Systems of resultants

Yaroslav Abramov *† ${ }^{\text {* }}$

Abstract

Writing down convenient explicit formulas for systems of resultants is an important but essentially open problem. In this paper I'll give such a formula derived from the ordinary multivariate resultant.

Acknowledgements I'm very thankful for A.L. Gorodentsev for useful discussions. The author is partially supported by AG Laboratory SU-HSE, RF government grant, ag. 11.G34.31.0023

1 Intro

Fix some algebraically closed field \mathbb{k}.
Problem 1. Given a system of polynomial equations

$$
\left\{\begin{array}{l}
f_{0}\left(x_{0}, \ldots, x_{n}\right)=0 \tag{1}\\
\ldots \\
f_{m}\left(x_{0}, \ldots, x_{n}\right)=0
\end{array}\right.
$$

$\operatorname{deg} f_{i}=N_{i}$,

$$
f_{j}\left(x_{0}, \ldots, x_{n}\right)=\sum_{\sum_{i} s_{i}=N_{j}} a_{j, s_{0}, \ldots, s_{n}} x_{0}^{s_{0}} \cdot \ldots \cdot x_{n}^{s_{n}}
$$

How to determine if there exists a non-zero solution of (11)?
It is well-known after WdW that there exists a finite set of polynonials on $a_{j, s_{0}, \ldots, s_{n}}$ with integer coefficients $R_{l}(a) \in \mathbb{Z}\left[a_{j, s_{0}, \ldots, s_{n}}\right]_{j, s_{0}, \ldots, s_{n}}$, such that
$($ there exists a non-zero solution of (11) $) \Longleftrightarrow \forall l R_{l}(a)=0$
Such a set of polynomials $\left(R_{l}(a)\right)$ is called a system of resultants.
Example. Let $\operatorname{deg} f_{j}=1, j=0, \ldots, m, f_{j}(x)=\sum_{i} a_{j i} x_{i}$. Then the system of resultants is the set of maximal minors of matrix

$$
\left(\begin{array}{ccc}
a_{00} & \ldots & a_{0 n} \\
\ldots & \ldots & \ldots \\
a_{m 0} & \ldots & a_{m n}
\end{array}\right)
$$

Problem 2. Given a system of polynomial equations

$$
\begin{gather*}
\left\{\begin{array}{l}
f_{0}\left(x_{0}, \ldots, x_{n}\right)=0 \\
\ldots \\
f_{n}\left(x_{0}, \ldots, x_{n}\right)=0
\end{array}\right. \tag{2}\\
\operatorname{deg} f_{i}=N_{i},
\end{gather*}
$$

[^0]$$
f_{j}\left(x_{0}, \ldots, x_{n}\right)=\sum_{\sum_{i} s_{i}=N_{j}} a_{j, s_{0}, \ldots, s_{n}} x_{0}^{s_{0}} \cdot \ldots \cdot x_{n}^{s_{n}}
$$

How to determine if there exists a non-zero solution of (2)?
It is also well-known (see GZK for a modern explanation) that there exist an irreducible polynonial on $a_{j, s_{0}, \ldots, s_{n}}$ with integer coefficients

$$
R(a) \in \mathbb{Z}\left[a_{j, s_{0}, \ldots, s_{n}}\right]_{j, s_{0}, \ldots, s_{n}},
$$

such that

$$
(\text { there exists a non-zero solution of (2) }) \Longleftrightarrow R(a)=0
$$

Such a polynomial $(R(a))$ is called a resultant and also denoted as $R\left(f_{0}, \ldots, f_{n}\right)$
Example. Let $f_{i}(x)=\sum_{j} a_{i j} x_{j}$ then $R\left(f_{0}, \ldots, f_{n}\right)=\operatorname{det}\left(a_{i j}\right)$.
Example. Let $f(x, y)=\sum_{i} a_{i} x^{i} y^{n-i}, g(x, y)=\sum_{i} b_{i} x^{i} y^{m-i}, a_{0} \neq 0, b_{0} \neq 0$. Then

$$
R(f(x, y), g(x, y))=\operatorname{Res}(f(z, 1), g(z, 1))
$$

where Res is a famous Sylvester determinant.

$$
\left.\operatorname{det}\left(\begin{array}{ccccccc}
a_{0} & a_{1} & \ldots & a_{n} & & & \\
& a_{0} & a_{1} & \ldots & a_{n} & & \\
& & \ddots & \ddots & & \ddots & \\
& & & a_{0} & a_{1} & \ldots & a_{n} \\
b_{0} & b_{1} & \ldots & b_{m} & & & \\
& b_{0} & b_{1} & \ldots & b_{m} & & \\
& & \ddots & \ddots & & \ddots & \\
& & & b_{0} & b_{1} & \ldots & b_{m}
\end{array}\right)\right\} m
$$

