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A THEORY OF DATA-ORIENTED IDENTIFICATION

WITH A SVAR APPLICATION

NIKOLAY AREFIEV

Abstract. I propose a method identification of structural vector autoregressions (SVARs) and simultane-

ous equations models (SEMs) with orthogonal structural shocks using testable identification restrictions.

If some sparsity conditions are satisfied, the method produces a set of testable inclusions and exclusions,

sufficient for the full identification. The method stems from the theory of probabilistic graphical models

and from the theory of identification of SVARs and SEMs, merging them into a unified approach. In the

application example, I estimate a SVAR monetary model of the US economy with 6 variables, where all

but one identifying restrictions are testable. The method produces relatively narrow confidence intervals

for the impulse-response functions, does not generate any anomalies such as the price puzzle, and reveals

importance of informational channels through which news about structural shocks spread throughout the

economy.

Keywords: Identification, data-oriented identification, sparse structural models, structural vector autore-

gression, SVAR, simultaneous equations model, SEM, probabilistic graphical model, PGM, price puzzle,

information theory in macroeconomics.
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1. Introduction

A common problem in econometrics is to measure the causal effects and structural shocks that have

produced observed covariances or more general comovements in a given dataset. In applications where

controlled experiments are too expensive or not possible, this problem is usually solved using identification

assumptions, which presume the existence of some causal relationships in the true data-generating model

and an absence of others. To make such assumptions, however, a strong theoretical argument is required,
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which would explain why the presumably excluded causal effects cannot be present in the true model, but

this theory may be currently unavailable. The question of this paper is, therefore, when it is possible to

measure some causal effects using only testable identification restrictions?

The paper proposes a method of testable identification of Gaussian linear structural vector autoregressions

(SVARs) and simultaneous equations models (SEMs) with orthogonal structural shocks. If the matrix

multiplying the vector of exogenous or predetermined variables in the structural model is sufficiently sparse

but not degenerate, the method produces a set of inclusion and exclusion restrictions, satisfying the following

two properties. First, each restriction from this set can be tested either as the null or as the alternative

hypothesis. Second, taken together, these restrictions suffice for the full identification of the structural

model.

The developed approach can be applied to a large variety of econometric problems. The existence of a

set of testable restrictions sufficient for the full identification is not guaranteed, but would not be surprising

in many macroeconomic applications. In Section 7 I briefly discuss how this method can be applied to

dynamic stochastic general equilibrium models (Gaĺı, 1999; Smets and Wouters, 2003, 2007; Christiano

et al., 2005, and many others). In Section 8 I consider a detailed application example, where I estimate a

SVAR monetary model of the US economy (following Sims, 1980, 1986, 1992; Blanchard and Quah, 1993;

Christiano et al., 1999; Zha, 1999; Hanson, 2004; Uhlig, 2005; Sims and Zha, 2006, and many others). The

scope of applications is not limited to these areas.

The method is based on the following results, derived in this paper. First, I propose graphical inter-

pretations of the rank condition for identification of SEMs, of the sufficient condition for identification of

structural vector autoregression (SVAR) models (Rubio-Ramı́rez et al. (2010)), and of the theory of partial

identification (reviewed in Christiano et al. (1999)). An example illustrating the graphical interpretations

of these conditions can be found in Section 2.1, formal propositions are presented in Section 3 and proven

in Appendices A and B. Second, I formulate and provide a reduced form rank condition for the identifica-

tion of simultaneous equations models. An example demonstrating why the reduced form rank condition is

helpful for testable identification is presented in Section 2.1, the proposition is formulated in Section 4.2 and

proven in Appendix C. Third, I introduce conditional partial correlations. For a given pair of variables, the

conditional partial correlation is zero in almost all parameter points if and only if there is no equation in the

structural model such that both variables are present in this equation. The difference between conditional

and conventional partial correlations is that for conventional partial correlations this property holds only

for pairs, where at least one variable is endogenous, and for conditional partial correlations this property
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also holds for pairs of exogenous or predetermined variables. Finally, in Section 5 I show how the problem

of identification in econometrics is related to the clique cover problem in computer science. This relation

turns out to be helpful for finding identification restrictions, which are both consisted with the data and

supported by the theory. In Section 6 I assess the power of the proposed tests.

In Section 8 I propose a detailed application example, where I estimate a SVAR monetary model of

the US economy with 6 variables. I include the federal interest rate, the unemployment rate, the capacity

utilization rate, the GDP growth rate, the GDP deflator inflation rate, and the commodity price inflation

rate. I use these 6 variables, because I have not found a smaller model consistent with the assumption

that the structural shocks are orthogonal to each other. This is possible to estimate this model using only

testable identification restrictions, however, testable restrictions cannot distinguish between the aggregate

demand (AD) and aggregate supply (AS) shocks, so some structural shocks in the model identified using only

testable restrictions are difficult to interpret. For this reason, I introduce the only non-testable assumption

that the commodity price inflation directly influences the AS but not the AD curve. This and the testable

assumptions suffice for the full identification. I obtain impulse response functions, which are better than

those usually obtained in the literature on SVARs in the following two respects. First, I get narrower

confidence intervals for the estimated impulse-response functions than in classical papers. Second, all 36

impulse response functions that I get are consistent with the theory, producing no anomalies such as the

price puzzle. In addition, the method reveals the importance of informational channels, by the mean of

which news about structural shocks spread throughout the economy (Lucas, 1972; Sims, 1998; Woodford,

2001; Mankiw and Reis, 2002; Sims, 2003; Maćkowiak and Wiederholt, 2009; Veldkamp, 2011).

This paper stems from the literature on probabilistic graphical models (PGM) (reviewed in Koller (2009);

Pearl (2009)). Chen and Pearl (2014) provide a review of many identification criteria for intricate causal

models. Most of these criteria, however, deal only with recursive, also known as acyclic or triangular models.

The graphical interpretations of the various conditions for identifying simultaneous equations models and

structural vector autoregressions (SVARs) provided in this paper, are a powerful new tool for identifying

cyclical models.

The idea of using PGM for testable identification of SVARs is not new (Kwon and Bessler (2011); Bryant

and Bessler (2011); Hoover (2005); Oxley et al. (2009); Reale and Wilson (2001); Wilson and Reale (2008)).

I make the following two contributions to this literature. First, this literature usually only considers the

PGM, where the influence of the predetermined variables has been concentrated out of the covariance matrix

for the contemporaneous variables. This approach may help to identify the model, but it can never achieve
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testable identification without non-testable identification restrictions. Instead, I only concentrate out the

process that has generated the values of the predetermined variables, but not the predetermined variables

themselves. The advantage of my approach is that it may suffice for the full identification of the structural

model, even without any non-testable assumptions. Using only this advancement, however, I would be

able to achieve testable identification only for triangular models, but not for cyclical models. The second

contribution, which makes it possible to achieve testable identification for cyclical models, is the introduction

of the conditional partial correlations.

There are various alternative approaches proposed in the literature for testable identification (Klein and

Vella (2010); Li and Müller (2009); Lowbel (2012); Magnusson and Mavroeidis (2014); Rossi (2005); Rigobon

(2013)), although these approaches never suffice for testable identification without non-testable assumptions.

My paper complements this literature, and offers a fresh way of approaching identification tools.

2. Method of Testable Identification in Two Examples

Before unpacking the formal theorems and proofs, I start with two examples that demonstrate how the

method of testable identification can be applied in practice. The first example deals with a recursive model,

and the second shows how testable identification can be achieved in a cyclical model. Some definitions and

propositions required for these examples are intuitively introduced in this section, and elaborated in later

sections.

2.1. Testable identification of a recursive model. Consider the following simultaneous equations

model:

y1 = c1 + b11z1 + ε1(1a)

y2 = c2 + a21y1 + b22z2 + ε2(1b)

y3 = c3 + a31y1 + a32y2 + ε3(1c)

where y1, y2, and y3 are endogenous variables, z1 and z2 are exogenous or predetermined variables, referred to

hereafter as instruments, ε1, ε2, and ε3 are independent structural shocks, and aij , bi, and ci are parameters

of the model.

It is well-known that recursive models with orthogonal structural shocks like model (1) are fully identified;

a heuristic argument is that I can estimate equations in (1) one at a time, using, for example, the ordinary

least squares regressions, to achieve a consistent estimator of the parameters. The identification in this

model is achieved using appropriate inclusion and exclusion restrictions. In (1a), for example, z1 is included
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a) Conditional causal diagram b) Partial moral graph
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Figure 1. Conditional causal diagram and partial moral graph for model (1).

in the equation for y1, and this is an inclusion restriction, but y2 is excluded from the equation for y1, and

this is an exclusion restriction. The questions that I pose are the following. First, which of these restrictions

are testable? For example, can I test the assumption that y2 does not enter into the equation for y1? Second,

does the set of testable inclusion and exclusion restrictions suffice for the full or partial identification of the

structural model? To answer these questions, I propose the following five-step procedure.

Step 1. Draw the conditional causal diagram. The conditional causal diagram is a directed graph,

where the nodes are the random variables of the structural model, and where the edges are defined by

the inclusion restrictions. The conditioning is made on the instruments, so the random process generating

(z1, z2) is not represented in the conditional causal diagram. A formal definition of the conditional causal

diagram is provided in Section 3.

In model (1), I have five random variables, z1, z2, y1, y2, and y3, so I have drawn five respective vertices,

see Figure 1a. In (1a), z1 is included into the equation for y1, so in the causal diagram in Figure 1a, z1

directly influences y1. Using the language of graph theory, I can say equivalently that z1 is a parent of y1,

and y1 is a child of z1. In (1b), y1 and z2 are included into the equation for y2, so in the causal diagram

y1 and z2 directly influence y2. Finally, in (1c), y1 and y2 are included into the equation for y3, so in the

causal diagram y1 and y2 directly influence y3.

Step 2. Draw the partial moral graph. To draw the partial moral graph, moralize and disorient

the conditional causal diagram. “To moralize” means to marry all parents of each child. Node y1 in the

conditional causal diagram has just one parent, z1, so moralization is not required. Node y2 has two parents,

y1 and z2, so I need to “marry” them, that is, connect them with an undirected edge. Node y3 has parents y1

and y2, but they are already connected in the conditional causal diagram with edge y1 → y2, so additional

moralization is not required. Finally, disorient the graph, which means disregarding all directions. The

resulting moral graph is depicted in Figure 1b. A formal definition of the partial moral graph is provided

in Section 4.1.
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a) Start with the graph b) Delete the edges, associated
that has all possible edges with testable exclusions
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Figure 2. Drawing the map of testable exclusion restrictions produced by the partial moral graph.

Step 3. Draw the map of testable exclusion restrictions produced by the partial moral

graph. The partial moral graph drawn in the previous step is useful for testable identification because of

the following result, which is acknowledged in the literature on probabilistic graphical models to be true

for full moral graphs (Koller (2009); Pearl (2009)). However, I show that this result also holds for some

pairs of nodes in partial moral graphs, see Section 4.1. Consider a pair of endogenous variables (yi, yj), or

one endogenous variable and one instrument, (yi, zj). In almost all parameter points, these variables are

associated with adjacent vertices in the partial moral graph if and only if the partial correlation between

them with conditioning on all the other variables of the structural model is not zero.

Using this result, I can draw the map of testable exclusion restrictions produced by the partial moral

graph in the following way. Begin with the directed graph that has all possible edges, see Figure 2a.

Within the framework of this paper, I assume that the instruments are known to be exogenous, and so

this assumption is not tested. For this reason, there are no edges in Figure 2a directed from endogenous

variables to instruments. Observe that in the partial moral graph in Figure 1b there is no edge z1y2, so the

partial correlation between z1 and y2 with conditioning on z2, y1, and y3 is zero. If edge z1y2 were to be

present in the conditional causal diagram, this edge would also be present in the partial moral graph, and

the partial correlation would not be zero. Therefore, I have a testable exclusion restriction, the restriction

that z1 does not enter into the structural equation for y2, which is associated with the testable property

of the joint probability distribution function that corr(z1, y2|z2, y1, y3) = 0; I can delete edge z1y2 from the

map of testable exclusions.

Similarly, since edge z1y3 is absent in the partial moral graph, I have another testable restriction that z1

does not enter into the equation for y3, which is associated with the testable property of the joint distribution

function that corr(z1, y3|z2, y1, y2) = 0, so I can delete edge z1y3 from the map of testable exclusions. Finally,

there is no edge z2y3 in the partial moral graph, so I have the third testable exclusion, and I can delete
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a) Identification of y3 b) Identification of y2 c) Identification of y1
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Figure 3. Graphical sufficient condition for identification

the respective edge from the map of exclusions. I therefore produced the map of exclusions depicted in

Figure 2b.

A map of exclusions is formally defined in Section 4.1. The exclusion restrictions, formulated in the way

demonstrated in this example, are referred to hereafter as the directly testable exclusions.

Step 4. Verify whether the map of exclusions suffices for identification. A natural question is

whether the map of exclusions depicted in Figure 2b suffices for identification. To answer this question, in

Propositions 1 and 2 of Section 3 below, I propose graphical interpretations of various sufficient conditions

for the identification, including the rank condition, the Rubio-Ramı́rez et al. (2010) sufficient condition,

and the theory of partial identification. Given this, I prove that in almost all parameter points, a sufficient

condition for the identification of all parameters in the structural equation for yi is that each parent of yi

has an independent identifying path in the conditional causal diagram. An identifying path for a parent

of yi is a path starting either with an instrument, or with any variable whose equation has been identified,

or with any non-descendant of yi, and that reaches the parent. The identifying paths for different parents

must be independent, which means that they must not intersect on any node.

Using the above results, I verify whether the exclusion restrictions from Figure 2b suffice for the full

identification. I begin with node y3, see Figure 3a. This node has two parents, y1 and y2, so I need two

independent identifying paths for the identification of the third structural equation. These paths do in fact

exist, both in the map of testable exclusions and in the conditional causal diagram. Indeed, the identifying

path for y1 is z1y1, which by the definition of identifying path starts with instrument z1 and reaches the

parent. The identifying path for y2 is z2y2, which starts with instrument z2 and reaches the parent. These

paths do not intersect on any node, so they are independent. Therefore, node y3 is identified, which means

that all parameters in equation (1c) are identified by the map of testable exclusions.

