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[1] The Savage-Hutter model is applied to describe gravity driven shallow water flows in
inclined channels of parabolic-like shapes modeling avalanches moving in mountain
valleys or landslide motions in underwater canyons. The Coulomb (sliding) friction term
is included in the model. Several analytical solutions describing the nonlinear dynamics of
avalanches are obtained: the nonlinear deformed (Riemann) wave, the dam break problem,
self-similar solutions and others. Some of them extend the known solution for an
inclined plate (one-dimensional geometry). The cross-section shape of the inclined
channels significantly influences the speed of avalanche propagation and characteristic
time of dynamical processes. Obtained analytical solutions can be used to test numerical
models and to give insights into the structure of avalanche flow and to highlight basic
mechanisms of avalanche dynamics.

Citation: Zahibo, N., E. Pelinovsky, T. Talipova, and I. Nikolkina (2010), Savage-Hutter model for avalanche dynamics in inclined

channels: Analytical solutions, J. Geophys. Res., 115, B03402, doi:10.1029/2009JB006515.

1. Introduction

[2] Gravitational flows like submarine and aerial land-
slides, debris avalanches and pyroclastic flows from volca-
noes are frequently reported as the sources of tsunami
waves. In 1958, such an avalanche from Fairweather
Mountain induced a huge swash of 524 m on the opposite
side of the Lituya bay, Alaska, and tsunami waves reached
21 m near the bay entrance [Miller, 1960]. The pyroclastic
flows were generated several times on Montserrat Island
(the Lesser Antilles, Caribbean) due to continual volcano
activity and caused three tsunami events recorded in
Guadeloupe and Montserrat in the last decade [Heinrich et
al., 1998; Mangeney et al., 2000a; Pelinovsky et al., 2004;
Zahibo et al., 2008b]. The various analytical and numerical
models are developed to describe tsunamis generated by
landslides. In many studies [Pelinovsky and Poplavsky,
1996; Watts, 2000; Tinti et al., 2001; Liu et al., 2003;
Pelinovsky, 2003; Sammarco and Renzi, 2008], the landslide
is assumed as a solid block moving under the joint action of
gravity, the Coulomb friction and hydraulic resistance in
turbulent flow. More realistic models of tsunami generation
include the ‘‘two-layer’’ approach which jointly describes
tsunami wave and a landslide propagation influencing one
another [Imamura and Gica, 1996; Assier-Rzadkiewicz et
al., 2000; Mangeney et al., 2000a; Heinrich et al., 1999,
2001; Bouchut et al., 2003; Fine et al., 2003, 2005;

Mangeney-Castelnau et al., 2003, 2005; Le Friant et al.,
2006; Fernandez-Nieto et al., 2008]. Some attempts have
been made to simulate submarine landslides using the full
three-dimensional (3-D) Navier-Stokes equations [Heinrich
et al., 1998, 1999; Mangeney et al., 2000b]. Similar models
developed to describe dry subaerial avalanches, pyroclastic
and debris flows including possible sources of tsunami,
have aroused much interest in the last decade [see also Gray
et al., 1999; Mangeney et al., 2000b; Heinrich et al., 2001;
Bouchut et al., 2003; Mangeney-Castelnau et al., 2003,
2005; Le Friant et al., 2006; Fernandez-Feria, 2006;
Rudenko et al., 2007; Mangeney et al., 2007a; Bouchut et
al., 2008; Pirulli and Mangeney, 2008; Pelanti et al., 2008;
Yu et al., 2009; Luca et al., 2009]. Most of such models of
landslides and avalanches are based on homogeneous
shallow water flows that are deformed during propagation.
These models use various approximations of the vertical
structure of the velocity field (uniform as in the ideal fluid,
or parabolic as for a viscous fluid), as well as different
approximations of the friction law (the Coulomb friction,
Bagnold behavior, Pouliquen law); the derivation of the
mentioned models can be found in the recently published
book by Pudasaini and Hutter [2007]. Although most of
these models are realized in numerical codes and are applied
for modeling real and prognostic events, analytical solutions
can be used to test numerical models and to gain insights
into the structure of avalanche flow, and to highlight basic
mechanisms of avalanche dynamics.
[3] In this paper special attention is paid to the analytical

description of dry subaerial avalanche dynamics basing on
the Savage-Hutter model. The number of the analytical
solutions of the gravity driven shallow water flow is limited.
Savage and Hutter [1989, 1991] constructed some self-
similar solutions called parabolic cap and M waves due to
their shapes; see also the book by Pudasaini and Hutter
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[2007]. Mangeney et al. [2000b] found the analytical
solution to a one-dimensional dam break problem over
inclined plane also taking into account the Coulomb fric-
tion. It was widely used to test the debris avalanche
numerical models applied to evaluate the hazard of the
volcano eruption in the Lesser Antilles [Heinrich et al.,
1999, 2001; Mangeney et al., 2000a; Le Friant et al., 2003,
2006]. Fernandez-Feria [2006] extended this analysis to
arbitrary bottom slopes; the axisymmetric dam break prob-
lem is solved by Kerswell [2005]. Rudenko et al. [2007]
found the exact solution that represented the nonlinear
deformed wave in an ideal flow (neglected friction) along
a plate of a constant slope.
[4] The model we used here includes sliding friction (the

Coulomb law). Although the simple friction law suggests
simplified behavior of the flow which is expected to be
different from the natural one, some basic mechanisms can
be deduced. For instance, natural avalanches are submitted
to erosion processes that can significantly change their
dynamics and generate surge waves [Mangeney et al.,
2007b]. Furthermore the fluid phase generally plays a
significant role as described, for example, by Pelanti et
al. [2008]. It must be said that the simple model based on
Coulomb friction is very convenient to predict potential
events and to analyze historical events because it contains
only one empirical parameter (friction angle) as pointed out
by Pirulli and Mangeney [2008]. That is why this kind of
friction is used in our study.
[5] Analytical solutions of the gravity driven shallow

water flow with Coulomb friction are obtained in the
literature for 1-D geometry only. However, gravity driven
masses move in basins of more complicated geometry. As a
rule, they move in inclined channels (valleys on mountains
and submarine canyons) which are generally diverging,
converging or twisted in various parts. Some of them have
straight parabolic-like shapes at least in a part of flank
(Figure 1). We provide here several new analytical solutions
for gravity driven shallow water flow in inclined channels
of constant slope with the specific parabolic-like cross
section. New effects in the avalanche dynamics comparable
to those known for the 1-D avalanche motion along an
inclined plate are related with the parabolic-like cross-

section shape of the channel which influence the speed of
avalanche propagation and characteristic time of dynamical
processes.
[6] The paper is organized as follows. The basic model to

describe the avalanche motion that represents the gravity
driven shallow water flow (simplified Savage-Hutter model)
in a narrow inclined channel of parabolic-like cross section
is given in section 2. Nonlinear deformation of the ava-
lanche shape for the nonzero sign constant initial distribu-
tion of the particle velocity in the avalanche body is studied
in section 3. The dam break problem for gravity driven flow
in an inclined channel with initial zero velocity distribution
is investigated in section 4; it is the extension of the well-
known 1-D solution described by Stoker [1957] and
Mangeney et al. [2000b]. Other self-similar solutions for
the avalanche of finite length and symmetrical shape in the
inclined channels are also found in section 4; they are
extensions of the M wave and parabolic cap solutions for
the 1-D avalanche given by Pudasaini and Hutter [2007].
The analytical solution for an avalanche initially at rest in a
parabolic channel is obtained in section 5; from a mathe-
matical point of view it is the extension of the Carrier-
Greenspan transformation [Carrier and Greenspan, 1958]
used early in the theory of water waves in particular tsunami
waves [Zahibo et al., 2006; Choi et al., 2008]. The
discussion of obtained results is given in the conclusion.

