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ABSTRACT. We consider mixed problems for strongly elliptic second-order systems in a bounded
domain with Lipschitz boundary in the space R™. For such problems, equivalent equations on
the boundary in the simplest Lo-spaces H® of Sobolev type are derived, which permits one to
represent the solutions via surface potentials. We prove a result on the regularity of solutions in
the slightly more general spaces H; of Bessel potentials and Besov spaces B,. Problems with
spectral parameter in the system or in the condition on a part of the boundary are considered, and
the spectral properties of the corresponding operators, including the eigenvalue asymptotics, are
discussed.

KEY WORDS: strongly elliptic system, mixed problem, potential type operator, spectral problem,
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1. Introduction

1.1. The content of the paper. Let Q2 be a bounded domain with Lipschitz boundary I'
in the space R™, n > 2. Consider a strongly elliptic second-order system Lu = f in Q written
in the divergence form (see (1.1) below). The smoothness assumptions imposed on the coefficients
of the system are minimized to some extent. The main “energy” form ®gq(u,v) is assumed to be
coercive for 4 = v in the strengthened sense on the space H'(Q2) = W3 (£); this condition implies
the unique solvability of the Dirichlet and Neumann problems.

In the most part of the paper (Sections 1-6), we assume that the boundary I is divided into two
domains I'y and I'y by a closed (n—1)-dimensional Lipschitz surface 0I'; without self-intersections;
the Dirichlet condition is posed on I'y, and the Neumann condition is posed on I's.

There is a wide literature devoted to mixed problems. This is because they occur in numerous
applications; e.g., see the books [16] and [41]. (They also provide involved explicit solution formulas
for a number of specific mixed problems.)

In many papers, additional smoothness assumptions are imposed on I'y and I'e, or I', and
on JI'; (e.g., see [39], [38], and the bibliography therein, as well as [42], [43], and [30]). In a number
of papers, the boundary geometry is subjected to a certain condition; roughly speaking, one usually
requires that the angle between the normals to I'y and I'y at the points of OT'; be less than 7 (creased
domains; see [10] for the precise definition; cf. also [46], [27], and [11]). There are numerous papers
where specific equations or systems are considered. Most often, these are the Laplace-Helmholtz
equations or elasticity systems; in addition to the above-mentioned papers, see [19] and [35]. These
studies are largely aimed at analyzing the regularity of the solution and especially the solution
behavior near OI';. One can readily construct examples (like 7*sin(af) in the polar coordinates
(r,0) for the Laplace equation in a planar domain) showing that even if the I'; (or even I') and OI';
are infinitely smooth, the solution may have a singularity near JI';. The asymptotics of the solution
near JI'; in the smooth case was obtained in [42], [43], and [30] by the Wiener-Hopf method in the
form proposed in [15].

There are considerably fewer papers concerned with general strongly elliptic equations or sys-
tems without any additional smoothness conditions on I'; and JI'; or geometric conditions. Here we
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mention the monograph [24] and the papers [34] (about a scalar equation with formally self-adjoint
principal part), [18], and [33, Section 3| (about a scalar formally self-adjoint equation without
lower-order terms). The present paper (at least in Sections 1-5) belongs just to this direction.

We give a general theorem on the existence and uniqueness of a variational solution in the
spaces H® and compare various approaches to its proof. Since there are some subtle issues to be
touched upon, we start by recalling the properties of the spaces H® (Section 1.3), the statement
of the Dirichlet and Neumann problems (Section 2.1), and a straightforward proof of the unique
solvability of the mixed problem on the basis of the Lax—Milgram lemma (Section 2.2). Then, in
Section 3, we give two different derivations of equations on I' with operators of surface potential
type on a part of the boundary equivalent to the problem and uniquely solvable. These operators
are of interest in themselves. In [24], the equations were obtained under the assumption that the
leading part of the system is formally self-adjoint. We do not need this assumption and use the
transparent approach in [30] to the anisotropic elasticity system.

In Section 4, we generalize the unique solvability theorem to the spaces H of Bessel poten-
tials and Besov spaces Bp, close to H*, by using Shneiberg’s theorem [40] on the extrapolation of
invertibility of operators in interpolation scales; cf., in particular, [27] (where very general unique
solvability theorems are obtained for the Laplace equation under an additional geometric assump-
tion) and also [11]. Note that the authors of these and some other papers go beyond the function
spaces used in the present paper.

In Sections 5-6, we consider spectral problems. We indicate results on the basis property of
eigenfunctions for self-adjoint problems and give conditions ensuring the completeness of systems
of root functions and the Abel-Lidskii summability of Fourier series in these systems for non-self-
adjoint problems and problems in non-Hilbert spaces considered here (cf. [3]-[5]).

If the system (or at least its principal part) is formally self-adjoint, then the eigenvalue asymp-
totics is of interest. For problems with spectral parameter in the system, the result follows from
a theorem in [25], where a strong remainder estimate was also obtained. Problems with spectral
parameter in the condition on a part of the boundary are spectral Poincaré-Steklov problems.
Here we use the variational approach going back to Courant—Hilbert [13] under the condition that
the boundary is almost smooth (i.e., smooth outside a closed subset I'yin, of measure zero; this
definition was given in [6]). We also supplement the results on spectral asymptotics obtained in [4]
and [5].

In Section 7, we briefly discuss some generalizations.

1.2. Refinement of the setting of the problem. We write out the system in the form

Lu:= — Z 0ja; () 0pu(x) + Z bj(x)0ju(x) + c(x)u(x) = f(z). (1.1)

Here and below, 0y = 0/0zy; u is a vector-valued function, a column of height m, so that the
coefficients are m x m matrices. Their entries, as well as the components of u, are complex-valued
functions. We shall assume that a;; € C1(Q), b; € C%1(Q) (Lipschitz functions), and ¢ € Loo(€2).
Sometimes, one can assume less. The strong ellipticity condition is the requirement of uniform
positive definiteness of the real part %(a + a*) of the principal symbol (i.e., of the matrix a(z,§) =
S ajk(w)Ei&) for real € with |¢] = 1. First, we seek a solution in H'(£2). The space for f will be
indicated in Section 2.2.
Now write out the boundary conditions:

ut =g onTy, TTu=h on Is. (1.2)

Here ut = g € HY?(T'}) is the trace of u, which will also be denoted by 4w, and T u = h is the
conormal derivative of u, whose definition will be recalled and briefly discussed in Section 2.1; it
belongs to H~1/2(I'y).