Now consider node y2, see Figure 3b. The parents of y2 are z2, y1, and y3, so I need three independent

identifying paths for the identification of the second equation. Node z2 creates an identifying path of length
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1 for itself, the path starts with z2 in the role of instrument and it reaches z2 in the role of parent. In the

same manner, y3 creates an identifying path for itself, the path starts with y3 in the role of a node, which

has in the previous step been proven to be identified, and reaches y3 in the role of parent of y2. Finally, the

identifying path for y1 is z1y1, so node y2 is also identified. In the same way, it is possible to show that y1

is also identified, see Figure 3c. Therefore, the exclusion restrictions represented by the map of exclusions

depicted in Figure 2b suffice for the full identification of the structural model.

Step 5. Test the required inclusion restrictions. Now I have a set of testable exclusion restric-

tions, which suffices for identification, but I have not tested whether the inclusion restrictions required for

identification are satisfied. Indeed, the conclusion about identification depends on the assumption of the

existence of edges z1y1 and z2y2 in the conditional causal diagram. If at least one of these edges is absent,

there are no two independent identifying paths for the parents of y3, and in this case no parameters in the

structural model are identified. The map of testable exclusions that I use for identification, however, does

not guarantee the presence of any edges. To achieve testable identification, therefore, I need to test the

assumption that two independent paths connecting sets of nodes {z1, z2} and {y1, y2} exist.

To test the required inclusions, I propose the following procedure. Consider regressions of each variable

from {y1, y2} onto each instrument {z1, z2}:

y1 = π10 + π11 · z1 + π12 · z2 + u1(2a)

y2 = π20 + π21 · z1 + π22 · z2 + u2(2b)

Put the coefficients of these regressions into matrix Π (y1, y2|z1, z2):

(3) Π (y1, y2|z1, z2) =

π11 π12

π21 π22


In Section 4.2, I prove that if the rank of Π (y1, y2|z1, z2) is two, then two independent paths connecting

sets {z1, z2} and {y1, y2} exist. Using this result, I can test the inclusion restrictions, which are required for

identification.

To test the rank of Π, I can use the following variation of the Johansen (1991) rank test. First, I esti-

mate regressions of {y1, y2} against {z1, z2}, and put the estimated coefficients into matrix Π (y1, y2|z1, z2).

Second, I estimate regressions of {z1, z2} against {y1, y2}, and put the estimated coefficients into matrix

Π (z1, z2|y1, y2). Third, I calculate the degree of freedom (df), which is equal to the number of columns
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Table 1. Testable identification restrictions for model (1)

Identification restriction Testable property of PDF
z1 6→ y2, so b21 = 0 corr(z1, y2|z2, y1, y3) = 0
z1 6→ y3, so b31 = 0 corr(z1, y3|z2, y1, y2) = 0
z2 6→ y3, so b32 = 0 corr(z2, y3|z1, y1, y2) = 0

There are 2 independent paths
rank (Π (y1, y2|z1, z2)) = 2

connecting {z1, z2} with {y1, y2}

z1
y1

y2

y3

z2

Figure 4. Summary of testable inclusion and exclusion restrictions.

minus the number of rows of Π (y1, y2|z1, z2) plus 1, which in the considered example is 1. Finally, I calcu-

late the df smallest eigenvalues λ1, . . . , λdf of product Π (y1, y2|z1, z2) ×Π (z1, z2|y1, y2) and calculate the

statistic:

(4) s = T

df∑
j=1

ln (1− λj)

where T is the number of observations. Under the null hypothesis that rank (Π (y1, y2|z1, z2)) < 2, the

statistic is asymptotically distributed as χ2(df).

Table 1 and Figure 4 summarize the testable inclusion and exclusion restrictions sufficient for the full

identification of the structural model. Each absent edge in Figure 4 is associated with a testable exclusion

restriction, each solid edge is associated with a testable inclusion restriction, and the existence of the dashed

edges is not important for identification, since the model is fully identified whether or not these edges are

present in the causal diagram.

Now compare the true structural model:

(5)


1 0 0

−a21 1 0

−a31 −a32 1



y1

y2

y3

 =


c1

c2

c3

+


b11 0

0 b22

0 0


z1
z2

+


ε1

ε2

ε3


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a) First representation b) Second representation c) Partial moral graph
for both representations

zd q

pzs

zd q

pzs

zd q

pzs

Figure 5. Multiple causal representations of cyclical model (7) and the unique partial
moral graph.

with the estimated model:

(6)


1 −a12 −a13

−a21 1 −a23

−a31 −a32 1



y1

y2

y3

 =


c1

c2

c3

+


b11 b12

0 b22

0 0


z1
z2

+


ε1

ε2

ε3


The estimated model is more complicated than the true model. In particular, the true model is triangular,

whilst the estimated model is cyclical. However, the advantage of the estimated model is that it can be

identified using only testable identification restrictions.

2.2. Testable identification of a cyclical model. The second example presented in this section demon-

strates how a testable identification can be achieved for cyclical models. Consider a market, where the

demand and supply curves are given by the following equations:

q + αp = c1 + γzd + εd(7a)

q − βp = c2 + δzs + εs(7b)

where q is the log quantity of sales, p is the log price, zd is a determinant for the demand, zs is a determinant

for the supply, εd and εs are independent structural shocks, α, β, γ, δ, c1 and c2 are the parameters to be

estimated.

One difficulty with cyclical models is that the same model has several SEM and causal representations.

Model (7) has two representations, where the demand and supply equations are identified. The first rep-

resentation is where q is derived from (7a) and p from (7b), and the second is where p is obtained from

(7a) and q from (7a). The conditional causal diagrams associated with these representations are depicted

in parts a and b of Figure 5. In this example, it is not possible to justify that one representation is better

than the other, neither from the economic theory, nor from any empirical tests.
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To draw the partial moral graph, moralize and disorient any causal representation of model (7) in Figure

5a or 5b. Alternatively, draw the vertices, which are the random variables of the structural model, and for

each equation add the clique of the variables included into this equation, where a clique is defined as a set

of pairwise adjacent nodes. In model (7), for example, equation (7a) includes variables p, q, and zd, so it

produces clique {p, q, zd} in the partial moral graph in Figure 5c, and equation (7b) includes p, q, and zs,

producing clique {p, q, zs}.

The algorithm of testable identification proposed in the previous example does not produce any testable

exclusion restriction here, so I use a different approach. Consider the clique cover problem for the partial

moral graph. The clique cover problem for an undirected graph is to find as few cliques as possible to cover

the entire graph. For a model with n equations, if the clique cover problem has a unique solution with n

cliques, then each clique is associated with a structural equation in such way that the variables included

into the clique are included into this structural equation, and the variables included into the equation are

included into the clique. For the moral graph depicted in 5c, the unique solution for the clique cover problem

is {zd, q, p} and {zs, q, p}. I can learn asymptotically the true moral graph from data in almost all parameter

points, and having solved the clique cover problem for the estimated moral graph, I can conclude which

variables are present in each equation. In this example, this suffices for the full testable identification.

To estimate the moral graph in Figure 5c, I need to test the hypothesis that two instruments, zd and zs,

are not adjacent in this graph. Unlike in the previous example, I cannot use conventional partial correlations

to test this hypothesis, because they can be used only for pairs of variables, where at least one variable is

endogenous. In Section 4.1, I introduce a new kind of partial correlations, referred to hereafter as conditional

partial correlations, and these correlations can also be applied to pairs of instruments. This is how I can

test the hypothesis that zd and zs are not adjacent in the conditional moral graph.

In contrast to directly testable exclusions considered in the example in Section 2.1, the exclusion con-

sidered in this section is an indirectly testable exclusion. By definition, indirectly testable exclusions are

associated with the tests of null hypotheses that there is no moralization effect between instruments. As I

discuss in Section 6, indirect tests may require stronger instruments than direct tests.

3. A Graphical Method of Identification

In this section, I formulate and prove various sufficient conditions for identification, which I have already

applied in the previous section. Consider the following simultaneous equations model (SEM):

(8) AY = BZ + E
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where A and B are matrices of parameters, Y is an n× 1 vector of the centralized endogenous variables, Z

is an m× 1 vector of the centralized exogenous or predetermined variables, and E is an n× 1 vector of the

unobservable Gaussian disturbances uncorrelated with Z, E ∼ N (0,Σ). Most of the paper assumes that

the structural shocks are independent, so the covariance matrix Σ is diagonal. This assumption, however,

is not used in Propositions 1 and 5 below, where Σ is assumed to be a symmetric positive definite matrix

without any identifying assumptions imposed. The constant term is omitted in (8) because all variables

have been centralized, so the term is zero. Matrix A is nonsingular, and the matrices of parameters A,

B and Σ are normalized so that for each i = 1, 2, . . . , n : ai,i > 0 and σii = 1, where ai,i and σii are

the respective elements of A and Σ. The variables of vector Z are referred to hereafter as the primary

instruments. Primary instruments may be correlated with each other, but they are all independent of E .

I assume that there are enough observations and that there is a sufficient variance of Z to estimate the

conditional probability distribution function f(Y |Z) generated by (8).

Assume that Z is generated using a Gaussian process SZ = EZ such that S is not singular and E(EZETZ ) =

I. Then the whole model can be written as:

(9) PX = EX ,

where

(10) P =

A −B

0 S

 X =

Y
Z

 EX =

 E
EZ


If no identification constraints are imposed on (8), then this model is not identified, which means that

many different parameter points (A B) exist, producing the same conditional probability distribution

function f(Y |Z) (see Appendices A.2 and B.1 for a brief review). To identify the model, I consider only

those identification constraints, which restrict particular parameters to zero. All identification constraints

are summarized by the conditional causal diagram, which was intuitively introduced in Section 2.1, and

whose formal definition is:

Definition 1 (Conditional and unconditional causal diagrams). A causal diagram is a directed graph, where

the nodes are the random variables of the structural model, and where the edges are defined by the inclusion

restrictions: edge xi → xj is present in the causal diagram if and only if pji 6= 0, where pji is the respective

element of P.

• The conditional causal diagram represents only the edges associated with matrices A and B;
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• The unconditional causal diagram represents edges associated with all entries of P.

If edge yj → yi exists in the conditional causal diagram, then yj is said to be a parent of yi, and yi is a

child of yj . If there is path yj1 → yj2 → · · · → yjN , then yji is ancestor of yjk if i < k, and yji is descendant

of yjk if i > k. Two paths are independent if they do not intersect on any node. Each node is interpreted

as a path of length 1.

Definition 2 (Primary identifying path). A path in the conditional causal diagram is a primary identifying

path for a parent yj of node yi if it starts with a primary instrument and reaches yj .

Definition 3 (Identified node). Node yi said to be identified by the conditional causal diagram if all

parameters in the ith rows of A and B are identified.

In empirical studies, where the structural shocks may be not independent and no constraints are imposed

on Σ, the identification of a given parameter is usually verified using the rank condition, which is briefly

reviewed in Appendix A.2. In this section, I propose the following graphical interpretation of this condition:

Proposition 1 (Graphical interpretation of rank condition). Assume that Σ is a symmetric positive definite

matrix, and no identification constraints are imposed Σ.

• If node yi is identified in a given parameter point by the constraints summarized by the conditional

causal diagram, then for each parent of yi there exists an independent primary identifying path in

the conditional causal diagram.

• If for each parent of yi there exists an independent primary identifying path in the conditional causal

diagram, then node yi is identified in almost all parameter points by the constraints, summarized by

the conditional causal diagram.

Proof. See Appendix A. �

Most of this paper concerns models with orthogonal structural shocks, in which case the rank condition

is only a sufficient, but not a necessary condition for identification. Consider again the example depicted in

Figure 3. The rank condition suffices for the identification of y3, but it is not sufficient for the identification of

y1 or y2. Indeed, for each parent of y3 there is an independent primary identifying path, which starts with a

primary instrument and reaches the parent (see Figure 3a), so y3 is identified. The rank condition, however,

does not suffice for the identification of y2, because y2 has 3 parents, but only two primary instruments

are available; since it is not possible to draw three independent paths starting with two nodes, the rank

condition is not satisfied for y2. Nor is the rank condition satisfied for y1.
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Assume now that the structural shocks are orthogonal, so Σ is diagonal. When the independence as-

sumption is made, some endogenous variables may possess the same properties as the primary instruments,

so they can produce additional identifying paths and identify additional parameters. I introduce two kinds

of instruments, recursive instruments and respective instruments. A recursive instrument is defined as any

endogenous node, which has been identified using other instruments. Node yj is said to be a respective

instrument for yi if yj is not a descendant of yi.

Definition 4 (Recursive identifying path). In a model with orthogonal structural shocks, a path in the

conditional causal diagram is a recursive identifying path for a parent yj of node yi if it starts with an

identified node and reaches yj .

Definition 5 (Respective identifying path). In a model with orthogonal structural shocks, a path in the

conditional causal diagram is a respective identifying path for a parent yj of node yi if it starts with a

non-descendant of yi and reaches yj .

Proposition 2 below uses Rubio-Ramı́rez et al.’s (2010) sufficient condition for identification to prove that

recursive instruments can be used for identification of structural models in the same manner as primary

instruments. To prove the sufficiency of respective instruments in the same proposition, I use the theory of

partial identification, as reviewed in Christiano et al. (1999).

Proposition 2 (Recursive condition for identification). Assume that the structural shocks are independent,

so Σ is a positive diagonal matrix. If for each parent of yi in the conditional causal diagram there is an

independent primary, recursive or respective identifying path, then yi is globally identified by the causal

diagram in almost all parameter points.

Proof. See Appendix B. �

Comparing the recursive condition for identification, as formulated in Proposition 2, with the rank con-

dition formulated in Proposition 1, I note that the recursive condition, on the one hand, requires a shock

independence assumption, but on the other hand, permits the use of recursive and respective instruments in

addition to the primary instruments permitted by Proposition 1. An example of application of Proposition 2

can be found in Section 2.1.

4. Testable Identification Restrictions

In this section, I provide definitions and propositions, which I have already applied in Section 2 to

formulate testable exclusion and inclusion restrictions.
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4.1. Testable exclusions. Assume that the structural model is orthogonal, which means that the covari-

ance matrix for the residuals is diagonal. Consider concentration matrix C, also know as the precision

matrix, which is defined as the inverse covariance matrix of X: C =
(
E
(
XXT

))−1
. Since each variable in

Z is exogenous or predetermined, and the covariance matrices for E and EZ are normalized to the identity

matrices, I have: E(EXETX) = I. Observe that:

I = E(EXETX) = E(PXXTPT )

= PC−1PT ,

from which I get:

C = PTP

=

 ATA −ATB

−BTA BTB + STS

(11)

The concentration matrix is useful for testable identification because it can be estimated from the data

without any prior identification assumptions, and it gives estimators for ATA and ATB.