2. Basic Model of the Gravity Driven Shallow
Water Flow

[7] To describe the gravity driven flow (debris avalanche
or submarine landslide) we follow Pudasaini and Hutter
[2007] using the two-dimensional depth-integrated shallow
water equations for the incompressible fluid with the
Coulomb-type friction term (Savage-Hutter model); the
earth pressure coefficients in the Savage-Hutter model have
been set to 1. This model as pointed above [Pirulli and
Mangeney, 2008] is very convenient to predict potential
events and also to analyze historical events because it
contains only one empirical parameter (friction angle). In
the system of coordinates linked to the topography the
equations of mass and momentum conservation have the
following form [see Mangeney et al., 2000b]:

@h

@t
þ @

@x
huð Þ þ @

@y
hwð Þ ¼ 0; ð1Þ

@u

@t
þ u

@u

@x
þ w

@u

@y
þ g cos q

@h

@x
¼ g sin qx � mg cos q

uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ w2
p ;

ð2Þ

@w

@t
þ u

@w

@x
þ w

@w

@y
þ g cos q

@h

@y
¼ g sin qy � mg cos q

wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ w2
p ;

ð3Þ

where

x, y local slope and parallel coordinates, m;
h(x, y, t) flow height perpendicular to the local

slope, m;

Figure 1. The 2 December 2008 pyroclastic surge effects
on St. George’s Hill, Montserrat (see http://www.mvo.ms).

B03402 ZAHIBO ET AL.: BRIEF REPORT

2 of 18

B03402



u, w depth-averaged velocities along x and y axes,
respectively, m/s;

g acceleration due to gravity, m/s2;
q steepest slope angle, deg;

qx, qy slope angles along x and y axes, deg;
m = tan(8) sliding friction coefficient, nondimension;

8 dynamic friction angle, deg.

[8] The value of 8 depends on the landslide material, and
it has not been studied well. Usually it is considered to be
relatively small for sand-textured debris (17–30� [Heinrich
et al., 2001]) and relatively large for a granular debris
avalanche (20–40� [Le Friant et al., 2003]). Very often
this angle is estimated using comparison between the
observed data and the results of numerical modeling. In
particular, for the debris avalanche on the Montserrat
volcano the dynamic friction angle is tested in a wide range
as 13–35� and for the simple friction law the value 13–
14.5� has been chosen. [Voight et al., 2002; Heinrich et al.,
2001]. Le Friant et al. [2003] state that this angle for the
flank collapse event on the Montagne Pelée, Martinique, has
been estimated as 6.6� from observations and has been
taken about 7� for numerical simulations.
[9] The given equations are simplified compared to the

advanced version of the Savage-Hutter models of complex
topography recently proposed byBouchut andWestdickenberg
[2004] and Mangeney et al. [2007a]. We would like to point
out that the given equations differ from the well-known
‘‘fluid’’ shallow water system in the friction term, which is
usually proportional to ujuj (Chezy friction); this Saint
Venant model is also used in avalanche dynamics [Bouchut
et al., 2003; Mangeney-Castelnau et al., 2003, 2005]. In
fact, it is rather complicated to describe and to parameterize
the dissipative processes in landslides and avalanches, and
various formulas are applied in practice [see Pudasaini and
Hutter, 2007]. Meanwhile, the Coulomb-type friction has
only one empirical parameter (friction angle, 8) and as
mentioned above, this model is very convenient to predict
potential events and also to analyze historical events [see
Pirulli and Mangeney, 2008]. Here we use Coulomb-
type friction in order to obtain analytical solutions of
equations (1)–(3).
[10] Avalanches and landslides usually move in narrow

channels (valleys and canyons), see for instance Figure 1.
Assuming that the channel axis is straight and the flow is
almost uniform in the cross section, the shallow water
equations may be integrated on the cross section and
effective 1-D system may be derived (typical approach for
river hydraulics). This procedure is demonstrated quite
extensively by Pudasaini and Hutter [2007] and yields

@S

@t
þ @

@x
Suð Þ ¼ 0; ð4Þ

@u

@t
þ u

@u

@x
þ g cos q

@h

@x
¼ g sin q� mg cos q sgn u; ð5Þ

where S(x, t) area of the cross section of the channel, m2;
h(x, t) avalanche height along x axis of channel, m; and
u(x, t) mean velocity flow, m/s. To close this system, the
function S(h) which is given as an integral expression over

the width of a channel should be determined. If the cross
section has a parabolic-like shape,

z yð Þ ¼ kjyjm; ð6Þ

with positive arbitrary constants, k and m (Figure 2), the
function S is

S ¼ 2m

mþ 1ð Þk1=m h mþ1ð Þ=m: ð7Þ

As a result, equation (4) transforms to

@h

@t
þ u

@h

@x
þ m

mþ 1
h
@u

@x
¼ 0; ð8Þ

and the system of equations (5) and (8) becomes closed. It
differs from the ‘‘classical’’ one-dimensional equations of
the simplified Savage-Hutter model in the constant
coefficient m/(m + 1), and may be transformed to them
as m ! 1 (S � h).
[11] Below we assume the constant slope of the inclined

channel, q, which should be relatively high (q > 8) to
provide the gravity driven motion of the landslide. In this
case u > 0 throughout and equation (5) is simplified to

@u

@t
þ u

@u

@x
þ g cos q

@h

@x
¼ g sin q� mg cos q: ð9Þ

[12] The basic system of the gravity driven flow, (8) and
(9), is analyzed below. Mathematically, it is a hyperbolic
system with constant coefficients and as for water waves
above inclined bottom [Stoker, 1957; Carrier and Greenspan,
1958; Zahibo et al., 2006; Choi et al., 2008]; the Riemann
invariants can be found explicitly

I� ¼ u� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

m
gh cos q

r
� gat; ð10Þ

where

a ¼ sin q� m cos q > 0; ð11Þ

and the system (8)–(9) can be rewritten in the form

@I�
@t
þ c�

@I�
@x
¼ 0; ð12Þ

where the characteristic speeds are

c� ¼
3mþ 2

4 mþ 1ð Þ I� þ
mþ 2

4 mþ 1ð Þ I� þ gat: ð13Þ

It should be mentioned that equations (12) and (13) appear
in the problems of long water wave run-up on the coast
[Stoker, 1957; Carrier and Greenspan, 1958; Zahibo et al.,
2006; Choi et al., 2008] but the main difference here is that
the bottom slope is not small (as in ‘‘run-up problems’’)
and the Coulomb-type friction is not neglected. Mathemati-
cally, the initial and boundary conditions for water waves and
avalanche dynamics also differ. That is why the ‘‘avalanche
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solutions’’ cannot be directly obtained from the ‘‘water
solutions.’’ Physical variables, h(x, t) and u(x, t) are found
from the algebraic equations (10) and the downslope
component of the velocity field (gat) propagating under
the action of the gravity force can be eliminated by use of

u x; tð Þ ¼ gat þ v x; tð Þ; ð14Þ

v x; tð Þ ¼ Iþ þ I�
2

; ð15Þ

h ¼ m

16g cos q mþ 1ð Þ Iþ � I�ð Þ2; ð16Þ

where a > 0 depends on the slope angle and friction
coefficient, see (11). Another useful development is the
change of coordinates, the accelerated reference system can
be written as

