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Abstract—The model of a growing medium consisting of two phases, liquid and solid, is developed.
Growth is treated as a combination of the irreversible deformation of the solid phase and its mass incre-
ment due to mass exchange with the liquid phase. The inelastic strain rate of the solid phase depends
on the stresses in it, which are determined by the forces both external with respect to the medium and
exerted by the liquid phase. In the liquid phase the pressure develops due to the presence of a chemical
component whose displacement is hampered by its interaction with the solid phase. The approach devel-
oped makes it possible to waive many problems discussed in the theory of growing continua. Possible
generalizations are considered.
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It has long been known that the mechanical loads affect the growth of biological tissues (see reviews
[1–3]). Attempts to describe this effect within the framework of continuum mechanics were first made
also more than forty years ago. Most of approaches now developed treat the growing tissue as a solid.
Nevertheless, it is impossible to adequately describe the deformation and mass transfer in the growing tissue
without account for the presence in it of liquid phases that provide the delivery of a “building material”. The
general method of such description was proposed in [4], where it was first demonstrated that the internal
stresses (at the phase level) necessarily participate in the growth processes. In the present study, which
continues [4], an approach based on the systematic application to the modeling of a growing tissue of the
methods of multiphase continuum mechanics is developed and the model of a medium in which the growth
deformation is related with the stresses in the solid skeleton is proposed. Such stresses arise due to the
presence of the pressure in the liquid phase, which develops with osmotic processes involved, and can
change under the action of external forces. Possible assumptions, which lead to models of different levels
of complexity, including single-phase models, are discussed.

1. BIOLOGICAL BACKGROUND AND BASIC ASSUMPTIONS

Growth is one of the main components of biological development, along with shaping (morphogenesis)
and the appearance of new cell species (differentiation). There is no accurate definition of biological growth:
biologists usually speak of irreversible changes in mass and dimensions [5]. In the language of mechanics,
we can say that growth is a combination of deformation and mass influx.

The effect of external mechanical loads on the rate and orientation of growth has been known and used
since antiquity. The role of mechanical forces in the growth of objects unloaded from outside has started
to be discussed comparatively recently. The necessity of loading at the cellular level was first understood
by plant physiologists. At present, it is commonly agreed that the growth elongation of the cell wall occurs
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under the action of the intracellular pressure (up to several atmospheres) [6]. Substantial pressures develop
in soft tissues [7]. Tissue growth during cell division, determined by the intense increase in the cell volume
after division, is related with increase in pressure inside such cells [8]. Numerous facts point that without
development of mechanical stresses (at least at the microlevel) growth is impossible [4].

During biological growth, the formation of new mass may be distributed over a volume (volumetric
growth) or occur on a surface (surface growth). In biological objects, the latter implies the volumetric
growth in a thin layer (at least one cell thick). This differs biological growth from surface material deposi-
tion that takes place in many technological and natural processes [9]. Internal growth, material deposition
(resorption) on the surface of pores, is also possible [1].

Summing numerous data briefly mentioned above we can formulate the general hypothesis that in normal
growth (in the absence of external loading) the inelastic deformation is realized due to the same mechanisms
as the inelastic deformation in growth under the action of external loads. Thus, the growth deformation
is always associated with stress development (at least at the microlevel). This basic hypothesis was first
formulated explicitly in [4].

The main mechanism that leads to the development of the stresses necessary for growth is osmosis.
The hampering of mobility of species dissolved in biological fluids due to the interaction of these species
with non-fluid components of biological tissues favors the appearance of considerable gradients of their
concentrations and, as a result, to the development of forces acting on the fluid. The action of these forces
leads to swelling and, if swelling is restricted, to internal pressures. Non-osmotic swelling mechanisms are
also possible, for example, the stress development in the tissue due to a change in its composition [7].

In what follows we consider the mathematical modeling of volumetric growth within the framework of
continuum mechanics. In order to model growth adequately, it is necessary to take into account, firstly,
the delivery of species spent for building the tissue and, secondly, the stresses that arise at the microlevel.
This is only possible within the framework of the model which treats the tissue as a multiphase medium
that includes at least one solid and one liquid phase. In this approach, two growth components, irreversible
deformation and mass transfer, can be separated in a natural way.