Let ®q(u,v) be the sesquilinear form

/Q [Z aj(2)du(z) - 90(x) + Y bj(@)ulz) - 0(z) + c(z)u(z) - v(a;)] dw (1.3)
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corresponding to the system; it is defined on functions u,v € H'(£2). We require the (strengthened)
coercivity of ®q, which means that the Garding inequality holds in the form

without the additional term ||u||%2(m on the right-hand side. If u* = 0 on T', then this inequality
follows from the strong ellipticity alone provided that

Re(cu, u)a > Cillul, o) (15)

with a sufficiently large constant C, which we assume to be true. Here (-, -)q is the standard inner
product in Ly(€2). Inequality (1.4) for u € H'(Q2) holds for a scalar equation with real symmetric
matrix of leading coefficients. For this inequality to be true in the matrix case, the coefficients of L
are subjected to certain (sufficient) conditions (e.g., see [24] and [5]); in particular, these conditions
are satisfied for the generalized elasticity systems (e.g., see [32]). Here the form Re(cu, u)q is again
assumed to be sufficiently large.

1.3. Spaces H®. For example, see [24]. The spaces H*(R™) of Bessel potentials (s € R) are
introduced by the formula

H*(R"™) = J °Ly(R"), J S =F Y1+ ¢))°F, (1.6)

where F is the Fourier transform in the sense of distributions; one sets |ul| grs(mn) = [|J%ul| 1, ®n)-
For s > 0, these are the spaces W3 (R"™), the Sobolev spaces for integer s and the Slobodetskii
spaces for noninteger s. The spaces H*(R™) and H*(R™) are dual with respect to the extension
of the standard inner product in Ls(R™) to their direct product.

The space H*(Q2) is defined as consisting of the restrictions of elements in H*(R") to € in the
sense of distributions with the usual inf-norm. There exists a universal bounded extension operator
&: H%(Q) — H*(R™) independent of s [37].

The space H*(f)) is defined as the subspace of H*(R") formed by the elements supported
in Q. The norm is inherited from H*(R™). The space H*() can be identified with the comple-
tion in H*(R™) of the linear manifold C§°(€2), the functions in the latter being extended by zero
outside 2. For —1/2 < s < 3/2, s # 1/2, the space H*(Q) can be identified with the completion
H?*(Q) of C§°(Q) in H*(€2). All identifications are understood up to norm equivalence.

The spaces H*(€2) and H*(Q) are dual with respect to the extension of the standard inner
product in Ly(€2) to their direct product. This extension has the form

(faU)Q = (fa gv)R"a (17)
where the extension of the inner product in Ls(R™) is used on the right-hand side. Obviously,
the functions before and after the comma in these forms can be simultaneously interchanged. The
spaces H*(Q2) and H*®(Q) are identified for |s| < 1/2.

The spaces H*(I') on a Lipschitz surface are defined for |s| < 1 with the use of a partition of
unity and norms in H*(R"~1). The trace operator ytv = v is bounded from H*t1/2(Q) to H*(I")
for 0 < s < 1 and has a bounded right inverse. The spaces H*(I') and H*(I') are dual with
respect to the extension of the standard inner product in Lo(I') (with respect to the naturally
defined measure, the surface area on I') to their direct product.

The space H~5(€2), s > 1/2, contains elements of H*(R™) supported in I'. For 1/2 < s < 3/2,
they have the form (w,vt)r, v € H*(Q) and w € H—5t1/2(T") [26].

If T'y is a domain with Lipschitz boundary on I", then the space H*(T'y) is defined for |s| < 1 as
consisting of the restrictions to I'y of elements in H*(I") and is equipped with the inf-norm. There
exists a bounded extension operator from H*(I'g) to H*(I') independent of s. The space H*(I'y)
is defined as the subspace of H*(I') formed by the elements supported in Tg. The spaces H~*(I')
and H*(I'g) are dual with respect to the extension of the standard inner product in Ly(I'g) to their
direct product. This extension is constructed similarly to (1.7). The spaces H*(Ig) and H* (o) are
identified for |s| < 1/2.
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The operator of multiplication by the characteristic function of I'y is a multiplier in H*(I") for
|s| < 1/2 and is not a multiplier in H*Y/2(T"). However, it is a multiplier in H*(Ig) for |s| < 1/2;
moreover, the multiplication by this function does not change the elements of these spaces.

2. Variational Approach

2.1. Dirichlet and Neumann problems. Recall their variational statement. Let us write

the Green formula
®q(u,v) = (Lu,v)q + (TTu,v)r. (2.1)
Here v is an arbitrary test function.

We start with the Neumann problem (I' = I's). In this case, u,v € H'(Q2), so that the trace
~vtv = vt belongs to HY 2(I). In accordance with the choice of the space for v, the right-hand side
of the system Lu = f is taken in H ~1(Q). We use the corresponding dualities on the right-hand
side in (2.1).

The conormal derivative is defined on smooth functions by the formula T u(z) = > v;(2)0ju(x)
at all boundary points = where there exists a normal to the boundary. (These are almost all
points.) Here the v;(z) are the coefficients of the unit outward normal. In the general case, given
a function u € H (), the distribution Lu(z) is uniquely determined only in the interior of Q,
while f € H~1(Q) may also contain a term in H~(R") supported in I'. Therefore, formula (2.1) is
postulated to be true, and it is taken for the definition of the conormal derivative T+u € H~Y/2(T")
(for given v and Lu = f) as well as for the definition of a solution of the Neumann problem (for
given f = Lu and h = T"u). One can always assume that h = 0, changing f by a term supported
in I' if necessary.

Inequality (1.4) implies the unique solvability of this problem by virtue of the following Lax—
Milgram lemma on weak solutions of the abstract equation Lu = f, where L is the bounded
operator defined by Eq. (2.4) below (e.g., cf. [24, p. 43]).

Lemma 2.1. Let H be a Hilbert space, and let H* be the dual space with respect to the form
(f,v), ve H, fe H*. Let f € H*. Suppose that a continuous sesquilinear form ®(u,v) on H
satisfies the inequality

ul|3 < CRe®q(u,u). (2.2)
Then there exists a unique element w € H such that
®(u,v) = (f,v) (2.3)

for all v € H. Moreover, the operator L™': f +— u is bounded.

Let us proceed to the Dirichlet problem (I' = I'y). In this case, u € H(Q) and v € H*(Q).
Accordingly, f € H~1(Q2). The Green formula becomes

O (u,v) = (Lu,v)q. (2.4)
This formula does not contain u* explicitly, but it is assumed that u™ = g.

Let up € HY(2) be a function with uj = g. Define fy = Lug € H~1(Q) by the Green formula
®a(ug,v) = (Lug,v)q. The difference u — ug belongs to H(Q) = ﬁl(ﬂ), and if we redenote it
by u, then we again obtain the Green formula (2.4), where now both functions u and v belong
to HY(Q), while f = Lu belongs to the dual space H~*(£2). This is the standard setting of the
Dirichlet problem with homogeneous boundary condition. The form ®q(u, u) is coercive on H(),
and so the Dirichlet problem is uniquely solvable.

