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Abstract

The famous conjecture of V.Ya.Ivrii [11] says that in every billiard
with infinitely-smooth boundary in a Euclidean space the set of peri-
odic orbits has measure zero. In the present paper we study its complex
analytic version for quadrilateral orbits in two dimensions, with reflec-
tions from holomorphic curves. We present the complete classification
of 4-reflective analytic counterexamples: billiards formed by four holo-
morphic curves in the projective plane that have open set of quadrilat-
eral orbits. This extends the author’s result [5] classifying 4-reflective
planar algebraic counterexamples. We provide applications to real bil-
liards: classification of 4-reflective real planar analytic pseudo-billiards;
solution of the piecewise-analytic case of Tabachnikov’s commuting
planar billiard problem; solution of a particular case of Plakhov’s In-
visibility Conjecture. In particular, we retrieve the solution of Ivrii’s
Conjecture for quadrilateral orbits in planar billiards [7, 8] in piecewise-
analytic case
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1 Introduction

The famous V.Ya.Ivrii’s conjecture [11] says that in every billiard with
infinitely-smooth boundary in a Euclidean space of any dimension the set
of periodic orbits has measure zero. As it was shown by V.Ya.Ivrii [11], his
conjecture implies the famous H.Weyl’s conjecture on the two-term asymp-
totics of the spectrum of Laplacian [21]. A brief historical survey of both
conjectures with references is presented in [7, 8].
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For the proof of Ivrii’s conjecture it suffices to show that for every k ∈ N
the set ot k-periodic orbits has measure zero. For k = 3 this was proved in
[2, 17, 18, 20, 22]. For k = 4 in dimension two this was proved in [7, 8].

Remark 1.1 Ivrii’s conjecture is open already for piecewise-analytic bil-
liards, and we believe that this is its principal case. In the latter case Ivrii’s
conjecture is equivalent to the statement saying that for every k ∈ N the set
of k-periodic orbits has empty interior.

An approach to Ivrii’s conjecture via studying its complexification was
suggested in [5, 6]. The complexified planar Ivrii’s conjecture stated in
loc.cit. and recalled below is the problem to classify all the so-called k-
reflective complex planar analytic billiards: those collections of k complex
analytic curves in CP2 for which the corresponding billiard has an open
set of k-periodic orbits. Results on complexified Ivrii’s conjecture have ap-
plications to another analogue of Ivrii’s conjecture: Plakhov’s Invisibility
Conjecture, see [6]. In [5] the algebraic 4-reflective planar billiards were
classified. In the present paper we give classification of complex analytic
4-reflective planar billiards. At the end of the paper we deduce classification
of the so-called 4-reflective real analytic planar pseudo-billiards: 4-reflective
billiards where the reflection law allows to change the side with respect to
the reflecting tangent line. This generalizes the solution of Ivrii’s Conjec-
ture for quadrilateral orbits in planar billiards [7, 8] in the piecewise-analytic
case. As applications of the new result, we give solutions to the piecewise-
analytic cases of Tabachnikov’s commuting billiard problem and Plakhov’s
Invisibility Conjecture for k = 4 in two dimensions. Basic definitions and
statement of main result are given below.

1.1 Main result: classification of 4-reflective complex ana-
lytic planar billiards

To recall the complexified Ivrii’s conjecture and state the main result, let
us recall some basic definitions contained in [5, section 1]. We consider the
complex plane C2 with the complexified Euclidean metric, which is the stan-
dard complex-bilinear quadratic form dz2

1 + dz2
2 . This defines the notion of

symmetry with respect to a complex line, reflections with respect to com-
plex lines and more generally, reflections of complex lines with respect to
complex analytic (algebraic) curves. The symmetry is defined by the same
formula, as in the real case. More details concerning the complex reflection
law are given in Subsection 2.1.
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Definition 1.2 A complex projective line l ⊂ CP2 ⊃ C2 is isotropic, if ei-
ther it coincides with the infinity line, or the complexified Euclidean quadratic
form vanishes on l. Or equivalently, a line is isotropic, if it passes through
some of two points with homogeneous coordinates (1 : ±i : 0): the so-called
isotropic points at infinity (also known as cyclic (or circular) points).

Convention 1.3 Everywhere below by an irreducible analytic curve in CPn
we mean a non-constant CPn- valued holomorphic function on a connected
Riemann surface.

