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Let G be an almost simple simply connected group over C. For 
a positive element α of the coroot lattice of G let 

◦
Zα denote 

the space of maps from P1 to the flag variety B of G sending 
∞ ∈ P1 to a fixed point in B of degree α. This space is known 
to be isomorphic to the space of framed G-monopoles on R3

with maximal symmetry breaking at infinity of charge α.
In [6] a system of (étale, rational) coordinates on 

◦
Zα is 

introduced. In this note we compute various known structures 
on 

◦
Zα in terms of the above coordinates. As a byproduct 

we give a natural interpretation of the Gaiotto–Witten 
superpotential studied in [8] and relate it to the theory of 
Whittaker D-modules discussed in [9].
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1. Introduction

1.1. Zastava spaces

Let G be an almost simple simply connected algebraic group over C. We denote by 
B the flag variety of G. Let us also fix a pair of opposite Borel subgroups B, B− whose 
intersection is a maximal torus T (thus we have B = G/B = G/B−).

Let Λ denote the cocharacter lattice of T ; since G is assumed to be simply connected, 
this is also the coroot lattice of G. We denote by Λ+ ⊂ Λ the sub-semigroup spanned by 
positive coroots. We say that α ≥ β (for α, β ∈ Λ) if α− β ∈ Λ+.

It is well-known that H2(B, Z) = Λ and that an element α ∈ H2(B, Z) is representable 

by an algebraic curve if and only if α ∈ Λ+. Let 
◦
Zα denote the space of maps P1 → B

of degree α sending ∞ ∈ P
1 to B ∈ B. It is known [6] that this is a smooth symplectic 

affine algebraic variety, which can be identified with the space of framed G-monopoles 
on R3 with maximal symmetry breaking at infinity of charge α [10,11].

The scheme 
◦
Zα is endowed with a number of remarkable structures (listed below). On 

the other hand in [6] the authors introduce a system of (birational, étale) coordinates on 
◦
Zα. The purpose of the present note is to compute how these structures look like in the 
above coordinates. In particular, it turns out that the Gaiotto–Witten superpotential [8]
admits a natural interpretation in terms of Whittaker D-modules of [9].

1.2. Quasi-maps

The scheme 
◦
Zα has a natural partial compactification Zα. It can be realized as the 

space of based quasi-maps of degree α; set-theoretically it can be described in the fol-
lowing way:

Zα = �
0≤β≤α

◦
Zβ × A

α−β ,

where for γ ∈ Λ+ we denote by Aγ the space of all colored divisors 
∑

γixi with xi ∈ A
1, 

γi ∈ Λ+ such that 
∑

γi = γ.

1.3. A “symmetric” definition of the zastava space

Fix λ, μ ∈ Λ. Let us denote by 
◦
Zλ,μ the scheme classifying the following data:

1) A G-bundle F on P1 with a trivialization at ∞ ∈ P
1.

2) A B-structure FB on F such that the induced T -bundle FT,+ is of degree λ. We 
require that FB is equal to B at ∞.

3) A B−-structure FB− on F such that the induced T -bundle FT,− is of degree μ. We 
require that FB− is equal to B− at ∞.
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It is easy to see that this is indeed a scheme. Moreover, we claim that 
◦
Zλ,μ is naturally 

isomorphic to 
◦
Zλ−μ (Section 6).

1.4. Structures on the zastava space

It is easy to see that the space 
◦
Zα is endowed with the following structures (the precise 

constructions are given in the main body of the paper):

(1) The scheme 
◦
Zα possesses a natural symplectic structure [6].

(2) There is a natural morphism πα :
◦
Zα → A

α. Moreover, given β, γ ∈ Λ+ let 
(Aβ × A

γ)disj denote the space of pairs of colored divisors of degrees β and γ which are 
mutually disjoint. If α = β+γ then we have a natural étale map (Aβ×A

γ)disj → A
α. 

The factorization is a canonical isomorphism

fβ,γ : (Aβ × A
γ)disj ×Aα Zα ∼−→ (Aβ × A

γ)disj ×Aβ×Aγ (Zβ × Zγ).

We shall refer to the latter as the factorization property of Zastava.
(3) The Cartan involution on G (which interchanges B and B− and induces the map 

t �→ t−1 on T ) induces an involution ι on 
◦
Zα (this is clear from the point of view of 

the definition of 
◦
Zα given in Section 1.3).

(4) Let ∂Zα = Zα\
◦
Zα. Then ∂Zα is a Cartier divisor and moreover it is the divisor of 

zeros of some function Fα on Zα which is invertible on 
◦
Zα (this function is unique 

up to a multiplicative scalar).
(5) Fix λ, μ ∈ Λ such that λ −μ = α. Then for every simple root α̌i of G we have canonical 

maps Eα
λ,+,i :

◦
Zα → H1(P1, O(〈−α̌i, λ〉), Eα

μ,−,i :
◦
Zα → H1(P1, O(〈−α̌i, μ〉). The 

precise definition is given in Section 6, so let us just explain the definition for G =
SL(2) here. In this case Zλ,μ � Zα just classifies rank 2 vector bundles F on P1

with trivialized determinant together with two short exact sequences 0 → L+ →
F → L−1

+ → 0 and 0 → L− → F → L−1
− → 0 with degL+ = −λ, degL− = −μ, 

where we identify the lattice Λ with Z in a natural way. In addition F is endowed 
with a trivialization at ∞, which is compatible with L+ and L−; in particular L+
and L− also get a trivialization at ∞ which allows us to identify them canonically 
with O(−λ) and O(−μ) (here we use a notation O(n), n ∈ Z, for a line bundle on 
P

1 trivialized at ∞ ∈ P
1). Hence the above short exact sequences define elements in 

H1(P1, O(−2λ)) and H1(P1, O(−2μ)).
Let χλ

i,+ :
◦
Zλ,μ × H0(P1, O(〈λ, α̌i〉 − 2)) → C be the composition of Eα

λ,+,i and 
the natural pairing H0(P1, O(〈λ, α̌i〉 − 2)) ×H1(P1, O(−〈λ, α̌i〉)) → C. Note that an 
element of H0(P1, O(〈λ, α̌i〉 − 2) can be regarded as a polynomial Ki of one variable 

z of degree ≤ 〈λ, α̌i〉 −2. Similarly, we let χμ
i,− :

◦
Zλ,μ×H0(P1, O(〈μ, α̌i〉 −2)) → C be 

the corresponding function (obtained by replacing Eα
λ,+,i with Eα

μ,−,i). We set Eα
λ,+
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to be the direct sum of all the Eα
λ,+,i and similarly for Eα

μ,− (sometimes we shall drop 
the indices λ, μ and α when it does not lead to a confusion). Obviously the maps 
E+ and E− are interchanged by the involution ι.

1.5. Coordinates on zastava

A system of étale birational coordinates on 
◦
Zα is introduced in Section 2.2. Let us 

recall the definition for G = SL(2). In this case 
◦
Zα consists of all maps P1 → P

1 of degree 
α which send ∞ to 0. We can represent such a map by a rational function RQ where Q
is a monic polynomial of degree α and R is a polynomial of degree < α. Let w1, . . . , wα

be the zeros of Q. Set yr = R(wr). Then the functions (y1, . . . , yα, w1, . . . , wα) form a 

system of étale birational coordinates on 
◦
Zα.

For general G the definition of the above coordinates is quite similar. In this case 

given a point in 
◦
Zα we can define polynomials Ri, Qi where i runs through the set of 

vertices of the Dynkin diagram of G and
(1) Qi is a monic polynomial of degree 〈α, ω̌i〉
(2) Ri is a polynomial of degree < 〈α, ω̌i〉.
Hence, we can define (étale, birational) coordinates (yi,r, wi,r) where i is as above 

and r = 1, . . . , 〈α, ω̌i〉. It will be convenient for us to use slightly modified coordinates 
yi,r := yi,r

∏
j �=i Q

〈αj ,α̌i〉/2
j (wi,r). Then the main result of this note is the following

Theorem 1.6.

