ⊂ T of the Lebesgue measure L(Eδ) ≤ δ such
that

lim sup
j→∞

Np(ε, fj , T \ Eδ) < ∞ for all p ∈ P and ε > 0.

Then in {fj} there exists a subsequence that converges a. e. on T to some function f ∈ XT with the
following property: For any δ > 0 there exists a measurable set E′

δ ⊂ T of the Lebesgue measure
L(E′

δ) ≤ δ such that Np(ε, f, T \ E′
δ) < ∞ for all p ∈ P and ε > 0.

3. THE MAIN PROPERTIES OF THE VALUE Np(ε, f, T )

For the proof of the stated theorems and the following comparison of Theorem 1 with the selection
principle in [17, 18] we need some properties of the value {Np(ε, f, T )}p∈P . Note that the fact that the
value Np(ε, f, T ) equals 0 or ∞ is expressed, respectively, by the conditions

Np(ε, f, T ) = 0 ⇐⇒ |f(I)|p ≤ ε for all I ≺ T (6)

and

Np(ε, f, T ) = ∞ ⇐⇒ ∀n ∈ N ∃{Ii}n
1 ≺ T such that |f(Ii)|p > ε for all i = 1, . . . , n. (7)

But if Np(ε, f, T ) ∈ N, then for any n ∈ N in view of definition (1) we get the correlations

n ≤ Np(ε, f, T ) ⇐⇒ ∃{Ii}n
1 ≺ T such that |f(Ii)|p > ε for all i = 1, . . . , n; (8)

n > Np(ε, f, T ) ⇐⇒ ∀{Ii}n
1 ≺ T ∃{Iik}

n−Np(ε,f,T )
k=1 ≺ T and {Iik}

n−Np(ε,f,T )
k=1 ⊂ {Ii}n

1
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38 TRET’YACHENKO

such that max
1≤k≤n−Np(ε,f,T )

|f(Iik)|p ≤ ε. (9)

The main properties of value (1) for an arbitrary function f ∈ XT and p ∈ P are described in the next
lemma.

Lemma. (a) If 0 < ε1 < ε2, then Np(ε2, f, T ) ≤ Np(ε1, f, T ).
(b) If ∅ = E1 ⊂ E2 ⊂ T , then Np(ε, f,E1) ≤ Np(ε, f,E2) for any ε > 0.
(c) If {fj} ⊂ XT and fj → f on T as j → ∞, then Np(ε, f, T ) ≤ lim inf

j→∞
Np(ε, fj , T ) for all ε > 0.

(d) If s, t ∈ T and s < t, then nt = Np(ε, f, (−∞, t]∩T ) < ∞ if and only if ns = Np(ε, f, (−∞, s]∩
T ) < ∞ and ns,t = Np(ε, f, [s, t] ∩ T ) < ∞, and in this case there exists n∗ ∈ {0, 1} such that
nt = ns + ns,t + n∗.

Proof. Properties (a) and (b) immediately follow from definition (1).
(c) Without loss of generality we assume that Np(ε, f, T ) > 0.
If Np(ε, f, T ) < ∞ and n = Np(ε, f, T ), then in view of property (8) there exists a set {Ii}n

1 ≺ T such
that |f(Ii)|p > ε for all i = 1, . . . , n. Let ε′ = ε′(n, p) > 0 be such that min

1≤i≤n
|f(Ii)|p > ε′ > ε. Owing

to the pointwise convergence of fj to f on T , we can find a number J ∈ N (that depends on the set {Ii}n
1

and p ∈ P) such that

dp(f(si), fj(si)) ≤
ε′ − ε

2
and dp(fj(ti), f(ti)) ≤

ε′ − ε

2
for all j ≥ J and i = 1, . . . , n.

Due to the triangle inequality for such j and i we get

ε′ < |f(Ii)|p ≤ dp(f(si), fj(si)) + dp(fj(si), fj(ti)) + dp(fj(ti), f(ti))

≤ ε′ − ε

2
+ dp(fj(si), fj(ti)) +

ε′ − ε

2
= |fj(Ii)|p + ε′ − ε. (10)

Therefore, |fj(Ii)|p > ε for all j ≥ J and i = 1, . . . , n. In accordance with property (8) this means that
n ≤ Np(ε, fj , T ) for all j ≥ J , therefore n ≤ inf

i≥J
Np(ε, fj , T ) ≤ lim inf

j→∞
Np(ε, fj , T ).