Definition 1.4 [5, definition 1.3] A complex analytic (algebraic) planar bil-
liard is a finite collection of complex analytic (algebraic) curves a1, . . . , ak ⊂
CP2 that are not isotropic lines; set ak+1 = a1, a0 = ak. A k-periodic billiard
orbit is a collection of points Aj ∈ aj , Ak+1 = A1, A0 = Ak, such that for
every j = 1, . . . , k one has Aj+1 6= Aj , the tangent line TAjaj is not isotropic
and the complex lines Aj−1Aj and AjAj+1 are symmetric with respect to
the line TAjaj and are distinct from it. (Properly saying, we have to take
points Aj together with prescribed branches of curves aj at Aj : this specifies
the line TAjaj in unique way, if Aj is a self-intersection point of the curve
aj .)

Definition 1.5 [5, definition 1.4] A complex analytic (algebraic) billiard
a1, . . . , ak is k-reflective, if it has an open set of k-periodic orbits. In more
detail, this means that there exists an open set of pairs (A1, A2) ∈ a1 × a2

extendable to k-periodic orbits A1 . . . Ak. (Then the latter property auto-
matically holds for every other pair of neighbor mirrors aj , aj+1.)

Problem (Complexified version of Ivrii’s conjecture). Classify
all the k-reflective complex analytic (algebraic) billiards.

Theorem 1.6 A complex planar analytic billiard a, b, c, d is 4-reflective,
if and only if it has one of the three following types:

1) one of the mirrors, say a is a line, c = a, the curves b and d are
symmetric with respect to the line a and distinct from it, see Section 5,
Fig.8;

2) the mirrors are distinct lines through the same point O ∈ CP2, the
pair of lines (a, b) is transformed to (d, c) by complex rotation around O,
i.e., a complex isometry C2 → C2 fixing O with unit Jacobian, see Section
5, Fig.9;

3) a = c, b = d, and they are distinct confocal conics, see Section 5,
Fig.10–13.

4



Remark 1.7 Theorem 1.6 in the algebraic case is given by [5, theorem
1.11], which implies the 4-reflectivity of billiards of types 2) and 3). The
proof of 4-reflectivity of billiards of type 1) repeats the proof in the algebraic
case, see [5, example 1.7].

1.2 The plan of the proof of Theorem 1.6

Theorem 1.6 is obviously implied by the two following theorems.

Theorem 1.8 Every 4-reflective complex planar analytic billiard with at
least one algebraic mirror has one of the above types 1)–3).

Theorem 1.9 Let in a complex planar analytic 4-reflective billiard no mir-
ror be a line. Then all the mirrors are algebraic curves.

Theorems 1.8 and 1.9 are proved in Subsection 3.5 and Section 4 respec-
tively.

Remark 1.10 Theorem 1.6 is local and can be formulated just for a germ
of 4-reflective analytic billiard: a collection of irreducible germs of analytic
curves (a,A), (b, B), (c, C), (d,D) in CP2 such that the marked quadrilat-
eral ABCD lies in an open set of quadrilateral orbits of the corresponding
billiard.

For the proof of Theorem 1.6 we study the maximal analytic extensions of
the mirrors. These are analytic curves parametrized by abstract connected
Riemann surfaces, which we will denote by â, b̂, ĉ, d̂. The latter are called
the maximal normalizations, see the corresponding background material in
Subsection 2.2. We represent the open set of quadrilateral orbits as a subset
in â× b̂× ĉ× d̂ and will denote it by U0. Its closure

U = U0 ⊂ â× b̂× ĉ× d̂

in the usual topology is an analytic subset with only two-dimensional irre-
ducible components. It will be called the 4-reflective set, see [5, definition
2.13 and proposition 2.14]. The complement U \U0 consists of the so-called
degenerate quadrilateral orbits: quadrilaterals ABCD satisfying the reflec-
tion law that have either a pair of coinciding neighbor vertices, or a pair
of coinciding adjacent edges, e.g., an edge tangent to a mirror through an
adjacent vertex, or an isotropic tangency vertex.