(1) The Poisson brackets of the modified coordinates (with respect to the symplectic struc-
ture defined in [6]) are as follows:

{wi,r, wj,s} = 0, {wi,r,yj,s} = ďiδijδrsyj,s, {yi,r,yj,s} = 0.

(2) (Recall that the boundary equation Fα is defined up to a multiplicative constant.) We 
have Fα =

∏
i,r ydi

i,r =
∏

i,r y
di
i,r

∏
j �=i Q

αj ·αi/2
j (wi,r).

(3) Let us introduce yet another modified system of rational étale coordinates on 
◦
Zα: we 

define

yi,r := yi,r
Q′

i(wi,r)
, (1.1)

where Q′
i stands for the derivative of the polynomial Qi(z). Then we have

fβ,γ(wi,r, yi,r)1≤r≤ai

i∈I =
(
(wi,r, yi,r)1≤r≤bi

i∈I , (wi,r, yi,r)bi+1≤r≤ai

i∈I

)
. (1.2)

(4) The involution ι sends (wi,r, yi,r) to (wi,r, y−1
i,r ).
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(5) We have

χλ
i,+(w, y, z) =

ai∑
r=1

y−1
i,r

∏
j �=i Q

−〈αj ,α̌i〉
j (wi,r)

Q′
i(wi,r)

Ki(wi,r) =

ai∑
r=1

y−1
i,r

∏
j �=i Q

−〈αj ,α̌i〉/2
j (wi,r)
Q′

i(wi,r)
Ki(wi,r). (1.3)

Similarly,

χμ
i,−(w, y, z) =

ai∑
r=1

yi,r

∏
j �=i Q

−〈αj ,α̌i〉/2
j (wi,r)
Q′

i(wi,r)
Ki(wi,r). (1.4)

Remark 1.7. The set of irreducible components Irrα of the central factorization fiber 
π−1
α (α · 0) ⊂ Zα is in a natural bijection with the weight α component of the Kashiwara 

crystal Bǧ(∞), [2, Section 14]. The involution induced by ι on �α Irrα is nothing but 
the involution ∗ : Bǧ(∞) → Bǧ(∞) of [12, 8.3].

1.8. Relation with the works of Gaiotto–Witten and Gaitsgory

We keep the notation from Theorem 1.6. Let us observe that a monic polynomial K(z)
of degree d is the same as a point in A(d). Thus if all Ki are monic, together they form 

an point in Aλ−2ρ. Thus we may regard χλ
± :=

∑
i∈I χ

λ
i,± as functions on 

◦
Zα × A

λ−2ρ.
Let Λ = (λ1, . . . , λn) be an unordered collection of dominant coweights whose sum is 

equal to λ − 2ρ. Then Λ defines a locally closed subvariety 
◦
A

Λ in Aλ−2ρ (namely, the 
moduli space of configurations of distinct colored points z = (z1, . . . , zn) so that the 

color of zi is λi) and we denote by χΛ
± the restriction of χλ

± to 
◦
Zα ×

◦
A

Λ. We now define 

the (multivalued) superpotentials WΛ,α
± : h∨ ×

◦
Zα ×

◦
A

Λ → A
1 by setting

W
Λ,α
± =

∑
1≤n≤N

〈λn, h
∗〉zn −

∑
(i,r)

〈αi, h
∗〉wi,r ± logFα + χΛ

±

+
∑

1≤m<n≤N

λm · λn log(zm − zn). (1.5)

Note that all the summands except the 3rd and the 4th are pulled back from 
◦
A
α × A

Λ. 
Also, it is clear from the above definition that the exponential of WΛ

+ is well defined as 

a regular function on h∨ ×
◦
Zα ×

◦
A

Λ. In addition the involution ι transforms WΛ,α
+ to 

W
Λ,α
− .
Let us now assume that G = SL(2). Then it follows from Theorem 1.6 that the function 

W
Λ,α
− is exactly the Gaiotto–Witten superpotential studied in [8]. We shall from now on 
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use this name for WΛ,α
− for any G. We see that the exponential of the Gaiotto–Witten 

super-potential is well-defined on h∨ ×
◦
Zα ×

◦
A

Λ (this is not immediately clear from the 
coordinate description).

On the other hand, let κ ∈ C be an irrational number. Then the work of Gaitsgory 
[9] easily implies the following result:

Theorem 1.9. Let Mκ,α,Λ
− denote the D-module on 

◦
Zα ×

◦
A

Λ generated by the function 

exp(κWΛ,α
− ). Let πα,Λ : h∨×

◦
Zα×

◦
A

Λ → h∨×A
α×

◦
A

Λ be the corresponding morphism. 
Then we have πα,Λ

! (Mκ,α,Λ
− ) = πα,Λ

∗ (Mκ,α,Λ
− ) and it is isomorphic to the minimal exten-

sion of the D-module on the open stratum generated by the function

∏
1≤n≤N

exp(〈λn,κh
∗〉zn) ×

∏
(i,r)

exp(−〈αi,κh
∗〉wi,r) ×

×
∏

(i,r) �=(j,s)

(wi,r − wj,s)καi·αj/2 ×
∏

(i,r),1≤n≤N

(zn − wi,r)−καi·λn ×

×
∏

1≤m<n≤N

(zm − zn)κλm·λn .

1.10. Remark

The above theorem is essentially due to Gaiotto and Witten when restricted to the 
open stratum (in this case it is not difficult to deduce it from the coordinate description of 
the superpotential). Interpreting the superpotential in terms of (1.5) allows one to extend 

this statement to all of Aα ×
◦
A

Λ using the work of Gaitsgory. It would be interesting to 
find an interpretation of this refined statement in terms of the Landau–Ginzburg model 
studied by Gaiotto and Witten.

2. Recollections about zastava

2.1. Notations

G is an almost simple simplyconnected complex algebraic Lie group. We fix its Cartan 
and Borel subalgebras T ⊂ B ⊂ G with the Lie algebras h ⊂ b ⊂ g. The set of simple 
roots is denoted I; the simple roots (resp. coroots) are denoted α̌i (resp. αi), i ∈ I. We 
fix a Weyl group invariant symmetric bilinear form ?·? on the Cartan Lie algebra h such 
that the square length of a short coroot is αi · αi = 2. This bilinear form gives rise to 
an isomorphism h∨ ∼−→ h so that the root lattice X generated by {α̌i}i∈I embeds into 
h. We then have α̌i · α̌i ∈ {2, 1, 23}, and αi · αi ∈ {2, 4, 6}. We set di = αi·αi

2 . Let d be 
the ratio of the square lengths of the long and short coroots, so that d ∈ {1, 2, 3}. We 
set ďi = d/di. Then 〈αi, α̌j〉 = αi·αj = diα̌i · α̌j = d

α̌i·α̌j

ˇ .
dj di
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For α =
∑

i∈I aiαi, ai ∈ N, we consider the corresponding zastava space Zα (see 

e.g. [1]) with an open smooth subvariety Zα ⊃
◦
Zα: the moduli space of degree α based 

maps from C = P
1 to the flag variety B = G/B (also known as the moduli space of 

framed G-monopoles on R3 of topological charge α with the maximal symmetry breaking 

at infinity). The complementary boundary divisor is denoted ∂Zα := Zα \
◦
Zα.

2.2. Coordinates on zastava

Let z be a coordinate on C = P
1. We think of the zastava space Zα in its Plücker 

embedding as of collections of degree 〈α, ̌λ〉 Vλ̌-valued polynomials (here λ̌ is a dominant 
weight, and Vλ̌ is the corresponding irreducible representation) such that the highest 
weight component is of the form z〈α,λ̌〉 + . . . (the smaller powers of z), and all the other 
weight components are of degree strictly smaller than 〈α, ̌λ〉. In particular, if λ̌ = ω̌i, 
a fundamental weight, then the highest weight component is denoted Qi (a monic poly-
nomial of degree ai = 〈α, ω̌i〉), and the prehighest weight (= ω̌i − α̌i) component is 
denoted Ri (a polynomial of degree < ai). The polynomial Qi is determined uniquely by 
the (unordered) set of its roots wi,r, 1 ≤ r ≤ ai. The ramified cover 
 : Ẑα → Zα is 
formed by all the orderings of the roots of all the polynomials Qi, i ∈ I. We have regular 
functions yi,r := Ri(wi,r) on Ẑα. According to [6, Remark 2], on the open subset where 
all the roots wi,r, i ∈ I are distinct (and 
 is unramified), {wi,r, yi,r} form a coordinate 
system (an open embedding into A〈α,2ρ̌〉).