But if Np(ε, f, T ) = ∞, then we choose n ∈ N arbitrarily and make use of property (7). Reasoning as
above, we conclude that n ≤ lim inf

j→∞
Np(ε, fj , T ), and it remains to take into account the arbitrariness

of n.
(d) Without loss of generality we assume that nt > 0.
1. Let us first prove that if nt < ∞, then ns + ns,t ≤ nt.
Proposition (b) implies that ns ≤ nt and ns,t ≤ nt, therefore if ns = 0 or ns,t = 0, then the inequality

is evident. But if ns > 0 and ns,t > 0, then due to property (8) there exist sets {Ii}ns
1 ≺ (−∞, s] ∩ T and

{Jk}ns,t

1 ≺ [s, t] ∩ T such that |f(Ii)|p > ε for all i = 1, . . . , ns and |f(Jk)|p > ε for all k = 1, . . . , ns,t.
Note that {Ii}ns

1 ∪ {Jk}ns,t

1 ≺ (−∞, t] ∩ T and that dp-distances mentioned above (their quantity is
ns + ns,t) exceed ε. Then on the base of property (8) we get the desired inequality ns + ns,t ≤ nt.

2. Assume that ns < ∞ and ns,t < ∞. Let us demonstrate that if n ∈ N and the set {Ii}n
1 ≺

(−∞, t] ∩ T is such that |f(Ii)|p > ε for all i = 1, . . . , n (such Ii always exist, because nt > 0), then
n ≤ ns + ns,t + 1, whence due to the arbitrariness of n from definition (1) we infer nt ≤ ns + ns,t + 1, as
well as the desired equality.

With n = 1 the inequality is evident, therefore in what follows we assume that n ≥ 2. If a point
s ∈ T is located so that the set {Ii}n

1 entirely belongs to (−∞, s] ∩ T or [s, t] ∩ T , then, respectively,
n ≤ ns or n ≤ ns,t. If a point s is the endpoint of one of the segments from the set {Ii}n

1 and the
startpoint of another one, i.e., s ∈ Ik ∩ Ik+1 for some k ∈ {1, . . . , n − 1}, then {Ii}k

1 ≺ (−∞, s] ∩ T
and {Ii}n

k+1 ≺ [s, t] ∩ T . Hence in accordance with property (8) we obtain k ≤ ns and n − k ≤ ns,t

such that n ≤ ns + ns,t. Finally, if s is located inside some segment Ik, k ∈ {1, . . . , n}, then {Ii}k−1
1 ≺

(−∞, s] ∩ T and {Ii}n
k+1 ≺ [s, t] ∩ T , where {Ii}0

1 = ∅ = {Ii}n
n+1. Hence in view of property (8) we find

k − 1 ≤ ns and n − k ≤ ns,t, and therefore n ≤ ns + ns,t + 1.
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In order to prove equality (4) we need the notion of a stepwise function. Recall that a function
g : [a, b] → X is called stepwise, if there exist a partition a = c0 < c1 < · · · < cm−1 < cm = b of the
segment [a, b] and elements x1, . . . , xm ∈ X (dependent on g) such that g(t) = xi for all t ∈ (ci−1, ci),
i = 1, . . . ,m. For such a function g we have

Np(ε, g, [a, b]) ≤ 2m < ∞ for all p ∈ P and ε > 0. (11)

Proof of equality (4). Inclusion “⊃”. Let a point τ ∈ (a, b] be arbitrary (considerations for τ ∈
[a, b) are analogous). Let us prove that for any p ∈ P and ε > 0 one can find δ(ε, p) ∈ (0, τ − a)
such that dp(f(s), f(t)) ≤ ε for all s, t ∈ S ∩ [τ − δ(ε, p), τ). Let us prove this assertion ad contrario.
Let p0 ∈ P and ε0 > 0 violate the above assertion. Then for arbitrary δ1 ∈ (0, τ − a) one can find
points s1, t1 ∈ S ∩ [τ − δ1, τ), s1 < t1, such that dp0(f(s1), f(t1)) > ε0. Further, by induction, if
i ∈ N, i ≥ 2, and δi−1 ∈ (0, τ − a) and points si−1, ti−1 ∈ S ∩ [τ − δi−1, τ), si−1 < ti−1, are already
chosen, then we put δi = τ − ti−1 and find points si, ti ∈ S ∩ [τ − δi, τ) = S ∩ [ti−1, τ), si < ti, such
that dp0(f(si), f(ti)) > ε0. Let n ∈ N and Ii = [si, ti], i = 1, . . . , n. Then by construction {Ii}n

1 ≺
S ∩ (a, τ) ⊂ S and |f(Ii)|p0 > ε0 for all i = 1, . . . , n. Due to the arbitrariness of n and property (7)
this means that Np0(ε0, f, S) = ∞, which contradicts the condition.