2. TWO-PHASE MODEL OF A GROWING MEDIUM

We consider a minimal model of the growing medium, which includes the deformable porous skeleton
(solid phase) with volume concentration α and the liquid phase with volume concentration β = 1−α that
flows along a system of interconnected pores. All fundamental problems that arise in constructing the
models of growing media can be considered with reference to this model. In further sections, possible
simplifications and generalizations of this model will be considered.

The apparent densities of the phases are equal to ρ1 = ρ∗
1 α and ρ2 = ρ∗

2 β , respectively, where the asterisk
denotes the true densities of these phases. We also characterize the structure of the medium by the set of
tensors L determining its anisotropy. The latter includes both the anisotropy of the solid phase and the
anisotropy of the shape and distribution of the pores. The form of the relations can also be affected by
the composition of the phases. We assume that in the liquid phase a generalized chemical component with
concentration c is distributed.

For obtaining the equations (excluding the purely heuristic method) in mechanics of multiphase media
two main methods are used: the method based on thermodynamics of irreversible processes and the averag-
ing of microscopic equations. We apply the averaging method assuming the solid phase to be a viscoelastic
body of the Maxwellian type and the liquid phase to be a linearly viscous, incompressible fluid. In the case
considered, this well-known procedure [10, 11] based on certain standard assumptions mainly yields known
relations. Therefore, we do not reproduce the calculations here and only dwell in more detail on certain
non-standard terms. Since rapid processes are not considered, we omit the inertial terms and write down all
relations in the quasi-static form.
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MATHEMATICAL MODELING OF TRANSPORT-GROWTH PROCESSES 3

Kinematics and continuity equations. In order to describe the deformations and displacements of the
solid phase particles, we introduce the observer’s coordinate system with Eulerian coordinates xi and the
comoving coordinate system with Lagrangian coordinates ξ s, assuming the both systems to coincide at the
actual moment. The law of medium motion has the form:

xi = xi(t,ξ s). (2.1)

It is natural to identify the law of solid phase motion with the law of motion for the medium as a whole.
In a standard way, from the law of motion (2.1) the fields of medium motion and deformation character-

istics can be constructed, in particular, the velocity vector vi and the strain rate tensor ei j:

vi =
dxi

dt
, ei j =

1
2

(
∇iv j + ∇ jvi

)
,

d
dt

=

(
∂
∂ t

)
ξ s=const

. (2.2)

The equality determining the components ei j is formulated in an arbitrary coordinate system. Of course,
we can introduce an initial state and the strain tensor with respect to this state in accordance with a certain
rule. For small strains all tensors so introduced coincide. The definition of the strain rate tensor (2.2) is
independent of these definitions.

The liquid flow is characterized by the velocity vector with components vi
2. The following continuity

equations hold:
∂ρ1

∂ t
+ ∇i

(
ρ1vi)= Θ, (2.3)

∂ρ2

∂ t
+∇i

(
ρ2vi

2

)
=−Θ, (2.4)

where Θ is the interphase mass exchange rate (positive for proper growth). In (2.3), (2.4), and formulas that
follow the summation convention applies.

For the generalized component with concentration in the liquid phase c, we have the continuity equation

∂ (ρ2c)
∂ t

+ ∇i
(
ρ2cvi

c

)
=−θ , (2.5)

where θ is the rate of consumption of the component distributed in the liquid phase for the solid phase
formation and vi

c are its velocity components.
Equilibrium equations for the phases and components. After the averaging, the quasi-static momentum

equations take the form:
∇ j

(
αT i j) − Ri + Fi

1 = 0, (2.6)

−∇i(β p) + Ri + Fi
2 = 0. (2.7)

Here, T i j is the stress tensor in the solid phase, p is the pressure in the liquid phase, Fi
1 and Fi

2 are
the components of the external volume force that acts on the solid and liquid phases, respectively, and Ri

is the interphase force that arises as a result of the averaging of the microscopic liquid-phase momentum
equations.

Summing (2.6) and (2.7), we can write down the equilibrium equation for the medium as a whole

∇ jσ i j + Fi = 0, (2.8)

in which the total stress in the medium σ i j and the external volume force Fi are defined by the relations

σ i j = αT i j − β pgi j, Fi = Fi
1 + Fi

2, (2.9)

where gi j are the components of the metric tensor.