2.3. A symplectic form and modified coordinates

The main result of [6] is a construction of a symplectic form on 
◦
Zα which extends 

as a Poisson structure to Zα. According to [6, Proposition 2], the Poisson brackets of 
the coordinates of Section 2.2 are as follows: {wi,r, wj,s} = 0, {wi,r, yj,s} = ďiδijδrsyj,s, 
{yi,r, yj,s} = dα̌i · α̌j

yi,ryj,s

wi,r−wj,s
for i �= j, and finally {yi,r, yi,s} = 0.

Following the private communications of S. Oblezin and L. Rybnikov, we consider the 
modified rational étale coordinates yi,r := yi,r

∏
j �=i Q

〈αj ,α̌i〉/2
j (wi,r) (they are regular 

only on the open subset where all the roots wi,r, i ∈ I are distinct).

Lemma 2.4. The Poisson brackets of the modified coordinates are as follows: {wi,r,

wj,s} = 0, {wi,r, yj,s} = ďiδijδrsyj,s, {yi,r, yj,s} = 0.

Proof. Straightforward. �
Note that this is exactly the statement of Theorem 1.6(1).

Definition 2.5. We define the logarithmic coordinates yi,r := logyi,r on an appropriate 
Z
|α|-cover of the open subset of Ẑα where all the roots wi,r, i ∈ I are distinct, and 

yi,r �= 0.
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2.6. A version of zastava

Given λ, μ ∈ X∗(T ), we consider the moduli stack 
◦
Zλ,μ of the following data: 

(a) a G-bundle FG on C trivialized at ∞ ∈ C; (b) a reduction of FG to a B-bundle 
(a B-structure on FG) such that the induced T -bundle has degree λ, and the fiber of the 
B-structure at ∞ ∈ C is B ⊂ G; (c) a reduction of FG to a B−-bundle (a B−-structure 
on FG) such that the induced T -bundle has degree μ, and the fiber of the B−-structure 
at ∞ ∈ C is B− ⊂ G.

According to [3, Section 2], 
◦
Zλ,μ is representable by a scheme. More precisely, 

α := λ− μ is automatically a nonnegative combination of positive coroots, and 
◦
Zλ,μ

is isomorphic to the zastava scheme 
◦
Zα.

The Cartan involution of G interchanging B and B− and acting on T as t �→ t−1 in-
duces an isomorphism ι :

◦
Zλ,μ ∼−→

◦
Z−μ,−λ. The composition 

◦
Zα �

◦
Zλ,μ ι−→

◦
Z−μ,−λ �

◦
Zα is a well defined involution ι :

◦
Zα ∼−→

◦
Zα (independent of the choice of a presen-

tation α = λ − μ: the independence is clear from the description of the identification 
◦
Zλ,μ ∼−→

◦
Zα of [3, Section 2]).

3. Factorization (proof of Theorem 1.6(3))

3.1. Factorization in coordinates

Recall the fundamental factorization property of zastava spaces. For α = β + γ we 
have a natural morphism a : A

β ×A
γ → A

α. An open subset (Aβ ×A
γ)disj ⊂ (Aβ ×A

γ)
is formed by the pairs (Dβ , Dγ) of disjoint divisors Dβ , Dγ ∈ A

1. The factorization is a 
canonical isomorphism

fβ,γ : (Aβ × A
γ)disj ×Aα Zα ∼−→ (Aβ × A

γ)disj ×Aβ×Aγ (Zβ × Zγ).

We introduce yet another modified system of rational étale coordinates on Zα: we define

yi,r := yi,r
Q′

i(wi,r)
. (3.1)

Let β =
∑

i∈I biαi, γ =
∑

i∈I ciαi, so that ai = bi + ci.

Proposition 3.2. fβ,γ(wi,r, yi,r)1≤r≤ai

i∈I =
(
(wi,r, yi,r)1≤r≤bi

i∈I , (wi,r, yi,r)bi+1≤r≤ai

i∈I

)
.

Proof. We recall the construction of the factorization isomorphism. Let U stand for the 
unipotent radical of the Borel B, and let U− be the unipotent radical of the opposite 
Borel (with the same Cartan torus T ) B−. Let G/U stand for the affinization of the 
base affine space. The quotient stack U−\G/U/T has an open dense point; and the 
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complement is a Cartier (Schubert) divisor D. Now Zα is the moduli space of degree α
maps C → U−\G/U/T (i.e. such that the induced T -bundle on C has degree α) such 
that ∞ ∈ C goes to the complement of the Schubert divisor, see e.g. [3].

For φ ∈ Zα, the pullback of the Schubert divisor φ∗D is nothing but πα(φ) ∈ (C\∞)α. 
Given φ1 ∈ Zβ , φ2 ∈ Zγ with disjoint πβ(φ1), πγ(φ2), we construct the corresponding 
φ ∈ Zα as follows. Note that the disjointness condition guarantees that U1 := C \ φ∗

1D

and U2 := C \ φ∗
2D cover C, and φ1|U1∩U2 = φ2|U1∩U2 (the constant map to the point). 

So we define φ by gluing φ1 and φ2 over U1 ∩ U2.
Now let us replace G, U, U−, T by SLi

2, U
i, U i

−, T
i corresponding to the i-th root. 

Then SLi
2/U

i is isomorphic to a 2-dimensional vector space Vi; the right action of T i

is isomorphic to the scalar action of C∗; the left action of U i
− is isomorphic to the one 

coming from the natural left action of SLi
2. We have the canonical homomorphisms 

χi : U− � U i
−, and α̌i : T → T i. We also have a natural projection pri : G/U �

SLi
2/U

i. In effect, G/U in Plücker realization consists of collections of vectors in the 
irreducible G-modules. In particular, each collection contains a vector vω̌i

∈ Vω̌i
. So we 

set pri(vλ̌)λ̌∈X∗(T )+ := pri(vω̌i
) ∈ V Rad Pi

ω̌i
= Vi. It is straightforward to check that pri

is χi : U− � U i
−-equivariant, and α̌i : T → T i-equivariant. In other words, we have a 

morphism of stacks pri : U−\G/U/T → U i
−\SLi

2/U
i/T i, and the inverse image of the 

Schubert divisor Di ⊂ U i
−\SLi

2/U
i/T i lies inside the Schubert divisor D ⊂ U−\G/U/T

(in fact, this inverse image coincides with the corresponding irreducible component of D). 
Hence we obtain the same named projection pri : Zα

g → Zai

sli2
, and the following diagram 

commutes:

Zα
g

pri−−−−→ Zai

sli2

πα

⏐⏐
 πai

⏐⏐

A

α pri−−−−→ A
(ai)

(3.2)

Moreover, the following diagram commutes as well:

(Aβ × A
γ)disj ×Aα Zα

g

fβ,γ−−−−→ (Aβ × A
γ)disj ×Aβ×Aγ (Zβ

g × Zγ
g )

pri
⏐⏐
 pri

⏐⏐

(A(bi) × A

(ci))disj ×A(ai) Z
ai

sli2

fbi,ci−−−−→ (A(bi) × A
(ci))disj ×A(bi)×A(ci) (Zbi

sli2
× Zci

sli2
)

(3.3)

Hence the proposition is reduced to the case of g = sl
i
2 that will be dealt with in the 

next section.

3.3. Factorization for SL2

In this section G = SLi
2, and to unburden the notations we will write G, U, U−, T

for SLi
2, U

i, U i
−, T

i. We will use another point of view on the factorization. Namely, we 
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will think of Za � φ : C → U−\G/U/T as of a G-bundle F on C with a general-
ized B-structure, and a U−-structure transversal to the B-structure at ∞ ∈ C. These 
generically transversal structures define a generic trivialization of F, i.e. a point of the 
Beilinson–Drinfeld Grassmannian GrBD. Moreover, since any U−-bundle over C is trivial, 
F is trivial too, and its trivialization at ∞ ∈ C extends to a canonical global trivial-
ization. Thus the above trivialization (coming from two transversal structures) may be 
viewed as a rational function C → G; more precisely, as a rational function f : C → U−
(because of the reduction to U−) sending ∞ ∈ C to the neutral element of U−. Now recall 
that G = SLi

2, and U− = Ga = A
1. Then in the elementary terms f is nothing but Ri

Qi
.