Inclusion “⊂”. Let f ∈ US([a, b];X). In accordance with [18] (§ 4, lemma 4) for any p ∈ P there ex-
ists a sequence of stepwise functions {fj} ⊂ X [a,b] (dependent on p) such that lim

j→∞
sup
t∈S

dp(fj(t), f(t)) =

0. Fix p ∈ P arbitrarily. Then taking into account inequality (11), the value Np(ε, fj , [a, b]) is finite for all
j ∈ N and ε > 0. Since S ⊂ [a, b], in view of proposition (b) of the lemma Np(ε, fj , S) < ∞ for all j ∈ N

and ε > 0. Let us prove that Np(ε, f, S) < ∞ for all ε > 0.

Fix ε > 0 arbitrarily. Assume that for some n ∈ N there exists a set {Ii}n
1 ≺ S such that |f(Ii)|p > ε

for all i = 1, . . . , n (otherwise Np(ε, f, S) = 0 and the assertion is evident). Similarly to the proof
of proposition (c) of the lemma, we choose ε′ = ε′(n, p) > 0 so that min

1≤i≤n
|f(Ii)|p > ε′ > ε. Then

due to the uniform convergence of fj to f on S one can find a number j0 = j0(ε′, ε) ∈ N such that
dp(fj(s), f(s)) ≤ (ε′ − ε)/2 for all j ≥ j0 and s ∈ S. Therefore, correlation (10) is valid for all j ≥ j0

and i = 1, . . . , n. In particular, with j = j0 we get |fj0(Ii)|p > ε for all i = 1, . . . , n or, in accordance
with property (8), n ≤ Np(ε, fj0 , S) < ∞. Thus, due to the arbitrariness of n definition (1) implies that
the value Np(ε, f, S) is finite for all ε > 0. �

Equality (4) describes the set US([a, b];X) in terms of the value {Np(ε, f, T )}p∈P . The set
US([a, b]; R) was first considered in [23]; in other terms the set US([a, b];X) was described in [18] and
[24–27].

4. PROOFS OF THE MAIN THEOREMS

Proof of Theorem 1. Let Mon(T ; N) stand for the set of all nondecreasing bounded functions that
map T in N. Note that for p ∈ P and given ε > 0 in view of proposition (b) of the lemma the function
t �→ Np(ε, fj , (−∞, t] ∩ T ) is nondecreasing in t ∈ T for each j ∈ N.

Without loss of generality in the proof we assume that P = N.
1. Let us prove that there exist a subsequence in {fj} (we also denote it by {fj}) and a function

nk,p ∈ Mon(T ; N) for any k ∈ N and p ∈ P such that

lim
j→∞

Np(1/k, fj , (−∞, t] ∩ T ) = nk,p(t) for all t ∈ T . (12)

To this end we several times apply the Cantor diagonal process.
Condition (5) with p = 1 implies that for any ε > 0 there exist numbers J1(ε),M1(ε) ∈ N such

that N1(ε, fj , T ) ≤ M1(ε) < ∞ for all j ≥ J1(ε). Then in view of proposition (b) of the lemma the
sequence of nondecreasing functions {t �→ N1(1, fj , (−∞, t] ∩ T )}∞j=J1(1)

is uniformly bounded on T by
the constant M1(1). Consequently, by the Helly selection principle there exist a subsequence {fJ1

1 (j)}∞j=1
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40 TRET’YACHENKO

in {fj}∞j=J1(1)
, where J1

1 : N → N is a strictly increasing subsequence in {J1(1) + j − 1}∞j=1, and a
function n1,1 ∈ Mon(T ; N) such that

N1(1, fJ1
1 (j), (−∞, t] ∩ T ) → n1,1(t) as j → ∞ for all t ∈ T .

Choose the least number j1
1 ∈ N such that J1

1 (j1
1 ) ≥ J1(1/2).

Further, by induction, let k ≥ 2 and let a subsequence {fJ1
k−1(j)

}∞j=1 in the initial sequence {fj}
and a number j1

k−1 ∈ N such that J1
k−1(j

1
k−1) ≥ J1(1/k) be already chosen. Then by applying the

Helly theorem to the sequence of nondecreasing functions {t �→ N1(1/k, fJ1
k−1(j), (−∞, t] ∩ T )}∞

j=j1
k−1

uniformly bounded on T by the constant M1(1/k), we obtain that there exist a subsequence {fJ1
k(j)}∞j=1

in {fJ1
k−1(j)

}∞
j=j1

k−1
and a function nk,1 ∈ Mon(T ; N) such that

N1(1/k, fJ1
k (j), (−∞, t] ∩ T ) → nk,1(t) as j → ∞ for all t ∈ T .