X ¼ x� gat2

2
; t ¼ t: ð17Þ

As a result, system (12) is reduced to the nonlinear system
with constant coefficients

@J�
@t
þ C�

@J�
@X
¼ 0; ð18Þ

where the modified Riemann invariants J± are

J� ¼ v� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

m
gh cos q

r
; ð19Þ

and the modified characteristic speeds are

C� ¼
3mþ 2

4 mþ 1ð Þ J� þ
mþ 2

4 mþ 1ð Þ J�: ð20Þ

The system (18–20) now does not include the downslope
component of the velocity field (gat). The new parameter m
characterizing the cross section of the shape of the channel
is added compared to the plane case. Equations (18)–(20)

Figure 2. Different channel shapes of the cross channel: (a) m = 0.5, (b) m = 1, (c) m = 2, (d) m = 4.
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present the basic model of the avalanche motion in the
inclined channel of parabolic-like cross section.

3. Nonlinear (Riemann) Wave Presentation of the
Gravity Driven Flow

[13] A particular solution of the system (18) is J- = 0, that
leads to the following relation between the velocity and the
flow height

v x; tð Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

m
gh cos q

r
: ð21Þ

Using this solution equation (18) for J+ can be reduced to
the nonlinear PDE of the first order

@G
@t
þ G

@G
@X
¼ 0; ð22Þ

where

G ¼ 3mþ 2

2 mþ 1ð Þ v X ; tð Þ ð23Þ

is the normalized velocity. The solution of (22) is expressed
through the so-called Riemann wave [Stoker, 1957]

G x; tð Þ ¼ G0 X � Gtð Þ; ð24Þ

where G0(X) describes the initial longitudinal landslide
shape (exactly,

ffiffiffiffiffiffiffiffiffiffiffiffi
h0 Xð Þ

p
).

[14] The solution (24) in initial coordinates has the
following evident physical meaning: the landslide moves
with acceleration, ga (we consider the case when the
gravity force is not balanced by Coulomb friction) and
the shape of landslide deforms during the motion whereas
the front steepness increases.
[15] The solution (24) has been obtained by Rudenko et

al. [2007] for the particular case of free gravity flow (no
friction) above an inclined plate (m!1). Similar solutions
have been studied for water waves above a horizontal
bottom and in channels with parabolic-like cross section
[Pelinovsky and Troshina, 1994; Zahibo et al., 2008a]. Our
solution includes both, the inclined channel of parabolic
cross section and Coulomb friction.
[16] The nonlinear evolution of the avalanche body can be

analyzed for any initial distribution of the height in the
longitudinal direction and is illustrated here for a parabolic
initial distribution of avalanche height. In this case the
velocity distribution has triangular shape (as G0(X) �ffiffiffiffiffiffiffiffiffiffiffiffi
h0 Xð Þ

p
), with the initially equal front and back slopes,

see Figure 3a. Analytically, the longitudinal evolution of the
flow within the avalanche in the accelerated reference
system (17) is described by

G X ; tð Þ
G00

¼

X þ L=2

G00t þ L=2
�L=2 < X < G00t

X � L=2

G00t � L=2
G00t < X < L=2;

8>><
>>: ð25Þ

where L is the avalanche length, and G00 is the maximum
velocity in the center of the avalanche. In time, the
steepness of the front slope increases, and the steepness of
the back slope decreases

s tð Þ ¼ s0

1� s0t
; ð26Þ

where s0 = dG0/dx is the initial steepness, and ± corresponds
to the back/front slope. The longitudinal avalanche shape
evolution is described by the following formula deducible
from (25)

h X ; tð Þ ¼ h0

1� X � G00tð Þ2

�L=2� G00tð Þ2

" #
�L=2 < X < G00t

1� X � G00tð Þ2

L=2� G00tð Þ2

" #
G00t < X < L=2;

8>>>><
>>>>:

ð27Þ

and is presented in Figure 3b.
[17] The given solutions are valid only for bounded times

less than the breaking time

Tbr ¼
L

2G00

¼ L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m mþ 1ð Þ

p
2 3mþ 2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh0 cos q
p ; ð28Þ

Figure 3. (a) Velocity and (b) height distributions in
longitudinal direction for times 0, L/4G00, and L/2G00.
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when the avalanche front steepness is infinite. The breaking
time depends on the slope angle and increases with the
steepness of the slopes. It also depends on the cross section
of the channel (parameter m) and decreases for narrow
channels (m ! 0). We would like to mention that the
breaking time does not depend on the friction coefficient,
and the nonlinear deformation of the avalanche body in time
is the same both for the friction and frictionless cases.
However, the distance accomplished by an avalanche before
breaking depends on friction.
[18] Let us investigate the influence of the cross section

of an inclined channel on the evolution of the flow. It
follows from (21) that the particle velocity increases when
m decreases. For instance, for a channel of parabolic shape
(m = 2) this speed is (1.5)1/2 = 1.225 times that on a plane
slope, for the channel of triangle shape (m = 1) this factor is
21/2 = 1.414. As a result, an avalanche with the same height
deforms quickly in narrow channels (m ! 0) and so, the
flow is more energetic. The spatial structure of the deformed
avalanche computed from (6) depends on the cross section
of the channel (Figure 4). The avalanche rear tail in the
channel of the triangular cross section is beak shaped, and in
the parabolic channel it is parabolic like. In time the
avalanche front becomes flattened in both cases. All the
conclusions made above are valid for any initial distribution
of the velocity (not only for triangles). In particular,

equation (26) describes the time evolution of the maximum
steepness of the avalanche longitudinal shape (in terms
dG/dx), the breaking time is also determined definitely
through the maximum value of dG0/dx.
[19] After breaking, the avalanche profile becomes multi-

valued in the framework of the solution (24). Usually,
multivalued solutions of hyperbolic equations are replaced
by single-valued solutions with a discontinuity in height on
the front to satisfy the approximation of the uniform
distribution of the velocity along the depth of the shallow
water model. Taking into account that the mass of the
avalanche is conserved, the real configuration of the ava-
lanche body with the shock front can be found from the
multivalued solution using the law of ‘‘square equality.’’
According to this approach which is popular in nonlinear
waves [Stoker, 1957; Whitham, 1974] the front location is
determined from the condition S1 = S2, as illustrated in
Figure 5.
[20] The avalanche height hL decreases in time, and its

length increases so as to conserve the avalanche mass. For
large times the height and the length of the avalanche satisfy
the asymptotic expressions

Xfr �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2LG00t

3

r
; hL � h0

ffiffiffiffiffiffiffiffiffiffiffi
8

3G00t

r
: ð29Þ

As a result, the avalanche shape in the longitudinal direction
being initially parabolic tends to a triangle.
[21] The formation of the shock profiles of the avalanche

body should be obtained in various shallow water models of
the avalanche due to their hyperbolicity; this process is
specially investigated numerically in the framework of the
two-phase model of the shallow granular flow [Pelanti et
al., 2008].