Back to factorization, it arises from the factorization of the Beilinson–Drinfeld Grass-
mannian. Given G-bundles F1, F2 with trivializations σ1, σ2 defined on the open subsets 
U1, U2 ⊂ C such that U1 ∪U2 = C we construct a new bundle F with trivialization σ on 
U = U1 ∩ U2 by gluing F1|U2 and F2|U1 over U where they are both trivialized.

Given Zb � φ1 (resp. Zc � φ2) corresponding to (F1, U1, σ1) (resp. (F2, U2, σ2)) and 
f1 = R1

Q1
(resp. f2 = R2

Q2
) we want to compute the result of gluing Za � φ corresponding 

to (F, U, σ) and f = R
Q . Note that by the construction, the principal part of f at C \U1

(resp. C \U2) coincides with the principal part of f1 at C \U1 (resp. with that of f2 at 
C \ U2). On the other hand, the rational function f of degree a vanishing at ∞ ∈ C is 
uniquely determined by its principal parts at (C\U1) ∪(C\U2). We conclude f = f1+f2. 
This is equivalent to the desired formula of (3.1) and Proposition 3.2 (since the principal 
part of f at wi,r, i.e. the residue of fdz at wi,r, is given by the formula (3.1)).

This completes the proof of the proposition. �
3.4. Another factorization

Recall from Section 3.3 that the factorization isomorphism

fβ,γ : (Aβ × A
γ)disj ×Aα

◦
Zα ∼−→ (Aβ × A

γ)disj ×Aβ×Aγ (
◦
Zβ ×

◦
Zγ)

(Section 3.1) is induced by the embedding 
◦
Zα ↪→ GrBD(U−) ↪→ GrBD(G). Given x =∑

m αm · xm ∈ A
α the fiber π−1

α (x) goes under this embedding to 
∏

m(T0 ∩ Sαm
) ⊂

GrBD(G). Here T0 ⊂ GrG,xm
(resp. Sαm

⊂ GrG,xm
) is the semiinfinite orbit U−(Kxm

) ·0
(resp. U(Kxm

) · αm), and Kxm
⊃ Oxm

is the local field (resp. ring) around the point 
xm ∈ C, and αm ∈ GrG is a T -fixed point. Note that T0 ⊂ GrG is canonically isomorphic 
to GrU− ⊂ GrG.

We also have a natural embedding 
◦
Z0,−α ↪→ GrBD(G) sending the fiber over x

to 
∏

m(T−αm
∩ S0) ⊂ GrBD(G). Note that S0 ⊂ GrG is canonically isomorphic to 

GrU ⊂ GrG. Under the identification 
◦
Zα �

◦
Z0,−α the factorization of GrU induces the 

factorization

f
+
β,γ : (Aβ × A

γ)disj ×Aα

◦
Zα ∼−→ (Aβ × A

γ)disj ×Aβ×Aγ (
◦
Zβ ×

◦
Zγ).
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Recall the Cartan involution 
◦
Zα �

◦
Zα,0 ι−→

◦
Z0,−α �

◦
Zα of Section 2.6. The following 

lemma is used in the next Section 4.

Lemma 3.5. The following diagram commutes:

(Aβ × A
γ)disj ×Aα

◦
Zα fβ,γ−−−−→ (Aβ × A

γ)disj ×Aβ×Aγ (
◦
Zβ ×

◦
Zγ)

Id ×ι

⏐⏐
 Id ×ι×ι

⏐⏐

(Aβ × A

γ)disj ×Aα

◦
Zα

f
+
β,γ−−−−→ (Aβ × A

γ)disj ×Aβ×Aγ (
◦
Zβ ×

◦
Zγ)

(3.4)

Proof. Obvious. �
4. Cartan involution (proof of Theorem 1.6(4))

4.1. Involution in coordinates

Recall the modified coordinates yi,r of Section 2.3, and the Cartan involution ι :
◦
Zα →

◦
Zα of Section 2.6.

Proposition 4.2. The involution ι :
◦
Zα →

◦
Zα in coordinates acts as follows: ι :

(wi,r, yi,r) �→ (wi,r, y−1
i,r ) (equivalently, (wi,r, yi,r) �→ (wi,r, y

−1
i,r

∏
j �=i Q

−〈αj ,α̌i〉
j (wi,r))).

Proof. Recall that a B-structure on FG is encoded in a collection κλ̌ : Lλ̌ ↪→ Vλ̌
FG

of line 
subbundles satisfying the Plücker relations. Equivalently, we can consider a collection 
κ∗
−w0λ̌

: Vλ̌
FG

� ′Lλ̌ of the quotient line bundles satisfying the Plücker relations (we 
have ′Lλ̌ = L∗

−w0λ̌
). Similarly, a B−-structure on FG is encoded in a collection of line 

subbundles κ−
λ̌

: L−
λ̌

↪→ Vλ̌
FG

or equivalently, a collection of the quotient line bundles 
κ−∗
−w0λ̌

: Vλ̌
FG

� ′L−
λ̌

. Let Pi (resp. P−
i ) be the i-type subminimal parabolic subgroup 

containing B (resp. B−). Then a B-structure on FG induces a Pi-structure on FG that 
gives rise to a 2-dimensional subbundle Vi ↪→ Vω̌i

FG
(associated to the 2-dimensional 

subspace of invariants V Rad Pi

ω̌i
⊂ Vω̌i

). Similarly, a B−-structure on FG induces a 
P−
i -structure on FG that gives rise to a 2-dimensional quotient bundle Vω̌i

FG
� ′V−

i .
We have the natural embedding Lω̌i

↪→ Vi and the natural projection ′V−
i � ′Lω̌i

. 
We define the line bundle Mi := Vi/Lω̌i

so that we have a short exact sequence 0 →
Lω̌i

→ Vi → Mi → 0. We define the line bundle ′Mi as the kernel of ′V−
i � ′Lω̌i

so 
that we have a short exact sequence 0 → ′Mi → ′V−

i → ′Lω̌i
→ 0. We also consider 

the composition Lω̌i
↪→ Vω̌i

FG
� ′V−

i . We define Ni as the cokernel of this composed 

map. Note that generically over 
◦
Zλ,μ this composed map is an embedding of the line 

bundle Lω̌i
, so that Ni is a line bundle as well, and we have a short exact sequence 

0 → Lω̌i
→ ′V−

i → Ni → 0. Given a general (FG, κλ̌, κ
−∗
λ̌

) ∈
◦
Zλ,μ such that Ni is a line 

bundle, we consider the following diagram:
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Lω̌i
−−−−→ Vi −−−−→ Mi∥∥∥ ⏐⏐
 Q

⏐⏐

Lω̌i

−−−−→ ′V−
i −−−−→ Ni

(4.1)

Here the rows are the above short exact sequences, the middle vertical map is defined as 
the composition Vi ↪→ Vω̌i

FG
� ′V−

i , and the right vertical map Q is defined as follows. 
Note that the trivialization of FG at ∞ ∈ C compatible with the B, B−-structures 
gives rise to the trivializations of Lω̌i

, Mi, Ni at ∞ ∈ C. For degree reasons, Mi

is canonically isomorphic to OC(〈λ, −ω̌ + α̌i〉), and Ni is canonically isomorphic to 
OC(〈α, ω̌i〉 +〈μ, −ω̌i+ α̌i〉). Finally Q ∈ Hom(Mi, Ni) = Γ(C, O(〈α, 2ω̌i− α̌i〉)) is defined 
as 

∏
j �=i Q

−〈αj ,α̌i〉
j .

Lemma 4.3. The diagram (4.1) commutes.