Then the diagonal sequence {fJ1
j (j)}∞j=1 (we denote it by {f1

j } ≡ {f1
j }∞j=1) satisfies the condition

lim
j→∞

N1(1/k, f1
j , (−∞, t] ∩ T ) = nk,1(t) for all k ∈ N and t ∈ T . (13)

Using equality (13), we again apply the method of induction: If p ∈ P, p ≥ 2, and a subsequence
{fp−1

j } ≡ {fp−1
j }∞j=1 of the sequence {f1

j } is already chosen, then in view of condition (5) for each

ε > 0 one can find numbers Jp(ε),Mp(ε) ∈ N such that Np(ε, f
p−1
j , T ) ≤ Mp(ε) < ∞ for all j ≥ Jp(ε).

Then in accordance with proposition (b) of the lemma the sequence of nondecreasing functions {t �→
Np(1, f

p−1
j , (−∞, t] ∩ T )}∞j=Jp(1) is uniformly bounded on T by the constant Mp(1). Hence by the Helly

theorem we deduce that there exist a subsequence {fJp
1 (j)}∞j=1 in {fp−1

j }∞j=Jp(1), where Jp
1 : N → N is a

strictly increasing subsequence in {Jp(1) + j − 1}∞j=1, and a function n1,p ∈ Mon(T ; N) such that

Np(1, fJp
1 (j), (−∞, t] ∩ T ) → n1,p(t) as j → ∞ for all t ∈ T .

Choose the least number jp
1 ∈ N such that Jp

1 (jp
1) ≥ Jp(1/2).

Further, by induction, let k ≥ 2 and let a subsequence {fJp
k−1(j)

}∞j=1 in {fp−1
j } and a number

jp
k−1 ∈ N such that Jp

k−1(j
p
k−1) ≥ Jp(1/k) be already chosen. Then by the Helly theorem for the

sequence of nondecreasing functions {t �→ Np(1/k, fJp
k−1(j), (−∞, t] ∩ T )}∞

j=jp
k−1

uniformly bounded

on T by the constant Mp(1/k) one can find a subsequence {fJp
k (j)}∞j=1 in {fJp

k−1(j)
}∞

j=jp
k−1

and a function

nk,p ∈ Mon(T ; N) such that

Np(1/k, fJp
k (j), (−∞, t] ∩ T ) → nk,p(t) as j → ∞ for all t ∈ T .

Then the diagonal sequence {fJp
j (j)}∞j=1 (we denote it by {fp

j } ≡ {fp
j }∞j=1) possesses the following

property:

lim
j→∞

Np(1/k, fp
j , (−∞, t] ∩ T ) = nk,p(t) for all k ∈ N and t ∈ T .

According to the above reasoning, the diagonal sequence {f j
j }∞j=1 (we again denote it by {fj}) satisfies

condition (12).
2. Let Q stand for an at most countable everywhere dense subset of T , i.e., Q ⊂ T ⊂ Q; here Q is the

closure of the set Q in R. Note that any point t ∈ T different from a limit one for T belongs to Q ([18],
the proof of theorem 1). With any k ∈ N and p ∈ P the function nk,p is monotone on T , therefore the
set Sk,p ⊂ T of its discontinuity points (all of them are of the first kind) is at most countable. We put
S = Q ∪

⋃

k∈N

⋃

p∈P
Sk,p. Then S is an at most countable everywhere dense subset of T , and if T \ S = ∅,

then

the function nk,p is continuous at points t ∈ T \ S for all k ∈ N and p ∈ P. (14)
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Since the sequence {fj} is pointwise relatively sequentially compact and the set S ⊂ T is at most
countable, without loss of generality we assume (if necessary, we proceed to a subsequence in {fj}
with the help of the standard diagonal process) that with each s ∈ S the sequence {fj(s)} converges
in X to some element f(s) ∈ X such that lim

j→∞
dp(fj(s), f(s)) = 0 for all p ∈ P.

If S = T , then the proof is complete. Let S = T . Then we prove that for any point t ∈ T \ S the
sequence {fj(t)} is a Cauchy sequence in X:

lim
j,l→∞

dp(fj(t), fl(t)) = 0 for all p ∈ P.

Let p ∈ P and ε > 0 be arbitrary. Choose and fix a number k = k(ε) ∈ N such that 1/k ≤ ε/3. Since S
is everywhere dense in T and (due to property (14)) t is a continuity point of the function nk,p, there
exists a point s = s(k, p, t) ∈ S dependent only on ε such that nk,p(t) = nk,p(s). Let for definiteness
s < t (the case t < s is analogous). Using correlation (12), we choose numbers J1 = J1(k, p, t), J2 =
J2(k, p, s) ∈ N that also depend only on ε such that Np(1/k, fj , (−∞, t] ∩ T ) = nk,p(t) for all j ≥ J1

and Np(1/k, fj , (−∞, s] ∩ T ) = nk,p(s) for all j ≥ J2. Then proposition (d) of the lemma implies that

Np(1/k, fj , [s, t] ∩ T ) ≤ Np(1/k, fj , (−∞, t] ∩ T ) − Np(1/k, fj , (−∞, s] ∩ T )
= nk,p(t) − nk,p(s) = 0 for all j ≥ max{J1, J2},

whence we get Np(1/k, fj , [s, t] ∩ T ) = 0, and then in view of property (6)

dp(fj(s), fj(t)) ≤ 1/k ≤ ε/3.