Remark. Assume (within this remark) that the operator L is formally self-adjoint. We see
from the Green formula that then the space H'(f) is the orthogonal sum (with respect to the
inner product ®q(u,v)) of the subspace H 1(Q) = H*(Q) and the subspace formed by the solutions
of the system Lu = 0. The latter subspace can be parametrized by the Dirichlet data in H 1/ (),
and hence linear continuous functionals on it are in isomorphic correspondence with functionals
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on HY2("), i.e., with elements of H~Y2(T"). Thus, the space H 1(Q) dual to H'(S) can be
identified with the quotient of the space H1(Q2) dual to H'(Q) by the subspace of functionals
supported in I'.

2.2. Let us proceed to the mixed problem. Its solutions u are sought in H'(£2) as well. Here the
crucial point is the choice of the space of test functions v: it is the (closed) subspace H'(2,T) C
H'(Q) of functions with zero trace on I'y. (That is, the trace, which belongs to H'/?(T'), is zero
onIy.)

As is seen from [27], the space H!(Q2,T';) can also be defined as (i) the space of restrictions to §
of functions belonging to the completion of the linear manifold C§°(R™ \ T'y) in H(R™); (ii) the
completion in H'(Q) of the set of restrictions to 2 of functions belonging to C§°(R™ \ T'y).

The Green formula defining the solution of the problem becomes

Do (u,v) = (Lu,v)q + (T u,v)r,, (2.5)

where Lu = f and T u = h. The choice of the space for v determines the space of right-hand sides
of the system: it is the space

HY(Q,T) = [HY(Q,Ty)]" (2.6)
dual to H'(Q,T;) with respect to the extension of the form (f,v)q to their direct product. By
analogy with the remark at the end of Section 2.1, we see that the space (2.6) can be identified
with the quotient space of H ~1(Q) by the subspace of functionals supported in I';. Then every f
in (2.6) is an element of H ~1(Q) defined modulo addition of an arbitrary element supported in T'y.
One can simply treat f as an element of H ~1(Q) (by extending the corresponding functional to
the entire H'(Q2) by the Hahn-Banach theorem); this is actually done in [24].

The equality ¢ = uT is again assumed. Take a function ug € H'(Q) such that uar = g on
Ty. (For this, extend g to a function in H'/2(T") and take ug such that ul = g.) Define Lug by
the formula ®q(ug,v) = (Lug,v)q, taking the corresponding conormal derivative to be zero on I's.
Redenote the difference u—wug by w. For this difference, we obtain the Green formula (2.5) in which
both functions u and v belong to the space H*(Q,T'1) and Lu = f belongs to the dual space (2.6).
One can take h = 0 if desired.

All this is consistent with what was said above about the Dirichlet and Neumann problems.

Now we use the coercivity of the form ®q(u,u) on H'(£2,T'1) (just now it is sufficient) to obtain
the following well-known theorem with the help of the Lax—Milgram lemma (cf. [24]).

Theorem 2.2. For any f € H Y(Q,T}), g € HY/2(T'y), and h € H-Y/2(Ty), problem (1.1)-
(1.2) has a unique variational solution u € H ().

3. Reduction of the Mixed Problem to Equations on T’

3.1. To save space, we assume that the domain © = Q7 lies on the standard torus T with
periodic coordinates and the surface I' divides it into two domains OF. The normal to T', where
it exists, is assumed to point into Q. Now H*(Q1) is a subspace of H*(T). We assume that the
coeflicients of the system are extended to the torus, the assumptions about their “smoothness” and
strong ellipticity being preserved. The form ®r(u,u) is assumed to be coercive (in the strengthened
sense) on H'(T) (this does not require additional assumptions on the principal part of the system),
and the forms @ (u,u) are assumed to be coercive on H'(QF). Then the Dirichlet and Neumann
problems in Q% are uniquely solvable. This permits us to use the results already obtained in (3]
(where we followed the ideas of [31], [12], and [24]). We continue the analysis of the mixed problem
in Q = QT though one can simultaneously consider it in 2~ as well.

System (1.1) is uniquely solvable in H!(T) for f € H~1(T). (This permits us to assume that
f = 0 in what follows.) The inverse operator L~! is an integral operator,

L @) = [ S@iw)dy (3.1)
T
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It is known as the Newtonian potential; its kernel & is a fundamental solution for L. With this
kernel at hand, we introduce the single layer potential

(o) = [ £t ds, (32)
and the double layer potential; the latter is defined in the general case by the formula
Bola) = [ (T7 6 @) o) dS,  (a ¢T) (33)

where CFJF( - ) is the conormal derivative corresponding to the operator LinQ formally adjoint to
L (see [24]). If L = —A, the asterisks and the tilde are omitted. Recall the properties of these
operators (see [24] and [3]).

Under our assumptions, the operator o/ can be extended to an operator that is bounded from
H~Y2(I') to HY(T) and hence to H'(QF). For v € H-/2(I"), the function u = /1) satisfies the
homogeneous system Lu = 0 in QF and has coinciding traces yTu on I', which are denoted by Au;
this is a bounded invertible operator from H~1/2(I') to H/2(T). This permits one to construct the
solution of the Dirichlet problem in Q% for the system Lu = 0 by the formula

u=o A T (3.4)

The operator % is bounded from H'/?(T') to H'(Q*), and if p € H'/2(T), then the function
u = By satisfies the homogeneous system in QF as well. It has traces £ %¢ on I', and these are
bounded operators in H'/2(T). As in [24], we set B = 1(y+% +~~%). This is known as the direct
value of the double layer potential. The jump [u] = v~ — u™ of the function u = By is equal to
¢, and hence y*% = —%I + B. The operator on the right-hand side is bounded and invertible in
H'Y2(I'). This permits one to write the solution of the Dirichlet problem in QF also in the form

u=B(—31+ B) 'u’. (3.5)

The operators TF can be applied to the functions <71 and %By. Moreover, Tt*%# = T~ %A.
The operator H = —T*2 is called the hypersingular operator. It acts boundedly from H'/2 (I") to
H~Y2(I") and is invertible. Hence the solution of the Neumann problem for the system Lu = 0 in
QT can be constructed by the formula

u=—RBH 'T"u. (3.6)

Next, the T+« are bounded operators in H~!(T'). As in [24], set B = $(Tto/ +T~ /). The jump
[Tl p] =T o/ p—T o is equal to —p, and hence T = %I+§. This is a bounded invertible
operator in H~1/2 (T), and the solution of the Neumann problem in 27 can also be constructed by
the formula
u=o (31 + B)"'Tu. (3.7)
We also need the operator N that maps the Neumann data T into the Dirichlet data u™ (the
Neumann-to-Dirichlet operator) and the inverse operator D (the Dirichlet-to-Neumann operator).
The operator N acts boundedly from H~Y?(I") to H/?(I'), and D is bounded in the opposite
direction. They satisfy the Garding type inequalities

Iy < CrRe(Do,@)r,  [91sye < CaRe(No, ¥)r, (38)

which follow from the Green formula (2.1) and the original coercivity assumption. The invertibility
of D and N follows from the assumption on the unique solvability of the Dirichlet and Neumann
problems. It also follows from these inequalities by virtue of the Lax—Milgram lemma. Next, one
knows that BA = AB\, and hence it follows from the preceding formulas that

N=AGI+ B =G+ B)A (3.9)

If I and the coefficients of L are infinitely smooth, then A and N are (strongly elliptic) Y DO
(pseudodifferential operators) of order —1, and H and D are ¥YDO of order 1.
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3.2. Now we give two versions of composing the equations on I' for the mixed problem. In the
first version, we follow the paper [30]; see also [42] and [43].