Proof. Straightforward. �

Now given a general (FG, κλ̌, κ
−∗
λ̌

) ∈
◦
Zλ,μ �

◦
Zα, the coordinates wi,r are nothing 

but the points of C where the line subbundles Lω̌i
↪→ ′V−

i and ′Mi ↪→ ′V−
i are not 

transversal. The trivialization of Lω̌i
, ′Mi at ∞ ∈ C gives rise to a canonical trivialization 

of these line bundles restricted to A1 = C \ {∞}. Hence at a nontransversality point 
wi,r ∈ A

1 we have two collinear vectors in the fiber ′V−
i |wi,r

, and the coordinate yi,r is 
nothing but their ratio.

Since the Cartan involution 
◦
Zα �

◦
Zλ,μ ι−→

◦
Z−μ,−λ �

◦
Zα takes (FG, κλ̌, κ

−∗
λ̌

) to 
(FG, κ

−∗
λ̌

, κλ̌), and interchanges the line bundles Lω̌i
, Mi with and without primes, the 

proposition follows. �

5. An equation of the boundary (proof of Theorem 1.6(2))

5.1. An equation in modified coordinates

A regular function Fα on Zα was constructed in [1, Section 4] such that the divisor 
of Fα is the boundary divisor ∂Zα (the multiplicities of various irreducible components 
of the boundary are 1 or d), see [1, Lemma 4.2]. Recall the modified coordinates yi,r

of Section 2.3.

Theorem 5.2. There is cα ∈ C
∗ such that cαFα =

∏
i,r ydi

i,r =
∏

i,r y
di
i,r

∏
j �=i Q

αj ·αi/2
j (wi,r).

The rest of the section is devoted to the proof of the theorem.
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5.3. Invertible functions on zastava

Let us denote the RHS of Theorem 5.2 by Fα. If we can prove that Yα is a regular 
function on Zα invertible on 

◦
Zα with a correct order of vanishing at ∂Zα, then Fα/Fα is 

a rational function on Zα regular and nonvanishing at 
◦
Zα and at the generic points of the 

irreducible components of the divisor ∂Zα. Due to normality of Zα [1, Corollary 2.10], 
the ratio Fα/Fα is a regular invertible function on Zα. Then according to the following 
lemma, the ratio Fα/Fα is a nonzero constant cα.

Lemma 5.4. Γ(Zα, O∗
Zα) = C

∗.

Proof. Recall the factorization morphism πα : Zα → A
α. Let Δ ⊂ A

α be the diagonal 
divisor. For an off-diagonal configuration D ∈ A

α the fiber π−1
α (D) is isomorphic to the 

〈α, ρ̌〉-dimensional affine space. Hence for f ∈ Γ(Zα, O∗
Zα) the restriction of f to any 

off-diagonal fiber of πα is constant. Hence f = f̄ ◦ πα for a certain (invertible) function 
f̄ on Aα. Such f̄ is necessarily constant. �
5.5. Codimension one: A1 and A1 ×A1

The order of vanishing of Fα at the generic points of the irreducible components 
of ∂Zα clearly coincides with that of Fα: see [1, Lemma 4.2]. We prove the regularity 
of Fα. Due to normality of Zα it suffices to check the regularity at the generic points 
of divisors wi,r = wj,s. By the factorization property, it suffices to consider the case 
α = αi + αj . The case when αi · αj = 0 being evident, we start with i = j. Then we can 
assume g = sl2, so that Z2

sl2
� A

4 = {(Qi = z2 + a1z + a2, Ri = b0z + b1)}. We have 
Qi = (z − w1)(z − w2), Ri = (y1(z − w2) − y2(z − w1))/(w1 − w2), so that y1y2 is the 
resultant R(Qi, Ri): a regular function on Z2

sl2
, an equation of the boundary.

5.6. Codimension one: A2

Next assume i �= j, and αi · αj �= 0, and di = dj . Then we can assume g = sl3. 
Both fundamental representations Vω̌i

, Vω̌j
of sl3 are 3-dimensional. The zastava space 

Z
αi+αj

sl3
is formed by the polynomials with values in Vω̌i

, Vω̌j
of the form (z − wi, yi, u),

(z − wj , yj , −u) such that yiyj + (wi − wj)u = 0. We have yi√
wj−wi

yj√
wi−wj

=
√
−1u: 

a regular function on Zαi+αj

sl3
, an equation of the boundary.

5.7. Codimension one: B2

Next assume i �= j, and αi ·αj �= 0, and di = 2, dj = 1. Then we can assume g = sp4. 
The fundamental representation Vω̌i

(resp. Vω̌j
) is 4-dimensional (resp. 5-dimensional). 

The Plücker coordinates for Zαi+αj
sp are as follows:
4
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c03 b01 z + A1

b03 c02 z + A2

c b02 b12

.

Here the boxed coordinates are the weight components of Vω̌i
, and the remaining ones are 

the weight components of Vω̌j
. They are placed in the weight lattice of Sp(4). The origin of 

the weird notation is in [7, Example 2.3.2]. The Plücker equations are as follows. First, we 
have the natural pairing Vω̌j

⊗ Vω̌j
→ C coming from Vω̌j

⊂ Λ2Vω̌i
, and Λ4Vω̌i

= C. The 
Vω̌j

-valued polynomial must be selforthogonal. The vanishing of the leading coefficient 
of the selfpairing is c = 0. The vanishing of the degree zero coefficient of the selfpairing 
is 2c03b12 − 2c202 = 0. Second, we have the projection Vω̌i

⊗ Vω̌j
→ Λ3Vω̌i

which must 
vanish on our polynomials. The vanishing of the leading coefficient of the projection is 
c02 = b02, c03 = b03. The vanishing of the degree zero coefficient of the projection is 
−c02b02 + cA2 + b12b03 = 0, A1b02 − A2c02 − b01b12 = 0, b02c03 − b01c − b03c02 = 0, 
A2c03 − A1b03 + b01c02 = 0. Note that the former quadratic equation is equivalent to 
the first quadratic Plücker equation. All in all, we can take A1, A2, b12, b01, b02, b03 as 
independent coordinates, and we will have three quadratic equations: b02(A1 − A2) =
b01b12, b03(A1 −A2) = b01b02, b202 = b12b03 (noncomplete intersection of three quadrics). 
To compare with the coordinates of Section 2.2: wi = −A1, wj = −A2, yi = b01, yj = b12.

We have ( yi√
wj−wi

)2 yj

wi−wj
= − b201b12

(wi−wj)2 = − b01b02
wi−wj

= −b03: a regular function on 

Z
αi+αj
sp4

, an equation of the boundary.

5.8. Codimension one: G2

Next assume i �= j, and αi · αj �= 0, and di = 3, dj = 1. Then g is of type 
G2. We have the regular functions wi, wj , yi, yj on Zαi+αj

g . We have to show that 
( yi√

wj−wi
)3 yj√

(wi−wj)3
=

√
−1 y3

i yj

(wi−wj)3 is a regular function on Zαi+αj
g . According to the 

formulas of Section 2.3, the Poisson bracket {yi, yj} = −3 yiyj

wi−wj
is a regular function. 

Furthermore, {yi, yiyj

wi−wj
} = yi

{yi,yj}
wi−wj

+ yiyj{yi, 1
wi−wj

} = −3 y2
i yj

(wi−wj)2 + y2
i yj

(wi−wj)2 =

−2 y2
i yj

(wi−wj)2 is a regular function. Finally, {yi, y2
i yj

(wi−wj)2 } = − y3
i yj

(wi−wj)3 is a regular func-
tion on Zαi+αj

g .

5.9. Invertibility

The last thing to check is the invertibility of Fα on 
◦
Zα. To this end recall the Cartan 

involution ι :
◦
Zα →

◦
Zα of Section 2.6 and note that according to Proposition 4.2 we 

have Fα ◦ ι = F−1
α .