Since the sequence {fj(s)} converges in the uniform space X, it is a Cauchy sequence ([21], P. 252,
theorem 21). Therefore there exists a number J3 = J3(ε, p, s) ∈ N such that

dp(fj(s), fl(s)) ≤ ε/3 for all j, l ≥ J3.

Then the number J = max{J1, J2, J3} depends only on ε and p, and for all j, l ≥ J we get

dp(fj(t), fl(t)) ≤ dp(fj(t), fj(s)) + dp(fj(s), fl(s)) + dp(fl(s), fl(t)) ≤ ε.

Since p ∈ P and ε > 0 are arbitrary, this means that {fj(t)} is a Cauchy sequence in X. By the
assumption of the theorem the sequence {fj(t)} is relatively sequentially compact, consequently, it has
a limit point; denote it by f(t) ∈ X. In accordance with [21] (P. 252, theorem 21) any Cauchy sequence
in a uniform space converges to its limit point, therefore lim

j→∞
dp(fj(t), f(t)) = 0 for all p ∈ P.

3. Since the space X is Hausdorff, the one-valued function f : T = S ∪ (T \ S)→X is correctly
defined on T and is a pointwise limit on T of the sequence {fj}; by construction the latter is a
subsequence of the initial sequence. By applying proposition (c) of the lemma, we obtain

Np(ε, f, T ) ≤ lim inf
j→∞

Np(ε, fj , T ) ≤ lim sup
j→∞

Np(ε, fj , T ) ≤ Np(ε)

for all p ∈ P and ε > 0. �

Remark 1. A local variant of Theorem 1 is also valid. Namely, if condition (5) in this theorem is replaced
with that

lim sup
j→∞

Np(ε, fj , T ∩ [a, b]) < ∞ for all a, b ∈ T , a < b, p ∈ P, and ε > 0,

then some subsequence {fj} converges pointwise on T to a function f ∈ XT such that Np(ε, f, T ∩
[a, b]) < ∞ for all a, b ∈ T , a < b, p ∈ P, and ε > 0. One can obtain this assertion immediately by
applying (on the base of Theorem 1) the diagonal process with respect to extending segments.

Remark 2. Without assumption (5) Theorem 1 is not valid. Let us demonstrate this in a simplest
case, when X = R. As is known, no subsequence of the sequence of functions {fj} ⊂ R

[0,2π], where
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fj(t) = | sin(jt)|, converges everywhere on [0, 2π]. According to definition (1), N(ε, fj , [0, 2π]) = 0 with
all ε ≥ 1. Let us prove that for any number j ∈ N,

4j ≤ N(ε, fj , [0, 2π]) ≤ 4j
ε

for all 0 < ε < 1, (15)

whence lim sup
j→∞

N(ε, fj , [0, 2π]) = ∞ for all 0 < ε < 1.

It is well-known that V (fj, [0, 2π]) = 4j (j ∈ N), where V (f, T ) stands for the usual Jordan variation
of the function f on T . Taking into account this fact, as well as the estimate N(ε, f, T ) ≤ V (f, T )/ε that
is valid for a function f ∈ R

T of bounded variation, we get the right-hand inequality in (15). If for any
j ∈ N we put tji = πi/(2j) and Ii = [tji−1, t

j
i ] for all i = 0, 1, . . . , 4j, then we find

|fj(Ii)| =
∣
∣
∣∣sin

(
πi

2

)
− sin

(
π(i − 1)

2

)∣
∣
∣∣ = 1 for all i = 1, . . . , 4j.

Hence in view of definition (1) we get the left-hand inequality in (15).

Let us return to studying the Hausdorff uniform space (X,U). Recall that an oscillation of
a function f ∈ XT with respect to a pseudometric dp is the value oscp(f, T ) = sup

I≺T
|f(I)|p ≡

sup
s,t∈T

dp(f(s), f(t)). The modulus of variation of a function f ∈ XT with respect to a pseudomet-

ric dp is a sequence {νp(n, f, T )}∞n=1 ⊂ [0,∞] defined for given p ∈ P and n ∈ N by the following rule
([18, 24]):

νp(n, f, T ) = sup
{ n∑

i=1

|f(Ii)|p
∣∣
∣ {Ii}n

1 ≺ T

}
. (16)

More precisely, equality (16) is used with nT = sup
{
n ∈ N | ∃{Ii}n

1 ≺ T
}

= ∞, and if nT < ∞,
then νp(n, f, T ) is defined by formula (16) with n ≤ nT , and νp(n, f, T ) = νp(nT , f, T ) with n > nT .
Definition (16) implies that νp(1, f, T ) = oscp(f, T ). In addition, for ∅ = E ⊂ T we put νp(n, f,E) =
νp(n, f |E, E).