2 Results on resultants

Consider the system

$$
\begin{gather*}
\left\{\begin{array}{l}
f_{0}\left(x_{0}, \ldots, x_{n}\right)=0 \\
\ldots \\
f_{m}\left(x_{0}, \ldots, x_{n}\right)=0
\end{array}\right. \tag{3}\\
\operatorname{deg} f_{j}=n_{j} \\
f_{j}\left(x_{0}, \ldots, x_{n}\right)=\sum_{\sum_{i} s_{i}=n_{j}} a_{j, s_{0}, \ldots, s_{n}} .
\end{gather*}
$$

Fix some positive integer numbers $m_{i}, i=0, \ldots, n$, and $k_{i j}, i=0, \ldots, n ; j=0, \ldots, m$, such that $m_{i}=k_{i j}+n_{j}$. Consider polynomials

$$
A_{i j}\left(x_{0}, \ldots, x_{n}\right)=\sum_{\sum_{l} s_{l}=k_{i j}} b_{i, j, s_{0}, \ldots, s_{n}} x_{0}^{s_{0}} \cdot \ldots \cdot x_{n}^{s_{n}}
$$

with indeterminate coefficients $b_{i, j, s_{0}, \ldots, s_{n}}$.
I will consider

$$
R\left(\sum_{j=0}^{m} A_{0 j} f_{j}, \sum_{j=0}^{m} A_{1 j} f_{j}, \ldots, \sum_{j=0}^{m} A_{n j} f_{j}\right)
$$

as a polynomial in $b_{i, j, s_{0}, \ldots, s_{n}}$ for various $i, j, s_{0}, \ldots, s_{n}$.

Theorem 1. System (3) has a non-zero solution iff

$$
R=R\left(\sum_{j=0}^{m} A_{0 j} f_{j}, \sum_{j=0}^{m} A_{1 j} f_{j}, \ldots, \sum_{j=0}^{m} A_{n j} f_{j}\right) \equiv 0
$$

as a polynomial in the coefficients $b_{i, j, s_{0}, \ldots, s_{n}}$ of $A_{i j}$. Thus, coefficients of R form the system of resultants of f_{0}, \ldots, f_{m}.

Example. Let $f_{j}(x)=\sum_{i} a_{i j} x_{i}$ and $\operatorname{deg} A_{i j}=0$ then

$$
R\left(\sum_{j=0}^{m} A_{i j} f_{j}\right)_{i=0}^{n}=\sum_{J \subset\{0, \ldots m\},|J|=n+1} \operatorname{det}\left(a_{i j}\right)_{i=0, \ldots, n, j \in J} \prod_{j \in J} b_{j}
$$

Proof. Assume the contrary. For $x \in \mathbb{P}^{n}$ I put

$$
H_{x}=\left\{\left(A_{i j}\right)_{i j} \mid \sum_{j=0}^{m} A_{i j}(x) f_{j}(x)=0, i=0, \ldots, n\right\}
$$

The condition $R \equiv 0$ is equivalent to

$$
\bigoplus_{i=0}^{n} \bigoplus_{j=0}^{m} S^{k_{i j}}\left(\mathbb{k}^{n+1}\right)=\bigcup_{x \in \mathbb{P}^{n}} H_{x}
$$

If x is not a solution of (3) then H_{x} is a codimension $(n+1)$ linear subspace in

$$
V=\bigoplus_{i=0}^{n} \bigoplus_{j=0}^{m} S^{k_{i j}}\left(\mathbb{k}^{n+1}\right) .
$$

If there are no non-zero solutions of (3) then V is a union of n-parametric family of codimension $(n+1)$ subspaces. We get the contradiction.
Remark. In [GZK] there is a definition of mixed resultant for sections of very ample linear bundles L_{0}, \ldots, L_{n} on a dimension n projective variety. Theorem 1 can be generalised to the case of sections of very ample linear bundles

$$
f_{j} \in H^{0}\left(X, L_{j}\right), j=0 \ldots, m
$$

on a dimension n projective variety X. Consider a system of very ample line bundles $C_{i j}, 0 \leq i \leq n$, $0 \leq j \leq n$, s.t. $B_{i}=C_{i j} \otimes L_{j}$ for all i, j. Then the system of resultants is just the collection of coefficients of

$$
R\left(\sum_{j=0}^{m} A_{i j} \otimes f_{j}\right)_{i=0}^{n}
$$

considered as a polynomial in indeterminate

$$
A_{i j} \in H^{0}\left(X, C_{i j}\right)
$$

Remark. We get only the set-theoretical (not the scheme-theoretical) system of resultants.
There are also some related results (which may be used for simplification of calculations and which can be proved by almost exactly the same prooftext):