This version consists in the following. We extend ¢ to a function in H'/2(I'), the extension
being still denoted by g. Now, for the solution w of our problem, we have uT = g + go, where
go € HY 2(T'y). Once we find gy, we can compute u as the solution of the Dirichlet problem. On
the other hand, h = (D(g + go))|r,. Let us introduce the operator

Dr,¢ = (D9)|r, (3.10)

from HY2(T'y) to H~Y/2(T'y). It is obtained from the operator D by narrowing its domain and by
restricting the resulting functions to I's. We obtain the following equation for gq:

DF290 = ho, (3.11)

where hg = h — (Dg)|r, is a known function.
Theorem 3.1. The operator Dr, s invertible.
Proof. The first inequality in (3.8) is ‘inherited” by the operator Dr,:

1913272z, < C1 Re(Dryp, o). (3.12)
Here the functions in the form on the right-hand side lie in the dual spaces H~Y/2(T'y) and HY/2(I';).
It suffices to use the Lax—Milgram lemma. []

Thus, the first approach is essentially to solve Eq. (3.11) and then, say, the equation Ay = g+go,
after which u can be determined by the formula u = /1. As is seen from (3.5), one can also
construct the solution in the form of a double layer potential.

The second approach is similar to the first except that the Neumann problem is used rather than
the Dirichlet problem. Let us extend h to an element of H~'/2(I"). After this, we have T+ u = h+ho,

where hg € ﬁ_l/z(I‘l). Let us introduce the operator

Nr, ¢ = (NY)|r, (3.13)
from H=Y2(T';) to HY/2(I'1). For hg, we obtain the equation
erho = J1, (3.14)

where g; is the known function g — (Nh)|r, .
Theorem 3.2. The operator Nr, is invertible.
Proof. The second inequality in (3.8) for NV is inherited by the operator Np,:

115 -1/2 ) < C2Re(Nr, 1w, ¥)r, (3.15)
The functions on the right-hand side belong to the dual spaces HY/2(I'y) and H~Y2(T'y), and we
again apply the Lax—Milgram lemma. O

Thus, in the second approach we solve first Eq. (3.14) and then, say, the equation Hy = h+ hg,
after which the solution is found in the form u = —%p. One can also construct the solution in the
form of a single layer potential (see (3.7)).

Remarks. 1. The operators Nt, and Dr, for parts of a closed Lipschitz surface are analogs of
the operators N and D for the entire surface and inherit the properties of the latter (the Garding
inequalities and the invertibility). Operators Ag and Hg with similar properties were considered
in [4]. In special cases, they occurred, e.g., in [42], [43], and [30].

2. The term “Neumann-to-Dirichlet operator” can rightly be used not only for the operator
Nr, but also for the operator Dfll acting from H~'/2(T';) to H~'/?(T';). These are operators with
distinct domains and distinct ranges. There are two operators, N, and D1:21> on I'y as well.

There are a lot of applications of the operators N, D, Nr,, and Dr, (e.g., see [23], [48], and
the bibliography therein).
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4. Regularity of Solutions

4.1. Spaces HIS, of Bessel potentials and the Besov spaces B;. (For example, see [47],
[21], [29], and [2].) We agree to assume that

seR, l1<p<oo, p+p =pp. (4.1)
The space Hj(R") is defined by the formula
Hy(R") = J°L,(R"), (4.2)

where J~% is the same operator as in (1.6). For integer s > 0, this is the Sobolev space W (R").
The Slobodetskii spaces W (IR™) are defined for noninteger s > 0. If 0 < s < 1, then

|uy) — u(@)”
”'LLHp 5(R") = ”uHZ[?/p(R") +/ W dx dy (43)

The Besov space B,(R") = B, (R") is defined by the formula

By(R") = J7°* W] (R"), 0<o<1, (4.4)
if we change o € (0, 1), the norm is replaced by an equivalent norm. For noninteger s > 0, these
spaces coincide with the Slobodetskii spaces.

For p = 2, the spaces Hy, and B, coincide with H*.

In what follows in this section, the letter H can be replaced by B.

The spaces Hj(R") and H,,*(R") are dual with respect to the extension of the standard inner
product in Ls(R™) to their direct product.

The space H,(€2) consists of the restrictions of elements in H;(R") to Q and is equipped with
the inf-norm. The operator & (the same as before) is a bounded operator of extension of elements
in H,(Q) to elements in Hj(R") [37].

The space ﬁ; (©2) is defined as the subspace of H;(R") formed by the elements supported in
Q. For —1/p’ <s<1+1/p, s# 1/p, it can be identified with the completion ﬁIZ(Q) of the linear
manifold C§°(Q) in H;(€).

The spaces H (@) and Hj(€?) are dual with respect to the form (1.7). The spaces H;(Q2) and
ﬁ;’(Q) are identified for —1/p’ < s < 1/p.

The spaces B,(I'), [s| < 1, are introduced with the help of a partition of unity on I' and the
norms in BE(R"!). The spaces Bj(T') and B,*(I') are dual with respect to the extension of the
inner product in Lo(T") to their direct product.

The trace operator acts boundedly from H;H/p(Q) and from B;H/p(Q) to By(I') for 0 < s < 1.
These two operators have a common right inverse [22].

Let T'g be a domain on T'. The space B,(I'y) is defined as consisting of the restrictions to I'g of
elements in B;(I') and is equipped with the inf-norm. There exists a bounded operator, independent
of s and p, of extension of elements in B, (I'g) to elements in B,(I"). The space E;(F o) is defined
as the subspace of B3(T") formed by the elements supported in T'g. The spaces E;S(FO) and By (T')
are dual with respect to the extension of the standard inner product in Lo(Tg) to their direct
product. The spaces B,(I'g) and E;(Fo) are identified for —1/p" < s < 1/p.

4.2. Now the solutions of the mixed problem are sought in H;/ Zhstl/p (Q), where |s| is neces-
sarily less than 1/2: in (1.2), we have

g € BY*T(Iy), he B Y*(Dy). (4.5)
The variational (weak) setting of the mixed problem preserves the form (2.5). The test functions

v belong to the subspace H;,/Q_SH/Z’/(Q,F;[) C H;/2_s+l/pl(§2) of functions with zero trace on I'y
(cf. [27]).
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The right-hand side f of the system belongs to the dual space

Hy VU (Qr) = (1YY @) (4.6)
with respect to the extension of the form (1.7).