The theorem is proved. �
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Remark 5.10. Here is an alternative way to prove the invertibility of Fα on 
◦
Zα: much 

shorter but less elementary. According to [1, Proposition 4.4], the weight of Fα with 
respect to the loop rotations in all the examples of Section 5.6, Section 5.7, Section 5.8 is 
equal to one. If Fα were not regular on Zα, for certain m > 0 the function (wi−wj)mFα

would be regular on Zα and invertible on 
◦
Zα. Thus, the ratio (wi−wj)mFα/Fα would be 

invertible on Zα (since the numerator and denominator have the same order of vanishing 
at the boundary ∂Zα) and hence constant by Lemma 5.4. Since the weight of both 
(wi − wj) and Fα with respect to the loop rotations is also equal to one, we conclude 
m = 0: a contradiction with our assumption m > 0. Hence we have proved the regularity 

of Fα on Zα and simultaneously the invertibility of Fα on 
◦
Zα. The general case is reduced 

to the above examples by factorization.

This completes the proof of Theorem 5.2. �
6. An Ext calculation (proof of Theorem 1.6(5))

6.1. PGL2-bundles

A PGL2-bundle with a flag on C = P
1 can be viewed as a short exact sequence 

0 → L → V → M → 0 (L and M are the line bundles, and V is a rank two vector bundle) 
modulo the twistings by the line bundles. In particular, the line bundle M−1 ⊗ L =
Hom(M, L) is well defined: this is nothing but the induction of the Borel bundle to 
the Cartan bundle. We consider the moduli stack F2 of PGL2-bundles with a flag on 
C equipped with a trivialization at ∞ ∈ C of the corresponding line bundle M−1 ⊗ L. 
The connected components of F2 are numbered by the integers degM − degL. On a 
connected component Fn

2 , we have a canonical isomorphism Hom(M, L) = OC(−n), 
and so Ext1(M, L) = H1(C, O(−n)) = H0(C, O(n − 2))∨. Thus we have a morphism 
E : Fn

2 → H0(C, O(n − 2))∨.

6.2. A map to Ext

By Plücker, we may view a B-structure on FG as a collection of line subbundles 
Lλ̌ ⊂ Vλ̌

FG
satisfying the Plücker relations (here λ̌ runs through the cone of dominant 

weights of G, and Vλ̌
FG

is the vector bundle associated to the irreducible G-module Vλ̌

with the highest weight λ̌). For a B-structure coming from a point of 
◦
Zλ,μ we have 

degLλ̌ = −〈λ, ̌λ〉. The trivialization at ∞ ∈ C extends to a canonical isomorphism 
Lλ̌ = OC(−〈λ, ̌λ〉). Since the assignment λ̌ �→ Lλ̌ is multiplicative in λ̌ : Lμ̌+ν̌ = Lμ̌⊗Lν̌ , 
we can extend the notion of Lλ̌ for arbitrary weights γ̌ ∈ X∗(T ). We have a canonical 
isomorphism Lγ̌ = OC(−〈λ, ̌γ〉).

For i ∈ I we have a morphism Pi :
◦
Zλ,μ → F

〈λ,α̌i〉
2 defined as follows. Let G ⊃ Pi ⊃ B

be the i-type subminimal parabolic subgroup. We have the projection Pi → Li to the 
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corresponding Levi, also we have the projection Li → PGL2, and so the composed 
projection B ↪→ Pi � Li � PGL2. Given a B-reduction of a G-bundle on FG trivialized 
at ∞ ∈ C, we consider the induced PGL2-bundle. It comes equipped with a flag and 
trivialization at ∞ ∈ C. This is our desired Pi applied to FG with the B-structure (note 
that we have not used the B−-structure).

If we specialize to the case (λ, μ) = (α, 0), the assumption μ = 0 guarantees that the 
B−-structure further reduces to the U−-structure (where U− is the radical of B−). Since 
any U−-bundle on C = P

1 is automatically trivial, the ambient G-bundle FG is trivial 
too, and its trivialization at ∞ ∈ C extends to a canonical trivialization over C. Thus we 

arrive at an identification 
◦
Zα,0 �

◦
Zα with the usual zastava space, i.e. the moduli space 

of degree α based maps from (C, ∞) to (B, B). For φ ∈
◦
Zα let us describe explicitly two 

particular representatives (2-dimensional bundles with a flag) of Pi(φ).
We have a projection pi : B = G/B → G/Pi =: Bi. We define Bi := B ×Bi

B, and 
pi : Bi → B (the first projection). By construction, pi is a P1-bundle over B equipped 
with a canonical (diagonal) section Δi : B → Bi. We define V′

i := pi∗OBi(Δi) ⊃ L′
i :=

pi∗OBi = OB. Thus we get a short exact sequence 0 → L′
i → V′

i → M′
i → 0 trivialized at 

B ∈ B; here M′
i = OB(α̌i). Finally, Pi(φ) = {0 → φ∗L′

i → φ∗V′
i → φ∗M′

i → 0}.
Alternatively, let Vω̌i

be the trivial vector bundle over B associated with the fun-
damental G-module Vω̌i

. It has a line subbundle Li: the fiber Li|B′ is the B′-highest 
line V Rad B′

ω̌i
. If P ′

i is the i-type subminimal parabolic containing B′, then the invari-
ants V Rad P ′

i

ω̌i
are 2-dimensional (the highest and next highest lines), and as B′ varies 

in B, we obtain a 2-dimensional subbundle Vi ⊂ Vω̌i
. Thus we have a short exact se-

quence 0 → Li → Vi → Mi → 0 trivialized at B ∈ B; here Li = OB(−ω̌i), and 
Mi = OB(−ω̌i + α̌i). Again, we have Pi(φ) = {0 → φ∗Li → φ∗Vi → φ∗Mi → 0}.

Finally, we define Ei :
◦
Zλ,μ → Ext1(OC , Lα̌i

) = Ext1(OC , OC(〈μ − λ, α̌i〉)) as the 

composition 
◦
Zλ,μ �

◦
Zλ−μ,0 Pi−→ F

〈λ−μ,α̌i〉
2

E−→ Ext1(OC , OC(〈μ − λ, α̌i〉)).

6.3. Recollections of [9]

We recall some of the constructions of [9] in the particular case of a curve of genus 0 
(projective line C). In this case the canonical bundle ωC is isomorphic to OC(−2), and 
we choose a square root ω1/2

C � OC(−1). Let Λ = (λ1, . . . , λN ) be an ordered collection 

of dominant coweights. Let 
◦
A

Λ be the moduli space of ordered configurations of distinct 
points (z1, . . . , zN ∈ A

1). Let 
◦
A

α,Λ ⊂ A
α ×

◦
A

Λ be the open subspace formed by the 

configurations of pairwise distinct points. For i ∈ I and z ∈
◦
A

Λ we define a monic 
polynomial Ki(z) :=

∏
1≤n≤N (z − zn)〈λn,α̌i〉.

Given a point z ∈
◦
A

Λ, we consider a moduli stack Wz,Λ classifying the following data: 
(a) A G-bundle FG on C; (b) For each dominant weight λ̌ a nonzero map κλ̌ : ω

〈ρ,λ̌〉
C →

Vλ̌
F having the poles of order exactly λi at zi, and regular nonvanishing at C \{z}. Here 
G
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Vλ̌
FG

is the vector bundle associated to FG and the irreducible G-module V λ̌, and ω〈ρ,λ̌〉
C

stands for (ω1/2
C )⊗〈2ρ,λ̌〉. The collection of maps κλ̌ must satisfy the Plücker relations 

(cf. [9, 2.1, 2.6]).
Alternatively, note that κλ̌|

ω
〈ρ,λ̌〉
C (−

∑N
n=1〈λn,λ̌〉·zn)

is a regular embedding, and the im-

age is a line subbundle Lλ̌ ⊂ Vλ̌
FG

. So Wz,Λ is the moduli stack of the collections 
of line subbundles Lλ̌ ⊂ Vλ̌

FG
satisfying the Plücker relations plus the identifications 

Lλ̌ = ω
〈ρ,λ̌〉
C (− 

∑N
n=1〈λn, ̌λ〉 · zn).