4. Self-Similar Solutions

[22] The famous self-similar analytical solution of the
shallow water system is the dam break solution on the

Figure 4. Avalanche contours for different times in the
accelerated reference system for times 0, L

4G00
and L

2G00
,

(a) triangular channel (m = 1), (b) parabolic channel (m = 2).

Figure 5. Avalanche shape after breaking in the longitudinal
direction. The red line corresponds to the front location.
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horizontal plane bottom described in the book by Stoker
[1957]. This analysis was extended by Mangeney et al.
[2000b] for the debris avalanche flow along an inclined
plate. Our system of gravity-driven flow in an inclined
channel of parabolic-like cross section (18) can be also
reduced to equations studied by Stoker [1957].
[23] Let us introduce a new variable of the dimension of

velocity rather than avalanche depth:

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

m
gh cos q

r
: ð30Þ

With it, equations (18) can be rewritten in the form

@

@t
v� 2cð Þ þ v� cð Þ @

@X
v� 2cð Þ ¼ 0; ð31Þ

which is exactly the same as the equations studied by Stoker
[1957] and by Mangeney et al. [2000b].
[24] The initial condition (t = 0) for the dam break

problem on the inclined channel is

u x; 0ð Þ ¼ 0; h x; 0ð Þ ¼ h0 x < 0

0 x > 0:

�
ð32Þ

In the modified variables it is reduced to

v X ; 0ð Þ ¼ 0; c X ; 0ð Þ ¼ c0 X < 0

0 X > 0;

�
ð33Þ

which is by Stoker [1957] as the initial condition for the
dam break problem on the horizontal plane. This means that
the analytical solution given in the cited book can be used to
obtain the solution of the dam break problem for the
avalanche in the inclined channel with Coulomb friction as
it was first shown by Mangeney et al. [2000b] for 1-D
geometry.

[25] The classical solution to the dam break problem on
the horizontal plane obtained by Stoker [1957] has the
following form

c X ; tð Þ ¼
c0 X < �c0t

1

3
2c0 �

X

t

� �
�c0t < X < 2c0t

0 2c0t < X ;

8><
>: ð34Þ

v X ; tð Þ ¼
0 X < �c0t

2

3
c0 þ

X

t

� �
�c0t < X < 2c0t

2c0 2c0t < X :

8><
>: ð35Þ

The ‘‘front’’ edge point moves with the highest speed, 2c0,
the ‘‘quiet region’’ has speed c0; both variables v and c vary
linearly in the transition zone.
[26] Returning to the dam break problem for the gravity-

driven flow in the inclined channel, we may say that the
cross section of the channel and its slope influence the speed
of the dam break process through the relation between c0
and h0 as follows

c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

m
gho cos q

r
: ð36Þ

[27] The process of ‘‘dam breaking’’ of the avalanche
of the same height, h0, is intensified in narrow channels
(m ! 0) and along gentle slopes. The bottom friction
influences the acceleration of the avalanche (through the
accelerated system of coordinates) but not the dam break
process. The avalanche shape in the longitudinal direction
is described by the formula

h X ; tð Þ ¼

h0 X < �c0t
h0

9
2� X

c0t

� �2

�c0t < X < 2c0t

0 2c0t < X ;

8>><
>>: ð37Þ

which follows from (35). The evolution of the avalanche
shape is demonstrated in Figure 6. It is clearly seen that the
initial discontinuity is diluted in time and its front becomes
smoother.
[28] Formally, the found solutions oppose each other:

whereas the Riemann wave always breaks, the ‘‘dam break’’
front becomes gentler as time proceeds. The difference
between the two solutions is connected with the value of
the initial velocity that can be zero (dam break problem) and
nonzero (the Riemann wave). In the dam break problem
�back� particles drop behind, which leads to the front
extension. In the other case the particles of high speed,
located in the �back� of the landslide overrun slow
moving particles in the front. Thus, the avalanche dynamics
is sensitive to the initial conditions.
[29] Some extensions of the classical dam break problem

for the avalanche on an inclined plate have been done.
Fernandez-Feria [2006] extended the 1-D dam break solu-
tion to more complicated initial condition different from
(32); the avalanche shape is not constant at x < 0. In fact,
Fernandez-Feria [2006] found an analytical solution only in

Figure 6. Avalanche shape evolution in the dam break
problem for time slices with time increment t = h0/c0.
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the vicinity of the avalanche edge, of which the motion does
not depend on the avalanche shape behind the front, at least
for small times. The detailed evolution of the avalanche
shape has been obtained numerically in the cited paper. We
would also like to point out a paper byMangeney-Castelnau
et al. [2005], where the detailed study of the spreading of
the column of a frictional material has been investigated
numerically. The scaling laws based on analytical solutions
have been used successfully to reproduce experimental
results on granular collapse. With the adequate scaling these
solutions can be applied to analyze the avalanche evolution
in the inclined channel.
[30] The solution of the dam break problem given above

is one of the particular self-similar solutions of hyperbolic
equations, and it is valid for a semi-infinity avalanche. If the
avalanche has a table-top shape of total length L, both ends
are evolving independently on the first stage according to
the self-similar scenario. The dynamics of the front slope is
described by (37), and the rear slope may be described by
the following formula obtained from (37) by changing X to
�(X + L) and accordingly u to �u:

h X ; tð Þ ¼

h0 X þ L > c0t

h0

9
2þ X þ L

c0t

� �2

�2c0t < X þ L < c0t

0 X þ L < �2c0t:

8>><
>>: ð38Þ

[31] The evolution of the avalanche shape is shown in
Figure 7 for L/h0 = 16.4. The independent dynamics of the
avalanche tails is valid for t < L/c0, after that both tails
influence each other and the landslide height decreases.
[32] The spatial structure of the avalanche computed with

the use of (6) is shown in Figure 8. The avalanche edge is
beak shaped in the channel of both, triangular and parabolic
cross sections.
[33] If the initial avalanche length is relatively short, its

shape evolution can be described by another kind of self-
similar solutions. Such solutions (called parabolic cap and
M wave) were found by Savage and Hutter [1989, 1991]
and described by Pudasaini and Hutter [2007] for the
avalanche along the inclined plane. The same solutions
can be derived for avalanche dynamics in the inclined
channel of parabolic-like cross section. It is again convenient

to use the ‘‘accelerated’’ coordinates (17) and ‘‘reduced’’
velocity (15). In this case the basic equations (8) and (9)
transform to

@h

@t
þ v

@h

@X
þ m

mþ 1
h
@v

@X
¼ 0; ð39Þ

@v

@t
þ v

@v

@X
þ g cos q

@h

@X
¼ 0: ð40Þ

[34] The self-similar solutions of this system are sought in
the form

h x; tð Þ ¼ 1

ta
F xð Þ; v x; tð Þ ¼ 1

tb
G xð Þ; x ¼ X=tf ; ð41Þ

where the functions F, G and the constants a, b, d should be
determined. The first relation between the constants can be
obtained from the avalanche mass conservation law (39) or
from (4) and (7). This yields

Zþ1
�1

h mþ1ð Þ=m X ; tð ÞdX ¼ const; ð42Þ

Figure 8. Avalanche contours in dam break problem:
(a) channel of triangle cross section, and (b) channel of
parabolic cross section, t = h0/c0.