Here the H-spaces can be replaced by the B-spaces.

The admissible points (s,t), t = 1/p, form the square

Q={(s,t):]s| <1/2,0<t <1}. (4.7)

The Dirichlet and Neumann problems are special cases of the mixed problem and are known
[3] to be uniquely solvable for |s| < ¢ and |t — 1/2| < ¢ with sufficiently small £ and §. We wish
to obtain a similar result for the mixed problem. To this end, as in [4], we consider potential type
operators in scales of spaces on the boundary (cf. [17], [27], and [11]).

First, note that the operators

. p—1/2+s 1/2+s . pl/2+s —1/2+s
A,N: ByY*s(D) — B/?*3(T),  H,D: BY***(I') — B, V/**(I),

~ (4.8)

31+ B: BYP(0) = BYA), 314 B BVR(I) — BT
are bounded and invertible for the same (s,t) [3]. Moreover, N = D~! and relations (3.9) are
preserved.

The operator Nt, acts boundedly from §;1/2+5(F1) to B;,l,/2+5(I‘1) (for the same (s,t)). Each
of these two families of spaces is an interpolation scale with respect to the complex interpolation
method in each of the indices. We explained this in [4] when considering the operators Ag and Hg.
Our operator is invertible at the point (s,t) = (0,1/2). Hence the Shneiberg theorem [40] applies,
and we obtain the following assertion.

Theorem 4.1. The operator Nr,: E;,_l/ers(Fl) — B;,l,/2+5(]?1) remains invertible for |s| < e
and |t — 1/2| < § with sufficiently small € and §.

Now we shall establish the unique solvability of the mixed problem for these (s,t). First, we
verify the uniqueness. Let ¢ = 0 and h = 0. Then THu = hy € §;1/2+8(F1). Consequently,
Nho = u™ on T', and hence Np,hy = 0. But the operator Np, is invertible, hence hy = 0 and
Ttu = 0 on I'. It remains to use the uniqueness for the Neumann problem. We have used the
second version of the approach to the mixed problem (see Section 3.2). With this version, the
existence can obviously be proved as well. This gives the main result of the present section.

Theorem 4.2. The mized problem (1.1)—~(1.2) with f =0, g€ B;/2+S(F1), and h e Bp_l/2+s(F2)
remains uniquely solvable for |s| < e and |t — 1/2| < 0 with sufficiently small € and §.

For these s and t, the “better” the right-hand sides, the “better” the solution itself is. This is
the promised regularity result. It follows automatically from Theorem 4.2.

Remarks. 1. Instead of Nr,, one can use the operator Dr,: E,l,/QJrS(Fg) — B;1/2+8(F2); for
this operator, one also has the boundedness and invertibility for |s| < e and |t — 1/2| < § with
sufficiently small £ and 0. Then we use the first approach to the mixed problem (Section 3.2).

2. We see that both versions of reducing the mixed problem to equivalent equations on the
boundary and solving these equations with the help of potential type operators are preserved in
these more general spaces.

3. Theorem 4.2 can be generalized to the case of a nonzero right-hand side f in the equation

Lu = f. Indeed, let f € flp_l/ers_l/pl(Q,Fl). Then we can treat f as an element of the space

flp_l/zﬁ_l/pl((l). (The letter H can be replaced by B.) Let ug be the solution of the Neumann
problem for the equation Lug = f with zero conormal derivative. By subtracting ug from u, we
obtain a problem to which Theorem 4.2 applies.
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5. Spectral Problems

5.1. Problem with spectral parameter in the system. Consider the problem
Lu=Xu in Q wu"=0 onTy, Ttu=0 on Iy. (5.1)
First, let the operator L be formally self-adjoint, L = L. Assuming that the equation Lu = f

is uniquely solvable in H'(Q,T4) for f in H 1(£,T1), we equip the latter space with the inner
product (cf. [34])

(f1, f2)o == (L7' 1, fa)a (5.2)
The unbounded operator L in this space (with domain H!(Q,T)) remains self-adjoint with re-
spect to this inner product. The eigenvalues are positive. Just as in other problems considered
earlier in [3] and [5], the eigenvalues and eigenfunctions coincide with those of the similar operator
in Ly(9). Since the space H(Q,T1) contains H* () = ﬁl(Q) and is contained in H'(2), we can
apply Métivier’s result [25] stating that the counting function Np(A), i.e., the number (counting
multiplicities) of eigenvalues that are less than A, has the asymptotics

NL(A) = e, A2 + O(A 1272y, (5.3)

where the coefficient ¢y, is the same as for the Dirichlet and Neumann problems (see [5]).

Next, we have the same assertions about the eigenfunctions as in these problems [5]. The
eigenfunctions form an orthonormal basis in H ~1(Q,T). They belong to the space H!(Q,T'1) and
form there an orthonormal basis with respect to the inner product (Lu,v)q, which is equal to
®q(u,v). This result extends to the intermediate spaces. Moreover, one can prolong the scale of
these spaces to the left and right by €. As to the spaces corresponding to the values of ¢ with
|t —1/2| < d, t # 1/2, the completeness of eigenfunctions and the Abel-Lidskii summability of
Fourier series in these functions remain valid in these spaces.

If only the principal part of the operator L is formally self-adjoint, then the eigenvalues, starting
from some number, lie in an arbitrarily narrow sector with bisector Ry and have asymptotics with
the same leading term. The assertions on the smoothness of root functions, their completeness, and
summability remain valid.

If we drop the self-adjointness assumptions completely, then the estimate |\;(L™1)| < Cj —2/n
for the eigenvalues is preserved. The most general case in which we still can obtain assertions on
the completeness and summability is the case in which all values of the form ®q(u,u) lie in a sector
with bisector Ry and opening angle less than 27/n (cf. [5]).

5.2. Poincaré—Steklov problems with spectral parameter on a part of the boundary.
Consider the following two problems.

I. Lu=0 inQ, T'u=0 on Iy, AN Tu=u" on I'i.

Here THu € H-Y2(T'}) and (see Section 3.2) Np,THu = ut € HY2(I'}). Hence for the eigen-
functions of the spectral problem I we obtain the equation Np,v) = A, where ¢ = TV u, and it is
equivalent to this problem if L = L.

II. Lu=0 inQ, vwt=0 onTy, AN Tu=u" on ;.

Here ut € HY2(T';) and (see Section 3.2) Dp,ut = THu € H-Y2(T'y). Hence for the eigen-
functions of the spectral problem II we obicvain the equation DEll”L/} = M), where again 1) = T u,
and it is equivalent to this problem if L = L.

