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On Persistence of Uncertainty Shocks
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Abstract

I study real effects of uncertainty shocks. Using time-varying volatility of the forecast error,
I construct a two-part uncertainty metric that consists of persistent and volatile, burst-
like components. These indices are used to study empirically several predictions of un-
certainty models: that uncertainty shocks have real effects, that these effects realize in a
downturn/overshoot pattern and that persistence of uncertainty shocks decreases this pat-
tern’s frequency and increases its amplitude. Using the constructed metric in a simple VAR
framework I show that real effects are there, that shock to the volatile uncertainty causes
significant downturn/overshoot pattern, and that shock to the persistent component causes
severe and prolonged damage.
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1 Introduction

In this paper I study real effects of uncertainty shocks. I use time-varying volatility of the

forecast error as an uncertainty proxy (Jurado, Ludvigson & Ng, 2015) and construct a two-part

uncertainty index that consists of persistent and volatile components. Persistent component

is slowly-moving, and its increase is a signal of a prolonged period of elevated uncertainty. In

contrast, the volatile, burst-like metric, proxies uncertainty that tends to get resolved quickly.

These indices allow me to study empirically three predictions of rational expectations equi-

librium (REE) uncertainty models such as Bloom (2009) or Bloom et. al. (2014). First, that

uncertainty shocks have significant real effects. Second, that these effects realize in a particular

pattern: downturn followed by overshoot. Third, that more persistent shocks result in this pat-

tern having lower frequency and larger amplitude1. I use the constructed persistent and volatile

indices in a VAR setting with essentially the same ordering as in JLN (2015) and Bloom (2009).

I show that a) shocks to both proxies negatively affect production and employment on impact;

b) shock to the volatile burst-like component creates a significant slowdown/overshoot pattern;

c) shock to the persistent component results in a more prolonged and severe downturn when

compared to that of the original JLN metric.

A growing body of theoretical literature studies uncertainty shocks or ’volatility risk’ (Liu,

Miao, 2015). These shocks have been shown to have sizable real effects of business-cycle fre-

quency both in partial (Bloom, 2009) and general equilibrium settings (Bloom et. al., 2014).

Various empirical studies that attempted to verify these predictions in the REE setting used

implied volatilities (VIX/VXO) as a proxy for uncertainty (see, for example, the original con-

tribution of Bloom (2009) or recent Caggiano et. al. (2015) study with ST-VARs). They use

variation in such indices to estimate effects of uncertainty shocks on real variables. While good

as a first-order approximation, VIX/VXO may be too crude a proxy given other options avail-

able. Nodari (2013) and Colombo (2013) use multi-layered Bloom et. al. (2013) index that

tracks variation in uncertainty by combining newspaper-based data with other measures such

as forecast disperison. Bachmann et. al. (2013) construct their own, micro-based index of

uncertainty using German business climate survey (IFO).

Jurado, Ludvigson & Ng (2015) provide a state-of-the art uncertainty metric. First, they

1Kozlowski, Veldkamp & Venkateswaran (2015) show, that in a model with constant belief updating even
non-persistent shock in uncertainty can create persistent change in beliefs that will have long-run consequences.
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Figure 1: IRFs to the 1 s.d. uncertainty shock, 60 month-period
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Notes: Metrics are based on the 3-month forecast error variation.

recursively forecast future values of several hundreds of macroeconomic and financial series and

isolate the forecast error for each of them. In order to accurately estimate the forecastable

part of a series, informational set of agents should be spanned as closely as possible. Hence,

approximate dynamic factor model (DFM) that is suitable for data-rich environment is used as

a forecasting device. JLN explicitly allow for heteroskedasticity in the forecasting equation in

order to catch time-variation in the volatility of forecast error. Then, given the forecast error

data, they estimate volatility of the unforecastable component of each series with a stochastic

volatility model (Kim et. al., 1998). Finally, they aggregate across series and use the resulting

index as a proxy for macroeconomic uncertainty.

I use the JLN framework to study three major properties of theoretical uncertainty shocks.

First, that they have significant effect on real variables. Second, that this effect takes form of

a particular patter. The original Bloom’s model (2009) shows in a partial equilibrium setting

that short-run uncertainty shock will result in a swift slowdown and, then, an overshoot. This

happens because elevated uncertainty causes wait-and-see behaviour, so when uncertainty gets

finally resolved, firms react with overshooting. Third, that more persistent uncertainty shock

results in this pattern having lower frequency and higher amplitude. This happens because, wait-
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and-see behavior tends to accumulate on various production units while uncertainty remains

elevated. This accumulation amplifies downturn/overshoot fluctuation.