FLUID DYNAMICS Vol. 47 No. 1 2012



4 KIZILOVA et al.

The interphase force has the following structure:

Ri = ki j(v j − v2 j) + p∇iβ + Hi. (2.10)

In expression (2.10), the first term is the viscous interphase force Ri
v = ki j(v j − v2 j) that arises from the

averaging of the viscous stresses, where ki j is the tensor coefficient of hydraulic permeability. This tensor
is generally anisotropic even for the viscous fluid to be isotropic at the microlevel due to the anisotropy of
the pores. The second term appears from the averaging of the pressure gradient with account for porosity
inhomogeneity (an Archimedes-like force).

The osmotic effects can only be realized if the mobility of the component dissolved in the liquid phase is
hampered by its interaction, separately from the liquid phase, with the solid phase. This component cannot
freely diffuse in the liquid as in the absence of the solid phase. This may be related with either the presence
of distributed semipermeable membranes or the direct force interaction of the component with the solid
phase. Therefore, in order to establish the structure of the third term Hi, we first have to consider the liquid
flow separately from this component with account for the force it exerts. The separate equilibrium equation
for the liquid in the mixture with a component dissolved in it has the form [4, 7]:

−ρ2∇i
(

p
ρ∗

2
+ μ

)
+ Ri

v0 + Ri
vc + Fi

20 = 0. (2.11)

Here, Ri
v0 and Ri

vc are the forces of resistance to water motion exerted by the solid phase and the dissolved
component, respectively, Fi

20 is that part of the volume force external with respect to the liquid which is
applied to the liquid itself (without the component dissolved), and μ is the chemical potential of the solvent
(water). The chemical potential μ is a function of the concentration c and possibly other parameters. Due to
the smallness of the concentration c, it is lawful to identify the force Ri

v0 with Ri
v and the force Fi

20 with Fi
2

and to neglect the force Ri
vc as compared with Ri

v. Then, substituting (2.11) in (2.10), with account for (2.7)
and the constancy of the true liquid density, we obtain the expression for the third (osmotic) component of
the interphase force

Hi =−ρ2∇iμ . (2.12)

For the component distributed in the liquid phase, the equilibrium equation has the form:

−ρc∇iμc + Ri
sc − Ri

vc + Fi
c = 0. (2.13)

Here, Ri
sc is the force of resistance to the component motion exerted by the solid phase, Fi

c is the external
volume force acting on the component, and μc is the chemical potential of the dissolved species.

The chemical potential μc is a function of the component concentration c, the solid phase concentration
α , and possibly other parameters. This is the presence of the solid phase concentration among the arguments
of the potential μc that leads to the formation in the growth zone of the region in which the component
concentration is increased and, as a result, to liquid flow into this region and the pressure development in
the liquid.

For the force Ri
vc we assume the linear dependence on the component velocity relative to the liquid

Ri
vc = Li jρc(vci − vi). The substitution of relation (2.13) in the component continuity equation (2.5) then

yields the equation

∂ (ρ2c)
∂ t

+ ∇i(ρ2cvi
2) + ∇i

[
Di j(−ρ2c∇ jμc + Rsc j + Fc j)] =−θ , (2.14)

where Di j is the tensor inverse to Li j. If Rsc j = 0, Eq. (2.14) transforms into the usual diffusion law with a
tensor diffusion coefficient.

This is the presence of the force Rsc that provides the maintenance of the concentration gradients neces-
sary for the realization of the osmotic effects. The relations determining this force should take into account
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the physics of processes specific for the tissue considered. The simplest form of the constitutive relation for
Rsc is the linear dependence on the relative velocity of the component with respect to the solid phase

Ri
sc = Mi jρ2c

(
v j − vc j

)
. (2.15)

Such a relation is, for example, lawful if the solid phase contains semipermeable membranes.
If we assume the linear relationship (2.15) and represent the relative velocity in the form vci − vi =

(vci − v2i) + (v2i − vi), Eq. (2.14) can be so transformed as to retain the traditional form of the diffusion
equation:

∂ (ρ2c)
∂ t

+ ∇i
(
ρ2cvi

2

)
+ ∇i

[−Di j
1

(
ρ2c∇ jμc + Fc j

)
+ ρ2cMi j(v j − v2 j

)]
=−θ (2.16)

with the difference that the tensor Di j
1 is now inverse to the sum Li j + Mi j and there is an additional term

related with the relative phase velocity, irreducible to diffusion.
Deformation of the solid phase. Consider the solid phase at a certain (actual) moment of time. In

processes rapid as compared with growth it should behave as a porous solid. As sufficient for most problems,
we assume the medium to behave elastically in rapid processes. At each point, the medium can locally be
unloaded, which means that the stresses in the solid phase vanish: Ti j = 0. We can locally introduce the
metric tensor at the actual moment gi j = g′i j and in the unloaded state g∗i j. By prime we denote components
in the Lagrangian coordinate system. We introduce the elastic strain tensor by the formula [12]

ε (e)
i j

′
=

1
2

(
g′i j − g∗i j

)
. (2.17)

In processes rapid as compared with growth the medium displays the elastic behavior and the strains are
determined by the stresses in the solid phase

ε (e)
i j = ε (e)

i j (T kl , α , L), ε (e)
i j (0, α , L) = 0. (2.18)

The deformation process is determined by the strain rate tensor ei j for which the following formula holds
[12]:

e′i j =
1
2

dg′i j

dt
=

dε (e)
i j

′

dt
+

1
2

dg∗i j

dt
. (2.19)

When differentiating, we must consider time moments close to the actual time, at which the components
g′i j no longer coincide with gi j. It is natural to call the tensor e(p)

i j whose components are determined in the
Lagrangian coordinate system by the formula

e(p)
i j

′
=

1
2

dg∗i j

dt
(2.20)

the inelastic strain rate tensor. This tensor characterizes the strain rate of the unloaded medium element. It
is natural to anticipate that it is this characteristic that obeys the law of irreversible deformation determining
biological growth.

In accordance with the basic hypothesis, the set of arguments of the function determining the strain rate
tensor should necessarily include the solid skeleton stress tensor T. The minimal set of arguments is given
by the relation

e(p)
i j = e(p)

i j (T kl, α , L), e(p)
i j (0, α , L) = 0. (2.21)

In view of the first equation in (2.9), the argument T can be replaced by the stress in the medium as
a whole σσσ , which leads to the appearance in the list of arguments of the pressure p in the liquid phase.
Generally, dependence (2.21) may contain among arguments the liquid phase pressure p directly. Such
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dependence may be related with the effect of the liquid phase pressure on the microstresses in the solid
phase that disappear in averaging or the effect of this pressure on the rate of chemical reactions.

Taking into account that relation (2.18) is written in the observer’s system, whereas in (2.20) the differ-
entiation is performed in the Lagrangian system, we obtain the following relation for the strain rate tensor
components in the observer’s system:

ei j =
∂ξ r

∂xi

∂ξ s

∂x j

d
dt

(
ε (e)

kl
∂xk

∂ξ r

∂xl

∂ξ s

)
+ e(p)

i j =
dε (e)

i j

dt
+ ε (e)

ik ∇ jv
k + ε (e)

k j ∇iv
k + e(p)

i j . (2.22)

Relation (2.22) completely determines the deformation law in the differential form for finite elastic
strains. The total strain tensor that would link the actual state with a certain state initial for the whole
process is not introduced. The problem of definition of such a tensor is thus abolished. This problem arises
if there is a need to include the strain tensor in the list of arguments of functions (2.18) or (2.21).

If the elastic strains are small, relation (2.22) can be simplified. In this case, we can omit the products of
small quantities and assume

ei j =
dε (e)

i j

dt
+ e(p)

i j . (2.23)

Possible methods of closing the system of equations. In order to close the system of equations, we need
relations determining the kinetics of mass transfer from the liquid to the solid phase, as well as the changing
of the porosity β and the anisotropy tensors L during inelastic deformation. Among the tensors L there are
parameters determining the shape and orientation of the pores. This aspect was discussed in the general
form in [4].

As a simplest hypothesis, the hypothesis of structure conservation [4, 13] can be formulated. It assumes
that in the new-born material the structure, that is, the porosity and the anisotropy-determining parameters,
remains unchangeable. Then the system becomes closed if we specify the functions and coefficients it
contains, including the relationship between the dissolved component consumption rate θ and the solid
phase production rate Θ.