One of the main ideas of the proof of Theorem 1.6 is similar to that
from [7, 8, 5]: to study the degenerate orbit set U \ U0. This idea itself
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together with basic algebraic geometry allowed to treat the algebraic case
in [5]. One of the key facts used in the proof was properness (and hence,
epimorphicity) of the projection U → â× b̂ to the position of two neighbor
vertices. In the algebraic case the properness is automatic (follows from
Remmert’s Proper Mapping Theorem [9, p.46 of Russian edition]), but in
the general analytic case under consideration it isn’t. We prove that the
above projection is indeed proper in the analytic case. The most part of the
proof of Theorem 1.6, and in particular, the proof of properness are based on
studying restricted versions of Birkhoff distribution, which was introduced
in [2]. All the Birkhoff distributions are briefly described below; more details
are given in Subsection 2.7.

Definition 1.11 Let M be an n-dimensional (real or complex) analytic
manifold. Let D be a d-dimensional analytic distribution on M , i.e., D(x) ⊂
TxM is a d-dimensional subspace for every x ∈ M and the map x 7→ D(x)
is analytic. Let l ≤ d. An l-dimensional surface S ⊂ M is said to be an
integral surface for the distribution D, if TxS ⊂ D(x) for every x ∈ S.

Consider the projectivization of the tangent bundle TCP2:

P = P(TCP2).

It is the space of pairs (A,L): A ∈ CP2, L ⊂ TACP2 is a one-dimensional
subspace. The space P is three-dimensional and it carries the standard
two-dimensional contact distribution H: the plane H(A,L) ⊂ T(A,L)P is

the preimage of the line L ⊂ TACP2 under the derivative of the bundle
projection P → CP2. The product Pk carries the product distribution Hk.
Let R0,k ⊂ Pk denote the subset of points ((A1, L1), . . . , (Ak, Lk)) such that
for every j one has Aj±1 6= Aj , the lines AjAj−1, AjAj+1 are symmetric
with respect to the line Lj , and the three latter lines are distinct and non-
isotropic. The above product distribution induces the so-called Birkhoff
distribution Dk on R0,k, see [2]. It is well-known [2] that for every analytic
billiard a1, . . . , ak the natural lifting to Pk of any analytic family of its k-
periodic orbits A1 . . . Ak with Lj = TAjaj lies in R0,k and is tangent to
Birkhoff distribution. In particular, if the billiard is k-reflective, then the
lifting to R0,k of an open set of its k-periodic orbits is an integral surface of
Birkhoff distribution.

We will study the following restricted versions Da and Dab of Birkhoff
distribution that correspond respectively to 4-reflective billiards a, b, c, d
with one given mirror a (or two given mirrors a and b). The products â×P3

and â× b̂×P2 admit natural inclusions to P4 induced by parametrizations
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â → a, b̂ → b. Let Ma ⊂ â × P3, Mab ⊂ â × b̂ × P2 denote the closures
of the corresponding pullbacks of the set R0,4. The distributions Da, Dab
are the pullbacks of the Birkhoff distribution D4 on R0,4. They are singular
analytic distributions on Ma and Mab in the sense of Subsection 2.6. For
every billiard as above the natural lifting to â×P3 (â× b̂×P2) of any open
set of its quadrilateral orbits lies in Ma (Mab) and is an integral surface of
the corresponding distribution Da (respectively, Dab).

The proof of Theorem 1.6 is split into the following steps.
Step 1. Case of two neighbor algebraic mirrors. In this case it is easy to

show that all the mirrors are algebraic (Proposition 2.1 in Subsection 2.1).
This together with [5, theorem 1.11] implies that the billiard under question
is of one of the types 1)–3), see Remark 1.7.

From now on we consider that no two neighbor mirrors are algebraic.
Step 2. Preparatory description of the complement U \U0. In Subsection

2.4 we study degenerate quadrilaterals ABCD ∈ U \U0 with a pair of coin-
ciding neighbor vertices, say A = D. Under mild additional assumptions, in
particular, B,C 6= A = D, we show that the other mirrors b and c are special
curves called triangular spirals centered at A. Namely, they are phase curves
of algebraic line fields on CP2: the so-called triangular line fields centered
at A introduced in the same subsection (Proposition 2.17; this result in the
real case was proved in [8, p.320].) One of the key arguments used in the
proof of Theorem 1.6 is Proposition 2.19, which says that every triangular
spiral with at least two distinct centers is algebraic. In Subsections 2.3 and
2.5 we recall the results of [5, subsections 2.1, 2.2] on partial description of
degenerate quadrilaterals in U \U0 with either an isotropic tangency vertex,
or an edge tangent to a mirror through an adjacent vertex.