In [18] (theorem 1) one obtains the following pointwise selection principle: If in assumptions of
Theorem 1 condition (5) is replaced with the following requirement:

μp(n) ≡ lim sup
j→∞

νp(n, fj, T ) = o(n) for all p ∈ P, (17)

then the assertion of Theorem 1 remains valid, and the limit function of the extracted subsequence
f ∈ XT satisfies the condition νp(n, f, T ) ≤ μp(n) for all n ∈ N and p ∈ P. In (17) the denotation
νp(n, f, T ) = o(n) means that lim

n→∞
νp(n, f, T )/n = 0.

This result follows from Theorem 1, taking into account that (17) is equivalent to two conditions,
namely, (5) and lim sup

j→∞
oscp(fj , T ) < ∞ for all p ∈ P. This fact is established in the next theorem.

Theorem 4. Let {fj} ⊂ XT . Then the following propositions are valid:

(a) for some p ∈ P the condition lim sup
j→∞

νp(n, fj , T ) = o(n) is fulfilled if and only if

lim sup
j→∞

oscp(fj, T ) < ∞ and lim sup
j→∞

Np(ε, fj , T ) < ∞ for all ε > 0;

(b) the condition lim sup
j→∞

νp(n, fj, T ) = o(n) with any p ∈ P is equivalent to the following ones:

lim sup
j→∞

oscp(fj, T ) < ∞ for all p ∈ P and lim sup
j→∞

Np(ε, fj , T ) < ∞ for all p ∈ P and ε > 0.
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Proof. Propositions (a) and (b) can be proved analogously, so for definiteness let us prove (b).
(b) Necessity. Fix arbitrarily ε > 0. In accordance with the restriction imposed on the modulus

of variation, for any p ∈ P there exists a number n0(ε, p) ∈ N such that lim
k→∞

sup
j≥k

νp(n0(ε, p), fj , T ) <

εn0(ε, p). Consequently, one can find a number j0 = j0(ε, p) ∈ N such that νp(n0(ε, p), fj , T ) <
εn0(ε, p) for all j ≥ j0(ε, p). Since

oscp(fj, T ) = νp(1, fj , T ) ≤ νp(n0(ε, p), fj , T ) < εn0(ε, p) for all j ≥ j0(ε, p), (18)

we get lim sup
j→∞

oscp(fj, T ) ≤ sup
j≥j0(ε,p)

oscp(fj, T ) ≤ εn0(ε, p) < ∞.

In view of property (18) for any j ≥ j0(ε, p) the function fj is bounded, therefore the sequence
{νp(n, fj , T )/n}∞n=1 is nonincreasing for all j ≥ j0(ε, p) ([18], the remark to lemma 2). Hence we find

νp(n, fj, T )/n ≤ νp(n0(ε, p), fj , T )/n0(ε, p) < ε for all n ≥ n0(ε, p) and j ≥ j0(ε, p),

which means that sup
j≥j0(ε,p)

νp(n, fj, T ) < εn for all n ≥ n0(ε, p). Let us prove that then

sup
j≥j0(ε,p)

Np(ε, fj , T ) ≤ n0(ε, p).

Really, let a number k ∈ N, k ≥ j0(ε, p), be such that Np(ε, fk, T ) > 0. Then for any natural n
and a set {Ii}n

1 ≺ T such that |fk(Ii)|p > ε for all i = 1, . . . , n the inequality n ≤ n0(ε, p) is fulfilled;

otherwise, if n > n0(ε, p), then sup
j≥j0(ε,p)

νp(n, fj, T ) ≥ νp(n, fk, T ) ≥
n∑

i=1
|fk(Ii)|p > nε, which leads

to a contradiction. Thus, in accordance with definition (1) the value Np(ε, fj , T ) ≤ n0(ε, p) for all
j ≥ j0(ε, p), whence we finally obtain

lim sup
j→∞

Np(ε, fj , T ) ≤ sup
j≥j0(ε,p)

Np(ε, fj , T ) ≤ n0(ε, p) < ∞.