Since the assignment λ̌ �→ Lλ̌ is multiplicative in λ̌ : Lμ̌+ν̌ = Lμ̌⊗Lν̌ , we can extend 
the notion of Lλ̌ for arbitrary weights γ̌ ∈ X∗(T ). The construction of Section 6.2 defines 
a morphism Ei : Wz,Λ → Ext1(OC , Lα̌i

). The canonical embedding Lα̌i
↪→ ω

〈ρ,α̌i〉
C = ωC

gives rise to the projection Ext1(OC , Lα̌i
) → Ext1(OC , ωC) = A

1. Composing it with Ei

we obtain a function χi : Wz,Λ → A
1.

Following [9, 4.3] we consider the moduli stack 
◦
Zα → Wz,Λ classifying the same data 

as Wz,Λ plus (a) a trivialization of FG at ∞ ∈ C such that the B-structure (given by 
the collection {κλ̌}) at ∞ coincides with B ⊂ G; (b) an additional B−-structure on FG

of degree −2ρ − α equal at ∞ ∈ C to B− ⊂ G. By an abuse of notation we preserve 

the notation χi :
◦
Zα → A

1 for the composition of χi : Wz,Λ → A
1 and the projection 

◦
Zα → Wz,Λ. According to [9, 4.5, 4.6], the stack 

◦
Zα is actually a scheme; moreover, 

we have a canonical isomorphism 
◦
Zα =

◦
Z−2ρ,−2ρ−α =

◦
Zα. Thus we obtain a function 

χi :
◦
Zα → A

1. If we allow z to vary in 
◦
A

Λ, we obtain the same named function χi on 
◦
Zα ×

◦
A

Λ.

Theorem 6.4. The function χi on 
◦
Zα ×

◦
A

Λ in the coordinates (w, y, z) is given by

χi(w, y, z) =
ai∑
r=1

y−1
i,r

∏
j �=i Q

−〈αj ,α̌i〉
j (wi,r)

Q′
i(wi,r)

Ki(wi,r)

=
ai∑
r=1

y−1
i,r

∏
j �=i Q

−〈αj ,α̌i〉/2
j (wi,r)
Q′

i(wi,r)
Ki(wi,r).

Proof. Recall the involution ι :
◦
Zα ∼−→

◦
Zα of Section 2.6. We have to prove that 

χi ◦ ι(w, y, z) =
∑ai

r=1 yi,rKi(wi,r)/Q′
i(wi,r). Recall also the modified coordinates yi,r :=

yi,r

Q′
i(wi,r) of (3.1). Thus we have to prove

χi ◦ ι(w, y, z) =
ai∑
r=1

yi,rKi(wi,r). (6.1)

Recall the map Ei :
◦
Zλ,μ → Ext1(OC , Lα̌i

) of Section 6.2. We have to prove its factor-
ization property, i.e. the commutativity of the following diagram:
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(Aβ × A
γ)disj ×Aα

◦
Zα

f
+
β,γ−−−−→ (Aβ × A

γ)disj ×Aβ×Aγ (
◦
Zβ ×

◦
Zγ)

Ei

⏐⏐
 Ei×Ei

⏐⏐

Ext1(OC ,Lα̌i

) +←−−−− Ext1(OC ,Lα̌i
) × Ext1(OC ,Lα̌i

)

(6.2)

Unraveling the definition of Ei and using the compatibility of factorizations (3.3) we 
reduce the problem to G = SLi

2. This problem is formulated as follows. For a point x ∈ C

and a line bundle E on C we have a natural map ϕx : (E ⊗OC
Kx)/(E ⊗OC

Ox) → H1(C, E)
arising from the identification (E ⊗OC

Kx)/(E ⊗OC
Ox) = j∗E/E and the boundary map in 

the long exact cohomology sequence coming from 0 → E → j∗E → j∗E/E → 0 (here j is 
the open embedding C \ {x} ↪→ C). Given a short exact sequence 0 → L → V → M → 0
as in Section 6.1, its local splittings form a torsor T over E = Hom(M, L) with the class 
e(T) ∈ H1(C, E). Given a generic splitting of this exact sequence we obtain a generic 
section s of T. Choosing a local splitting around x we obtain sx ∈ E ⊗OC

Kx whose 
principal part in (E ⊗OC

Kx)/(E ⊗OC
Ox) is well defined, i.e. independent of the choice 

of a local splitting. Then clearly e(T) =
∑

x∈C ϕx(sx).
This completes the proof of Theorem 6.4. �

6.5. More recollections (proof of Theorem 1.9)

Recall the sequence of morphisms 
◦
Zα �

◦
Z−2ρ,−2ρ−α =

◦
Zα → Wz,Λ → BunG(C)

of Section 6.3. The line bundle P on 
◦
Zα is defined as the inverse image of the determinant 

line bundle on BunG(C), cf. [9, 2.2]. In fact, P is the restriction of the same named line 
bundle on Zα with the canonical section Fα, see [1, 4.9]. Hence Fα gives rise to a canonical 
trivialization of P on 

◦
Zα. Given a level κ ∈ C, Gaitsgory constructs a certain Pκ-twisted 

D-module Fκ

z,Λ on 
◦
Zα×

◦
A

Λ (as a lift from Wz,Λ ×
◦
A

Λ) [9, 2.7]. It is smooth of rank 1 on 
◦
Zα×

◦
A

Λ but has irregular singularities at ∂Zα×
◦
A

Λ. In case κ is irrational, Fκ

z,Λ is clean. 

The trivialization of P on 
◦
Zα gives rise to the identification of Pκ-twisted D-modules 

with the usual D-modules, and then the corresponding D-module Fκ,triv
z,Λ on 

◦
Zα ×

◦
A

Λ is 
generated by the function Fκ

α · exp(χi) ·
∏

1≤m<n≤N (zm − zn)κλm·λn .
According to [9, Lemma 4.9] there is a canonical isomorphism P = π∗

αPAα for a certain 
line bundle PAα on Aα [9, 3.2]. For irrational κ [9, Theorem 6.2] identifies πα!F

κ

z,Λ
∼−→

πα∗Fκ

z,Λ as the minimal extension Lκ

z,Λ of a smooth rank 1 Pκ

Aα-twisted D-module from 

the open diagonal stratum of Aα ×
◦
A

Λ. The trivialization [9, 3.12] of PAα on Aα ×
◦
A

Λ

gives rise to the identification of Pκ

Aα-twisted D-modules with the usual D-modules, and 
then the corresponding D-module Lκ,triv

z,Λ is the minimal extension of the D-module on 
the open stratum generated by the function

∏
(wi,r−wj,s)καi·αj/2×

∏
(zn−wi,r)−καi·λn ×

∏
(zm−zn)κλm·λn .
(i,r) �=(j,s) (i,r),1≤n≤N 1≤m<n≤N
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More generally, we consider the D-module Mκ,α,Λ on h∨ ×
◦
Zα ×

◦
A

Λ generated 
by the function 

∏
1≤n≤N exp(〈λn, κh∗〉zn) ·

∏
(i,r) exp(−〈αi, κh∗〉wi,r) · Fκ

α · exp(χi) ·∏
1≤m<n≤N (zm − zn)κλm·λn . Then for irrational κ the direct image πα!M

κ,α,Λ ∼−→
πα∗M

κ,α,Λ is isomorphic to the minimal extension Mκ,triv
h∨,z,Λ of the D-module on the open 

diagonal stratum of h∨ × A
α ×

◦
A

Λ generated by the function
∏

1≤n≤N

exp(〈λn,κh
∗〉zn) ×

∏
(i,r)

exp(−〈αi,κh
∗〉wi,r) ×

×
∏

(i,r) �=(j,s)

(wi,r − wj,s)καi·αj/2 ×
∏

(i,r),1≤n≤N

(zn − wi,r)−καi·λn ×

×
∏

1≤m<n≤N

(zm − zn)κλm·λn .

In effect, the isomorphism πα!M
κ,α,Λ ∼−→ πα∗M

κ,α,Λ ∼−→ M
κ,triv
h∨,z,Λ follows from the 

isomorphism πα!F
κ,triv
z,Λ

∼−→ πα∗F
κ,triv
z,Λ

∼−→ L
κ,triv
z,Λ and the projection formula. The latter 

isomorphism is proved in [9] for any fixed value of z. To prove it for variable z it remains 
to identify the monodromy of the one-dimensional local system πα!M

κ,α,Λ on the open 
diagonal stratum. This follows from the computation of the Proposition 6.7 below.

