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Systems of resultants

Yaroslav Abramov ∗†‡

Abstract

Writing down convenient explicit formulas for systems of resultants is an important but essentially

open problem. In this paper I’ll give such a formula derived from the ordinary multivariate resultant.
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1 Intro

Fix some algebraically closed field k .

Problem 1. Given a system of polynomial equations






f0(x0, . . . , xn) = 0
. . .

fm(x0, . . . , xn) = 0
(1)

deg fi = Ni ,

fj(x0, . . . , xn) =
∑

∑

i

si=Nj

aj,s0,...,snx
s0
0 · . . . · xsn

n .

How to determine if there exists a non-zero solution of (1)?

It is well-known after [WdW] that there exists a finite set of polynonials on aj,s0,...,sn with integer
coefficients Rl(a) ∈ Z[aj,s0,...,sn ]j,s0,...,sn , such that

(there exists a non-zero solution of (1)) ⇐⇒ ∀l Rl(a) = 0

Such a set of polynomials (Rl(a) ) is called a system of resultants.

Example. Let deg fj = 1 , j = 0, . . . ,m , fj(x) =
∑

i ajixi . Then the system of resultants is the set of
maximal minors of matrix 



a00 . . . a0n
. . . . . . . . .

am0 . . . amn





Problem 2. Given a system of polynomial equations






f0(x0, . . . , xn) = 0
. . .

fn(x0, . . . , xn) = 0
(2)

deg fi = Ni,
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fj(x0, . . . , xn) =
∑

∑

i

si=Nj

aj,s0,...,snx
s0
0 · . . . · xsn

n .

How to determine if there exists a non-zero solution of (2)?

It is also well-known (see [GZK] for a modern explanation) that there exist an irreducible polynonial
on aj,s0,...,sn with integer coefficients

R(a) ∈ Z[aj,s0,...,sn ]j,s0,...,sn ,

such that
(there exists a non-zero solution of (2)) ⇐⇒ R(a) = 0

Such a polynomial (R(a) ) is called a resultant and also denoted as R(f0, . . . , fn)

Example. Let fi(x) =
∑

j aijxj then R(f0, . . . , fn) = det(aij) .

Example. Let f(x, y) =
∑

i aix
iyn−i , g(x, y) =

∑

i bix
iym−i , a0 6= 0 , b0 6= 0 . Then

R(f(x, y), g(x, y)) = Res(f(z, 1), g(z, 1))

where Res is a famous Sylvester determinant.

det

















a0 a1 . . . an
a0 a1 . . . an

. . .
. . .

. . .

a0 a1 . . . an
b0 b1 . . . bm

b0 b1 . . . bm
. . .

. . .
. . .

b0 b1 . . . bm

















︸ ︷︷ ︸

m+n







m







n

2 Results on resultants

Consider the system







f0(x0, . . . , xn) = 0
. . .

fm(x0, . . . , xn) = 0
(3)

deg fj = nj ,

fj(x0, . . . , xn) =
∑

∑

i

si=nj

aj,s0,...,sn .

Fix some positive integer numbers mi, i = 0, . . . , n, and kij , i = 0, . . . , n; j = 0, . . . ,m, such that
mi = kij + nj. Consider polynomials

Aij(x0, . . . , xn) =
∑

∑

l

sl=kij

bi,j,s0,...,snx
s0
0 · . . . · xsn

n

with indeterminate coefficients bi,j,s0,...,sn .

I will consider

R(

m∑

j=0

A0jfj,

m∑

j=0

A1jfj , . . . ,

m∑

j=0

Anjfj)

as a polynomial in bi,j,s0,...,sn for various i, j, s0, . . . , sn .
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Theorem 1. System (3) has a non-zero solution iff

R = R(
m∑

j=0

A0jfj,

m∑

j=0

A1jfj , . . . ,

m∑

j=0

Anjfj) ≡ 0

as a polynomial in the coefficients bi,j,s0,...,sn of Aij . Thus, coefficients of R form the system of resul-
tants of f0, . . . , fm .