Figure 7. Avalanche shape evolution in the longitudinal
direction for stepwise (rectangular) initial shape with
increment t = h0/c0.
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as well as

f ¼ a
mþ 1

m
: ð43Þ

[35] After substitution of (41) in (39) and (40), these
equations become

�aF � f x
dF

dx
þ t�b�fþ1 G

dF

dx
þ m

mþ 1
F
dG

dx

� �
¼ 0 ð44Þ

�bG� f x
dG

dx
þ t�b�fþ1G

dG

dx
þ t�a�fþbþ1g cos q

dF

dx
¼ 0: ð45Þ

Both equations would be ODEs when the time is not
included. This argument leads to the algebraic equations for
the coefficients, which are explicitly determined:

a ¼ 2m

3mþ 2
; b ¼ m

3mþ 2
; f ¼ 2 mþ 1ð Þ

3mþ 2
: ð46Þ

With these choices the resulting equation (44) can be
integrated to yield

�f x þ G xð Þ½ 	Fmþ1
m xð Þ ¼ const: ð47Þ

One of the solutions is chosen for the zero constant in (47),
it determines the velocity

G xð Þ ¼ 2 mþ 1ð Þ
3mþ 2

x: ð48Þ

With the use of (48) equation (45) is reduced to

g cos q
dF

dx
¼ bf x; ð49Þ

and is easily integrated, with the result

F xð Þ ¼ F0 þ
m mþ 1ð Þ

g cos q 3mþ 2ð Þ2
x2: ð50Þ

[36] The self-similar solution (41) expressed in the initial
physical variables has the final form

h ~X ;T
� 	

¼ h0 T�
2m

3mþ2 þ m mþ 1ð Þ
3mþ 2ð Þ2

~X 2

T2

" #
;

v X ; tð Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh0 cos q

p mþ 1

3mþ 2

~X

T
;

ð51Þ

where

h0 ¼
F
1þm=2
0

g cos qð Þm=2
; ~X ¼ X

h0
;T ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g cos q
h0

s
:

[37] For m ! 1 the solution (51) transforms to the M
wave solution obtained by Savage and Hutter [1989] and is
described by Pudasaini and Hutter [2007]. As it follows
from (51), its shape in the longitudinal direction is universal
for all values m and T. The time evolution of the avalanche
shape in the parabolic channel is demonstrated in Figure 9a,
it becomes gentle with the lapse of time. The avalanche
shape as a function of the channel shape is shown in
Figure 9b. This self-similar solution has an evident phys-
ical interpretation: landslide particles are ‘‘dragged apart’’
in two directions due to the opposite flows that are strong
far from the center. It is interesting to mention that the
avalanche height decreases slower in the center than the
periphery. The cross-sectional shape of the avalanche
influences the speed of the avalanche height, in particular
decreasing in extremely narrow channels (m ! 0).
[38] Another self-similar solution of (39) and (40) can

be obtained by using the self-similar transformation of
coordinates

h ¼ X

L tð Þ ; t ¼ t; ð52Þ

Figure 9. M wave avalanche shape in longitudinal
direction (a) m = 2 (b) T = 2.
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which transforms equations (39) and (40) to

@

@t
h
mþ1
m


 �
þ v� hdL=dt

L

@

@h
h

mþ1
m


 �
þ h

mþ1
m

L

@v

@h
¼ 0 ð53Þ

@v

@t
þ v� hdL=dt

L

@v

@h
þ g cos q

L

@h

@h
¼ 0: ð54Þ

[39] Following Pudasaini and Hutter [2007] we deter-
mine the velocity distribution in the avalanche body as

v ¼ h
dL

dt
: ð55Þ

[40] After the substitution of (55) in (53) and (54) we
obtain two equations with various arguments

@

@t
h
mþ1
m


 �
þ dL=dt

L
h
mþ1
m ¼ 0; ð56Þ

@h

@h
þ hLd2L=dt2

g cos q
¼ 0: ð57Þ

Both equations are integrated and the corresponding choice
of constants can be written as

h ¼ h0 tð Þ 1� h2
� 	

; h0 tð Þ ¼ L

2g cos q
d2L

dt2
; ð58Þ

where L(t) is a solution of

L
2mþ1
mþ1

d2L

dt2
¼ q; ð59Þ

and q is determined by the initial spreading of the
avalanche. So, the avalanche has a parabolic cap shape in
the longitudinal direction for any m (Figure 10), but its
height and length depend on the cross section of the inclined
channel. For a plate, the parabolic cap solution was obtained
by Savage and Hutter [1989] and is reproduced by
Pudasaini and Hutter [2007] and its time evolution is
quantitatively investigated.
[41] In general, equation (59) is integrated once

dL

dt

� �2

¼ 2q

L
m

mþ1
0

mþ 1

m
1� L0

L

� � m
mþ1

" #
; ð60Þ

here we used the initial condition L(t = 0) = L0. In the
variables

l ¼ L

L0
; t ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q mþ 1ð Þ

mL
3mþ2
mþ1
0

vuut : ð61Þ

Equation (60) is presented in the simplified form

t ¼
Z l

1

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x�

m
mþ1

p : ð62Þ

[42] For each value of m (i.e., specific cross-sectional
shapes of the valley) the integral (62) can be evaluated. For
m =1 (inclined plate) it is computed by Savage and Hutter
[1989] and reproduced by Pudasaini and Hutter [2007]. For
channels of triangular and parabolic cross section (62) is
also calculated explicitly

t ¼ l þ 3

2

ffiffi
l
p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1ffiffi
l
p

s
þ 3

4
log 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1ffiffi

l
p

s
þ 1

 ! ffiffi
l
p
� 1

" #
;

ðm ¼ 1Þ

t ¼ l � l1=3

 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l�2=3
p

; m ¼ 2ð Þ

ð63Þ

The length of the parabolic cap varies in time depending on
the shape of the cross section; see Figure 11 (in dimensionless
variables).
[43] For large times the avalanche length varies almost

linearly in time

l tð Þ � t � 1þ m

2
t

1
1þm: ð64Þ

This leads to the following large-time asymptotic form for
the avalanche height

h tð Þ � L�
m

mþ1 � t�
m

mþ1: ð65Þ

Figure 10. Parabolic cap shape of the avalanche in
longitudinal direction.

Figure 11. Time evolution of the length of the parabolic
cap for various values of m.
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For narrow channels the avalanche height decreases slowly,
in particular for channels of parabolic cross section, L� t -2/3.
[44] Another kind of self-similar solution of the system (5)

and (8) can be obtained for the avalanche with linear growing
height

h x; tð Þ ¼ b x� x0 tð Þ½ 	;

u tð Þ ¼ dx0

dt
¼ g sin q� m cos qsgnu� b cos q½ 	t;

ð66Þ

in which b is the slope of the avalanche surface.
[45] The avalanche slides down when b < 0 (Y = atan(b) >

p/2) with constant acceleration that exceeds the sliding
component of gravity acceleration reduced by Coulomb
friction. In this case the avalanche travels down as a whole
(Figure 12a). In the case b > 0 (Y < p/2) formula (66)
describes a rear end of the avalanche. In the frictionless case
(m = 0) the avalanche is nonmoving (static equilibrium) if q =
Y (Figure 12b). If q < Y the avalanche moves up (Figure 12c)
and if q > Y the avalanche moves down (Figure 12d).
When m 6¼ 0 the Coulomb friction does not influence the
slope of the equilibrium plane. In the vicinity of this
equilibrium plane the solution of (66) is sensitive to
the friction law (the ‘‘jump’’ function sgnu should replace
the smooth function of u) and time evolution is more
complicated.
[46] Of course, approximation of an avalanche surface of

the constant slope is valid on relatively small distances from
the edge, and the solution given here describing the initial
dynamics of the real avalanche edge (front or rare) demon-

strates that its acceleration differs from the sliding compo-
nent of the gravity force.