The right-bottom block of C is not very helpful for testable identification, because it includes term STS,

which is not of interest of the analysis. It would be more useful to have an estimator of BTB instead of

BTB + STS. However, the value of STS =
(
E
(
ZZT

))−1
can be estimated separately and subtracted from

this block. I then obtain matrix Ĉ referred to hereafter as the partial concentration matrix :

Ĉ = C−

0n×n 0n×m

0m×n
(
E
(
ZZT

))−1


=

 ATA −ATB

−BTA BTB

(12)

Definition 6 (Partial concentration network). The partial concentration network is an undirected graph,

which spans the random variables of the model, where xi and xj are adjacent if and only if ĉij is not zero,

where ĉij is the respective element of the partial concentration matrix.

The partial concentration network is useful for testable identification, because it is closely related to the

partial moral graph. Before formally defining the partial moral graph and showing its relationship to the

partial concentration network, I define relatives and strangers:
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Definition 7 (Relatives and strangers). Vertices xi and xj are relatives in the conditional causal diagram

if at least one of the following conditions holds:

(1) xi is a child of xj , xi ← yj ;

(2) xi is a parent of xj , xi → yj ;

(3) there is a vertex xk such that xk is a common child of xi and xj : xi → xk ← yj .

Vertices xi and xj are strangers if they are not relatives.

Using this definition, the partial moral graph can be redefined as follows:

Definition 8 (Partial moral graph). A partial moral graph is an undirected graph, where the nodes are

the random variables of the model, and where any two nodes are adjacent if and only if they are relatives

in the conditional causal diagram.

To explain the relationship between the partial moral graph and the partial concentration network, I

make a generic assumption. Let P̂ be the matrix obtained from P by substituting the bottom m lines with

zeros:

P̂ =

 A −B

0
m×n

0
m×m


.

Assumption 1 (Generic assumption for parameter point P̂). Parameter point P̂ satisfies the generic

assumption if for each i and j, i 6= j, the existence of k such that [P̂]ki·[P̂]kj 6= 0 implies
∑
k[P̂]ki·[P̂]kj 6= 0.

The generic assumption excludes edge-of-the-knife cases, where different causal effects precisely offset each

other in equilibrium. For example, in a model with two variables y1 and y2, where y1 positively influences

y2 and y2 negatively influences y1, the generic assumption excludes the case where the parameters are such

that y1 and y2 are entirely uncorrelated. Since the generic assumption is not satisfied only in the subspace

of parameters with a lower number of degrees of freedom than the full space of parameters, it is satisfied in

almost all parameter points.

Proposition 3 (Partial moral graph and partial concentration network). Assume that the structural shocks

are independent, so matrix Σ is diagonal.

• If an edge is absent in the partial moral graph, this edge is also absent in the partial concentration

network.
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• Assume Assumption 1 is satisfied. If an edge is absent in the partial concentration network, this

edge is also absent in the partial moral graph.

Proof. First, I prove that xi and xj are relatives if and only if there exists index k such that [P̂]ki · [P̂]kj 6= 0.

This result directly follows from the fact that xi and xj can be relatives only in one of the following cases:

• xi is a child of xj . In this case [P̂]ki · [P̂]kj 6= 0 for k = i (recall the normalization rule aii > 0).

• xi is a parent of xj , then [P̂]ki · [P̂]kj 6= 0 for k = j.

• xi and xj have a child in common. Let this child be xk. Then [P̂]ki · [P̂]kj 6= 0.

Now observe that ĉij =
[
P̂T P̂

]
ij

=
∑
k[P̂]ik[P̂]jk. If xi and xj are strangers, then ∀k = 1, 2, . . . , n+m :

[P̂]ik · [P̂]jk = 0, therefore ĉij = 0. If xi and xj are relatives, then there exists k such that [P̂]ik · [P̂]jk 6= 0,

and through the generic assumption, which is satisfied in almost all parameter points, I obtain ĉij 6= 0. �

The following two corollaries stem from Proposition 3. For Corollary 1, consider two nodes in the partial

moral graph, node xi is a variable in Y or Z, and node yi is a variable in Y .

Corollary 1 (Directly testable exclusion xi 6→ yj). If edge xi−yj is absent in the partial moral graph, there

is directly testable exclusion restriction that xi does not enter into the structural equation for yj, which is

associated with the testable property of the probability distribution function that the respective element of the

partial concentration matrix is zero in almost all parameter points.

For Corollary 2, consider two primary instruments, zi and zj .

Corollary 2 (Indirectly testable exclusion restrictions). If edge zi− zj is absent in the partial moral graph,

there is indirectly testable exclusion that zi and zj do not have any common children among the endogenous

variables, which is associated with the testable property of the probability distribution function that the

respective element of the partial concentration matrix is zero in almost all parameter points.

Testable exclusion restrictions can be tested using the concentration matrix, or, alternatively, using partial

correlations. The partial correlation between xi and xj with conditioning on the other variables of the model

X(−i,−j) is defined as the correlation between the residuals of the regressions of xi and xj against X(−i,−j).

Knowing the matrix of concentration, the partial correlations can be calculated using:

(13) ρij ≡ corr(xi, xj |X(−i,−j)) =
−cij√
ciicjj

,

where cij , cii, and cjj are the respective elements of matrix C. Therefore, element cij of matrix C is zero

if and only if xi and xj are partially uncorrelated, which in the Gaussian case is true if and only if xi and
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xj are conditionally independent with conditioning on X(−i,−j). One of implications of (13) is that for

endogenous variables corr(yi, yi|X−i) = −1. Partial correlations are helpful in formulating directly testable

exclusion restrictions, like I did in Section 2.1.

To test indirectly testable exclusions, I introduce conditional partial correlations in the following way.

For i 6= j and i, j > n, ρ̂ij for the true model is defined as:

(14) ρ̂ij =
−ĉij√
ciicjj

In Section 2.2, for example, the hypothesis that z1 and z2 do not have common children among the endoge-

nous variables is associated with a testable property of the probability distribution function that ρ̂34 = 0.

The estimation of ρ̂, however, is not straightforward, because a direct use of (12) and (14) would produce

a biased estimator for ρ̂. In Section 8 I use bootstrap to get an unbiased estimator for conditional partial

correllations.

Proposition 4 (Relevance of an instrument). Let j be the column in P̂ associated with instrument zi.

Condition ĉjj = 0 holds if and only if zi is irrelevant, so for each k = 1, 2, . . . , n : bki = 0, where ĉjj is the

respective elements of the partial concentration matrix.

Proof. By definition of Ĉ, I have: ĉjj =
∑n
k=1 b

2
ki. Therefore, ĉjj is zero if and only if for each k: bki = 0,

in which case the instrument is irrelevant. �

The relevance of an instrument can be tested using the partial concentration matrix, or the conditional

partial correlation ρ̂ii for i > n defined by (14).

4.2. Testable Inclusions. Let matrix Πi(Pi|Z) be defined by the following operator in the true model:

(15) E (Pi|Z) = Πi(Pi|Z)Z

where Pi are the parents of yi on the map of exclusion restrictions. The constant term is omitted in (15),

because all variables have been centralized, so the term is zero.

Proposition 5 (Reduced Rank Condition). Assume that Σ is a symmetric positive definite matrix, and no

identification constraints are imposed on Σ. Node yi is identified in the given parameter point if and only if

Πi(Pi|Z) has full row rank.

Proof. See Appendix C. �
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Consider an example, which demonstrates the intuition behind Proposition 5, and shows that if a node is

not identified, then the condition formulated in Proposition 5 is not satisfied, so the row rank of Πi(Pi|Z)

is not full. Consider the map of exclusion restrictions depicted in Figure 2b. Assume edge z2y2 is absent in

the causal diagram, but the other edges depicted in Figure 2b are present in the causal diagram. By any

Proposition, 1 or 2, y3 is not identified. I shall intuitively demonstrate that the row rank of Π3(P3|Z) is

not full in this case. Matrix Π3(P3|Z) includes the coefficients of the regressions of the parents of y3 in the

identification map, which are y1 and y2, on the instruments z1 and z2 (see equations (2) and (3)). Each

row of Π3(P3|Z) corresponds to a parent, and each column corresponds to an instrument. In the causal

diagram, I observe that if edge z2y2 is absent, the expected values of y1 and y2 can be expressed as functions

of y1 alone, so the rows of matrix Π3(P3|Z) are linearly dependent, in which case the row rank of Π3(P3|Z)

is not full, and the condition formulated in Proposition 5 is, in fact, not satisfied. Section 2.1 demonstrates

how to apply this result to achieve testable identification and how to test the rank of Πi(Pi|Z).

5. Identification and the Clique Cover Problem

In this section, I show how to reduce the problem of formulating testable exclusion and inclusion restric-

tions to the clique cover problem explored in the computer science literature. A clique in an undirected

graph is a set of nodes such that every two nodes are adjacent. This implies that the subgraph spanned by

the nodes of a clique is the full graph. In Figure 1b, for example, sets {z2, y1, y2} and {z2, y1} are examples

of cliques, but {z2, y1, y2, y3}, is not a clique, because z2 and y3 are not adjacent. The clique cover problem

is to find as few cliques as possible that include all nodes and cover all edges of the graph. In Figure 1b,

cliques {z1, y1}, {z2, y1, y2}, and {y1, y2, y3} solve the clique cover problem.

The analysis of the cliques covering the partial moral graph is useful for testable identification because

of the following property:

Proposition 6 (Structural equations and cliques). For each structural equation, consider the clique com-

posed of the variables included into this structural equation. The partial moral graph is the graph sum over

all cliques defined in this way.

Proof. By Definition 7, two variables are relatives in the partial moral graph if and only if there exists an

equation in the structural model, where both variables are included. Therefore, each equation produces a

clique in the partial moral graph, such that all variables present in the structural equation are included into

the clique. By Definition 8, the partial moral graph is the graph sum over all cliques defined in this way. �

Proposition 6 produces the following three results:
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Proposition 7 (Existence of a solution with no more than n cliques). The clique cover problem for the

partial moral graph can be solved with n or less cliques.

Proof. By Proposition 6, the partial moral graph is a graph sum over n cliques. Therefore, there exist n

cliques covering the entire graph. These cliques either form a solution to the clique cover problem, or the

solution consists of less than n cliques. �

Proposition 8 (A sufficient condition for testable identification). If the clique cover problem has a unique

solution with n cliques, there is a one-to-one association between the cliques solving the clique cover problem

and the structural equations, such that each clique consists of the variables present in the associated structural

equation. In this case, if the true structural model is identified using its inclusion and exclusion restrictions,

then the estimated model is identified using only testable restrictions in almost all parameter points.

Proof. The first part is straightforward from Proposition 6. The sufficiency for identification follows from

the fact that if the clique cover problem for the true moral graph has a unique solution with n cliques,

all inclusion and exclusion restrictions by Proposition 6 are testable in almost all parameter points, so if

they suffice for the identification of the true model, they also suffice for the identification of the estimated

model. �

Proposition 9 (A necessary condition for testable identification). If the clique cover problem can be solved

with less than n cliques, then the partial moral graph does not suffice for the full or partial identification of

the structural model.

Proof. Since the clique cover problem can be solved with less than n cliques, at least one clique is associated

with two or more structural equations. There is no testable restrictions, which distinct one equation from

another in this clique, so neither equation is identified. The partial moral graph does not suffice to conclude

which cliques are associated with multiple equations, so no equations in the entire model are identified. �

Consider the example in Figure 1b. The clique cover problem has the following unique solution: {z1, y1},

{z2, y1, y2}, and {y1, y2, y3}. Therefore, this partial moral graph can be associated with the only structural

model, where the first equation includes variables z1 and y1, the second includes z2, y1, and y2, and the third

includes y1, y2, and y3. The partial moral graph does not indicate which variables should be put on the

left-hand side, and which on the right-hand side of each structural equation, but knowing that z1 and z2 are

exogenous, the only model consistent with the partial moral graph in Figure 1b is (1). Similarly, the unique

solution to the clique cover problem for the partial moral graph in Figure 5c is {zd, p, q}, and {zs, p, q},



21

z1
y1

y2

y3

z2

Figure 6. Partial moral graph for model (16), where the solution to the clique cover
problem is not unique, but testable identification is possible.

which is consistent with the only structural model (7), but it does not indicate whether the representation

in part a or b of Figure 5 is correct.

The condition formulated in Proposition 8 is a sufficient, but not a necessary condition for the unique

association between the variables and the structural equations using testable restrictions. Consider, for

example, a modification of (1), where z2 is also included into the structural equation for y1:

y1 = c1 + b11z1 + b12z2 + ε1(16a)

y2 = c2 + a21y1 + b22z2 + ε2(16b)

y3 = c3 + a31y1 + a32y2 + ε3(16c)

The partial moral graph for model (16) is drawn in Figure 6. The clique cover problem has two solutions

with 3 cliques. Both solutions include cliques {z1, z2, y1} and {y1, y2, y3}, the first solution also includes

{z2, y1, y2}, and the second includes instead {z2, y2}. Therefore, the partial moral graph does not suffice

to conclude whether y1 is present or not in the second structural equation. This restriction, nevertheless,

is testable. A heuristic argument is that the constraints implied by the moral graph suffice for the full

identification, and once the structural model has been identified, the hypothesis of whether y1 is included

or not into y2 can be tested.

To apply Proposition 8 in practical problems, I may need to solve the NP-hard clique cover problem.

Proposition 10 below provides another criteria for the existence of testable identification. On the one hand,

this criteria is less general than those in Proposition 8. On the other hand, it does not require drawing the

moral graph and solving NP-hard problems. It uses the following definition:

Definition 9 (Marker). An exogenous or endogenous variable is a marker for a given structural equation,

if the variable is present in this and only this structural equation.
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In model (1), for example, z1, z2, and y3 are markers respectively for the first, second, and third structural

equations. In (7), the markers are zd for the demand equation, and zs for the supply equation.

Proposition 10 (Deciphering the partial moral graph). Consider a simultaneous equations model, where

each structural equation has a marker. The partial moral graph suffices to identify all markers, and to

conclude which variables are included into the structural equation associated with each marker.