To study these implications, I decompose the original JLN metric into two parts. First, I

construct a persistent uncertainty index by allowing for heavy-tailed innovations in the forecast-

ing equations of JLN. The volatility of the forecast error is then estimated with a stochastic

volatility model with heavy-tails (Chib et. al. (2002)). While in a normally distributed case

tails decay exponentially, so almost each large realization of forecast error is treated as a signal

of higher uncertainty, in heavy-tailed case there should be several forecast errors of considerable

magnitude in a row for the model to decide that uncertainty has indeed increased. This results

in a more persistent uncertainty metric than the original JLN was.

Second, I use the difference between original JLN metric that used SV-normal model and

persistent metric that uses heavy-tailed SV (this difference taken directly as in Chib, Nardari

& Shephard, 2002 or estimated as a scaling component in the gaussian mixture approximation

to the measurement equation error) as a proxy to the volatile, burst-like component. Broadly

speaking, this index accounts for uncertainty that results from very short-run, sudden forecast

errors that do not persist. Although such bursts can have large magnitude (e.g. 2008 crisis),

they are not likely to stay there for long and are ex-ante expected to recede quickly.

I use persistent and burst uncertainty indices to study in more detail effects of uncertainty

shocks in an otherwise standard VAR setting. First, both components significantly affect real

variables, such as employment and production, on impact. Second, the burst component results

exactly in what one might expect given Bloom (2009) and Bloom et. al. (2014) contributions:

swift slowdown followed by an overshoot. I find this downturn/overshoot pattern to be statis-

tically significant both in production and employment given 1 standard error confidence bands.

Third, shock to the persistent component of the original JLN metric results in a more severe

and prolonged downturn, than the JLN itself which suggests effect of persistence on frequency

and amplitude as described in Bloom (2009).

The rest of the paper is organized as follows. Section 2 describes the forecasting proce-

dure. Section 3 describes construction of uncertainty indices from the forecast error data using

stochastic volatility models. Section 4 describes VAR simulations. Section 5 concludes.
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2 Estimating the forecast error

To proxy uncertainty, Jurado, Ludvigson & Ng (2015) construct a measure how ’unpredictable’

the economy is based on the forecasting errors. Hence, the notion of ’uncertainty horizon’

inevitably arises; in particular, the h-period ahead forecast uncertainty is defined as conditional

volatility of the unforecastable component of each series j ≤ N :

Uyjt(h) =

√
E
(

(yj,t+h − E[yj,t+h|It])2 |It
)

(1)

The aggregate measure is then constructed from individual uncertainty series as an (equally)

weighted average. To accurately estimate individual uncertainty, the forecastable component of

each data series should be isolated as closely as possible. Hence, the informational set of agents

(It) should be spanned well with a standard technique in a data-rich environment being dynamic

factor model (DFM). The model is approximate (Chamberlain & Rotschild, 1983) in the sense

of allowing for limited correlation between errors in the DFM equation which is suitable given

large size of the data set.

Xit = ΛtFt + eit (2)

X consists of a large number of series, whereas Ft are the small number of factors with

splashed information in them. Ft have autoregressive structure of their own. The standard

practice in DFM forecasting is to estimate factors with PCA and then forecast with OLS treating

factors as observed (Bai, Ng, 2006). In particular, mean-squared optimal forecast yT+h =

α′Ft + β′Wt, where Ft are factors and Wt possibly additional regressors is replaced with a

feasible prediction ỹT+h = α̂′F̃t + β̂′WT . Stock & Watson (2002a) showed that such forecast

ỹT+h is a consistent estimate of the yT+h. The number of factors is 12 due to Bai, Ng (2002)

criterion. In practice, the forecasting equation takes form of:

yj,t+t = γ(L)yj,t + γF (L)Ft + γW (L)Wt + εt (3)

I explicitly allow for heavy-tailed time-variation in the innovations yt+1. Moreover, to forecast

more than one period ahead (h > 1), the Ft itself is moved forward with a simple AR(4) model.

I also allow for heavy-tailed heteroskedasticity in the Ft-forecasting AR(4) model. Heavy-tailed
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heteroskedasticity results in possible inefficiency on the OLS’ side, but does not affect consistency

of estimates.

3 Estimating uncertainty

There is a large literature on stochastic volatility models (see Bos, 2011 for a good review).

The key difference between the SV and GARCH approaches to modeling time-variation of the

second moment is that SV model explicitly allows for a separate shock to variance. GARCH

does not, hence, the suitability of SV model for the study of uncertainty shocks. It can be neatly

expressed in the state space form as:

yt = σtεt (4)

log σ2t = ht = γ + φht−1 + ηt (5)

Table 1: Sample statistics of the persistent and JLN indices for 1, 3 and 12 month ahead forecast
error series.