Example. Let fj(x) =
∑

i aijxi and degAij = 0 then

R(

m∑

j=0

Aijfj)
n
i=0 =

∑

J⊂{0,...m},|J|=n+1

det(aij)i=0,...,n,j∈J

∏

j∈J

bj.

Proof. Assume the contrary. For x ∈ P
n I put

Hx = {(Aij)ij |

m∑

j=0

Aij(x)fj(x) = 0, i = 0, . . . , n}.

The condition R ≡ 0 is equivalent to

n⊕

i=0

m⊕

j=0

Skij (kn+1) =
⋃

x∈Pn

Hx

If x is not a solution of (3) then Hx is a codimension (n+ 1) linear subspace in

V =

n⊕

i=0

m⊕

j=0

Skij (kn+1).

If there are no non-zero solutions of (3) then V is a union of n -parametric family of codimension (n+1)
subspaces. We get the contradiction.

Remark. In [GZK] there is a definition of mixed resultant for sections of very ample linear bundles
L0, . . . , Ln on a dimension n projective variety. Theorem 1 can be generalised to the case of sections of
very ample linear bundles

fj ∈ H0(X,Lj), j = 0 . . . ,m

on a dimension n projective variety X . Consider a system of very ample line bundles Cij , 0 ≤ i ≤ n ,
0 ≤ j ≤ n , s.t. Bi = Cij ⊗ Lj for all i, j . Then the system of resultants is just the collection of
coefficients of

R(
m∑

j=0

Aij ⊗ fj)
n
i=0

considered as a polynomial in indeterminate

Aij ∈ H0(X,Cij).

Remark. We get only the set-theoretical (not the scheme-theoretical) system of resultants.

There are also some related results (which may be used for simplification of calculations and which
can be proved by almost exactly the same prooftext):

Theorem 2. Let deg f0 ≥ deg f1 ≥ . . . ≥ deg fm and kij = deg fi − deg fj . Then system (3) has a
non-zero solution iff

R(f0 +

m∑

j=n+1

A0jfj , f1 +

m∑

j=n+1

A1jfj , . . . , fn +

m∑

j=n+1

Anjfj) ≡ 0

as a polynomial on coefficients of Aij .
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Consider vector subspaces Vij of Skij (kn+1) , such that

{Aij(x) | Aij ∈ Vij} = k

for all x ∈ k
n+1 .

Example. Vij = Skij (kn+1)

Example. Vij = {
n∑

l=0

alijx
kij

l }

Theorem 3. System (3) has a non-zero solution iff

R = R(

m∑

j=0

A0jfj ,

m∑

j=0

A1jfj, . . . ,

m∑

j=0

Anjfj) ≡ 0,

(where Aij ∈ Vij ) as a polynomial on
⊕n

i=0 Vi . Thus, coefficients of R form the system of resultants
of f0, . . . , fm .

Remark. Theorem 3 is a generalisation of Theorem 1.

Consider vector subspaces Vi of
⊕m

j=0 S
kij (kn+1) , such that

{(Ai0(x), Ai1(x), . . . , Aim(x) | (A0m, A1m, . . . , Aim) ∈ Vi} = k
m+1

for all x ∈ k
n+1

Example. Vi =
⊕m

j=0 S
kij (kn+1)

Example. Vi =
⊕m

j=0 Vij

Example. Vi = {(
∑

l 6=0

ali0x
ki0

l + bxki0
0 , . . .

∑

l 6=n

alinx
kin

l + bxkin
n ,

n∑

l=0

ali(n+1)x
ki(n+1)

l , . . . ,
n∑

l=0

alimxkim

l )}

Theorem 4. System (3) has a non-zero solution iff

R = R(

m∑

j=0

A0jfj,

m∑

j=0

A1jfj , . . . ,

m∑

j=0

Anjfj) ≡ 0

(where (Ai0, Ai1, . . . , Aim) ∈ Vi ) as a polynomial on ⊕n
i=0Vi . Thus, coefficients of R form the system

of resultants of f0, . . . , fm .

Remark. Theorem 4 is a generalisation of Theorem 3.
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