Proof. To demonstrate this result, I prove that the solution to the clique cover problem is unique and consists

exactly of n cliques. If two given markers are associated with different equations, they never appear in the

same equation, so they are not adjacent in the moral graph. Therefore, markets associated with different

equations never appear in the same clique, and this guarantees that the clique cover problem cannot be

solved in less than n cliques. By Proposition 7, the solution has no more than n cliques. It remains to be

proven that the solution is unique. Each marker is adjacent to each variable from the associated structural

equation, and this defines the clique associated with each marker in a unique way. Therefore, the solution

to the problem is unique. By Proposition 8, it is possible to identify the markers, and to say which variables

are included into the structural equation associated with any given marker. �

6. Tests power and multiple hypotheses testing problem

This section answers two questions. First, how to predict the power of each individual test having some

prior information about the true structural model? Second, how to aggregate efficiently the results of

individual tests, assessing the multiple hypothesis testing problem?

6.1. Power of individual tests. I use Pythagorean weights of variables in equations to predict the power

of individual tests. These weights are defined by:

Definition 10 (Pythagorean weight of xj in equation i). The Pythagorean weight of xj in the ith structural

equation is:

wi(xj) = pij

(
n+m∑
i=1

p2ij

)− 1
2

where pij is the respective element of matrix P, see (10).

By Definition 10, for each i and j: −1 ≤ wi(xj) ≤ 1 and
∑n+m
k=1 ρk(xj)

2 = 1.

The power of each individual test depends on the respective partial correlation, which can be obtained

from Pythagorean weights using:
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Proposition 11 (Pythagorean weights and partial correlations). Partial correlation ρij = corr
(
xi, xj |X(−i,−j)

)
equals to the negative sum of products of the Pythagorean weights for xi and xj over all equations:

ρij = −
n+m∑
k=1

wk(xi) · wk(xj)

Proof. This result follows from (11), (13), and Definition 10. �

I can predict the power of each test using Proposition 11 and the result that partial correlations follow

Wishart distribution. Alternatively, I can use Fisher’s (1924) approximation of the distribution function for

partial correlations, which uses z-transform of partial correlations defined by:

(17) ζ(ρ) = artanh(ρ) =
1

2
ln

(
1 + ρ

1− ρ

)
,

and under the null hypothesis that ρ = 0, the value of ζ(ρ) ·
√
T − (n+m) + 3 is approximately normally

distributed with zero mean and standardized variance, where T is the number of observations. If, for

example, ρ = 0.17, n+m = 5, and T = 100, then then ζ(0.17) ≈ 0.17, and ζ ·
√
T − (n+m) + 3 ≈ 1.7, so I

expect to correctly reject the null hypothesis at the significance level of 10% in about 50% of experiments.

Proposition 11 produces the following five observations. First, the weight of any endogenous marker is

either 1 or -1 in the marked equation and 0 elsewhere. The absolute values of the partial correlations of

the other variables with the marker equal to the absolute values of their weights in the marked equation.

Therefore, the partial correlations between the endogenous marker and the other variables in the structural

equation may be strong. Second, the weights of instruments are proportional to their relevance. Indeed, the

weight of zi in the kth equation can be developed as:

(18) wk(zi) = ŵk(zi) · ρ̂ii

where ρ̂ii is defined by (14), and ŵk(zi) is the Pythagorean weight of zi in the structural equations:

(19) ŵk(zi) =
bki
n∑̂
k=1

b2
k̂i

The relevance of each instrument, ρ̂ii, can be estimated separately before identification. If the relevance

is high, the produced partial correlations may be high, but instruments with low relevance produce weak

partial correlations. Third, the weight of exogenous marker zi is ρ̂ii in the marked equation and zero

elsewhere. The partial correlations of the other variables with the marker equal to the product of their

weights by ρ̂ii. These partial correlations may be strong when the relevance is high, but they are low, when
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the relevance is low. Fourth, variables present in many equations have low average weights, so produce low

partial correlations on average. Finally, if two variables are present in many equations, effects produced by

two different equations onto the partial correlation may complement or partially offset each other depending

on the signs of the weights (see Assumption 1).

Consider example (1). Variable y3 is an endogenous marker for the third equation, so its relative weight in

the third equation is 1 or -1, and |ρ(y1, y3)| = |w3(y1)|, and |ρ(y2, y3)| = |w3(y2)|. These partial correlations

may be strong. Variables z1 and z2 are exogenous markers for the first and second equations, so their

relative weights are ρ̂44 and ρ̂55, which can be estimated before identification. If the relevance in high,

partial correlations ρ(z1, y1), ρ(z2, y1), and ρ(z2, y2) may be strong, but if the relevance is low, these partial

correlations are weak. Finally, ρ(y1, y2) = −w1(y1)w1(y2) − w2(y1)w2(y2). If these products have opposite

signs, they partially offset each other in the equilibrium, and if they have the same sign, they complement

each other.

6.2. Multiple hypothesis testing. There are N =
(

(n+m)
2

+m− n
)
/2 individual hypotheses, so a

multiple hypotheses testing procedure is required. A natural benchmark is the control of the expected

false discovery rate. Let total discoveries be the number of rejected null hypotheses, and false discoveries

be the number of wrongly rejected null hypotheses. The false discovery rate is defined as the ratio of

the false discoveries to the total discoveries when the number of total discoveries is positive, and defined

to be zero when the number of total discoveries is zero. Benjamini and Hochberg (1995) prove that the

following procedure controls the expected false discovery rate below or at level q∗: estimate individual p-

values p1, p2, . . . , pN , sort p-values in increasing order p1 ≤ p2,≤ . . . ,≤ pN , find the largest k for which

pk <
k
N q
∗, reject the null hypotheses associated with p1, . . . , pk, and accept the null hypotheses associated

with pk+1, . . . , pN . q-value associated with ith null hypothesis is defined as the minimal value of q∗ for which

ith null hypothesis is rejected.

Benjamini and Hochberg (1995) assume independence of individual null hypotheses, but this assumption

may be not satisfied when a concentration network is estimated. Assume the model has been generated by

T independent realizations of EX , written into (n+m)× T matrix Ê , and E is defined by E =
(
ÊX Ê ′X

)−1
.

Each element of the empirical partial concentration matrix can be expressed as ĉij =
∑
k,l pik · pjl · ekl,

where ekl is the respective element of E. If the null hypothesis is correct for some ĉi1j1 and ĉi2j2 , then

E (ĉi1j1) = E (ĉi2j2) = 0. However, if for a particular realization the linear combination of ekl defining ĉi1j1

is outside the confidence interval, this may be more likely that another linear combination of ekl, defining

ĉi2j2 , is also outside of the confidence interval. Therefore, the test statistics may be positively dependent.
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Benjamini and Yekutieli (2001) prove that the procedure described above correctly controls the expected

false discovery rate at the level below or equal to q∗ in the case of positive dependency.

7. Testable identification of policy functions of DSGE models

A typical dynamic stochastic general equilibrium (DSGE) model can be reduced to the following system

of equations:

(20) AYt = BLYt−1 + BFEtỸt+1 + WEt + WLEt−1

where Y is vector of the state variables of the DSGE model, Ỹ is vector of all variables, including the

state and the forward-looking variables, A, BL, BF , W, and WL are matrices of parameters. Matrices W

and WL describe the moving average component for the structural shocks. I assume that W and WL are

diagonal, which is a conventional assumption for DSGE models. In this section I use normalization rule

WL = I and for each i : aii > 0, where aii is the respective element of matrix A.

Model (20) has a different structure than (8), so I need a new strategy of finding testable identification

restrictions. I can use the following algorithm. First, use the result that the value of EtỸt+1 can be

represented as a function of the state, and exclude the expected values from (20). Assume that matrices B0

and B1 are such that:

(21) EtỸt+1 = B0Yt + B1Et,

so (20) can be represented in the following structural ARMA form:

(22) ĀYt = BLYt−1 + W̄Et + Et−1

where Ā = (A−B0), and B̄ = (W + B1).

Second, estimate VARMA(1, 1) in the following reduced form:

(23) Yt = M1Yt−1 + M2ut + ut−1

Let Ω = E(ut−1u
′
t−1) be the covariance matrix for the lagged residuals. Third, use Cholesky decomposition

of Ω−1 to estimate an observationally equivalent structural model. If Ã = Chol(Ω−1), then the estimated
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observationally equivalent model is:

(24) ÃYt = B̃LYt−1 + W̃Ẽt + Ẽt−1

where B̃L = ÃM1, and W̃ = ÃM2. Finally, use the result that for all observationally equivalent models,

ÃT Ã = ĀT Ā, ÃT B̃L = ĀT B̄L, and so on. Therefor, I can estimate ĀT Ā, ĀT B̄L, ĀTW̄, B̄T
LB̄L,

B̄T
LW̄, and W̄TW̄ before identification, and use the obtained estimators for verifying testable inclusion and

exclusion restrictions.

Is it likely that a typical DSGE model produces a set of testable restrictions sufficient for the full iden-

tification? To answer this question, observe that matrix BL in many DSGE models is diagonal or close to

diagonal. Indeed, contemporaneous values of state variables in DSGE models usually depend on their own

lagged values, but not on the lagged values of the other variables. For example, habit formation assumption

produces a dynamic equation, where the contemporaneous consumption depends on the lagged consumption,

but not on the lagged capital or other lagged variables. If B̄L is exactly diagonal, then it gives exactly one

marker for each structural equation, so by Proposition 10, model (22) can be identified using only testable

restrictions. If there are a few off-diagonal elements in matrix B̄L, then I need some zeros in Ā or W̄ to

achieve testable identification.

8. Application Example

8.1. Framework: a SVAR model. In this section, I use US quarterly data from 1967:Q1 to 2007:Q4 to

estimate a SVAR model. I do not include later data, because the monetary policy rule has been modified

during the crisis of 2008. There are 6 variables in the estimated model, the federal interest rate r, the

inflation rate π measured as the GDP deflator growth rate, the commodity price inflation rate πc, the GDP

growth rate g, the capacity utilization rate c, and the unemployment rate u. The data on π, πc, g, c, and

u are seasonally adjusted, and the data on r, π, πc and g has been annualized.

Variables r, π, and g are included because they are of the primary interest of the analysis. Including the

other variables increases the complexity of the model and the identification procedure, however, I have not

found it possible to identify a structural model with less than 6 variables. The reason to include the capacity

utilization rate is that it helps to distinguish between the aggregate demand and the aggregate supply

shocks. Roughly speaking, an increase in the GDP growth rate keeping constant the capacity utilization

rate is interpreted as a positive aggregate supply shock, and an increase in the capacity utilization rate

keeping constant the GDP growth rate is interpreted as a simultaneous positive aggregate demand shock

and a negative aggregate supply shock; the robust identification procedure in Section 8.4 uses a more
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sophisticated assumption to distinguish between the AD and AS shocks. If I do not distinguish the AD

and AS shocks, I mix them up in the estimated model, which may produce the price puzzle, because they

may have opposite effects on the inflation. This is also important to include the unemployment rate, and,

following Sims (1992), the commodity pricy inflation rate, because they are confounders to other variables

of the structural model, and omitting them would produce biased impulse-response functions, including the

price puzzle (see Sims, 1992; Clarida et al., 1998; Christiano et al., 1999; Gaĺı et al., 2003; Hanson, 2004),

where a restrictive monetary policy shock significantly increases the inflation rate in the short run.

The model is estimated in the following structural form:

(25) AYt = B1Yt−1 + B2Yt−2 + Et

where Y = (r u c g π πc)
T

, and the constant term is zero because all variables have been centralized. I keep

the notation of model (8), using Yt ≡ Y , (Y Tt−1 Y
T
t−2)T ≡ Z, and (Y T ZT )T ≡ X. The structural shocks

are assumably independent, so E
(
EET

)
is diagonal. In this section the main diagonal of A is normalized to

ones.

I include 2 lags for the following reasons. If I use only one lag, the estimated model produces the price

puzzle, suggesting that the state of the economy is not well described with this specification, in which case

I cannot use the assumption that the structural shocks are independent. It is helpless to include more than

4 lags for testable identification, because I have not found any significant partial correlation between the

contemporaneous variables and the variables lagged for more than 4 quarters. Models with 2, 3, and 4 lags

produce similar results, so I choose 2 lags to ease the identification procedure.

8.2. Estimation of the partial concentration network. To estimate the partial concentration network

and to conclude which partial correlations are significant, I use block bootstrap to test individual hypothe-

ses, and I control the expected false discovery rate for multiple hypotheses testing. Each individual null

hypothesis is that ĉij = 0, where ĉij is the respective element of matrix Ĉ defined by (12). The alternative

is that ĉij 6= 0 for i 6= j, and ĉij > 0 for i = j > n. The hypotheses are not tested for i = j ≤ n.

At each iteration of the bootstrap procedure I repeat the following steps:

(1) Construct a resample Y1 by shuffling overlapping blocks of Y of length 4. Y1 approximates a random

vector with the same marginal distribution as Y , but independent of Z.

(2) Construct resamples XR and XR
1 by shuffling overlapping blocks of X = (Y Z) and X1 = (Y1 Z)

of length 4. The order of shuffling is the same for XR and XR
1 .
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(3) Calculate empirical concentration matrices C =
(
XTX

)−1 · (T − 1) and C1 =
(
XT

1 X1

)−1 · (T − 1),

where T = 162 is the number of observations.

(4) Estimate Ĉ in the following way. The first n rows and the first n columns copy from matrix C. In

the remaining block, on the right of column n and below row n, the value of each entry is calculated

as the difference between the values of the respective entries of C and C1.

Let freqij be calculated as the number of iteration in the bootstrap procedure where ĉij is positive minus

the number of iterations where ĉij is negative divided by the total number of iterations where (XTX) is not

singular. The p-value associated with the null hypothesis that ĉij = 0 is obtained using:

(26) pvalueij =


1−

∣∣freqij
∣∣ , if i 6= j

1
2 ×

(
1− freqij

)
, if i = j > n

The p-value is not calculated for i = j ≤ n. Then I use the procedure of Benjamini and Hochberg (1995)

described in Section 6.2 for calculating q-values to handle the multiple hypotheses testing problem.

