
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 84.201.173.245

This content was downloaded on 24/10/2016 at 13:29

Please note that terms and conditions apply.

You may also be interested in:

Optimization of the LHCb track reconstruction

Barbara Storaci

SIMD studies in the LHCb reconstruction software

Daniel Hugo Cámpora Pérez and Ben Couturier

Jobs masonry in LHCb with elastic Grid Jobs

F Stagni and Ph Charpentier

The LHCb Data Acquisition and High Level Trigger Processing Architecture

M. Frank, C. Gaspar, B. Jost et al.

Implementing a Domain Specific Language to configure and run LHCb Continuous Integration builds

M Clemencic and B Couturier

Disk storage management for LHCb based on Data Popularity estimator

Mikhail Hushchyn, Philippe Charpentier and Andrey Ustyuzhanin

Prospects for B Physics at the Tevatron and LHCB

Simone Donati

Event Index — an LHCb Event Search System

View the table of contents for this issue, or go to the journal homepage for more

2015 J. Phys.: Conf. Ser. 664 032019

(http://iopscience.iop.org/1742-6596/664/3/032019)

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/article/10.1088/1742-6596/664/7/072047
http://iopscience.iop.org/article/10.1088/1742-6596/664/9/092004
http://iopscience.iop.org/article/10.1088/1742-6596/664/6/062060
http://iopscience.iop.org/article/10.1088/1742-6596/664/8/082011
http://iopscience.iop.org/article/10.1088/1742-6596/664/6/062007
http://iopscience.iop.org/article/10.1088/1742-6596/664/4/042026
http://iopscience.iop.org/article/10.1088/1742-6596/53/1/012
http://iopscience.iop.org/1742-6596/664/3
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Event Index – an LHCb Event Search System

A Ustyuzhanin 1,2,6,7, A Artemov3,5, N Kazeev 1,2,4 and A Redkin3

1 LHCb collaboration, Geneva, Switzerland
2 Yandex School of Data Analysis, Moscow, Russia
3 Yandex Data Factory, Moscow, Russia
4 Moscow Institute of Physics and Technology, Moscow, Russia
5 Moscow State University, Moscow, Russia
6 Kurchatov Institute, Moscow, Russia
7 National Research University Higher School of Economics (HSE)

E-mail: kazeevn@yandex-team.ru

Abstract. During LHC Run 1, the LHCb experiment recorded around 1011 collision events.
This paper describes Event Index — an event search system. Its primary function is to quickly
select subsets of events from a combination of conditions, such as the estimated decay channel
or number of hits in a subdetector. Event Index is essentially Apache Lucene [1] optimized for
read-only indexes distributed over independent shards on independent nodes.

1. Introduction
The LHCb experiment records millions of proton collision events every second. Most of them are
not needed for further analysis and are discarded by a sophisticated multi-layer trigger system
[2]. What is left amounts to 1011 events in Run 1. Before physics analysis takes place, the
number of events is further reduced by a factor of around 10. This “stripping” process takes
place after the full reconstruction of the events, and produces a set of a dozen “streams” of the
analysis dataset. [3]. Those streams contain candidate events for different processes — identified
by “stripping lines.” Events that passed the stripping process are indexed by Event Index.

Along the stripping lines some other information is indexed — global activity counters (such
as total number of tracks and hits in individual subdetectors), logical file names (LFNs) on the
GRID, and run conditions database tags.

2. Architecture
Event Index consists of four primary parts: backend, which hosts the indexes and processes
the queries; frontend, which interacts with the user; the GRID collector for downloading events
from the GRID; and an indexer for compiling the indexes. Their relationship is expressed on
the figure 1.

2.1. Backend
The principle component that stores events and handles queries is a 7-node cluster. Each node
hosts several shards. A shard is an Apache Lucene index. Indexes are build from .root files
using MapReduce with events being evenly distributed between the nodes.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 032019 doi:10.1088/1742-6596/664/3/032019

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



Figure 1. Event Index architecture

Events are represented in backend in a problem-agnostic generic format. Thus Event Index
can be used on new datasets with minimal modification.

Event Index is optimized for read-only indexes on a static hardware configuration. Cluster
expansion is still possible and can be accomplished in two ways. First, if both new data and
new nodes are available, the data can be indexed on these nodes without changes to the existing
structure. This approach may be suboptimal, as the best performance is only achieved when
the data is evenly distributed among the nodes. Second, if only nodes are added, we must either
redistribute the existing shards between nodes or reindex the dataset to include them into the
cluster. Index splitting is possible but constitutes a highly experimental [4] procedure with
computational costs similar to that of reindexing.

Requests are handled by a Java application as follows. Any node can become a master node
by virtue of initiating a request.

• Search request: A master node receives a query, sends it to all the nodes, each in turn sends
it to its shards, shards run the query, and cache the resulting bitset.

• Partial search results retrieval: A master node receives a query, asks all the nodes for the
results counts, determines the nodes to send the request to. Nodes receiving the following
request do the same with shards. The master node then gathers the responses and forwards
them to the user.

• Field value aggregation: A master node receives a query, sends it to all the nodes, each in
turn sends it to its shards, each shard aggregates the field values from the matching events.
The master node aggregates the results and returns them to the user.