Series Mean Standard Dev. Kurtosis Persistence
h = 1

persistent 66.9 9.0 6.8 31%
JLN index 68.8 9.4 7.1 27%
h = 3

persistent 81.6 9.6 6.3 45%
JLN index 84.6 10.0 6.6 36%
h = 12

persistent 91.5 6.4 4.9 60%
JLN index 95.4 6.5 5.0 53%

Notes: Persistence is measured with the slope coefficient of the d(x) = const + d(x(−2)) equation.

The key obstacle to its estimation is that it is either non-Gaussian, or non-linear, so the

standard EM strategy is not feasible. See that log y2t = ht + log ε2t , where log ε2t is clearly not

normal. Kim, Chib & Shephard (1998) proposed to approximate it with a mixture of Gaussians

and used a multi-step MCMC sampler to obtain the joint posterior of the parameters and latent

volatilities. With data augmentation (Tanner & Wong, 1987), they trade the state space size for

conditional normality of the model. While at each cycle another state variable should be drawn

(indicator of which of the gaussians acts now), after that the whole vector ht can be drawn at

5



Figure 2: Persistent and JLN uncertainty indices for various forecast horizons
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once. This multi-step sampler turns out to have lower autocorrelation and converge much faster

that a single-step sampler of Jacquier, Polson & Rossi, 1994. The small approximation error

that emerges can be corrected with importance weights. Kastner & Fruhwirth-Schnatter (2014)

further enhance sampling efficiency by implementing the ancillarity-sufficiency (ASIS) strategy

(Yu, Meng, 2010) of mixing centered (∼ N(0, exp(h))) and non-centered (∼ N(γ+φ(h−γ), ση))

for the SV model (see Appendix II for the MCMC procedure).

As the error in the measurement equation has to be approximated with a mixture distribu-

tion, the model can be readily extended for the heavy-tail innovations in measurement equation

(Chib et. al., 2002). This is due to the standard result of representing t-distribution with a

mixture of normal and inverse-gamma (IG) distributions. yt becomes yt =
√
λtσtεt where

√
λt

is an IG random variable with (ν/2, ν/2) parameters. Hence, the mixture becomes a t with ν

degrees of freedom (a standard practice is to assume ν to be uniformly distributed on the [2,
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128] interval). Kastner (2015) re-implements the ASIS strategy for the heavy-tailed model.

Figure 2 provides estimates of persistent and Jurado, Ludvigson & Ng (2015) uncertainties.

It is clear that (a) time-varying volatility of the forecast error is on average smaller in case of

heavy-tail uncertainty, (b) heavy-tail uncertainty index is more persistent than the JLN one, (c)

the longer is the forecasting horizon, the more pronounced these differences are. Table 1 reports

the relevant sample statistics with standard deviation and kurtosis lower, persistence higher in

case of the heavy-tail metric.

After the persistent uncertainty is estimated, I construct the burst component. In the sim-

plest case, I proxy it with a simple difference of the normal and ∼ t uncertainty indices given

that data and forecasting specification are identical expect for the assumption on the distribu-

tion of innovations in the forecasting equation. In substance, the burst component is the part

of the normally distributed index that results from it being sensitive to non-persistent shocks of

Figure 3: Burst uncertainty index for various forecast horizons
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the forecast error. For robustness check I re-estimate the burst component with averaged draws

of the time-varying λt parameter that ’downscales’ sigma in the t-distributed case vs. N -case.

Note, that contrary to the original JLN and persistent metrics, this component is highly

volatile: it jumps (with the most prominent spike in 2008) and recedes almost instantaneously.

I use the burst uncertainty as a proxy for ex-ante very short-run, soon-resolved uncertainty

spikes. In case of Bloom (2009) model, such shocks would’ve induced a) wait-and-see behavior

that causes downturn but b) as it recedes very quickly, c) the downturn is followed by overshoot

and decay of the shock’s effect.

4 Effects of uncertainty

I estimate effects of the persistent and burst components to study three theoretical effects of

Bloom (2009) or Bloom et. al. (2014) models. First, that uncertainty shocks have significant

real effects. Second, that these effects realize in a particular pattern: downturn followed by

overshoot. Third, that more persistent shocks result in this pattern having lower frequency and

larger amplitude.