The conditional partial correlations are estimated in the following way. Estimate C1 in the same way as

in the bootstrap procedure above, estimate C as the inverse covariance matrix of X, calculate Ĉ as in the

fourth step of the bootstrap procedure, and calculate the partial correlations using:

(27) ρ̂ij =


−ĉij√
ciicjj

, if i 6= j or i = j > n

−1, if i = j ≤ n

The estimated conditional partial correlations and their significance based on the expected false discovery

rate are reported in Table 2 and interpreted in the following way. Consider, for example, the partial

correlation between the contemporaneous values of u and r, which is equal to −0.24, and is significant at

5% q-value level. This discovery suggests that there exists at least one equation in the estimated model,

where both r and u are included, and the coefficients before r and u have the same sign. This may be the

Taylor monetary policy rule, where the unemployment negatively affects the interest rate, or some other

equation, where r and u influence the dependent variable in the same direction. Another example, the partial

correlation between the lagged value of π and the contemporaneous value of r is small and insignificant,

pointing at no evidence that r and L.π appear together at least in one equation. The third example, the

partial correlation between the lagged variables of u and c is -0.28 and significant at 5% q-value level,

suggesting that L.u and L.c have at least one common child among the endogenous variables, influencing
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Table 2. Conditional partial correlations

r u c g π πc L.r L.u L.c L.g L.π L.πc L2.r L2.u L2.c L2.g L2.π L2.πc

r −1
N.A

u -0.24
∗

−1
N.A

c 0.26
•

-0.46
∗∗∗

−1
N.A

g -0.13 -0.18
•

0.47
∗∗∗

−1
N.A

π -0.05 0.08 0.3
∗∗∗

-0.22
•

−1
N.A

πc 0.07 0.02 0.14 -0.19
•

0.25
∗∗∗

−1
N.A

L.r 0.7
∗∗∗

0.16 -0.25 0.13 0.11 -0.02 −0.48
∗∗∗

L.u 0.07 0.78
∗∗∗

0.38
∗∗∗

0.08 -0.11 -0.06 -0.04 −0.62
∗∗∗

L.c -0.24
•

0.34
∗

0.79
∗∗∗

-0.36
•

-0.27
∗

-0.07 0.22 -0.28
∗

−0.6
∗∗∗

L.g 0.09 -0.12 -0.13 -0.05 0 -0.04 -0.07 0.09 0.08 0.01
L.π 0.05 0.02 -0.17 0.21

•
0.47
∗∗∗

0.06 -0.08 0.02 0.14 0.03 −0.23
∗

L.πc 0.18
∗

-0.05 -0.2
•

0 0 0.31
•

-0.14
•

0.07 0.14 -0.02 -0.06 -0.14

L2.r 0.03 0.04 0.03 -0.08 -0.07 -0.08 -0.03 -0.05 -0.01 -0.01 0.05 0.01 0.01
L2.u 0.11 -0.23

•
-0.11 0.06 0.1 0.06 -0.08 0.2 0.08 -0.03 -0.05 -0.03 0.04 -0.09

L2.c 0.15 -0.11 -0.27
•

0.11 0.16 -0.03 -0.12 0.09 0.19 -0.01 -0.07 -0.03 -0.01 -0.02 -0.04

L2.g -0.08 -0.22
•

-0.06 -0.04 -0.03 -0.05 0.05 0.17 0.04 0 0.04 0.02 0.02 -0.05 -0.01 -0.01

L2.π 0.18 0.08 -0.04 0.1 0.22
•

0.02 -0.15 -0.02 0.05 -0.01 -0.14 -0.05 0.03 -0.05 -0.06 0.04 -0.06

L2.πc -0.17 -0.03 -0.01 -0.04 0.12 -0.14 0.11 -0.01 0.01 0 -0.03 0.06 0 0.05 -0.01 -0.01 0.01 -0.04
Significance code based on the expected false discovery rate: ∗∗∗ 0.005 ∗∗ 0.01 ∗ 0.05 • 0.1

Partial correlations marked by gray color are associated with p-values greater than 0.1

the endogenous variable in the same direction. Finally, the partial correlation between L.r and itself is

−0.48 and significant at 0.005 q-value level, so L.r is relevant.

8.3. An approximate data-mining approach to identification. The approximate model is estimated

using only the empirical distribution function for identification. The advantage of this approach is that it is

easy to implement, so it can be used for data mining. I take the first 6 columns of Table 2, and constraint

the coefficients associated with insignificant partial correlations to zero. For example, the partial correlation

between the contemporaneous values of g and r is −0.13 and insignificant at 10% q-value level, so coefficients

a14 and a41 of matrix A are constrained to zero. I set the threshold on the q-values at 10% level, however,

this choice is arbitrary.

I obtain the following identification scheme for the approximate structural model, which turns out to be

sufficient for the full identification:

(28) A =


1 a12 a13 0 0 0
a21 1 a23 a24 0 0
a31 a32 1 a34 a35 0
0 a42 a43 1 a45 a46
0 0 a53 a54 1 a56
0 0 0 a64 a65 1

 B1 =


b111 0 b113 0 0 b116
0 b122 b

1
23 0 0 0

0 b132 b
1
33 0 0 b136

0 0 b143 0 b145 0

0 0 b153 0 b155 0

0 0 0 0 0 b166

 B2 =


0 0 0 0 0 0
0 b222 0 b224 0 0

0 0 b233 0 0 0
0 0 0 0 0 0
0 0 0 0 b255 0
0 0 0 0 0 0


where the constrained parameters are substituted with zeros.
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Figure 7. Approximate model, estimated impulse-response functions. The thick line in
each panel is the impulse-response function, the dashed lines confine the ± one standard
deviation zone, the gray area depicts the outside 90% bootstrap confidence intervals.

The estimated impulse response functions are depicted in Figure 7. All significant results are consistent

with the theory. For example, the first row represents the response of the economy to a restrictive monetary

policy shock. As the theory predicts, the unemployment significantly increases, the capacity utilization

decreases, and the GDP growth rate first falls below its long-run level, but then rises above the long-run

level, what indicates that the GDP level eventually recovers. The inflation rate and the commodity price

inflation rate decrease significantly without pointing at any symptoms of the price puzzle.

However, the impulse response functions in Figure 7 should be taken with the following cautions. First, the

procedure of estimation includes a sequential hypothesis testing problem. Some hypotheses are tested for the

first time to find significant partial correlations in Table 2, and then other hypotheses are sequentially tested

to construct the confidence intervals in Figure 7. Although this procedure produces asymptotically unbiased

impulse response functions, the confidence intervals may behave poorly for finite sample problems. Second,

I expect that the true structural model is cyclical, but the proposed method of approximate identification

asymptotically identifies only recursive models. Finally, some edges present in the true model are clearly
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Figure 8. The partial concentration network.

missing in the estimated model. The estimated model has 67 constraints, so 67 - 15 = 52 constraints are

over-identifying. The log likelihood ratio for this model as compared to the model identified using the

Cholesky decomposition is -55, so the hypotheses that the over-identifying restrictions are not binding is

rejected at 0.1% p-value significance level. Taking into account all these concerns, in the next section I

propose a more sophisticated method of identification.

8.4. A robust data-oriented identification procedure. I assume that all variables except for g are

persistent, so the lagged value of each variable is present in the structural equation for this variable. The
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dynamics of g may be not persistent, because the aggregate supply driven by productivity shocks may follow

a random walk. In Table 2 I see that Lr, Lu, Lc, Lπ, Lπc, and L2π are relatively strong instruments, and

I expect that they possess properties similar to markers (see Definition 9), so I use presumably them to

determine which variables are present in which equation.

Consider the partial concentration network is depicted in Figure 8. The main lesson from this graph

is that the way information spreads throughout the economy play an important role in macroeconomic

dynamics. To see this fact, first, observe that Figure 8 is not entirely consistent with the new Keynesian

view. If the Phillips curve were derived from the Calvo’s (1983) assumptions, the contemporaneous inflation

would depend on its expected value, which, in turn, could be expressed as a function of the state of the

economy represented by vector Yt. Since Lπ and Lπc are assumably included into the equations respectively

for π and πc, I expect to see that all contemporaneous variables are adjacent to the contemporaneous and

lagged values of π and πc. There is no such evidence in Figure 8.

Figure 8, however, is consistent with the new Keynesian Phillips curves augmented with the Lucas’s

(1972) islands economy assumption, where agents act rationally, but take into account only information

available on their “islands”. Particularly, when a firm producing final goods sets prices or make forecasts,

it takes into account its marginal costs, which depend on c and πc, the prices set by its competitors, given

by π, and its output, depending on g. Indeed, even if the variations of c, g, π and πc are moderate at the

aggregate level, they may be large at the individual level, whilst the variation of the interest rate is the

same at the aggregate and at the individual level. Therefore, it may be rational for the price setters to

focus their attention on the individual capacity utilization, individual demand, and on the industry-specific

prices, but not on the economy-wide interest rate or unemployment. After aggregation, firm’s decisions still

depend on c, g, π, and πc, but not on r or u. Similarly, a firm producing commodities takes into account

the demand for its output and its marginal costs, which depend on g and π, but not information available

outside the island about the interest rate or the unemployment rate. This is why the contemporaneous and

lagged values of r and u are not adjacent to π, Lπ , πc, and Lπc in Figure 8.

The second observation about the importance of informational channels for macroeconomic dynamics

concerns the unemployment equation, and is similar to the observation above about the Phillips curves.

The unemployment is significantly adjacent only to the contemporaneous values of c and g, and the lagged

unemployment is significantly adjacent to c. I expect to get this result in an economy, where the unemploy-

ment is mainly driven by aggregate demand and aggregate supply shocks, and where firms hiring workers

consider only information available on their island.
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Table 3. Identification assumptions

Structural Variables, present Variables, absent Variables, for which no precise
equation in this equation in this equation conclusions have been made

Taylor rule r, u, Lr, Lπc, π, L2r, L2g c, g, πc, Lu, Lc, Lg,
L2π, L2πc Lπ, L2u, L2c

Unemployment equation u, c, Lu, L2u, L2g r, πc, Lr, Lπ, g, π, Lc, Lg, L2c
Lπc, L2r, L2π, L2πc

Aggregate demand r, c, g, π, Lc, L2c πc, Lπc, L2r, u, Lr, Lu, Lg, Lπ,
L2g, L2π L2u, L2πc

Aggregate supply c, g, π, πc, Lc L2r, L2g r, u, Lr, Lu, Lg,
L2π Lπ, Lπc, L2u, L2c, L2πc

Phillips curve for π c, g, π, πc, Lπ, L2π r, u, Lr, Lu, L2r, Lc, Lg, Lπc
L2u, L2c, L2g, L2πc

Phillips curve for πc g, π, πc, Lπc r, u, Lr, Lu, Lc, c, Lπ, L2πc

Lg, L2r, L2u,
L2c, L2g, L2π

The third observation concerns the position of the federal interest rate in the partial concentration

network. The Federal Reserve is usually considered in the literature as the most informed agent. The

literature on SVARs, however, recognizes that some information may be available only with a delay. In

Figure 8 I see that the interest rate is significantly adjacent to the contemporaneous values of c and u, but

only to the lagged value of πc and to the second lag of π, which supports the hypothesis of information

delays.

These observations about the role of information in monetary transmission helped me to formulate testable

identification assumptions. All assumptions are discussed in details in Appendix D and summarized in Table

3. The assumptions for the equations for r, u, π, and πc are based on the Lucas’s (1972) assumptions about

the diffusion of information discussed above. The assumptions about the AD and AS equations use the

only non-testable restriction that the commodity price inflation directly influences the AS equation but not

the AD equation. Variable L2r is excluded from the entire model, because there is no evidence that it is

adjacent to any other variable in Figure 8.

8.4.1. Sufficiency for the identification. All identification assumptions are represented in the conditional

causal diagram depicted in Figure 9. Black solid edges are assumably present in the conditional causal

diagram, and gray dashed edges may be present or not. I need to verify that the identification assumption

summarized in Table 3 and depicted in Figure 9 suffice for the full identification. Since the lagged variables

produce identifying path of length 1 for themselves, for each endogenous variables I need to verify that only

endogenous parents have independent identifying paths.
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Figure 9. Conditional causal diagram.

The first step is to verify the identification of the structural equation for u. This node has up to three

contemporaneous parents, c, and possibly g and π. Consider c. I cannot use Lc as an instrument for the

identifying path for c, because Lc itself may be a parent of u, in which case path Lc → c intersects with

the self-identifying path for Lc on node Lc, so this path is not independent. Nor can I use Lr, because

edge Lr → c may not exist. I use, therefore, L2π → r → c, which is a valid identifying path, because r

and L2π are not parents of c, and because the presence of edges L2π → r and r → c is guaranteed by the
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identification assumptions summarized in Table 3. Similarly, the identifying path for g is Lπc → πc → g,

and the path for π is Lπ → π. These paths suffice for the identification of u.

The second step is to verify the identification of πc, which has no more than three contemporaneous

parents, g, π, and possibly c. The identifying path for g is Lc→ g, the path for c is L2c→ c, and the path

for π is L2π → π, so πc is identified. The third step is to identify c, which have contemporaneous parents

r, π, and may be u and g. Since u have already been identified, I need only have identifying paths for r,

π, and g, which are L2π → r, Lπc → π, and πc → g. The unidentified contemporaneous parents of g have

identifying path L2π → π and L2πc → r, and all contemporaneous parents of r and π at this point have

been identified. Therefore, the model is fully identified.

8.4.2. Checking over-identifying restrictions. There are 38 restrictions in the estimated model, so 38 - 15 =

23 restrictions are over-identifying. Compared to a model just-identified using the Cholesky decomposition,

the log likelihood test does not reject the null hypothesis that the over-identifying restrictions are not binding

with the p-value equal to 0.25.