Sufficiency. Let lim sup
j→∞

oscp(fj, T ) < Mp < ∞ for all p ∈ P. Then for p ∈ P there exists

a number j1(p) ∈ N such that sup
j≥j1(p)

oscp(fj, T ) < Mp. Let ε > 0 be arbitrary. By condition

lim sup
j→∞

Np(ε, fj , T ) < ∞ for all p ∈ P, therefore for p ∈ P one can find a number j2(ε, p) ∈ N such

that N(ε, p) ≡ sup
j≥j2(ε,p)

Np(ε, fj , T ) < ∞. We put j3 = max{j1(p), j2(ε, p)}. In view of property (9) for

arbitrary numbers j ≥ j3, n ≥ Np(ε, fj , T ) + 1 and a set {Ii}n
1 ≺ T one can find at least n−Np(ε, fj , T )

segments Iik (all ik ∈ {1, . . . , n} are different) such that |fj(Iik)|p ≤ ε for all k = 1, . . . , n−Np(ε, fj , T ).
Hence

n∑

i=1

|fj(Ii)|p =
Np(ε,fj ,T )∑

m=1

|fj(Iim)|p +
n−Np(ε,fj ,T )∑

k=1

|fj(Iik)|p ≤ Np(ε, fj , T )Mp + nε for all j ≥ j3,

where {im}Np(ε,fj ,T )
m=1 = {i}n

i=1 \ {ik}
n−Np(ε,fj ,T )
k=1 . Proceeding in the latter expression to supremum for all

{Ii}n
1 ≺ T , we get νp(n, fj, T ) ≤ Np(ε, fj , T )Mp + nε for all j ≥ j3. Consequently, sup

j≥j3

νp(n, fj, T ) ≤

N(ε, p)Mp + nε, therefore

lim sup
j→∞

νp(n, fj, T ) ≤ sup
j≥j3

νp(n, fj , T ) ≤ N(ε, p)Mp + nε ≤ 2nε

with n ≥ max{N(ε, p) + 1, N(ε, p)Mp/ε}, which means that lim sup
j→∞

νp(n, fj, T ) = o(n). �

Let us adduce an example of a pointwise convergent on [0, 1] sequence of functions {fj} that
satisfies assumptions of Theorem 1, but the existence conditions for the pointwise convergence of
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a subsequence stated in the selection principle proposed in [17, 18] are violated. To this end we

consider the Banach space of summable sequences l1 =
{
x = {xn}∞n=1 ⊂ R; ‖x‖ =

∞∑

n=1
|xn| < ∞

}
.

Denote by ei ∈ l1 a unit basis vector ei = {xn}∞n=1, for which xn = 0 with n = i and xi = 1. Let us
define functions fj : [0, 1] → l1 as follows: fj(t) = jej with t = 1/(j + 1) and fj(t) = 0 ∈ l1 with t =
1/(j + 1). Then {fj} everywhere converges to f(t) ≡ 0 ∈ l1. Moreover, by definition {fj(t)} = {0} ∈ l1
with t /∈ {1/(n + 1)}n∈N and {fj(t)} = {0, nen} ∈ l1 with t = 1/(n + 1), n ∈ N, and, as a consequence,
{fj} is pointwise compact. Further, osc(fj , [0, 1]) = j (tends to infinity as j → ∞); N(ε, fj , [0, 1]) = 2
with 0 < ε < j and N(ε, fj , [0, 1]) = 0 with ε ≥ j. Therefore, lim sup

j→∞
N(ε, fj , [0, 1]) = 2 for all ε > 0,

while lim sup
j→∞

ν(n, fj, [0, 1]) = ∞.

Proof of Theorem 2. Let p ∈ P and ε > 0 be arbitrary. Without loss of generality we assume that for
all j ∈ N the value Np(ε, fj , T ) > 0. Owing to the uniform convergence of {fj} to f for any δ, 0 < δ < ε,
there exists a number j0(ε, δ) ∈ N such that for all j ≥ j0(ε, δ) the following inequality is valid:

dp(fj(t), f(t)) < (ε − δ)/2 for all t ∈ T . (19)

Definition (1) with nj ≡ Np(ε, fj , T ) > 0 and j ≥ j0(ε, δ) implies that there exists a set {Ii}nj

1 ≺ T such
that |fj(Ii)|p > ε for all i = 1, . . . , nj . Then in view of the triangle inequality and correlation (19) for all
segments Ii from {Ii}nj

1 we get

ε < |fj(Ii)|p ≤ dp(fj(si), f(si)) + dp(f(si), f(ti)) + dp(f(ti), fj(ti)) ≤ ε − δ + |f(Ii)|p.
Thus, |f(Ii)|p > δ for all i = 1, . . . , nj , which in accordance with property (8) means that

Np(ε, fj , T ) ≡ nj ≤ Np(δ, f, T ) for all j ≥ j0(ε, δ).