Step 3. Properness of the projection U → â × b̂ (Section 3, Corollary
3.4). To prove it, we study the Birkhoff distribution Dab and prove its
non-integrability in Subsection 3.1. Moreover, we show that the closure in
Mab of the union of its integral surfaces (if any) is a two-dimensional ana-
lytic subset in Mab (Lemma 3.1 and Corollary 3.2.) The set U is naturally
identified with either the above two-dimensional analytic subset in Mab, or
a smaller analytic subset. This together with Remmert’s Proper Mapping
Theorem implies properness of the projection U → â × b̂ (Corollary 3.4).
The proof of Lemma 3.1 is done by contradiction. The contrary would im-
ply the existence of at least three-dimensional invariant irreducible analytic
subset M ⊂ Mab where the distribution Dab is integrable. Then a comple-
ment M0 ⊂ M to a smaller analytic subset is saturated by open sets of
quadrilateral orbits of 4-reflective billiards a, b, c, d with variable mirrors
c = c(x) and d = d(x), x ∈ M0. The tangent lines LD = TD(x)d(x) form
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an implicit multivalued function λ : (A,B,D) 7→ LD = λ(A,B,D), which
we call the line correspondence. We first show that there are two possible
cases:

- the line correspondence is multivalued on an open set of triples (A(x), B(x), D(x)),
x ∈M ;

- the line correspondence is meromorphic.
The first case will be treated in Subsection 3.3. We show that there

exist x, y ∈ M0 projected to the same vertices A, B, D = D0 but with
distinct tangent lines TD0d(x) 6= TD0d(y), D0 being not a cusp1 of the
curves d(x) and d(y). We then deduce that the billiard d(y), d(x), c(x),
c(y) is 4-reflective (as in [5, proof of lemma 3.1]), and the mirror c(x) is a
triangular spiral with center D0 (Proposition 2.17, Step 2). Then we slightly
deform y with fixed vertices A and B to a point y′ so that the corresponding
mirror d(y′) intersects d(x) at a point D1 6= D0. We get analogously that
the curve c(x) is a triangular spiral with two distinct centers D0 and D1.
This implies that c(x) is algebraic (Proposition 2.19, Step 2). Similarly, we
show that c(y) is algebraic, fixing y and deforming x. Hence, the mirror
d(x) of the 4-reflective billiard d(y), d(x), c(x), c(y) is algebraic, as are c(x)
and c(y) (Proposition 2.1, Step 1). Similarly, a and b are algebraic, as are
c(x) and d(x). The contradiction thus obtained implies that the first case is
impossible.

In the second case we show (in Subsection 3.4) that for an open set of
points x ∈M0 the mirrors c(x) and d(x) are lines. Hence, the curves a and
b are algebraic, by Step 1, – a contradiction. Finally, none of the above cases
is possible. The contradiction thus obtained will prove Lemma 3.1.

Step 4. Case of one algebraic mirror, say a: proof of Theorem 1.8 (Sub-
section 3.5). Properness of the projection U → â × b̂ (Step 3) implies
properness of the projection U → b̂ (algebraicity). Therefore, the preimage
in U of every point B ∈ b̂ is a compact holomorphic curve. This immediately
implies that the mirror c is algebraic and there are two possibilities:

- either all the mirrors are algebraic, and we are done;
- or the projection of the above preimage to the position of the point D

is constant for every B.
In the latter case we show that a = c is a line and the mirrors b, d 6= a

are symmetric with respect to it: the billiard has type 1). This will prove
Theorem 1.8.

1Everywhere in the paper by cusp we mean the singularity of an arbitrary irreducible
singular germ of analytic curve, not necessarily the one given by equation x2 = y3 + . . .
in appropriate coordinates.
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From now on we consider that no mirror is algebraic. We show that this
case is impossible. This will prove Theorem 1.9 and hence, Theorem 1.6.

Step 5. Case of intersected mirrors, say a and b intersect at a point A.
The set U contains a non-empty at most one-dimensional compact analytic
set of quadrilaterals AACD (properness of projection, Step 3). We show in
Subsection 3.6 that this is a discrete subset in U consisting of quadrilaterals
with all the vertices coinciding with A. Indeed, otherwise, if the above
subset were one-dimensional, this would immediately imply that some of
the mirrors c or d is algebraic, – a contradiction. Under the additional
assumption that A is regular and not an isotropic tangency point for both
a and b we show that either a = c, or b is a line (Corollary 3.5 proved in
Subsection 3.6).