8.4.3. Estimation results. Taking into account the identification constraints formulated in Table 3, I estimate

the model with the following constraints on parameters:

(29)

A =

 a11 a12 a13 a14 0 a16
0 a22 a23 a24 a25 0
a31 a32 a33 a34 a35 0
a41 a42 a43 a44 a45 a46
0 0 a53 a54 a55 a56
0 0 a63 a64 a65 a66

 , B1 =


b111 b

1
12 b

1
13 b

1
14 b

1
15 b

1
16

0 b122 b
1
23 b

1
24 0 0

b131 b
1
32 b

1
33 b

1
34 b

1
35 0

b141 b
1
42 b

1
43 b

1
44 b

1
45 b

1
46

0 0 b153 b
1
54 b

1
55 b

1
56

0 0 0 0 0 b166

 , B2 =


0 b212 b

2
13 0 b215 b

2
16

0 b222 b
2
23 b

2
24 0 0

0 b232 b
2
33 0 0 b236

0 b242 b
2
43 0 0 b246

0 0 0 0 b255 0

0 0 0 0 0 b266

 , Et =


εMP
t

εut
εAD
t

εAS
t

επt
επ
c

t


where εMP is the monetary policy shock, εu is the unidentified unemployment shock, εAD is the AD shock,

εAS is the AS shock, επ is the inflation shock, επ
c

is the stagflation shock, and the constrained parameters

are substituted with zeros.

The estimated impulse response functions are depicted in Figure 10. The response of the economy to the

restrictive monetary policy shock is depicted in the first row. As the theory predicts, this shock temporary

raises the unemployment rate and lowers the capacity utilization rate. The GDP growth rate is below the

long run level during the first and second year after the shock, and rises above afterwards, so the GDP level

recovers. The inflation immediately goes down, without any symptoms of the price puzzle. The commodity

price inflation also immediately goes down, and as the theory predicts, it decreases faster than the GDP

inflation rate, because πc is a leading indicator for π.

The second row depicts the response of the economy to the unidentified unemployment shock. The

response of the federal interest rate to the unemployment shock is immediate and strong, an 1% increase in
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Figure 10. Final model, estimated impulse-response functions. The thick line in each
panel is the impulse-response function, the thin dashed lines show the ± one standard
deviation zone, the gray zone depicts the outside 90% confidence intervals.

the unemployment rate produces about 2.5% decrease in the interest rate. Since I do not distinguish between

the labor demand and labor supply shocks, I cannot theoretically predict whether the unemployment shock

increases or decreases the capacity utilization rate and the GDP growth rate. In Figure 10 I see that they

temporary increase, what suggests that the labor supply effect on average dominates. The inflation rate and

the commodity price inflation rate significantly rise, possibly because of the stimulating monetary policy

response to the positive unemployment shock.

The third line represents the response of the economy to an aggregate demand shock. The GDP grows

significantly in the second quarter after the shock, and then it reverts towards the initial trend. The response

of the monetary policy to the AD shock is also strong, the AD shock increasing the output approximately

by 0.5% raises the interest rate almost by 1%. In agreement with the theory, the unemployment decreases,

the capacity utilization, the inflation, and the commodity price inflation go up.

The response of the economy to a positive AS shock is presented in the forth line. From the theoretical

perspective, I expect to see two effects of the AS shock on the economic activity. First, the shock permanently
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increases the potential GDP, so I expect that g increases in the period of shock, gets back to the initial value

afterwards, and the values of other variables remain unchanged. Second, this shock decreases the long-run

equilibrium ratio of the GDP deflator to the commodity price index, and because of price rigidities, it

temporary increases the capacity utilization, decreases the unemployment, and produces a trend-reverting

dynamics of the GDP level. In Figure 10 I see that both effects are significant. The AS shock increases the

capacity utilization and decreases the unemployment. The federal interest rate possibly responds to these

changes and capacity utilization movements, and significantly increases. The GDP growth rate is significant

and large in the period of the shock, and has a small but significant revert component after the shock. If

scaled to 1% GDP increase shocks, responses of r, u, c and π to the AS shock are similar to the responses to

the AD shocks, but quantitatively much smaller. In contrary, the response of the commodity price inflation

quantitatively is about the same, because both the aggregate demand and the aggregate supply shocks

increase the demand for the commodities.

The response of the economy to the inflation shock is depicted in line 5 of Figure 10. One percent increase

in π, which is not attributed to the aggregate demand or aggregate supply shocks, increases r approximately

by 0.6%, and this turns out to be sufficient to suppress the inflation. Like the theory predicts, an increase

in the inflation rate is associated with a rise in the economic activity in the short run, but the following

restrictive monetary policy and increase in the price produce a slowdown. This explains the decrease of u

and increase of c and g in the period of the shocks, with the subsequent rising of u and falling of c and g in

the medium run.

The response of the economy to a commodity price inflation shock is depicted in the sixth line. Like the

theory predicts, this shock produces stagflation. In Figure 10, the unemployment after this shock rises, the

capacity utilization decreases, the GDP growth rate temporary decreases, and the inflation goes up.

Therefore, all finding in Figure 10 are consistent with the macroeconomic theory.

9. Conclusions

This paper proposes a method of testable identification of SEMs and SVARs with orthogonal structural

shocks. A sufficient condition for the existence of testable identification is that each structural equation

has a marker, and that the true structural model is identified. This method produces narrow and theory-

consistent confidence intervals in the application example, where I estimate a SVAR monetary model of the

US economy.

The method can be used in a large variety of applications, including SEMs, SVARs, DSGE models, large

Bayesian SVARs, and in other areas, where theoretical assumptions do not suffice for the full identification,
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and where the shock orthogonality assumption is appropriate. The shock orthogonality assumption applies

only when the state of the economy is well-described by the variables included into the structural model.

In the application example, the shock orthogonality assumption is not appropriate if model with r, g and π

does not include u, c, and πc, because of the confounding effect.

The estimated SVAR model revealed the importance of informational channels through which information

about the structural shocks propagate throughout the economy. This model is a promising framework for

analysis of interactions of the real sector of the US economy with the oil market, financial markets, the

world economy and so on.

10. Computational details

The SVAR model of the US economy was estimated in R (R Core Team, 2012) using packages igraph

(Csardi and Nepusz, 2006) and NLopt (Johnson, 2014).
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Appendix A. Proof of Proposition 1

A.1. A Lemma. Let Y = {y1, y2, . . . , yn} be the set of the nodes of the causal diagram associated with

the endogenous variables, Z = {z1, z2, . . . , zm} be the set of the nodes associated with the exogenous or

predetermined variables, and X = Y ∪Z be the set of all nodes. Let Y1, Y2, and X1 be independent subsets

of X satisfying: Y1 ⊂ Y, Y2 ⊂ Y, X1 ⊂ X, Y1 ∩ Y2 = ∅, Y1 ∩ X1 = ∅, and Y2 ∩ X1 = ∅. Let G be the

subgraph of the causal diagram induced by Y1 ∪ Y2 ∪ X1, and N be the number of independent paths in

G starting with nodes in X1 and reaching nodes in Y1. Without loss of generality, I consider only paths

without cycles. For example, if I am given with a path x1x2x1x4, I consider instead the path, where cycle

x1x2x1 has been cut out, so I consider x1x4.

Let P̄ be the first n lines of matrix P, so P̄ = (A −B).Consider matrix M obtained from P̄ in the

following way. Take the rows of matrix P̄ having the indices of elements of Y1 ∪ Y2, and take the columns

of P̄ having the indices of Y2 ∪ X1.

If there is a path xj1xj2 . . . xjs in the causal diagram, the set of parameters associated with this path

consists of the following elements of matrix P̄:
{
pj2j1 , pj3j2 , . . . , pjsjs−1

}
. Therefore, the diagonal elements

of A are not considered as parameters associated with any path. By definition of the conditional causal

diagram, the parameters associated with different paths are not constrained to zero by the identification

restrictions.

In the proof of Proposition 1 below I use Leibniz formula for determinant, which expresses the determinant

as a sum over all permutations. Since matrix M may be not square, I consider partial permutations, which do

not necessarily take all rows and all columns of M. Let L be the length of the lengthiest partial permutation

in M such that each element of the permutation is not restricted to zero by the identification constraints.
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a) Causal diagram b) Subgraph G induced by
{y2, y3, y4, y5, y6, z2, z3, z4}
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Figure 11. Example of causal diagram and subgraph G

To make the lemma below clearer, consider the following example. Assume that the structural model is:

(30)

 1 a12 0 0 a15 a16
0 1 a23 0 0 0
0 0 1 a34 0 0
0 0 0 1 0 0
0 0 0 a54 1 0
0 0 0 0 0 1

 y1
y2
y3
y4
y5
y6

 =

 b11 b21 0 0
0 0 0 0
0 0 0 0
0 0 b43 0
0 0 0 b54
0 0 0 0

( z1
z2
z3
z4

)
+

 ε1
ε2
ε3
ε4
ε5
ε6

 ,

which causal diagram is depicted in Figure 11a. Consider the following sets of nodes: Y1 = {y2, y5, y6},

Y2 = {y3, y4}, X1 = {z2, z3, z4}. Subgraph G, which by the definition is induced by Y1 ∪ Y2 ∪ X1, is drawn

in Figure 11b. Matrix P̄ is:

P̄ =


1 a12 0 0 a15 a16 −b11 −b21 0 0
0 1 a23 0 0 0 0 0 0 0
0 0 1 a34 0 0 0 0 0 0
0 0 0 1 0 0 0 0 −b43 0
0 0 0 a54 1 0 0 0 0 −b54
0 0 0 0 0 1 0 0 0 0


Matrix M takes rows 2, 3, 4, 5, 6, and columns 3, 4, 8, 9, and 10 of matrix P̄, so I get:

(31) M =


a23 0 0 0 0
1 a34 0 0 0

0 1 0 −b43 0

0 a54 0 0 −b54
0 0 0 0 0


There are two independent paths in G starting with nodes in X1 and reaching Y1, see Figure 11b, they

are z3 → y4 → y3 → y2 and z4 → y5, so N = 2. The sets of parameters associated with these paths

are {−b43, a34, a23} and {−b54}. The lengthiest unconstrained partial permutation in M is underlined in

equation (31), and is [a23 · a34 · (−b43) · (−b54)]. This permutation has four elements, so L = 4. Finally,

there are 2 nodes in set Y2, so |Y2| = 2.

Lemma 1. The length of the lengthiest unconstrained partial permutation in M is equal to the number of

independent paths in G starting with nodes in X1 and reaching Y1 plus the number of nodes in Y2:

L = N + |Y2|
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Proof. Step 1. Prove that two paths intersect in G if and only if the parameters associated with these paths

do not pertain to the same partial permutation in M.

Indeed, two paths intersect in G if and only if there exists a node xj ∈ Y1 ∪ Y2 ∪ X1 such that at least

one of the following conditions hold:

(1) There are two incoming edges to node xj associated with two different paths, in which case the

parameters associated with these edges are located in the same row of M.

(2) There are two outgoing edges from xj associated with two different paths, in which case the param-

eters associated with the outgoing edges are located in the same column of M.

Two parameters pertain to the same row or to the same column of M if and only if they do not pertain to

the same permutations.

Step 2. Prove that if graph G is empty then L = |Y2|.

If G is empty, the only non-zero parameters of P̄ included into M are the on-diagonal elements of A,

which are normalized to be strictly positive. There are |Y2| such parameters in M, and all of them are

located in different columns and different rows, which gives a permutation of length |Y2|.

In example (30), matrix M associated with the empty graph is:

Mempty =

(
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

)

and the length of the lengthiest unconstrained partial permutation is 2, which equals |Y2|.

Step 3. Prove that L ≥ N + |Y2|.

Start with the empty graph spanning Y1 ∪ Y2 ∪ X1, which gives the permutation of length |Y2|, as it

was described in Step 2. Add independent paths from G into this graph one-by-one. When a new path

xj0xj1 . . . xjs is added to the graph, modify the permutation in the following manner:

(1) Add element pj1j0 from matrix P̄ to the permutation. Since xj0 ∈ X1 and xj1 ∈ Y1 ∪Y2, parameter

pj1j0 is in M.

(2) For k = 1, 2, . . . , s−1, remove pjkjk , and add pjkjk+1
. Since xjk ∈ Y2 and xjk+1

∈ Y1∪Y2, parameters

pjkjk and pjkjk+1
are in M. Since the new path is independent of the previously added paths, pjkjk+1

is located in a different row and in a different column than the permutations associated with the pre-

viously added paths, so it was included into the permutation. Each parameter pj0j1 , pj1j2 , . . . , pjs−1js

and the parameters kept from the previous paths pertain to the same permutation by the result

demonstrated in Step 1.
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Therefore, adding a new independent path increases the number of parameters included into the permutation

by 1. When other parameters, which are not associated with the considered independent paths, are added

to matrix M, the length of the permutation does not decrease, so L ≥ N + |Y2|.

In example (30), adding path z3 → y4 → y3 → y2 gives:(
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

)
⇒

(
0 0 0 0 0
1 0 0 0 0
0 1 0 −b43 0
0 0 0 0 0
0 0 0 0 0

)
⇒

(
0 0 0 0 0
1 a34 0 0 0
0 0 0 −b43 0
0 0 0 0 0
0 0 0 0 0

)
⇒

( a23 0 0 0 0
0 a34 0 0 0
0 0 0 −b43 0
0 0 0 0 0
0 0 0 0 0

)

and adding z4 → y5 produces: ( a23 0 0 0 0
0 a34 0 0 0
0 0 0 −b43 0
0 0 0 0 0
0 0 0 0 0

)
⇒

( a23 0 0 0 0
0 a34 0 0 0
0 0 0 −b43 0
0 0 0 0 −b54
0 0 0 0 0

)

which gives a permutation of length 4.

Step 4. Prove that N ≥ l − |Y2|

Consider a permutation of length L. Since all parameters associated with one permutation are located

in different columns of matrix P̄, at least L − |Y2| parameters must be located in the columns associated

with the indices of X1. Let me prove that each such parameters guarantees the existence of one path from

X1 to Y1, and from Step 1 I know that all these paths must be independent.

Consider one such parameter, say pj1j0 , where xj0 ∈ X1. If xj1 ∈ Y1, then the path is found. Assume

that xj1 6∈ Y1, so xj1 ∈ Y2. Since pj1j0 have been included into the permutation, parameter pj1j1 , which

is normalized to be positive, cannot be included into this permutation, because it is in the sam row as

pj1j0 . Therefore, column j1 either is not included into permutation, or there exists parameter pj2j1 , which

is included. In the first case there must be at least one more parameter included into the permutation

from the columns associated with the indices of X1, because otherwise the total length of the permutation

would be less that L, so consider that parameter instead of pj1j0 . In the second case, see where the edge

associated with pj2j1 leads to. If xj2 ∈ Y1, then a path have been found. If xj2 ∈ Y2, keep going through the

permutation until Y1 is reached or this is determined that there exists another parameter in this permutation

in a column associated with X1.