6.6. The master function and the Gaiotto–Witten superpotential

The (multivalued) Master function [5, Section 3] on h∨ ×
◦
A

α,Λ is defined as follows:

Φ(h∗, w, z) :=
∑

1≤n≤N

〈λn, h
∗〉zn −

∑
(i,r)

〈αi, h
∗〉wi,r +

∑
(i,r) �=(j,s)

αi · αj

2 log(wi,r − wj,s) −

−
∑

(i,r),1≤n≤N

αi · λn log(zn − wi,r) +
∑

1≤m<n≤N

λm · λn log(zm − zn).

(6.3)

We define an open subvariety 
◦
Zα,Λ ⊂

◦
Zα ×

◦
A

Λ as the preimage of 
◦
A

α,Λ under the 

factorization morphism πα :
◦
Zα ×

◦
A

Λ → A
α ×

◦
A

Λ. Recall the logarithmic coordinates 
yi,r of Definition 2.5. The multivalued superpotential WΛ,α on h∨ ×

◦
Zα,Λ is defined as 

follows (cf. [8]):

WΛ,α(h∗, w, y, z) :=
∑

1≤n≤N

〈λn, h
∗〉zn −

∑
(i,r)

〈αi, h
∗〉wi,r +

∑
(i,r)

diyi,r +

+
∑
(i,r)

exp(−yi,r)
∏

j �=i Q
−〈αj ,α̌i〉/2
j (wi,r)
Q′

i(wi,r)
Ki(wi,r) +

+
∑

λm · λn log(zm − zn). (6.4)

1≤m<n≤N
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Proposition 6.7. a) The restriction of WΛ,α to each fiber of the factorization projection 

h∨ ×
◦
Zα,Λ → h∨ ×

◦
A

α,Λ has a unique singular point (with all the derivatives vanishing).
b) For any h∗ ∈ h∨, z ∈

◦
A

Λ, the resulting section sh∗,z :
◦
A

α ↪→
◦
Zα is Lagrangian.

c) The restriction of WΛ,α to the section in a) equals the Master function Φ.

Proof. Straightforward. �
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Appendix A

In this appendix we give another (elementary) derivation of a particular case of The-
orem 6.4 for G = SL(2).

A.1. Zastava for SL(2)

For G = SL(2) the coroot lattice is just Z, and given a ∈ N the moduli space of based 

maps 
◦
Za is identified with the moduli space of extensions 0 → OC(−a) → OC ⊕ OC →

OC(a) → 0 trivialized at ∞ ∈ C. So we have a map E :
◦
Za → Ext1(OC(a), OC(−a)) =

Γ(C, OC(2a − 2))∨.

Proposition A.2. For a polynomial K ∈ H0(C, OC(2a − 2)) we have 〈K, E〉 =
a∑

r=1
y−1
r

K(wr)
Q′(wr)

.

Proof. We denote H0(C, OC(1))∨ by V (a 2-dimensional vector space with a base 
formed by the highest vector x and the lowest vector t). We have Ext1(O(a), O(−a)) =
Γ(C, O(2a −2))∨ = Sym2a−2V . We will write down an element of Sym2a−2V in the basis 
of products of divided powers of x, t : c0x

(2n−2)+. . .+ckx
(2a−2−k)t(k)+. . .+c2n−2t

(2a−2).
For a point φ ∈

◦
Za, the first map in the corresponding exact sequence 0 → OC(−a) →

OCx ⊕ OCt → OC(a) → 0 is given by a pair of polynomials (Q, R), and the second one 
is given by (−R, Q). In the corresponding long exact sequence 0 = H0(OC(−a)) →
H0(OC ⊕ OC) → H0(OC(a)) → H1(OC(−a)) → . . . the boundary map is given by the 
cup product with our desired Ext1-class E(φ) in Sym2a−2 V . Note that H0(OC(a)) =
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Syma V ∨, and H1(OC(−a)) = Syma−2 V . So the boundary map is the contraction 

Syma V ∨ → Syma−2 V with the desired class E(φ) ∈ Sym2a−2 V . Since the composition 

H0(OC⊕OC) → H0(OC(a)) → H1(O(−a)) is 0, and the first map is given by (−R, Q), we 

conclude that the contraction of E(φ) and Q equals 0, as well as the contraction of E(φ)
and R. This is a system of linear equations on E(φ) which defines it up to proportionality. 
To write down the formula for contraction, we think of Q, R as of differential operators 
Q = ∂a

x + . . . + ak∂a−k
x ∂k

t + . . . + aa∂a
t , R = b0∂

a−1
x + . . . + bk∂a−1−k

x ∂k
t + . . . + ba∂a−1

t , 
and then the contraction is nothing but the application of differential operators Q, R to 

the polynomial E := c0x
(2a−2) + . . . + ckx

(2a−2−k)t(k) + . . . + c2a−2t
(2a−2).

Note that the matrix of this system of equations is (up to proportionality) exactly 

the Sylvester matrix S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 a1 . . . aa 0 . . . 0
...

. . . . . . . . . . . . . . .
...

0 . . . 0 1 a1 . . . aa
b0 b1 . . . ba−1 0 . . . 0
...

. . . . . . . . . . . . . . .
...

0 . . . 0 b0 b1 . . . ba−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with the middle 

row (the first one with b’s) removed. Solving it via the Cramer rule we obtain ck =
(−1)k detS−1 times the (2a − 2) × (2a − 2)-minor of the Sylvester matrix obtained by 

removing the middle row and the k-th column. Note also that the resultant R(Q, R)
is nothing but detS, and R(Q, R) �= 0 under our assumptions: (OC ⊕ OC)/OC(−a)
torsionless.

Equivalently, if we think of Q, R as of two (relatively prime) polynomials in z = ∂x/∂t

(as in Section 2.2), then the equation RD −QF = 1 has a unique solution such that D
is a polynomial in z of degree a − 1, and F is a polynomial in z of degree a − 2. The 

principal part at ∞ ∈ C of the ratio D(z)
Q(z) is nothing but c0z + c1

z2 +. . .+ c2a−2
z2a−1 +. . . (ck from 

the previous paragraph). By the Lagrange interpolation we find ck =
∑a

r=1
wk

rD(wr)
Q′(wr) =∑a

r=1
wk

rR(wr)−1

Q′(wr) =
∑a

r=1
wk

ry
−1
r

Q′(wr) . The desired formula for 〈K, E〉 follows. �

Remark A.3. We keep the notations introduced in the proof of Proposition A.2. Let us 
define c̃0, . . . , ̃c2a−2 by R(z)

Q(z) = c̃0
z + c̃1

z2 + . . .+ c̃2a−2
z2a−1 + . . . Then by the Lagrange interpo-

lation c̃k =
∑a

r=1
wk

r yr

Q′(wr) . According to L. Kronecker [13], the resultant R(Q, R) = det L̃

where L̃ is a Hankel matrix L̃ :=

⎛
⎜⎜⎜⎜⎜⎜⎝

c̃0 c̃1 c̃2 . . . c̃a−1
c̃1 c̃2 c̃3 . . . c̃a
c̃2 c̃3 c̃4 . . . c̃a+1
...

...
...

. . .
...

c̃ c̃ c̃ . . . c̃

⎞
⎟⎟⎟⎟⎟⎟⎠

. We obtain R(Q, R) =
a−1 a a+1 2a−2
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R(D, R)−1 = detL−1 where L is a Hankel matrix L :=

⎛
⎜⎜⎜⎜⎜⎜⎝

c0 c1 c2 . . . ca−1
c1 c2 c3 . . . ca
c2 c3 c4 . . . ca+1
...

...
...

. . .
...

ca−1 ca ca+1 . . . c2a−2

⎞
⎟⎟⎟⎟⎟⎟⎠

. 

This identity R(Q, R) = detL−1 was independently obtained by A. Uteshev (pri-
vate communication). Note that the equation detL = 0 is the equation of the locus 
in Ext1(OC(a), OC(−a)) formed by the extensions with the middle term a nontrivial
2-dimensional vector bundle on C [4].
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