In what follows we study the Birkhoff distribution Da using the above
results together with the involutivity theory of Pfaffian systems and a ver-
sion of Cauchy–Kovalevskaya theorem. Recall that it is a three-dimensional
singular analytic distribution on a 6-dimensional analytic set Ma. We fix a
connected component of the open set of quadrilateral orbits of the billiard
a, b, c, d. It is an integral surface, which we will denote S.

Step 6. We consider the minimal analytic subset M ⊂ Ma containing
S. The set M is irreducible and at least three-dimensional: otherwise it
is two-dimensional, its fibers over points A ∈ â are compact holomorphic
curves and the mirror b is then obviously algebraic, – a contradiction. We
consider the restriction DM to M of the distribution Da and study it using
Cartan–Kuranishi–Rashevsky involutivity theory of Pfaffian systems. The
corresponding background material is recalled in Subsection 4.1. We treat
two different cases: 1) the distribution DM is either two-dimensional, or
three-dimensional non-involutive (Subsection 4.2); 2) the distribution DM
is three-dimensional involutive (Subsection 4.3). The first case will be basi-
cally reduced to the two-dimensional case: we show that S is always tangent
to a (single-valued or double-valued) singular integrable two-dimensional
analytic distribution contained in DM , the integral plane distribution. We
consider its integral surfaces through points x ∈ M that correspond to 4-
reflective billiards a, b(x), c(x), d(x) with b(x) intersecting a: their existence
easily follows from definition and the transcendence of the curve a. More-
over, the latter integral surfaces saturate an open subset V ⊂M . We show
that either the mirror b(x) is a line for all x ∈ V (and hence, for all x regular
for both M and DM ), or the mirror c(x) coincides with a for all x as above.
This basically follows from Corollary 3.5, Step 5. The first subcase is im-
possible, since then the mirror b of the initial transcendental billiard would
be a line, – a contradiction. In the second subcase the projection νC(M) of
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the whole variety M to the position of the vertex C lies in a. For a generic
A ∈ â we consider its preimage WA ⊂M under the projection νa : M → â,
which is a projective algebraic variety. It follows that the projection νC(WA)
lies in a transcendental curve a, while it should be an algebraic subset in
CP2 (Remmert’s Proper Mapping and Chow’s Theorems). Hence, νC(WA)
is discrete. On the other hand, it cannot be discrete, whenever b is neither
a line, nor a conic, by [5, proposition 2.32]. The contradiction thus obtained
shows that Case 1) is impossible. The three-dimensional involutive Case 2)
is treated analogously.

2 Preliminaries

2.1 Case of two neighbor algebraic mirrors

Proposition 2.1 Let in a 4-reflective billiard a, b, c, d the mirrors a and
b be algebraic curves. Then all the mirrors are algebraic.

Proof By symmetry, it suffices to prove algebraicity of the mirror c. Fix a
quadrilateral orbit A0B0C0D0. Consider the family of quadrilateral orbits
ABCD with fixed D = D0. They are locally parametrized by the line
l = AD, which lies in the space CP1 of lines through D. The point A
depends algebraically on l, since a is algebraic. Similarly, the line AB,
and hence, the point B depend algebraically on l, since a, b are algebraic
and AB is symmetric to l with respect to the line TAa. Analogously, the
line BC, which is symmetric to AB with respect to the line TBb, depends
algebraically on l. The line DC also depends algebraically on l, being the
reflected image of the line l with respect to the fixed line TDd. Finally, the
variable intersection point C = BC ∩DC should also depend algebraically
on l. Hence, c is algebraic. The proposition is proved. 2

2.2 Maximal analytic extension

Recall that a germ (a,A) ⊂ CPn of analytic curve is irreducible, if it is the
image of a germ of analytic mapping (C, 0)→ CPn.

Definition 2.2 [6, definition 5] Consider two holomorphic mappings of con-
nected Riemann surfaces S1, S2 with base points s1 ∈ S1 and s2 ∈ S2 to
CPn, fj : Sj → CPn, j = 1, 2, f1(s1) = f2(s2). We say that f1 ≤ f2, if
there exists a holomorphic mapping h : S1 → S2, h(s1) = s2, such that
f1 = f2 ◦ h. This defines a partial order on the set of classes of Riemann
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surface mappings to CPn up to conformal reparametrization respecting base
points.