Therefore, there is at least L− |Y2| independent paths starting with a node in X1 and reaching nodes in

Y1. Because adding new edges does not decrease the number of the existing independent paths, N ≥ l−|Y2|

From Steps 3 and Step 4 I conclude that L = N + |Y2| �



45

A.2. Review of the Rank Condition. Because of the normality assumption, f(Y |Z) can be uniquely

specified by matrices Λ and Ω, which are defined by:

E(Y |Z) = A−1B · Z ≡ Λ · Z(32a)

Var(Y − E(Y |Z)) =
(
ATΣ−1A

)−1 ≡ Ω(32b)

Knowing matrices Λ and Ω, however, does not suffice for estimation of parameters A, B, and Σ of the

structural model (8) unless n = 1. The reason is that there exist many different structural models ob-

servationally equivalent to model (8), and all observationally equivalent models by definition produce the

same values of Λ and Ω. Indeed, two models with different parameter values (A,B,Σ) and (Ã, B̃, Σ̃)

are observationally equivalent if and only if there exists nonsingular n × n matrix D such that Ã = DA,

B̃ = DB, and Σ̃ = DΣDT , which result can be verified directly using (32). To estimate the structural

model, therefore, additional restrictions need to be imposed on the matrices of parameters, which are known

as the identification constraints.

The identification constraints on row i of parameters P̄
n×(n+m)

=

(
A
n×n

−B
n×m

)
are written as:

(33) eTi P̄Ψi = 0

where ei is the ith row of the identity matrix, and Ψi is the matrix summarizing the constraints imposed

on row i of P̄.

Consider example (5). Matrix P̄ for this model is given by:

P̄ =

(
1 0 0 −b11 0
−a21 1 0 0 −b22
−a31 −a32 1 0 0

)
The constraints on parameters are summarized by:

Ψ1 =

(
0 0 0
1 0 0
0 1 0
0 0 0
0 0 1

)
Ψ2 =

(
0 0
0 0
1 0
0 1
0 0

)
Ψ3 =

(
0 0
0 0
0 0
1 0
0 1

)

The identification of a given parameter is usually verified in the literature using the rank condition. The

rank condition says that the parameters in row i of matrix P̄ are identified if and only if rank
(
P̄Ψi

)
= n−1,

see, for example, Greene (2012). In the considered example (5), all parameters are identified in almost all

parameter points, because in almost all parameter points I have:

rank
(
P̄Ψ1

)
= rank

(
0 0 0
1 0 −b22
−a32 1 0

)
= 2; rank

(
P̄Ψ2

)
= rank

(
0 −b11
0 0
1 0

)
= 2; rank

(
P̄Ψ3

)
= rank

(−b11 0
0 −b22
0 0

)
= 2.
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A.3. Proof of Proposition 1. Let Pi be the set of parents of yi, and P̄i = Pci \ yi, where Pci is the

complement of Pi in X , and “\” is the set difference operator. Let Y−i = Y \ yi.

Proof of Proposition 1. Consider matrix Mi obtained from P̄Ψi by deleting the ith row. Since each element

in the ith row of P̄Ψi is constrained to zero by definition of Ψi, I have: rank (Mi) = rank
(
P̄Ψi

)
.

By definition of Ψi, each column of P̄Ψi, as well as each column of Mi, has the index of a variable from

P̄i, and each node from P̄i has the index of a column of Mi. Therefore, using notation from Lemma 1, I

can write: Y2 ∪ X1 = P̄i. Each row of Mi has the index of an endogenous variable, and each endogenous

variable except yi has the index of a column of Mi, so I can use: Y1 ∪Y2 = Y−i. This gives: Y1 = Y−i ∩Pi,

Y2 = Y−i ∩ P̄i, and X1 = Z ∩ P̄i.

Let me prove the necessity of the graphical rank condition. If yi is identified then the rank condition is

satisfied, so rank (Mi) = n− 1, and there exists n− 1 independent columns in Mi; consider any set of n− 1

independent columns. The determinant of the matrix obtained from the independent columns of Mi must

be not zero, therefore, in Leibniz formula for determinant of Mi, there exists at least one unconstrained

permutation of length n − 1. Then, from Lemma 1, there exists n − 1 − |Y2| = |Y1| independent paths

starting in X1 and reaching Pi. Therefore, for each yj ∈ Y−i ∩Pi there exists an independent path starting

in Z∩P̄i and reaching yj . Proposition 1 also says that for each node zj ∈ Pi∩Z there exists an independent

path starting in Z and reaching zj ; however, the latter condition is always satisfied.

Now let me prove the sufficiency. If for each parent of yi there exists and independent identifying path,

then for each yj ∈ Y1 there exists an independent path starting with a node in X1 and reaching yj . By Lemma

1, there exists a partial permutation of length (n− 1) in Mi such that each parameter of this permutation

is not constrained to zero. I take the columns of Mi associated with this permutation, and calculate the

determinant of the obtained square matrix. Since the determinant can be calculated using Leibniz formula

as a sum over all permutations, and since one permutation is not constrained to zero, the determinant is zero

only if this non-zero permutation is exactly offset by other non-zero permutations, which does not happen

in almost all parameter points. Therefore, in almost all parameter points rank (Mi) = (n− 1), so the rank

condition is satisfied. �

Appendix B. Proof of Proposition 2

B.1. Review of Rubio-Ramı́rez et al. (2010) condition for identification. Unlike the literature on

simultaneous equations models, the literature on structural vector autoregression models usually assumes

that the structural shocks are independent, so matrix Σ is diagonal. In the Gaussian case, two SVAR models
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are said to be observationally equivalent if they produce the same values of Λ and Ω defined by 32. This

is well-known that two SVAR models defined by parameter points (A,B) and (Ã, B̃) are observationally

equivalent if and only if there exists rotation matrix R such that Ã = RA and B̃ = RB, where rotation

matrix R by definition must satisfy RTR = I. Since the rotation matrix has n(n−1)/2 degrees of freedom, a

necessary condition for identification formulated by Rothenberg (1971) requires at least n(n−1)/2 constraints

imposed on matrix P̄ = (A −B) for full identification.

Rubio-Ramı́rez et al. (2010) propose a sufficient condition for identification, which is applicable to a much

larger class of identification constraints than I consider in this paper. However, I concise the analysis to the

case, where the identification constraints are formulated as (33). To verify the identification of parameters

located in the ith row of P̄, calculate the rank of matrices M1,M2, . . . ,Mi composed in the following way:

(34) Mj =


P̄Ψj


[

Ij×j

]
[
0(n−j)×j

]


The rank of matrices Mj for j = 1, 2, . . . , i may depend on the order of variables in vector Y . Rubio-Ramı́rez

et al. (2010) prove that if there exists such order that for j = 1, 2, . . . , i the rank of Mj is n, then the ith

row of P̄ is globally identified in almost all parameter points.

In example (6), to verify the identification of parameters under the assumption of shocks independence,

reorder variables in the reverse order, and calculate the rank of the following matrices:

(35) M1 =


0 0 1

0 −b22 0

−b11 −b12 0

 M2 =


0 1 0

0 0 1

−b11 0 0

 M3 =


1 0 0

0 1 0

0 0 1


Matrices M1, M2, and M3 have rank 3 in almost all parameter points, therefore, this model is fully identified

in almost all parameter points.

Theory of partial identification, reviewed in Christiano et al. (1999), proposes another sufficient condition

for identification. If all variables in Y can be divided into three groups, such that the first group has the

only variable yi, the second group includes the variables, which influence yi but not influenced by yi, and

the third group includes the variables influenced by yi, but which do not influence yi, then yi is identified. I

combine the sufficient condition of Rubio-Ramı́rez et al. (2010) with the theory of partial identification, and

in this way I can prove partial identification of a new class of models. Consider, for example, the following
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identification restrictions:

(36) A =



a11 a12 0 0

a21 a22 0 0

0 a32 a33 a34

0 0 a43 a44


B =




4×0

The theory of partial identification does not prove identification of any parameter in this model, because

each variable of Y pertain to one of causal cycles. Rubio-Ramı́rez et al. (2010) condition for identification

is not satisfied for any parameters, because whichever the order of variables in Y , rank (M1) < 4. However,

I can use Proposition 2 to show that a combination of these approaches suffices to prove that the third and

forth lines of A in (36) are identified.

B.2. Proof of Proposition 2. Use the notation that was introduced in Appendix A, and add the following

one. Let Φ ⊂ Y be the set of nodes, which have been identified, and Φc be the complement of Φ in Y, so

Φc = Y \ Φ, where “\” is the set difference operator. Let Di be the set of descendants of yi, Dci = Y \ Di,

and D̄i = Dci \ yi. By definition in Proposition 2, a path in the causal diagram is identifying path for parent

yj ∈ Pi of node yi if it starts with a node in Z ∪ Φ ∪ D̄i and reaches yj . Proposition 2 says that if for

each node from Pi there exists an independent identifying path, node yi is globally identified in almost all

parameter points.

Proof of proposition 2. Since the order of variables is arbitrary, reorder the variables in such way that the

variables from D̄i have indices 1, 2, . . . , n1, where n1 =
∣∣D̄i∣∣. Divide A into four matrices in a similar manner:

A =

 A11
n1×n1

A12

A21 A22


Observe that matrix A12 must be zero, because in the opposite case there would exist a path from a

descendant of yi to a non-descendant, but then the latter vertex would also be descendant of yi, which

produces a contradiction.

Apply the argumentation from the literature on partial identification, reviewed, for example, in Christiano

et al. (1999), which proves that if block A12 is constrained to 0, then two models defined by parameter

points (A,B) and
(
Ã, B̃

)
satisfying this restriction are observationally equivalent if and only if there exists

rotation matrix R, such that Ã = RA, B̃ = RB, and R has the following block structure:
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(37) R =

 R11
n1×n1

0

0 R22


Now use the approach developed in Rubio-Ramı́rez et al. (2010). Reorder the variables in Y in such way

that the variables with indices 1, 2, . . . , n1 be the non-descendants of yi, variables with indices n1 + 1, n1 +

2, . . . , i− 1 be the variables associated with Φ ∩ Di, yi be the node which identification is being examined,

and variables with indices i+ 1, i+ 2, . . . , n be the variables associated with Φ̄ ∩ Di.

Consider matrix M̂i obtained from PΨi by deleting rows 1, 2, . . . , i, and prove that if yi is not identified

then the row rank of M̂i is not full, in which case the rank of Mi defined by (34) is also not full. Indeed, if

yi is not identified then there must exist rotation matrix R, having the following properties. First, because

of its special structure given by (37), and because nodes yn1+1, yn1+2, . . . , yi−1 are identified, R has the

following structure:

(38) R =

 I
(i−1)×(i−1)

0

0 R33
(n−i)×(n−i)


Second, since yi is not identified, at least one non-diagonal element in the first row of R33 must be different

from zero. Let vTi be the vector obtained from the first row of R33 by removing the first element, so I have

vi 6= 0. Finally, since the two models must satisfy the identification constraints, I have eiPΨi = 0 and

eiRPΨi = 0, so ei (R− I) PΨi = 0. Taking into account the properties of R, I get vTi M̂i = 0, so the row

rank of M̂i is not full. This proves that if the row rank of M̂i is full then node yi is identified.

The final step is to apply Lemma 1. By construction of M̂i, Y2 ∪ X1 = P̄i, and Y1 ∪ Y2 = Φc ∩ Di.

Therefore, Y1 = Φc ∩ Di ∩ Pi, Y2 = Φc ∩ Di ∩ P̄i, and X1 = P̄i ∩
(
Φ ∪ D̄i ∪ Z

)
. Lemma 1 proves that if

for each yj ∈ Y1 there exists an independent path starting in X1 and reaching yj , then the row rank of M̂i

is full in almost all parameter points, so yi is identified in almost all parameter points. Proposition 2 also

requires an independent identifying path for each variable in Pi∩
(
Φ ∪ D̄i ∪ Z

)
, but this condition is always

satisfied.

�

Appendix C. Proof of Proposition 5

Proof of Proposition 5. Since the order of variables is arbitrary, assume that i = 1, so the first row in

P̄Ψ1 is constrained to zero. In this appendix I prove the sufficiency of the reduced form rank condition
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for identification. That is, I assume that the rank condition is not satisfied, and prove that in this case

rank (Π (P1|Z1)) < |P1|. To prove the necessity of the reduced form rank condition, I need to assume that

rank (Π (P1|Z1)) < |P1|, and make all steps in the reverse order to show that the full form rank condition

is not satisfied.

If the rank condition is not satisfied, there exists vector V =

(
0 v2 v3 . . . vn

)T
6= 0 such that

V TPΨi = 0T . Rewrite (8) in terms of expectations Y E = E(Y |Z), and multiply it from the left by V T :

(39) V TAY E = V TBZ

Make the following observations about (39). First, the parameters from the first rows of matrices A and

B are not present in this equation, because v1 = 0. Second, V T P̄ cannot be proportional to the first line

of P̄, because otherwise the first line of P could be expressed as a linear combination of the other lines, in

which case matrix A would be singular, but I have assumed that this is not true. Third, for the same reason,

V TA is not zero. Finally, by construction of V , all columns in V TA and V TB associated with variables in

P̄i are zero, so variable from P̄i are ignored in (39). Therefore, I can rewrite (39) in the following form:

(40) V T ÃỸ E = V T B̃Z̃,

where matrix Ã is obtained by deleting the columns associated with the indices of nodes P̄1∩Y from matrix

A, matrix B̃ is obtained from B by deleting the columns associated with P̄1 ∩ Z, finally, Ỹ E and Z̃ are

obtained from Y E and Z by removing the variables associated with nodes in P̄1.

Now I have two linear combinations of Ỹ E and Z̃, which are zero in the equilibrium: the first linear

combination is given by the first line in (8), and the second is given by (40). Both this combination are not

zero and they are linearly independent, because, as I discuss above, matrix A would be singular. Define

these combinations as:

ΛT1

Ỹ E

Z̃

 = 0(41a)

ΛT2

Ỹ E

Z̃

 = 0(41b)

where Λ1 is obtained from the first line of (8), and Λ2 is just another way to write(40); as I discuss above,

Λ1 and Λ2 a linearly independent.
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Consider matrix Π̂ defined by:

(42) E


Ỹ E

Z̃


∣∣∣∣∣∣∣Z
 = Π̂Z

By this definition, matrix Π(Pi|Zi) from Proposition 5 can be obtained by deleting the first row from Π̂.