Hence we get

lim sup
j→∞

Np(ε, fj , T ) ≤ sup
j≥j0(ε,δ)

Np(ε, fj , T ) ≤ Np(δ, f, T ) for all 0 < δ < ε,

and, taking into account the fact (proposition (a) of the lemma) that the function δ �→ Np(δ, f, T ) is
nondecreasing, it remains to proceed to the limit for δ → ε − 0. �
Proof of Theorem 3. Let us use the idea of the proof of theorem 6 in [26]. Let T0 ⊂ T be a zero measure
set (possibly an empty one) such that the sequence {fj(t)} is relatively sequentially compact for all
t ∈ T \ T0. Let us apply Theorem 1 and the diagonal process. By assumption there exists a measurable
set E1 ⊂ T of measure L(E1) ≤ 1 such that lim sup

j→∞
Np(ε, fj , T \ E1) < ∞ for all p ∈ P and ε > 0. The

sequence {fj} is relatively sequentially compact on T \ (T0 ∪ E1) and in view of proposition (b) of the
lemma we have

lim sup
j→∞

Np(ε, fj , T \ (T0 ∪ E1)) ≤ lim sup
j→∞

Np(ε, fj , T \ E1) < ∞.

Then in accordance with Theorem 1 one can find a subsequence {f (1)
j }∞j=1 in {fj} and a function f1 :

T \ (T0 ∪ E1) → X such that f
(1)
j → f1 on T \ (T0 ∪ E1) as j → ∞ and Np(ε, f1, T \ (T0 ∪ E1)) < ∞

for all p ∈ P and ε > 0.

Let k ≥ 2 and let a subsequence {f (k−1)
j }∞j=1 in {fj} be already chosen. Then by assumption there

exists a measurable set Ek ⊂ T of measure L(Ek) ≤ 1/k such that

lim sup
j→∞

Np(ε, fj , T \ Ek) < ∞ for all p ∈ P and ε > 0.

The sequence {f (k−1)
j }∞j=1 with is relatively sequentially compact on the set T \ (T0 ∪ Ek), therefore in

view of proposition (b) of the lemma we obtain
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lim sup
j→∞

Np(ε, f
(k−1)
j , T \ (T0 ∪ Ek)) ≤ lim sup

j→∞
Np(ε, f

(k−1)
j , T \ Ek)

≤ lim sup
j→∞

Np(ε, fj , T \ Ek) < ∞.

In accordance with Theorem 1 one can find a subsequence {f (k)
j }∞j=1 in {f (k−1)

j }∞j=1 and a function

fk : T \ (T0 ∪Ek) → X such that f
(k)
j →fk on T \ (T0 ∪Ek) as j→∞ and Np(ε, fk, T \ (T0 ∪Ek)) < ∞

for all p ∈ P and ε > 0.

We put E = T0 ∪
∞⋂

k=1

Ek, then the set E is measurable, its measure L(E) equals 0, and T \ E =

∞⋃

k=1

(
T \ (T0 ∪Ek)

)
. Let us define a function f : T \E → X as follows: For each t ∈ T \E there exists a

number k ∈ N such that t ∈ T \ (T0 ∪Ek), therefore we put f(t) = fk(t). The definition of the function f
is correct, i.e., it is independent of the number k: Let a number k1 ∈ N be such that t ∈ T \ (T0 ∪ Ek1)
and k ≤ k1 (without loss of generality), then the sequence {f (k1)

j }∞j=1 is a subsequence in {f (k)
j }∞j=1 such

that

fk1(t) = lim
j→∞

f
(k1)
j (t) = lim

j→∞
f

(k)
j (t) = fk(t) in X.

Let us prove that the diagonal sequence f
(j)
j (that is a subsequence in {fj}) converges pointwise to f

on T \ E. Really, if t ∈ T \E, then t ∈ T \ (T0 ∪ Ek) for some k ∈ N and f(t) = fk(t). Since {f (j)
j }∞j=k

is a subsequence in {f (k)
j }∞j=1, we have

lim
j→∞

f
(j)
j (t) = lim

j→∞
f

(k)
j (t) = fk(t) = f(t) in X.

Let us arbitrarily continue f from T \E onto all T and again denote the continuation by f . For given δ>0
we choose k ∈ N such that 1/k ≤ δ and put E′ = E′(δ) = T0 ∪ Ek. Then L(E′) = L(Ek) ≤ 1/k ≤ δ,
f = fk on T \ (T0 ∪ Ek) = T \ E′ and Np(ε, fk, T \ E′) = Np(ε, fk, T \ (T0 ∪ Ek)) < ∞ for all p ∈ P
and ε > 0. �
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