I use the constructed persistent and volatile components in a VAR setting with essentially

the same ordering as in JLN and Bloom. I also compare effects of shocks to the persistent and

volatile proxies with that of the original JLN metric and to the VXO index. To make results

comparable, simple VARs are used with essentially the same ordering and lag structure (12)

as in these studies. IRFs show response to the 1 s.d. shock and during the 60-month (5-year)

period. As I decompose uncertainty index into two components, the ordering is updated:



log(stock)

single uncertainty proxy

FFR

log(wages)

log(CPI)

hours

log(employment)

log(industrial production)



=⇒



log(stock)

uncertainty (burst)

uncertainty (persistent)

FFR

log(wages)

log(CPI)

hours

log(employment)

log(industrial production)


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Figure 4: IRFs to uncertainty shocks: forecast error based uncertainty indices (3-month horizon)
and VXO index
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Notes: Confidence intervals for 1 standard error.

Figure 4 presents IRFs of industrial production and employment to the 1 standard deviation

shocks of uncertainty indices. First thing to notice is that both persistent and volatile uncertainty

shocks negatively affect production and unemployment on impact. This effect is significant for

all (1-12 months) forecasting horizons in case of persistent uncertainty shock, but significance

of shock to the volatile component vanishes with increasing horizons.

Second, shock to the volatile burst-like uncertainty creates a downturn followed by an over-
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shoot in real activity. JLN note, that a) they don’t find overshooting behavior with their own

metric and b) they find overshooting behavior using VXO metric that is not statistically signif-

icant. Using a separate, non-persistent metric I find short-term shock being able to create the

overshoot that corresponds to the Bloom’s one2.

Third, persistent uncertainty shock results in a more prolonged and severe drop in both

industrial production and employment, than shocks to other metrics including original JLN.

This result fits into theoretical picture well: shock to persistent uncertainty index means, on

the agents’ side, that ex-ante uncertainty is likely to stay elevated in future. In response, wait-

and-see behavior accumulates on production units which results in a more severe and prolonged

downturn.

As is mentioned above, statistical significance of the overshoot depends on the forecast error

horizon. In particular (see Figures 5 and 6 in Appendix I), the effect is not insignificant with

very short and long horizons (say, 1 and 12 months). Yet in between, sudden non-persistent

jumps in the 3-5-month forecast error volatility create both slowdown and overshoot. This result

may suggest, that the horizon of the ’fog of the future’ affects agents’ decision; in particular, if

agent suddenly looses forecasting power on the 3-5-month horizon he switches to the wait-and-

see pattern, while if he experiences a temporary loss of forecasting power on long horizons, this

doesn’t cause significant wait-and-see today.

5 Conclusions

In this paper I’ve studied real effects of uncertainty shocks. Using time-varying volatility of

the forecast error, two-part uncertainty proxy is constructed; it consists of the persistent and

volatile, burst-like components. I’ve used these two metrics to empirically study three predictions

of uncertainty models (Bloom, 2009, Bloom et. al. 2014): first, that uncertainty shocks can

have real effects; second, that uncertainty shocks affect real variables in a downturn/overshoot

patter; third, that persistence of the shock decreases frequency and increases amplitude of this

pattern. In a simple VAR setting these predictions appear to be present and significant: both

metrics negatively affect employment and production on impact, short-term bursts create the

expected overshoot/downturn, while persistent shock instantiates a prolonged, severe downturn.

2This may also suggest that VXO/VIX-type of indices act like a noisy signal of burst, rather than slowly-moving
uncertainty.
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6 Appendix I

Figure 5: Response of industrial production to burst uncertainty shock for various forecast
error horizons (h months)
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Figure 6: Response of employment to burst uncertainty shock for various forecast error hori-
zons (h months)
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7 Appendix II

MCMC procedure generally follows that of Chib et. al. (2002) but is updated in the fashion

of Kastner & Fruhwirth-Schnatter (2014) and Kastner (2015). The idea is to extend the Kim

et. al. (1998) MCMC algorithm by adding one more Gibbs-sample block that draws ν and λ

conditional on latent volatilities and data. Drawing ν is not an easy task, at even conditional

is not available in closed form, so Metropolis-Hasting is used at this step. In particaular, the

algorithm takes form of:

• Draw vector of volatilities h s.t. parameters θ, data y and indicator r that sets which of 10

Gaussian (Omori et. al., 2007) from the mixture acts in this run of Gibbs sampler in the

Non-Centered model parametrization. Note that s.t. r the model becomes linear-Gaussian

so Kalman filter is used to recover latent states - volatilities.

• Draw parameters θ given data y, indicator r and volatilities h in the Non-Centred parametriza-

tion with a Bayesian regression. Posterior is not available in the closed form so Metropolis-

Hastings is needed in this step within a general Gibbs sampler.

• Switch to the Centered parametrization.

• Draw parameters θ given data y, indicator r and volatilities h in the Centred parametriza-

tion. φ is drawn with Metropolis-Hastings while µ and σ can be drawn by running a Gibbs

between conditionals.

• Switch to the Non-Centered parametrization.

• Draw the r indicator of the currently active Gaussian.
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