For j = 1, 2 I have ΛTj Π̂ = 0. Since Λ1 and Λ2 are linearly independent,

rank (Π(Pi|Zi)) ≤ rank
(
Π̂
)
≤ nrow

(
Π̂
)
− 2 = nrow (Π(Pi|Zi))− 1

So the row rank of Π(Pi|Zi) is not full. �

Appendix D. Identification assumptions for the estimated SVAR model

To formulate robust identification restrictions, I analyze the concentration network depicted in Figure 8,

and compare it with predictions from the macroeconomic theory. I need to solve the clique cover problem

for the partial concentration network knowing that it has a solution with no more than 6 cliques, and taking

into account that the evidence presented in Figure 8 is not precise, because some edges may be missing for

the reason of low power of the respective tests, and other edges may represent false discoveries. Therefore,

I need to make reasonable assumptions about the true moral graph, taking into account the theory and the

estimated concentration network.

For each equation, I divide all variables into three groups. The first group includes the variables assumably

present in the respective structural equation, the second group consists of the variables assumably absent,

and the variables for which no precise conclusions have been made are put into the third group. All variables

from the first and third groups are included into the structural equation of the estimated model, and all

variables from the second group are excluded from this equation. The variables from the first and second

groups are used to analyze the partial concentration network and to make conclusions about the presence

of other variables in the respective structural equation, and the variables from the third group are not used

for this purpose.

I use the following two-step procedure to formulate testable identification restrictions for each structural

equation. First, I use the theory to attribute each variable to one of the three groups defined in the previous

paragraph. Second, I analyze the partial concentration network depicted in Figure 8. For the variables

from the first and second groups I verify whether the partial concentration network is consistent with the

theoretical assumptions that have been made in the first step. For the variables from the third group I verify

whether the concentration network helps to attribute them to the first or to the second group. Therefore,
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the theoretical assumptions about the variables in the third group may be revised after the analysis of the

partial concentration network.

There are n = 6 endogenous variables, so I need at least n(n − 1)/2 = 15 identification restrictions to

meet the Rothenberg’s (1971) necessary condition for the full identification. My objective, however, is not

to find exactly 15 restrictions, but rather to find a set of restrictions sufficient for the full identification,

possibly over-identifying the structural model but in such way that the over-identifying restrictions are not

significantly binding. The reason is that relaxing restrictions, which are known to be true, widens confidence

intervals without any gains in the consistency or efficiency. Then I use log likelihood test to verify whether

the hypothesis that over-identifying restrictions are not binding is not rejected.

D.1. Identification of the unemployment equation. I begin with theoretical assumptions about the

unemployment equation, defining the equilibrium value of u. I assume that the structural shock εu comprises

the demand and supply shocks on the labor market. Since I do not distinguish between the labor demand

and the labor supply equations, I refer to εu as to the unidentified unemployment shock. The structural

equation for u, therefore, accounts both for the labor demand and for the labor supply effects.

I make the following theoretical assumptions. First, I assume that the aggregate demand shock affects

the unemployment, so the contemporaneous value of c is present in the structural equation for u, and the

lagged values of c may be present or not in this equation. Second, I do not make any assumptions about the

influence of the aggregate supply shocks onto the unemployment, so the contemporaneous and lagged values

of g may be present or not in this equation. Third, I assume that the unemployment is persistent, so the

first lag of u is present in this equation, and the second lag may be present or not. Fourth, I assume that r

and πc affect u only with the mediation of the aggregate demand and aggregate supply, and because I have

included c and g into the estimated structural equation for u, I do not have to include any contemporaneous

or lagged values of r and πc. Finally, I assume that π may be present in the unemployment equation,

because the inflation may produce monetary illusions.

Consider now the evidence for the unemployment equation in Figure 8. Since c, u, and Lu are assumably

present in this equation, and because each structural equation produces a clique in the partial moral graph,

all variables present in this equation are adjacent to each other and to c, u, and L.u in the partial moral

graph. The partial concentration network depicted in Figure 8, however, gives only an estimation of the

partial moral graph, where some edges may be absent because of low power of the tests, and where some

present edges may represent false discoveries. Therefore, I need to make reasonable assumptions about the

true moral graph taking into account the theory and the estimated concentration network.
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First, I assess whether L2u is present or not in the structural equation for u. As I discuss above, the

theory does not provide a definite answer to this question, so consider the partial concentration network in

Figure 8 and try to find an answer there. Since c, u, and L.u are assumed to be present in this equation,

if L2u is also present, then variables u, Lu, L2u, and c should form a clique in the partial moral graph.

There is some support for this hypothesis in Figure 8. Edge L2u− u is significant at 10% q-value level, and

L2u − Lu is significant at 10% p-value level. Edge L2u − c is not significant, possibly because the power

of the test associated with this edge is week, which is consistent with the evidence presented in Table 2

that the relevance of L2u is not very strong, see the the diagonal element for L2u in this table. There is no

evidence that L2u is adjacent to any other node in the concentration network, so the structural equation for

u is probably the only one where L2u is included. Taking into account all these facts, I revise the theoretical

assumption about L2u, and assume hereafter that L2u is present in the structural equation for u, see Table

3.

Consider now g and its lags. Edge L2g − u is significant at 10% q-value level, and edge L2g − Lu is

significant at 10% p-value level. There is no other significant edges connecting L2g to any node of the

graph, which suggests that L2g is present only in the equation for u. Hereafter I assume that L2g is in the

equation for u.

There is no evidence that Lg is connected to any node in the partial concentration network, so there is

no evidence that Lg enters into the equation for u. The adjacency of g to u and c in the partial concen-

tration network can be explained by other structural equations (see Table 3 summarizing all identification

assumptions), and there is no evidence that g is adjacent to Lu, L2u or L2g. So neither for Lg nor for g

there is evidence that the variable enters into the equation for u. However, having assumed that L2g enters

into the equation for u, it is prudent to assume that Lg and g may also enter there.

I have made the theoretical assumption that the contemporaneous and lagged values of r and πc influence

u only with the mediation of c and g, so they are not included into the equation for u. This assumption

does not contradicts the partial concentration network in Figure 8, because there is no significant edges

connecting any contemporaneous or lagged values of r and πc to Lu, L2u or L2g. The significant edges

connecting the contemporaneous or lagged values of r and πc to the contemporaneous values of c and u are

predicted below by other structural equations. There is no evidence that π or its lags are adjacent to the

members of the structural equation for u, however, it is prudent to assume that π may be in the structural

equation for u, because it may create monetary illusions.
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D.2. Identification of the monetary policy rule. I assume that the federal interest rate responds to

the shocks of the GDP gap and of the inflation rate. The GDP gap is measured in the estimated model by c

and u, and the inflation rate is measured by π and πc. However, following the literature on SVAR models, I

do not assume that the contemporaneous values of c, u, and π are necessarily present in the monetary policy

rule equation, because the Federal Reserve may have only lagged data, or because it may intentionally not

respond to the contemporary value of π assuming that the contemporaneous values of c, u, and πc provide

more information about the future inflation than π itself when the lagged values of π are taken into account.

Figure 8 does not provide any empirical support for the assumption that the contemporaneous value of πc is

present in the monetary policy rule equation, nevertheless I follow the literature on SVARs, assuming that

πc may be present. The GDP growth rate and its lagged values may be included or not into the monetary

policy rule equation, and the reason not to include is that the GDP gap measured by c and u has already

been included. I assume that the policy rule is persistent, so Lr is present in the policy rule, and L2r may

be present or not.

Consider Figure 8. There is no evidence that L2r is present in any structural equation, so to narrow

the confidence intervals, I exclude it from the entire model. There is no evidence that g or its lagged

values are present in the structural equation for r. However, including g and Lg into the monetary policy

rule makes the confidence intervals for the response function of g to the monetary policy impulse narrower

without considerably affecting its expected value. Therefore, I assume that g and Lg may be present in the

monetary policy rule, but L2g is not included.

Consider the contemporaneous value of u. Edge u− r is significant at 5% q-value level, and edge u− Lr

is significant at 10% p-value level, but there is no significant edges making r and Lr adjacent to the other

variables present in the equation for u. This observation is consistent with the assumption that u is present

in the equation for r, but r and Lr are not present in the equation for u. Therefore, I assume that u is in

the equation for r. There is no evidence that Lu or L2u affect r, but this is prudent to assume that they

may.

Observe that r, Lr, c, and Lc form a significant clique in the partial concentration network. This clique

may be explained by the assumption that c and Lc are present in the equation for r, or by the assumption

that r and Lr are present in the equation for c, but I cannot distinguish between these two assumptions.

Therefore, I assume that any assumption may be true, so c and Lc may be present in the equation for r,

and r and Lr may be present in the equation for c. There are edges L2c− r and L2c−Lr significant at 10%

p-value level, indicating that L2c may be in the policy rule equation.
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There are significant edges in the partial concentration network, making Lπc, L2πc, and Lπ adjacent to r

and Lr, indicating that they are present in the monetary policy rule. However, there is no evidence that π,

Lπ or πc are present there. Taking into account this evidence, I assume that π is not present in the Taylor

rule, Lπc, L2πc, and Lπ are present there, and Lπ and πc may be present or not.

D.3. Phillips curves. The theoretical assumptions concerning the Phillips curves are obtained assuming

new Keynesian Phillips curve augmented with the Lucas’s (1972) island assumption. They predict that

π depends on the contemporaneous values of c and πc, and may depend on the contemporaneous value

of g and lagged values of c, πc and g. Similarly, πc depends on the contemporaneous values of g and π,

and may depend on the contemporaneous value of c and lagged values of c, g, and π. The Lucas’s (1972)

island assumption excludes the contemporaneous and lagged values of r and u from the Phillips curves. The

persistency assumption is that π depends on Lπ and may depend on L2π. Similarly, πc depends on Lπc

and may depend on L2πc.

Consider Figure 8, and start with the Phillips curve for π. Edge L2π − π is significant at 10% q-value

level, and edge L2π−Lπ is significant at 10% p-value level, indicating that L2π is present in the structural

equation for π. The edges connecting L2π to r and Lr have been previously explained by the presence of

L2π in the Taylor rule. Therefore, I assume that L2π is present in the Phillips curve for π and in the Taylor

rule, but there is no evidence that L2π is present in any other structural equations.

The partial correlations between L2πc and πc, and between L2πc and πc are not significant, so there is

no evidence that L2πc is present in the Phillips curve for πc. From the theoretical perspective, however,

this is prudent to assume that L2πc may be present there.

There is a strong evidence that π and πc are both included at least into one structural equation, however,

there is no evidence that π or its lags enter into the Phillips curve for πc, or that πc or its lags enter into

the Phillips curve for π. Indeed, the partial correlation between π and πc is significant at 1% q-value level.

The partial correlations between Lπ and πc, and between L2π and πc are not significant, pointing at no

evidence that πc is present in the structural equation for π. Similarly, the partial correlation between Lπc

and π is not significant, so there is no evidence that π is present in the equation for πc. However, I make

the theoretically prudent assumption that π is present in the structural equation for πc, and Lπ may be

present there. Similarly, πc is present in the structural equation for π, and Lπc may be present or not.

There is no evidence in Figure 8 against the Lucas’ island assumption. Indeed, there is not significant

edges making at least one contemporaneous or lagged value of r or u adjacent to π or πc. Therefore, I assume
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that this assumption is correct, so the contemporaneous and lagged values of r and u are not included into

the Phillips curves.

D.4. Identification of the AD and AS equations. In the beginning of Section 8 I made the rough

assumption that an increase in g keeping constant c is interpreted as a positive AS shock, and an increase in

c keeping constant g as is interpreted a simultaneous positive AD and negative AS shock. For identification

of AD and AS shocks in this section, however, I use the following refined assumption. I assume that the

state of the aggregate demand and of the aggregate supply is described by the contemporaneous values of

c and g, so all variables affecting c or g may affect the aggregate demand and aggregate supply equation.

The AD and AS equations can be represented as:

ADt = αct + βgt(43a)

ASt = (1− α) ct + (1− β) gt(43b)

where α and β are unknown parameters. The rough assumption that an increase in g keeping constant c

is interpreted as a positive AS shock corresponds to α = 1. To identify the structural model, however, I

introduce a more sophisticated identification restriction, and assume that α may be not 1. Namely, the AD

and AS equations are distinguished one from the other using the only untestable identification assumption

that the commodity price inflation affects only the aggregate supply, but not the aggregate demand. The

other identifying assumptions are the same for the AD and AS equations.

I make the following theoretical assumptions about the AD and AS equations. I assume that the com-

modity price inflation is not included into the AD equation, the contemporary value of πc is included into

the AS equation, and the lags of πc may be included or not into both equations. The GDP deflator inflation

is included into the AD and AS equations, and its lags may be included or not. The AD shocks are assumed

to be persistent, so the lagged value of c is present in the AD equation and may be present in the AS

equation. I assume that AS and AD shocks affect the GDP growth rate, so g is present in both equations.

I assume that the effect of u on the aggregate demand may be delayed due to the income channel effect, so

u and its lags are likely to be present in the AD equation. The contemporaneous interest rate influences

the AD equation by affecting the consumption and investment, so it is present in the AD equation. The

contemporaneous values of r may be present or not in the AS equation because of the lags in the investment

decisions and implementation, but the lagged values of r are likely to be present there. Finally, since g is a

growth value and c is a level value, if c is present into the equation for g, Lc should also be present there.

The contemporaneous and lagged values of the other variables may be present or not in each equation.
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Let us take into account the evidence depicted in Figure 8. There is no evidence that L2r, L2g, L2π, or

L2πc is adjacent to c, Lc, or g. Therefore, I assume that these variables are absent in the AD and in the AS

equations. Edge L2c− c is significant at 10% q-value level, and edge L2c− Lc is significant at 10% p-value

level, so I assume that L2c is present in the AD equation, and may be present or not in the AS equation.

There is also no evidence that Lg and L2u are present in any equation, however, this is prudent to assume

that it may be present there. Since Lπc is adjacent to c and Lc, and because I have assumed that Lπc

does not affect the AD, I assume Lπc is present in the AS equation. Edges r − c, r − Lc, and r − L2c are

significant respectively at 10% q-value level, 10% q-value level and 10% p-value level, which supports the

assumption that r is included into the AD equation.
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