5. Analytical Solutions for Avalanche Dynamics
in the Vicinity of its Ends

[47] More general solutions of system (12) can be
obtained with the use of the hodograph (Legendre) trans-
formation. Multiplying equation (12) by the Jacobian
@(t,x)/@(I+,I-), and assuming that it is not zero (this is
discussed later), it can be transformed to

@x

@I�
� c�

@t

@I�
¼ 0: ð67Þ

System (67) is nonlinear due to the dependence of c± on t,
see (13). However, it can be reduced to a linear equation by
eliminating x

@2t

@Iþ@I�
þ 3mþ 2

2m Iþ � I�ð Þ
@t

@I�
� @t

@Iþ

� �
¼ 0: ð68Þ

Let us introduce new independent variables:

l ¼ Iþ þ I�
2

¼ u� agt ð69Þ

s ¼ Iþ � I�
2

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

m
gh cos q

r
: ð70Þ

Figure 12. Dynamics of the avalanche with linearly growing height for various surface slopes.
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Then, equation (68) takes the form

@2t

@l2
� @2t

@s2
� 3mþ 2

ms
@t

@s
¼ 0: ð71Þ

We should also determine x(l,s). From the system (67),
using the new variables (69) and (70), it follows by
eliminating t,

ag
@x

@s
¼ u

@u

@s
þ ms
2 mþ 1ð Þ �

ms
2 mþ 1ð Þ

@u

@l
: ð72Þ

This equation can be integrated when the velocity, u, is
expressed in terms of the wave function F(s,l)

u ¼ 1

s
@F
@s

: ð73Þ

An equation for this wave function can be deduced from
(71). First, with the use of (69) it transforms to the wave
equation for u and second, after the substitution of (73) it
can be once integrated over s

@2F
@l2
� @

2F
@s2
� mþ 2

ms
@F
@s
¼ 0: ð74Þ

[48] The integration of (72) together with (69), (70) and
(73) allows determination of all physical variables, which
are given below

h ¼ 1

4g cos q
m

mþ 1
s2; u ¼ 1

s
@F
@s

ð75Þ

agx ¼ u2

2
þ ms2

4 mþ 1ð Þ �
m

2 mþ 1ð Þ
@F
@l

; t ¼ u� l
ga

: ð76Þ

[49] So, the initial set of the nonlinear shallow water
equations for gravity driven flow in an inclined channel of
parabolic-like cross section is reduced to the linear wave
equation (74), and all physical variables can be found via
the wave function F using simple operations. The main
advantage of this form is that the moving (unknown)
avalanche edge corresponds now to s = 0 (since its height
h = 0) and, therefore, equation (74) should be solved in the
half-space s 
 0 with the fixed boundary. Such a transfor-
mation generalizes the original Carrier – Greenspan trans-
formation for water waves above a beach of constant slope
[Carrier and Greenspan, 1958], and is reduced to it for a
plane beach (m !1) and zero friction. In fact, it was also
derived for inviscid water waves in an inclined channel
[Zahibo et al., 2006; Choi et al., 2008], and our approach
extends it to the avalanche flow with Coulomb friction. In
the cited papers the wave shoaling, reflection and run-up
were analyzed, however, for avalanche dynamics ‘‘non-
wave’’ solutions are more important.
[50] This approach is used below to study the evolution of

a landslide initially at rest (u = 0). According to the right
equation (76) the initial conditions should be formulated at

l = 0. They follow from (73) and the left equation (76);
thus,

F s;l ¼ 0ð Þ ¼ 0 ð77Þ

@F
@l

����
l¼0
¼ s2

2
� 2 mþ 1ð Þag

m
x sð Þ; ð78Þ

where x(s) is found from the initial landslide shape in the
longitudinal direction, h(x) = 1

4g cos q
m

mþ1s
2, see (75).

[51] The boundary condition on the avalanche edge (s = 0)
is the boundedness of the physical variables, and therefore,
the wave function, F(0,l). In general, another boundary
(h = hmax or s = smax) is not fixed, and it should be
determined from the solution. It is fixed only if: i) the initial
avalanche height tends to a constant (as in the dam break
problem); and ii) the avalanche height grows monotonically
with the distance from the edge. For simplicity the last variant
is analyzed here and we solve the wave equation (74) in the
domain 0 � s < 1. In this case the boundary condition
for s ! 1 is the Sommerfeld radiation condition (no
disturbances come from infinity).
[52] The solution of the Cauchy problem for the wave

equation (74) for the semiaxis is well known [Courant and
Hilbert, 1953], and in general it can be expressed through
Bessel functions. It is simplified for the parabolic cross
section of the channel (m = 2). For case m = 2, the wave
equation (74), after the substitution

F s;lð Þ ¼ Y s;lð Þ
s

; ð79Þ

transforms to the constant-coefficient wave equation

@2Y
@l2
� @

2Y
@s2
¼ 0; ð80Þ

which should be solved for s 
 0. Its solution is

Y s;lð Þ ¼ W s þ lð Þ � W l� sð Þ 0 < s < l;
W s þ lð Þ � W s � lð Þ l < s;

�
ð81Þ

and satisfies the initial condition (77), reduced to Y(s,0) =
0, and the boundary condition of the bounded quantity of
F(l, s = 0) reduced to Y(0,l) = 0.
[53] The function W(x 
 0) is found from the initial

avalanche shape (78) that, after substitution of (81), trans-
forms into the ODE

2

s
dW sð Þ
ds

¼ s2

2
� 3agx sð Þ; h xð Þ ¼ 1

6g cos q
s2: ð82Þ

Below the dimensionless form of these equations is applied.
Dimensionless variables are

s0 l0j ¼ s ljffiffiffiffiffiffiffi
gh0
p ;F0 ¼ F

gh0ð Þ3=2
;H ¼ h cos q

h0
;

V ¼ uffiffiffiffiffiffiffi
gh0
p ;X ¼ a

h0
x; T ¼ at

ffiffiffiffiffi
g

h0

r
;

ð83Þ
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where h0 is the characteristic avalanche height. We keep
X and T as nondimensional variables of the spatial
coordinate and time and introduce X0 = X � T2/2 for the
accelerated reference system. Parameters of the hodograph
transformation are rewritten in the final form (primes are
omitted)

H ¼ s2

6
;X ¼ V 2

2
þ s2

6
� 1

3

@F
@l

;

T ¼ V � l;
2

s
dW sð Þ
ds

¼ s2

2
� 3X s; 0ð Þ:

ð84Þ

[54] Let us consider the dynamics of the avalanche front
when its initial shape in the longitudinal direction is
described by

X T ¼ 0ð Þ ¼ �qsg ¼ �q 6Hð Þg=2; q > 0: ð85Þ

Substitution of (85) into the last expression in (84) after
integrating leads to the explicit definition of the function
W(s) as follows:

W sð Þ ¼ s4

16
þ 3q

2 g þ 2ð Þ s
gþ2; ð86Þ

and, therefore, using (79) and (81) the function F(s,l) is
determined for all values of its arguments.
[55] As a first example, an avalanche with linearly

growing height (g = 2) is analyzed; this front is curvature
free. In this case (the details of calculations are given in
Appendix A)