The model is constructed not using the energy equation. Generally speaking, this equation could be
written but the presence of the difficult-to-estimate consumption of the chemical (metabolic) energy makes
it ineffective for solving specific problems. The methods of thermodynamics of irreversible processes were
used to justify the relations of growth mechanics and to obtain restrictions on the constitutive functions
[14, 15]. In so doing, the obvious fact was often ignored that the presence of chemical reactions, never taken
into account explicitly, casts some doubt on the thermodynamic consequences obtained.

On the formulation of problems. Residual stresses. The boundary and initial conditions are determined
by the specific problem. The system of equations presented does not need additional boundary conditions
for the liquid phase and the component distributed in it as compared with those that should be assigned for
the liquid with a diffusing admixture which flows through a solid porous medium.

For the solid phase, due to the absence of additional spatial derivatives as compared with theory of
elasticity, the formulation of the boundary-value problem is the same as in this theory. The important
characteristic of the growth problems is the presence of residual stresses in the medium. Such stresses arise
as a result of inconsistency of the constitutive equation for the inelastic strain rate with the compatibility
equations [1]. Since in any realistic problem we consider an object formed as a result of the previous
growth, the field of residual stresses (or elastic strains) corresponding to the complete unloading of the
object at the initial moment should be given. The complete unloading is taken to mean the equality to zero
of all external (volume and surface) forces acting on the solid phase. Among such forces there also are the
forces, internal for the medium as a whole, exerted by the liquid phase, including the component dissolved
in it. However, in most cases the solid phase equilibrium equations contain the only important force of this
group, the liquid pressure force. If the pressure p is equal to zero, as can be seen from (2.9), the tensors σσσ
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and T differ only in the scalar multiplier α . The residual stress field is thus any symmetric tensor field σ i j
0

satisfying in the volume the equation
∇ jσ i j

0 = 0

and on the boundary the condition of equality to zero of the stress vector σ i j
0 nj = 0, where nj are the

component of the normal to the boundary. In this field, stress tensor discontinuity surfaces, on which the
stress vector remains continuous, may be present.

A real object maximally approaching the two-phase model developed is the growing cartilage. In this
case, the solid phase is the cartilage matrix and the liquid phase is the tissue fluid. The matrix-producing
cells occupy a small part of the volume and can be included in the solid phase.

3. SINGLE-PHASE APPROXIMATION

From the two-phase model considered, the model of a growing single-phase medium can be obtained if
we assume that all the structural parameters and the pressure remain unchangeable. The stresses in the solid
phase and in the medium as a whole are then linked by the linear inhomogeneous relation with constant
coefficients

T i j =
1
α

σ i j +
β
α

pgi j. (3.1)

In the absence of stresses in the medium as a whole

T i j = T i j
0 =

β
α

pgi j. (3.2)

We can now assume that
e(p)

i j = e(p)
i j

(
σ kl), ε (e)

i j = ε (e)
i j

(
σ kl) (3.3)

and the relation (2.22) determining the medium strain rate (or in the case of small strains (2.23)) retains its
form.

The important difference from the two-phase model consists in the fact that the equality to zero of the
only stress present in the model σ i j does not lead to the vanishing of functions (3.3) since for σ i j = 0 the
stress in the solid phase T i j = T i j

0 ∕= 0. The second function (3.3) can easily be redefined by taking for the

unloaded state the state in which σ i j = 0. Then the equality ε (e)
i j (0) = 0 remains valid. The fact that the

tensor Ai j = e(p)
i j (0) differs from zero is important and means that growth deformation is possible in the

absence of stresses. The quantity Ai j is called the proper growth strain rate [1].
If the assumption of constancy of the structural parameters is fairly natural (the above-mentioned struc-

ture conservation hypothesis), the assumption of a constant liquid phase pressure seems voluntary. Never-
theless, it has a clear biological sense and means that due to certain undiscussed (regulatory) mechanisms a
stable composition of the liquid phase is maintained and it is this stability that provides a constant, necessary
for growth, internal pressure. For example, for certain growing plant tissues it is known that the intracellular
pressure remains constant [16]. Of course, this assumption (as the single-phase model itself) cannot be used
in problems for which such stability may be violated. Another possible situation for which the assumption
formulated is lawful is the case of growth possible only in the presence of external forces, so that in their
absence growth can be neglected (for example, in distraction osteogenesis) [13, 17].