We have interchanged I'y and I's in the second problem as compared with Section 3.2 in order

to compare the corresponding operators in what follows.
The spectral properties of the operators Ny, and Dr, are similar to those of the operators

Ag and Hg (for T';y = 9), respectively, described in [4]. For L = L, we define the inner product
(11,121, in the first case in H~Y2(I'y) as (Np,91,12)r, and in the second case in H—/2(I')) as
(Dp 1, o), -
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In particular, we mean the smoothness properties of the eigenfunctions and root functions, the
results concerning an orthonormal basis of eigenfunctions for p = 2 and L = L, and the results
on the completeness of the root functions and the Abel-Lidskii summability of Fourier series in
root functions in the other cases. If the operator L has formally self-adjoint leading part, then
the eigenvalues, starting from some number, lie in an arbitrarily narrow sector with bisector R .
The most general case in which assertions on the completeness and summability can be obtained is
the case in which all values of the quadratic forms ®q+(u,u) lie in a sector with bisector Ry and
opening angle less than 7/(n — 1).

Additional completeness results can be obtained as a consequence of (dense) embeddings of the
spaces considered.

6. Spectral Asymptotics

Here we wish to obtain asymptotic formulas for the eigenvalues of the operators Nr, and Dr_ll.
Before doing this, we consider operators on I'. First, let us accept the following assumptions:

1°. L=L.

2°. The surface I' is almost smooth (see Section 1.1).

3°. L is a scalar operator or a matrix operator whose principal part coincides with the Lamé
operator.

It was shown in [5] that under these conditions one can derive the asymptotic formula

Aj(N) ~ O~V (6.1)

for the eigenvalues A;(IN) of the operator N (in the sense that the difference of the left- and
right-hand sides is o(j~'/(»~1))). This follows from the results of the paper [6] in conjunction with
formula (3.9) above and the very deep known results on the invertibility of the operators %I +B

and %I + B in Ly(T") ([28], [14]). The eigenvalues are numbered in nonincreasing order, counting
multiplicities.

Here we get rid of assumption 3° by using the variational approach to asymptotics. Moreover,
we shall consider the operator bIN, where the function b is assumed, first, to be a multiplier in
H*1/2 (T") and, for simplicity, nonnegative. We assume that the Lipschitz surface I" is almost smooth
in a neighborhood of the support of b. The result is stated in Theorem 6.5 below (cf. [1] and
especially [45], where piecewise smooth surfaces were considered).

Let T be a compact self-adjoint operator in a Hilbert space H with inner product (-, «); for
simplicity, we assume that 7 is nonnegative (has nonnegative eigenvalues). The counting function
N(X) = N(\,T) of its positive eigenvalues \;j(T)) (j = 1,2,...) is the number of eigenvalues,
counting multiplicities, greater than A (A > 0). The asymptotics N(A) ~ SA™ as A — 0 (where
a >0 and 8 > 0) is equivalent to the asymptotics \; ~ B Y as j — oo, where 3/ = gL/

The variational quotient for T has the form R(x) = (Tx,z)/(z,x). The eigenvalues are the
“subsequent maxima” of this quotient:

Aj+1(T) = min o olax R(z), (6.2)
where X ranges over the subspaces of H.

We need some well-known lemmas, which we give in a simplified form (cf. [8, Supplement 1]
or [45, Section 1]). The first of these lemmas permits one to compare the counting functions of
operators acting in different spaces.

Lemma 6.1. Let Hy and Hy be Hilbert spaces with inner products (+, )1 and (-, «)a, re-
spectively, let Ty and Ty be compact nonnegative operators in these spaces, and let S be a bounded
operator from Hy to Hy. Suppose that (Thx,xz); =0 for Sz =0 and

(Thz,z)1/(z,2)1 < (T2Sz, Sx)2/(Sx, ST)9 (x € Hy, Sx #0). (6.3)
Then N(X\,T1) < N(X\,Tz). In particular, this is true if Hy C Ha, (+, )1 = (-, +)2 on Hy, and S

is the embedding operator; the denominators in (6.3) are not needed in this case.
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Lemma 6.2. Let H be the orthogonal sum Hi ® Hy of subspaces Hi and Ho invariant with
respect to a nonnegative operator T in H, and let T; be the restrictions of this operator to Hj.
Then N(A\,T) = N(\,T1) + N(\, T»).

Lemma 6.3 (M. Sh. Birman-M. Z. Solomyak). Let a compact nonnegative operator T in a
Hilbert space H admit a representation T =T, +T! for each € > 0, where T, and T! are compact
operators, T! is nonnegative, \;(T7) ~ C(17)j=% for some o > 0, and limsup |\;(T)|77 < e. Then
C(T}) has a finite limit C(T') as € — 0, and X\;(T) ~ C(T)j~°.

6.1. Operator bN. First, assume that the coefficients of L are infinitely smooth. In H~/%(T"),
we introduce the inner product

(1, h2)r = (N1, ¥2)r. (6.4)
The operator b/N remains compact and self-adjoint. Consider the variational quotient
Ry() = (BN, )r /() = (ON$, No)p/ (N, ) (¢ € H-VA(T)). (6.5)

Assuming that ¢ = TFu for a solution u € H'(Q) of the system Lu = 0, we have Ny = u™.
Hence the numerator is equal to (bu™,u™)r, and the denominator is equal to (T u,u™)r, i.e., to
O (u,u) by the Green formula. The quotient (6.5) can be rewritten in the form

Qv(u) = (bu™, u™)r/Pq(u, u). (6.6)

Now the numerator is the form corresponding to a compact operator in the subspace of H!(Q)
formed by the solutions u of the system Lu = 0. We take ®q(u,v) for the inner product in H(Q).
Then the orthogonal complement of the subspace of solutions is formed by functions with u™ = 0;
this was already noted in Section 2.1. Therefore (see Lemma 6.2), we shall consider the quotient (6.6)
on all uw € HY(Q). (In fact, the passage from (6.5) to (6.6) is not necessarily needed.)

Now let us use the fact that, for a Lipschitz domain 2, one can ‘construct domains Q and O
with infinitely smooth boundaries I and T such that Q C Q C Q and these boundaries are
arbitrarily close to I'. More precisely, there is a one-to-one correspondence between each of these
smooth boundaries and I', and the distance between the corresponding points becomes uniformly
arbitrarily small (e.g., see [49]).

In our case, we can fix a nelghborhood U of arbitrarily small measure of the singular set
[ing and assume that T and T coincide with T' outside U. Let Ay be a smooth approximation
to the characteristic function of the cgmplement of U supported in that complement. Then the
corresponding quotients Qpg,, (u) and Qpg,, (u) satisfy

Quoy (1) < Quay, (1) < Quay (u) (6.7)

on functions in H 1(?2) and their restrictions to  and Q. The left and right quotients correspond
to smooth problems, and the eigenvalue asymptotics for the corresponding operators b0y N and

by N are known and coincide (we mean the leading term); see [9]. This implies a similar result for
b0y N by Lemma 6.1.
Now consider the quotient Q.(u), where ¢ = b(1 — 0y). Using the boundedness of the trace

operator, we have
0 <C [ lllaPds [ ulfzg, (63)

and I' can be replaced by S = suppc on the right-hand side. After that, the quotient on the
right-hand side corresponds to a compact nonnegative operator in H/ 2(9).