• Histogram calculation: A master node receives a query, sends it to all the nodes, each in
turn sends it to its shards, each shard counts unique values of the requested fields, and
returns them to the master node, which computes the resulting histogram.

Queries are transformed into Lucene Filters using a simple top-down parser for context-free
grammar. It consists of two parts: the tokenizer and the parser itself. The tokenizer transforms

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 032019 doi:10.1088/1742-6596/664/3/032019

2



a query string into a list of tokens (=, ! =, >=, <=, (, ),AND, OR, HAS) and values. The
parser uses the list to build the solution tree, using prefix notation to handle parentheses and
substituting HAS and AND for missing unary and binary operators. It then converts the tree
into a Lucene Filter.

2.2. Performance
Indexing 1010 events took three days and 0.5 Tb of hard drive space per node.

0 20 40 60 80 100 120 140 160

Backend response time, s

100

101

102

103

104

105

N
u
m

b
e
r 

o
f 

re
q
u
e
st

s,
 1

Combined

0 20 40 60 80 100 120 140 160

Backend response time, s

100

101

N
u
m

b
e
r 

o
f 

re
q
u
e
st

s,
 1

LFN list

0 10 20 30 40 50

Backend response time, s

100

101

102

103

N
u
m

b
e
r 

o
f 

re
q
u
e
st

s,
 1

Histogram

0 10 20 30 40 50 60 70

Backend response time, s

100

101

102

103

104

105

N
u
m

b
e
r 

o
f 

re
q
u
e
st

s,
 1

Search queries and results

Figure 2. Backend response times for various request types. Data is taken from the live instance
at https://eindex.cern.ch

The backend response times for various requests can be seen in Figure 2. This response was
within 20 seconds for the majority of requests. The outliers are currently being investigated.

2.3. Frontend
All user interaction is done through the web interface, protected by CERN Single Sign-On [5].
Queries can either be typed manually or constructed with the help of an interactive wizard.
Example searches:

• For a specific stripping line:
“HAS StrippingB02D0D0KSLLBeauty2CharmLineDecision AND AND stripping=20r1”

• By file location:
“lfn=LFN:/lhcb/LHCb/Collision11/CHARMTOBESWUM.DST/
00022760/0002/00022760 00029252 1.CharmToBeSwum.dst AND stripping=20r1”

• Stripping line and nPVs value:
“HAS StrippingB2D0KD2HHBeauty2CharmLineDecision AND stripping=21 AND nPVs> 4”

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 032019 doi:10.1088/1742-6596/664/3/032019

3



Event Index can compile a list of logical file names (LFN) containing the search results. If
there are less than 1000 results, Event Index can fetch them from GRID as a .root file and
display them in the web browser using Event Display [6]. Users can also plot histograms for the
global activity counters.

2.4. The GRID collector
The GRID collector handles the .root file download requests. It resides on a dedicated server at
CERN. It uses LHCb DIRAC [7] for retrieving event locations on the GRID. Then it launches
parallel Gaudi[8] jobs for events retrieval and format conversion for Event Display. The source
code is available on https://gitlab.cern.ch/YSDA/grid_collector.

3. Status
Event Index is deployed into production on https://eindex.cern.ch/ 1. Data from strippnigs
20, 20r1, 21, 21r1 is available.

4. Future works
We are currently studying the needs of different groups in LHCb to make Event Index a better
tool. Plans include Python API, MC and turbo stream [9] indexing, and free form query
processing.

5. Summary
Event Index allows selection of events and viewing of histograms of basic properties in a matter
of seconds. This is much faster than the current use of GRID, which can take hours. Event
Indexs core architecture will allow it to scale with data and be used for different datasets.

References
[1] https://lucene.apache.org/, Apache software foundation
[2] Head T, 2014, The LHCb trigger system, JINST 9 C09015 doi:10.1088/1748-0221/9/09/C09015
[3] Charpentier P (on behalf ofthe LHCb Collaboration), The LHCb Computing Model and Real Data Journal

of Physics: Conference Series, vol. 331, num. 7, CHEP-2010
[4] Lucene 5.1.0 misc API https://lucene.apache.org/core/5 1 0/misc/org/apache/lucene/index/IndexSplitter.html
[5] Ormancey E, 2007, CERN Single Sign On solution, CHEP-2007
[6] Langenbruch C, Couturier B, Frank M, A WebGL event display for LHCb: Status update, 5th LHCb

Computing Workshop, May 18, 2015
[7] Stagni F, et al, LHCbDirac: distributed computing in LHCb, Journal of Physics: Conference Series, vol.

396, num. 3, CHEP-2012
[8] Barrand G et al., GAUDI - A Software Architecture and Framework for building HEP Data Processing

Applications, Computer Physics Communications 140 (2001) 4555
[9] Benson S, 2015, The LHCb Turbo Stream CHEP-2015

1 accessible only to the members of LHCb collaboration

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 032019 doi:10.1088/1742-6596/664/3/032019

4

https://gitlab.cern.ch/YSDA/grid_collector
https://eindex.cern.ch/