4. DISCUSSION

The consideration performed with reference to the two-pase model makes it possible to easily solve many
problems violently discussed in mechanics of growing continuum, which often arise as a consequence of
artificial approaches applied. The notion of proper growth strain rate acquires an exact physical sense: as
the rate of growth deformation produced by external loads, this characteristic is different from zero only
in the presence of nonzero tensile stresses, but now developing on small spatial scales. Since deformation
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and mass transfer are separated in the model explicitly, the problem of distinction between “growth” and
“non-growth” inelastic deformations (strains) is abolished: there is a single inelastic deformation (strain)
accompanied or not accompanied by the deposition of a new solid phase mass.

We should especially dwell on the theory of deformation in a growing tissue. In this area there is exten-
sive literature (see, for example, [15, 18, 19]). The power of the theory mainly attacks the problem of taking
into account the total deformation from a certain initial to the actual state. The theory usually considers finite
(“very large”) strains. However, it is beyond reason to suggest that the tissue material “remembers” these
strains. On small times it behaves as a usual solid body (in most problems it can be treated as elastic) with
residual stresses. The local unloading does not return the tissue element to a bygone “initial” state. It is the
mechanical characteristics at the actual moment that should determine the actual deformation. The elastic
strains associated with the actual residual stresses are among such characteristics. It is difficult to imagine
that the “program” of growth which is inevitably present in the tissue is related with such a nonphysical
characteristic as the total strain tensor. To seek the real physical quantities responsible for this program is
the actual problem. Among such characteristics there may be parameters related with the formation and
breakup of chemical bonds [16]. Obviously, the law of motion and, hence, the finite strain tensor defined
with respect to any state (real or conventional) can be calculated as a result of solution of the corresponding
problem.

5. GENERALIZATIONS

There may be a lot of ways to generalize the proposed two-phase model. Obviously, the presence of
a single generalized chemical component distributed in the liquid phase is insufficient even for abstract
problems. At least two generalized components are needed: one responsible for osmotic effects and another
for the building of the solid skeleton.

The liquid phase should also not necessarily be single. In [19], the model of a growing plant tissue,
which takes into account in addition to the solid phase (cell walls) and the main liquid phase (intracellular
fluid) a delivering liquid phase (extracellular fluid), is in detail considered. The internal pressure needed for
growth deformation is generated in the intracellular fluid, whereas the extracellular fluid participates in the
transport of the liquid and components dissolved in it. A separate problem is to take into account the liquid
phases that move along specialized transport systems (vessels) distributed in the tissue (if such systems are
present). Inside the vessels the liquid velocity is usually much higher than outside.

In many cases, it may be necessary to consider several solid phases obeying different deformation laws
and connected by interphase elastic and viscoelastic forces [20, 21]. An example of such a system is the
plant leaf in which ribs (veins) grow obeying other laws than the tissue that surrounds them, which leads to
considerable deformations.

The development of growth mechanics will inevitably lead to explicitly taking into account additional
parameters responsible for the physicochemical state of the tissue. One of few examples of effective usage
of such parameters is the above-mentioned account for the chemical bonds in the cell walls for describing
the plant root growth.

Summary. A maximally simple model of the volumetrically growing two-phase medium with account for
the inelastic deformation of the solid phase is developed. Within the framework of this model, the inelastic
deformation and mass formation of the solid phase, which together comprise growth, and the transport of
the liquid and a generalized component dissolved in it can be considered. Deformation is provided by
stresses in the solid phase due to both the pressure in the liquid and the external forces if present. The liquid
pressure develops as a result of osmosis due to the presence of a component distributed in the liquid phase,
whose displacement is restricted by its interaction with the solid phase. A theory of deformation which
makes it possible not to introduce the total strain tensor is developed. The model of a growing single-phase
medium can be obtained from the two-phase model as a limiting case for the structure unchangeable and the
liquid pressure constant. For analyzing specific problems, the model can easily be generalized, including
the introduction of additional phases and components.
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