Lemma 6.4. Let S be a domain on a bounded Lipschitz surface T of dimension n — 1 with
Lipschitz boundary, and let c¢(x) € L.(S) be a nonnegative function on this surface. Then the
counting function N (X, T) of the compact operator T in H*(S), s > 0, with the variational quotient

Ldmwm%5Mw%@ (6.9)
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satisfies the inequality
NAT) < Cilelz, A" (6.10)

forr>1ifn—1=2s and for r=(n—1)/(2s) if n —1 > 2s, with 7 = (n — 1)/(2s).

Proof. For the case in which S is a domain in R"~!, this is Lemma 1.7 in [45]. As is indicated
there, this assertion was obtained in [8, Theorem 4.1] for integer s, but the proof is preserved for
noninteger s. The lemma was established for scalar functions but can readily be transferred to
vector-valued functions.

To extend it to the case of a domain on a Lipschitz surface, one can assume that this domain
is small and admits the representation x,, = ¢(z’) with a Lipschitz function ¢(x’) defined on the
projection of this domain onto the z’-plane. It remains to take into account the simple fact that
dS = (14 |Vo(x')[?)'/? dz', were the gradient is bounded. O

In our case, s = 1/2, and the lemma gives the estimate
I\(T)| < Callell, (A~ Y, (6.11)

which implies the desired result. Indeed, the L,-norm of the function ¢ = b(1 — y7) tends to zero
as the neighborhood U shrinks to I'sye, because this function is bounded under our assumptions
on b. Here one should use Lemma 6.3.

The assumption on the smoothness of the coefficients of L is removed by approximating the
original coefficients by smooth ones (cf. [45, Section 5]). We arrive at the following assertion.

Theorem 6.5. Let L = E, let a momnegative function b be a multiplier in Hil/Q(F), and
suppose that the surface I' is almost smooth in a neighborhood of the support of b. Then the asymp-
totics (6.1) holds for the eigenvalues of the operator bN .

The coefficient Cyy is computed by the formula
ng]\;l — (271-)_(?1—1) // b(x/)na(x/’é-/) dw/dé-/ (612)
T

in the case of smooth coefficients of L; here the singular set is deleted from T'. By «(z’, ¢’) we denote
the principal symbol of N, and nq(z/,¢’) is the number of its eigenvalues greater than 1. If the
coefficients of L are nonsmooth and we approximate them by smooth ones, then the operators bV
for these smooth problems converge to our operator in the operator norm. The desired coefficient
is obtained by passage to the limit, which exists by the same Lemma 6.3 and can be computed via
the principal symbol of L.

In view of space limitations, we do not present the generalization to the case in which b can
change sign. However, note the following generalization.

Theorem 6.6. The assertion of Theorem 6.5 remains valid if b € L,(I'), where r = n — 1
forn > 2 and r > 1 for n = 2, provided that bN is defined as the operator with the variational
quotient (6.5) or (6.6).

When using, say, the quotient (6.6), one means the operator in H'() with the form (bu™,v")r.
This form is well defined by virtue of the embedding theorems and the Holder inequality. In this
case, b is not a multiplier in H*'/2(T") in general.

6.2. Operator Nr,. In this case, we would like to take the characteristic function 6 of the
domain Ty for b. But it is not a multiplier in H'/?(T"). However, this function is a multiplier in
H-Y/ 2(T'1); moreover, the multiplication by it does not change the elements of this space. This
permits one to rewrite the equation N 1 = A\ in the form

ONOY = A0, (6.13)

at least, assuming that ut e H'/ 2=¢(I'y) with an arbitrarily small ¢ > 0. The corresponding
variational quotient has the form

(Ou™, u)p/Pq(u, u). (6.14)
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Here u belongs to the subspace of solutions of the system Lu = 0 in H'(Q2) with TFu = 0 outside
'y, and now we can assume that ut € H'/2(I'1). By virtue of the Green formula

®q(u,v) = (TTu,v")ry, (6.15)

the orthogonal complement of this subspace consists of functions u such that «™ = 0 on I';. The
quotient (6.14) is zero on these functions and hence can be considered on all u € HY(Q) with
Lu = 0 and further on all H!(Q2). Now Theorem 6.6 applies, and we obtain the desired result:

Theorem 6.7. Let L = Z, and let the surface T' be almost smooth in a neighborhood of the
closure of the domain I'y. Then one has the asymptotics

Xj(Nr,) ~ Cp =070, (6.16)
Here Cy, is defined by formula (6.12) with b =1 and I'y instead of T'.

6.3. Operator D;ll. The main result of this subsection, Theorem 6.8, was obtained by the
author together with T. A. Suslina.

The operator Dlill is the operator corresponding to the Dirichlet problem with u* = 0 out-
side I'y. For this operator, the variational quotient has the form

(wr,uM)p, /(Dut,uP)p,  (Lu=0 in Q, vt e H/(I'))). (6.17)

The asymptotics for smooth problems of this form was studied in [44]. In our case, the key point
is to verify that the quotient (6.17) for smooth I' and OT'j can be replaced by

(Ou™, uN)p/(Dut,ut)r (Lu=0 in Q, vt € HY*(T) (6.18)

in the sense of coincidence of the asymptotics. It is relatively easy to do this in our case as follows.
We use Lemma 6.1 twice.

Let a, 8 € C®°(I'), 0 < o, < 1, suppa C I'1, and o+ %2 = 1; a approximates the function 6.
By setting ¢ = u™, we obtain

(o, a@)r /[(Day, ap)r + (DB, fe)r] < (ap, ap)r /(Dap, ap)r. (6.19)

Here ¢ € HY2(T'). For S we take the mapping ¢ — oy of HY/2(I") into HY/2(I'1). In addition,
note that the forms in the denominators in (6.18) and on the left-hand side in (6.19) coincide up to
the addition of the form of a zero-order DO, because the principal symbols coincide. It is known
that such addition does not affect the asymptotics (see [8] or [45], Section 1).

Now let a; € C*°(T") be a nonnegative function equal to 1 in a neighborhood of the closure of
the domain I'; and approximating 8. We have

(s )r/(Dp, o)r = (a1, c19)r/(Dp, ©)r- (6.20)

Here ¢ € H/2(I'}) and S is the embedding of this space in HY2(T).

Lemma 6.1 shows that the counting function for the operator with quotient (6.17) is enclosed
between the counting functions for the operator with the quotient on the left-hand side in (6.19) and
the operator with the quotient (o, a10)r/(Dg, ©)r, ¢ € HY/?(T). The asymptotics for operators
with such variational quotients are known from [9]. Now the passage to the limit with the use of
Lemma 6.3 proves the assertion highlighted above. After that, essentially, the variational quotient
and hence the asymptotics are the same as in Section 6.2.