F l;sð Þ ¼ 1þ 6q

2
s2lþ l3
� 	

; ð87Þ

Which, with the use of (84), leads to an explicit formula for
the avalanche height as a function of time,

H X ;Tð Þ ¼ 1

6q

VT

2
� X

� �
;V Tð Þ ¼ 1þ 6qð Þ

6q
T : ð88Þ

This solution coincides with the self-similar solution (66)
obtained directly from the basic equations. The avalanche
shape in the longitudinal direction does not change in time,
and it falls off with constant acceleration depending on the
avalanche slope.
[56] Another example is an avalanche with the square

root singularity on its front (g = 4, H � X1/2). As the
curvature of the avalanche surface in the frontal zone is
positive (d2H/dx2 > 0) the function is concave. In this case
(we will not give here details of the calculations which are
similar to those given in Appendix A)

W sð Þ ¼ s4

16
þ q

4
s6; ð89Þ

and the function F(s,l) is fully determined for s 
 0

F ¼ 1

2
s2lþ l3
� 	

þ q 3s4lþ 10s2l3 þ 3l5
� 	

: ð90Þ

As a result, the parametric equations for the avalanche
characteristics can be found

T ¼ q 12s2lþ 20l3
� 	

;

X ¼ q 2s2l2 þ 15l4 � s4
� 	

þ T2

2
;V ¼ lþ T :

ð91Þ

[57] At small times and far from the front (l � T/12qs2)
the avalanche shape is described by the explicit asymptotic
expression followed from (91)

X H ;Tð Þ � �36qH2 þ 1þ 1

216qH

� �
T2

2
; ð92Þ

which is valid far from the front edge

H � 1

q72
ffiffiffiffiffiffiffiffiffiffi
18=5

p
" #2=3

T2=3: ð93Þ

So, the main part of the avalanche begins to move with an
acceleration equal in absolute value to 1 (the projection of
the gravity acceleration reduced by Coulomb friction in
dimensional system is ga), in the zone of large heights. The
part of the avalanche with moderate heights falls with larger
acceleration, and its value grows with decreasing height.
Near the front edge where the height satisfies equation (93)
with the opposite inequality sign, the asymptotic expression
followed from (91) is valid

X H ; Tð Þ � �36qH2 þ 3

43
ffiffiffiffiffiffiffiffi
20q
p T4=3 þ T2

2
; ð94Þ

and this part moves with variable acceleration. Therefore,
the front part of the avalanche is stretched in time. These
conclusions, made on the basis of the asymptotic analysis,
are confirmed by direct calculations of equation (91);
see Figure 13 where the avalanche shape is drawn in
dimensionless accelerated reference coordinates X0.
[58] The front moves quickly, and the avalanche shape

tends to the equilibrium state (63) that corresponds to the
avalanche with the linearly growing height. The distance
covered by the avalanche front is described by the curve

X Tð Þ ¼ 3

43
ffiffiffiffiffiffiffiffi
20q
p T4=3 þ T2

2
; ð95Þ

following from (91) at s = 0. At large times the front also
moves with acceleration 1 (ga in the dimensional system),
whereas the main avalanche body confirms its tendency to
the equilibrium state.
[59] The avalanche contour in time is displayed in Figure 14

for different times. It is evident that the avalanche contour
on the X0-Y plane tends from almost strait line for small X0 to
the ‘‘tongue’’ shape with time.
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[60] The third example is an avalanche whose initial
shape is described by equation (85) with g = 1 when the
avalanche height grows as X2 with distance from the edge
(a beak-shaped front). As the curvature of this front is
negative, the wave function is found in the form (mathe-
matical details are the same as given in Appendix A)

F s;lð Þ ¼
l
2

s2 þ l2
� 	

þ q s2 þ 3l2
� 	

s < l

l
2

s2 þ l2
� 	

þ q
l
s

3s2 þ l2
� 	

s > l:

8><
>: ð96Þ

Consequently, the parametric expressions for the avalanche
shape can be obtained: for s < l we obtain

X s;lð Þ ¼ 2ql� 4q2;T s;lð Þ ¼ 2q; ð97Þ

while for s > l we deduce

X s;lð Þ ¼ q
l2

s
2� l2

s2

� �
� qs þ q2l2

2s2
3� l2

s2

� �2

;

T s;lð Þ ¼ ql
s

3� l2

s2

� �
:

ð98Þ

On the avalanche front, expression (95) becomes incon-
sistent. The Jacobian of the hodograph transformation
vanishes there which leads to the appearance of multivalued
functions. Physically, this means that a shock is formed on
the avalanche front. Far from the edge and at small times the
avalanche shape in the longitudinal direction is described by
the asymptotic expression

H X ; Tð Þ � c Tð Þ X � X0 Tð Þ½ 	2;

X0 Tð Þ ¼ T2

2
;c Tð Þ ¼ 1

6q2
1þ 2T2

9q2

� �
:

ð99Þ

[61] The avalanche falls under the action of gravity
acceleration (1 in the dimensionless system), and its slope
increases with time. In finite time the steepness of the flow
increases for each point on the avalanche which causes
breaking. The breaking time, estimated from the exact
formula (97), for l � s corresponds to Tbr � 2q. The
avalanche shape for various instances is shown in Figure 15
for q = 1. The evident tendency to shock formation for the
time close to 2q is observed. It is necessary to note that the
avalanche shape is close to a parabolic curve, H � X2

everywhere, not only in the asymptotic case predicted by (99).
[62] To consider the further evolution of the avalanche

with the beak-shaped front it is necessary to take into
account the real configuration of the flow shape at large

Figure 13. Time evolution of the frontal zone of
avalanche for q = 1 (initial shape is H � X0.5).

Figure 14. Spatial structure of the avalanche for times T =
10, 30, 50, 100 (initial shape is H � X0.5).

Figure 15. Initially parabolic avalanche profiles for
various times before shock formation (q = 1, H � X2).
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heights which is expected far from the parabola. Anyhow
the beak-shaped front should break. The avalanche contours
in time for this case are presented in Figure 16. In this case
the avalanche contour on X0-Y plane tends from a triangular
shape for small T to almost a straight line for T tending to 2.
[63] Thus, tendencies of the evolution of the avalanche

front depend on the curvature. Flows with positive curva-
ture in the front spread in time, their fronts become gentle,
and their curvatures tend to zero. The curvature increases
and breaks for the avalanche with a negative curvature in
the front. The equilibrium shape has no curvature on its
front and moves as a whole.
[64] The same approach can be applied to study the

behavior of the rear end of an avalanche (for simplicity
we assume here m = 0). For an avalanche with linearly
growing height (g = 2) on the rear end, the solution can be
obtained from (88) by changing the sign of q. There are
three different kinds of solutions that correspond to various
values of q. When q = �1/6, the avalanche surface repre-
sents a horizontal plane (inclined by the Coulomb friction),
and there is no movement. When q < �1/6, the rear end of
the avalanche is inclined down, and it falls down as a whole
with constant acceleration. When q > �1/6 the rear end is
inclined up and moves upward. As mentioned above, this
solution coincides with the self-similar solution (63)
obtained directly from the basic equations.
[65] For an avalanche with the square root singularity on

the rear end (g = 4, H � X1/2) the design formula is (91)
where q < 0. New features of avalanche dynamics follow
from the approximate equation (92) for small times as the
coefficient changes its sign (that represents the acceleration).
The zone of big avalanche heightsH >Hcr =