Theorem 2. Let $\operatorname{deg} f_{0} \geq \operatorname{deg} f_{1} \geq \ldots \geq \operatorname{deg} f_{m}$ and $k_{i j}=\operatorname{deg} f_{i}-\operatorname{deg} f_{j}$. Then system (3) has a non-zero solution iff

$$
R\left(f_{0}+\sum_{j=n+1}^{m} A_{0 j} f_{j}, f_{1}+\sum_{j=n+1}^{m} A_{1 j} f_{j}, \ldots, f_{n}+\sum_{j=n+1}^{m} A_{n j} f_{j}\right) \equiv 0
$$

as a polynomial on coefficients of $A_{i j}$.

Consider vector subspaces $V_{i j}$ of $S^{k_{i j}}\left(\mathbb{k}^{n+1}\right)$, such that

$$
\left\{A_{i j}(x) \mid A_{i j} \in V_{i j}\right\}=\mathbb{k}
$$

for all $x \in \mathbb{k}^{n+1}$.
Example. $V_{i j}=S^{k_{i j}}\left(\mathbb{k}^{n+1}\right)$
Example. $V_{i j}=\left\{\sum_{l=0}^{n} a_{l i j} x_{l}^{k_{i j}}\right\}$
Theorem 3. System (3) has a non-zero solution iff

$$
R=R\left(\sum_{j=0}^{m} A_{0 j} f_{j}, \sum_{j=0}^{m} A_{1 j} f_{j}, \ldots, \sum_{j=0}^{m} A_{n j} f_{j}\right) \equiv 0,
$$

(where $A_{i j} \in V_{i j}$) as a polynomial on $\bigoplus_{i=0}^{n} V_{i}$. Thus, coefficients of R form the system of resultants of f_{0}, \ldots, f_{m}.
Remark. Theorem 3 is a generalisation of Theorem 1.
Consider vector subspaces V_{i} of $\bigoplus_{j=0}^{m} S^{k_{i j}}\left(\mathbb{k}^{n+1}\right)$, such that

$$
\left\{\left(A_{i 0}(x), A_{i 1}(x), \ldots, A_{i m}(x) \mid\left(A_{0 m}, A_{1 m}, \ldots, A_{i m}\right) \in V_{i}\right\}=\mathbb{k}^{m+1}\right.
$$

for all $x \in \mathbb{k}^{n+1}$
Example. $V_{i}=\bigoplus_{j=0}^{m} S^{k_{i j}\left(\mathbb{k}^{n+1}\right)}$
Example. $V_{i}=\bigoplus_{j=0}^{m} V_{i j}$
Example. $V_{i}=\left\{\left(\sum_{l \neq 0} a_{l i 0} x_{l}^{k_{i 0}}+b x_{0}^{k_{i 0}}, \ldots \sum_{l \neq n} a_{l i n} x_{l}^{k_{i n}}+b x_{n}^{k_{i n}}, \sum_{l=0}^{n} a_{l i(n+1)} x_{l}^{k_{i(n+1)}}, \ldots, \sum_{l=0}^{n} a_{l i m} x_{l}^{k_{i m}}\right)\right\}$
Theorem 4. System (3) has a non-zero solution iff

$$
R=R\left(\sum_{j=0}^{m} A_{0 j} f_{j}, \sum_{j=0}^{m} A_{1 j} f_{j}, \ldots, \sum_{j=0}^{m} A_{n j} f_{j}\right) \equiv 0
$$

(where $\left.\left(A_{i 0}, A_{i 1}, \ldots, A_{i m}\right) \in V_{i}\right)$ as a polynomial on $\oplus_{i=0}^{n} V_{i}$. Thus, coefficients of R form the system of resultants of f_{0}, \ldots, f_{m}.

Remark. Theorem 4 is a generalisation of Theorem 3.

References

[Sh] Shakirov, New and old results in resultant theory, arXiv:0911.5278 [math-ph]
[GZK] Gelfand, Zelevinskiy, Kapranov, "Discriminants, Resultants and Multidimensional Determinants"
[WdW] B.L. Wan Der Warden, "Algebra"
[BKL] Bykov, Kytmanov, Lazman, "Elimination theory in polynomial algebra"
[E] Encarnacion, "An Efficient Method for Computing Resultant Systems", Applicable Algebra in Engineering, Communication and Computing, 9, 1998, p. 243-245

[^0]: *The author is partially supported by AG Laboratory SU-HSE, RF government grant, ag. 11.G34.31.0023
 ${ }^{\dagger}$ Laboratory of Algebraic Geometry, SU-HSE, 7 Vavilova Str., Moscow, Russia, 117312
 \ddagger zroslav@gmail.com