The result can be extended to the case of an almost smooth surface by an argument similar to
that used in Section 6.1. We obtain

Theorem 6.8. If L = L and the surface T' is almost smooth in a neighborhood of the closure
of I'1, then the eigenvalues of the operator Dfll have the asymptotics (6.1) with the same coefficient
as for Nr,.

Example (cf. [23, p. 50]). Consider the Laplace equation in the square {(z,y) : 0 < z <
m, 0 <y < w}. Let T'y be its left side, and let T'y consist of the other three sides. Problem I has
the solutions cosh k(m — ) cosky (k =0,1,...). Problem II has the solutions sinh k(7 — z)sin ky
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(k=1,2,...). The eigenfunctions are cos ky in Problem I and sin ky in Problem II. The eigenvalues
are (tanhkn)~!/k and tanhkn/k, respectively. They are different in the two problems, but the
asymptotics is the same.

6.4. Remarks to the papers [4] and [5]. The variational quotient for the operator H~! has
the form (cf. [5, Proposition 9.1])

(e,o)r/(Ho,o)r (¢ =[u] € HYA(), u= By). (6.21)

Here [Tu] = 0, and the solutions of the system Lu = 0 in QF are determined by the jump [u].
The argument in Section 6.1 directly applies to (6.21) in the case of an almost smooth T'. As
compared with [5], one can remove condition 3°. Next, one can obtain an analog of Theorem 6.8
for the operator H§1 essentially in the same way as in the preceding subsection. The approach in [4]
to Hg ! requires some reconsideration, which is possible with the help of a variational argument,
but this is no longer needed.

The variational approach to the operators A and Ag is also possible but does not give anything
new compared with [36] and [4]. We only note that the variational quotient for A can be put in
the form (u®,u®)r/®1(u,u).

7. Some Generalizations

7.1. More general Poincaré—Steklov problems. Now we wish to consider the case in which
the boundary I' is divided into three domains I'y, I's, and I's with the homogeneous Dirichlet
condition in the first domain, the homogeneous Neumann condition in the second domain, and
the Poincaré-Steklov spectral condition in the third domain. We assume that these domains are
separated by two closed Lipschitz surfaces of dimension n—2 without self-intersections and without
common points (cf. [34]).

For definiteness, consider the case in which I's lies between I'y and I'y. We introduce the
following notation. Let I'y 3 be the complement of Ty, and let I'1,;3 be the complement of Ts. Let
ﬁl/Q(Fg) be the space of restrictions to I's of functions in ﬁ1/2(F2’3) with the inf-norm, and let
ﬁ_l/z(Fg) be the space of restrictions to I's of elements of f[‘lm(I‘l,g) with the inf-norm. Next,
by & we denote the operator of extension of functions in ay 2(T'3) through the boundary of 'y to
functions in H'/2 (I'y,3), and by &1 we denote the operator of extension of elements of HY 2(I3)
through the boundary of T'; to elements of H~1/2 (I'1,3). These two operators can be obtained by
localization from the extension operators that we already know.

Proposition 7.1. The spaces fI‘l/2(F3) and ﬁ1/2(F3) are dual with respect to the extension
of the form (¢,v)r, = (&1, &) to their direct product.

To explain, we note that, at the boundary with I'y, the space HY 2(I'3) is locally “similar” to
H'Y2(T'3) and the space H- 1/2(I‘3) is locally “similar” to H~ 1/2(I‘3) while at the boundary with
T, the space H~ 1/2(P3) is locally “similar” to H~/2(I's) and Hl/z(Fg) is locally “similar” to
H'2(I'3). Hence the situation on both parts of the boundary of I's is standard from the viewpoint
of duality, even though these spaces are formally of a somewhat new type.

Now the Green formula has the form ®g(u,v) = (T u,v")p,. It follows from our results in
Sections 2-3 that the solution in the class in question is uniquely determined if one specifies the
Dirichlet data in ﬁ1/2(F3), and then the Neumann data on I's lie in ﬁ_l/Q(Fg). By the same cause,
the solution in our class is uniquely determined if one specifies the Neumann data in H-1/2 (T's),

and then the Dirichlet data on T's lie in H'/ 2(I'3). Hence there are two well-defined invertible
mutually inverse operators

Dr,: H'/?(Ts) - H'/?(Ts) and Np,: H Y?(I'3) — H/*(T) (7.1)
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that map the Dirichlet data on I's to the Neumann data on I's and vice versa. On these solutions,
we have
@Q(u,u) = (T+’LL, NF3T+U)1"3 = (Dp3u+,u+)1"3. (72)

One can write the Garding type inequalities for our operators. If L = Z, then we can introduce
the inner product (¢,v¥)r, = (Nry¥,9¥)r, in ﬁ_l/Q(Fg) and treat Np, as a compact self-adjoint
operator. One can obtain analogs of Theorems 4.1 and 6.7. We do not dwell on these details.

The other two cases of location of the domain I's are not more complicated, and we do not
dwell on them either.

7.2. Third boundary condition instead of the Neumann condition. Let us return to
problem (1.1)—(1.2) but replace the second condition in (1.2) by the following one:

TTu+ou™ =h on Ty. (7.3)

Here o(x) is a given matrix function in Lo (I'2). Similar boundary conditions were considered in
many papers, e.g., in [24] (the case of T'y = T") and [34] (a scalar equation). We shall not consider
it in detail; this would be too lengthy. We restrict ourselves to the following considerations. By
substituting T7u = h — ou™ into the Green formula, we obtain the formula

Do (u,v) + (ou™, v ), = (Lu,v)q + (h,v1)r,. (7.4)
Now the left-hand side for u = v is the quadratic form
q)Q(u’ U) + (Uu+7 ’LL+)1"2, (75)

and we can generalize our results if it is coercive in our sense on H!'(2). The case in which
Re(ou™,u™)p, > 0 is the simplest one. If this condition is not satisfied, then one should have
in mind that a lower-order term has been added in the left-hand side. Indeed, for arbitrarily small
a >0 and G > 0 one has
2 2 2 2 2
[(out, u )| < Crllut 12,0y < Callwt gy < CrllullZpoa gy < Bllull3 o) + Callull?, o)
Hence the desired coercivity again holds provided that the form Re(cu,u)q is sufficiently large.

7.3. The case when the boundary is divided into several domains. The results clearly
can be generalized to the case in which the surface is divided into finitely many domains by a finite
set of Lipschitz (n — 2)-dimensional closed surfaces without self-intersections and without common
points (we prefer to make this assumption to be careful) and either the Dirichlet condition, or
the Neumann condition, or the spectral condition is posed in each of these domains (cf. [34], [23],
and [50]).

The author is greatly indebted to N. D. Filonov and especially to T. A. Suslina for discussion
and valuable advice. As was indicated in Section 6.3, Theorem 6.8 was obtained by the author and
T. A. Suslina together.

Our bibliography on mixed problems is by no means complete. Many additional references can
be found in the papers on our list.
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