1
216q

shouldmove
down, whereas a rear end of avalanche should move up.
This difference can be understood if we compare the shapes
of avalanches with linear and square root dependences on

height. On the rear end, the avalanche with square root
singularity has high steepness like the avalanche with the
linearly growing height inclined down to horizon. As
shown, such avalanches move up. The periphery of the
avalanche has small steepness and the avalanche surface is
inclined down (i.e., below the horizon); such avalanches
move down. In Figure 17 the curves X(T) for various points
on the rear slope computed from (91) for q = �1 are shown.
The behavior of the curves corresponds to what was
predicted in the framework of the perturbation theory based
on equation (92). At small times the avalanche rear part
moves up, though at large times the avalanche falls down as
a whole. All curves diverge in time, and therefore, the
avalanche shape remains smooth.
[66] For the trajectory of the rear point of the avalanche

(s = 0) a simple analytical formula can be given

X Tð Þ ¼ � 3

43
ffiffiffiffiffiffiffiffiffiffi
20jqj

p T4=3 þ T2

2
; ð100Þ

to compare with (95). This curve is plotted in Figure 18
for q = �1. The rear end of the avalanche moves up until
T* = (20jqj)�1/2, and then it falls. The maximum height of
avalanche in the upward motion is

jX j* ¼ 1=80jqj: ð101Þ

[67] The evolution of the rear end with the initial square
root singularity in the usual coordinate system is shown in
Figure 19a for q = �1. It is demonstrated that these points
move up and then fall, which confirms our asymptotic
analysis. Only the main body of the avalanche falls. The
shape of the varied rear end becomes more linear in time.
This is clearly seen in Figure 19b where the avalanche shape
is shown in the accelerated reference system, and in this
case the avalanche moves to the left. So, the rear end of the
avalanche has the tendency to become linear. The given
examples show the applicability of the hodograph transfor-
mation to describe analytically the various scenarios of
avalanche dynamics in inclined channels of parabolic-like

Figure 16. Spatial structure of the initially parabolic
avalanche for various times.

Figure 17. Curves X(T) for various points of rear slope
(numbers indicate values of s).
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shape. In comparison with the self-similar solutions that
describe the nonbreaking dynamics of the avalanche initially
at rest (section 4), new solutions demonstrate that, depending
on the initial shape, the avalanche can move with a smooth
shape as well as with a shock front. The formation of shock
fronts in landslides and two-phase granular flows has been
pointed out in numerical experiments performed by Fine
et al. [2003] and Pelanti et al. [2008].

6. Conclusion

[68] Computing avalanche dynamics is an extremely
important task in natural hazard assessments, and various
physical and numerical models are developed. The analyt-
ical solutions allow studying the physical features of such
processes (the beginning of movement, the direction of the
avalanche motion, spreading, forming of shocks and so on).
Several analytical solutions for avalanche dynamics in
mountain valleys approximated by narrow channels (some-
times, granular flows in wide channels can be propagated as
self-channeling narrow flows, and this effect has been
reproduced recently numerically by Mangeney et al.
[2007a]) of parabolic-like cross section are obtained here
in the framework of the simplified version of the Savage-
Hutter model. Some of them generalize known solutions for
avalanche propagation along the inclined plate (the dam
break problem, the parabolic cap, the M wave, the Riemann
wave). The quality of avalanche dynamics in the longitudinal
direction is similar to that of avalanches along channels of
arbitrary cross section. However, the spatial structure of the
avalanche is different in channels of different cross sections.
Quantitative characteristics of avalanche dynamics depend
on the cross-sectional shape and, in narrow channels, for
instance, nonlinear processes develop more intensively for
the same avalanche heights.
[69] In the present paper a new approach to investigate

avalanche dynamics is suggested. It is based on the hodo-
graph (Legendre) transformation and can be applied for
avalanches of different initial shapes. The derived solutions
show that the linear avalanche shape is the equilibrium
shape which moves along the mountain flank without

changing its shape (it also follows from the direct self-
similar solution). Avalanche frontal shapes that may be
approximated by the equation with power dependence on
the coordinate h � xa on the front, have a tendency to break
if the power a is more than one and a tendency to form the
frontal ‘‘tongue’’ if the power a is less than one. Further-
more, the rear end of the avalanche is studied and the
possibility of nonmonotonic motion of the rear end is
found. All the solutions obtained above describe avalanche
dynamics above solid basalt. In fact, an erodible bed can
increase the mobility of the avalanche which can propagate
in the form of traveling waves; this interesting geophysical
phenomenon is in the process of being analyzed [Mangeney
et al., 2007b; Lucas and Mangeney, 2007].

Figure 19. Evolution of the rear end of avalanche for q = 1
(initial shape is H � X0.5) (a) in the usual coordinate system
and (b) in the accelerated reference system.

Figure 18. Trajectory of the rear end of avalanche for q = 1
(initial shape is H � X0.5).
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[70] In fact, the simplified frictional rheology (constant
friction angle) is used to obtain analytical solutions. As
pointed by Pirulli and Mangeney [2008], various rheolog-
ical models can be applied to model avalanche dynamics
but only the frictional rheology has allowed the back
analysis of the historical events of the rock avalanches:
Frank (Canada, 1903) and Val Pola (Italy, 1987). The main
advantage of this simplified model is that only one param-
eter (the friction angle) has to be calibrated. In the case of
the inclined channel the second parameter (the shape factor)
should be taken into account and it can be determined for
real mountain valleys. This is very important for the
prediction of potential events, and the analytical solutions
described above allow estimating possible scenarios taking
into account the lack of data of the potential events. The
simple analytical solutions presented here may be very useful
to analyze and recover scaling laws observed in laboratory
experiments of natural landslides [e.g.,Mangeney-Castelnau
et al., 2005; Lucas and Mangeney, 2007]. They can be also
used to test numerical codes of avalanche dynamics in the
valleys of complicated geometry.

Appendix A

[71] Let us consider avalanche dynamics with linear grow-
ing height in the front (g = 2). In this case equation (86)
yields

W sð Þ ¼ 1þ 6q

16
s4: ðA1Þ

[72] Substituting (A1) into (81) we may compute the
function Y

Y s;lð Þ ¼ 1þ 6q

2
sl s2 þ l2
� 	

; ðA2Þ

and then the wave function (79)

F s;lð Þ ¼ 1þ 6q

2
l s2 þ l2
� 	

: ðA3Þ

Now we may calculate all physical variables. In particular,
the velocity is given by

V ¼ 1

s
@F
@s
¼ 1þ 6qð Þl: ðA4Þ

The third equation in (84) determines the time

T ¼ V � l ¼ 6ql: ðA5Þ

As a result, arguments l and s can be expressed explicitly
through physical variables T and H (as the first equation in
(84) determines the relation between H and s). Finally, the
velocity is a function of time only

V ¼ 1þ 6q

6q
T ; ðA6Þ

and X is computed from the second equation (84)

X ¼ 1þ 6q

12q
T2 � 6qH ; ðA7Þ

or

H ¼ 1

6q

VT

2
� X

� �
; ðA8Þ

see (88). In other cases of the initial distribution of the
avalanche height in the longitudinal direction, formulas for
physical variables are implicit and the computer is required
to perform algebraic manipulations.
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