The following proposition is classical, see the proof, e.g., in [6].

Proposition 2.3 [6, proposition 2]. Every irreducible germ of analytic
curve in CPn has maximal analytic extension. In more detail, let (a,A) ⊂
CPn be an irreducible germ of analytic curve. There exists an abstract
connected Riemann surface â with base point Â ∈ â (which we will call
the maximal normalization of the germ a) and a holomorphic mapping
πa : â→ CPn, πa(Â) = A with the following properties:

- the image of germ at Â of the mapping πa is contained in a;
- πa is the maximal mapping with the above property in the sense of

Definition 2.2.
Moreover, the mapping πa is unique up to composition with conformal

isomorphism of Riemann surfaces respecting base points.

Corollary 2.4 Let M be a complex manifold, and let f : M → CPn be a
non-constant holomorphic mapping. Let U ⊂ M be an irreducible analytic
subset, and let the restriction f |U have rank one on an open subset. Let
x ∈ U , and let πa : â→ a be the maximal analytic curve containing the image
of the germ of f |U at x. Let Û be the normalization of the analytic set U (see
[4, p.78]), πU : Û → U be the natural projection (which is bijective outside
the self-intersections of the set U). Then there exists a unique holomorphic
lifting F : Û → â such that f ◦ πU = πa ◦ F .

Proof The corollary obviously holds for one-dimensional analytic subsets
in open sets of the manifold M . For every point x ∈ U and any point
y ∈ U close enough to x there exists an analytic curve in U through y and
x. Applying the corollary to the restriction of the mapping f to each latter
curve together with Hartogs’ Theorem imply the corollary. 2

2.3 Complex reflection law

The material presented in this subsection is contained in [5, subsection 2.1].
We fix an Euclidean metric on R2 and consider its complexification:

the complex-bilinear quadratic form dz2
1 + dz2

2 on the complex affine plane
C2 ⊂ CP2. We denote the infinity line in CP2 by C∞ = CP2 \ C2.

Definition 2.5 The symmetry C2 → C2 with respect to a non-isotropic
complex line L ⊂ CP2 is the unique non-trivial complex-isometric involution
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fixing the points of the line L. It extends to a projective transformation of
the ambient plane CP2. For every x ∈ L it acts on the space CP1 of lines
through x, and this action is called symmetry at x. If L is an isotropic line
through a finite point x, then a pair of lines through x is called symmetric
with respect to L, if it is a limit of symmetric pairs of lines with respect to
non-isotropic lines converging to L.

Lemma 2.6 [5, lemma 2.3] Let L be an isotropic line through a finite point
x. A pair of lines (L1, L2) through x is symmetric with respect to L, if and
only if some of them coincides with L.

Convention 2.7 For every irreducible analytic curve a ⊂ CP2 and a point
A ∈ â the local branch aA of the curve a at A is the germ of curve
πa : (â, A) → CP2, which is contained in a. By TAa we denote the tangent
line to the local branch aA at πa(A). Sometimes we idendity a point (subset)
in a with its preimage in the normalization â and denote both subsets by
the same symbol. In particular, given a subset in CP2, say a line l, we set
â∩ l = π−1

a (a∩ l) ⊂ â. If a, b ⊂ CP2 are two irreducible analytic curves, and
A ∈ â, B ∈ b̂, πa(A) 6= πb(B), then for simplicity we write A 6= B and the
line πa(A)πb(B) will be referred to, as AB.

Definition 2.8 A triple of points BAD ∈ (CP2)3 satisfies the complex re-
flection law with respect to a given line L through A, if one of the following
statements holds:

- either B,D 6= A, the line L is non-isotropic and the lines AB, AD are
symmetric with respect to L;

- or B,D 6= A, the line L is isotropic and some of the lines AB, AD
coincides with L;

- or A coincides with some of the points B or D.

Definition 2.9 Let a1, . . . , ak ⊂ CP2 be an analytic (algebraic) billiard,
and let â1, . . . , âk be the maximal normalizations of its mirrors. Let Pk ⊂
â1 × · · · × âk denote the subset corresponding to k-periodic billiard orbits.
The set Pk is contained in the subset Qk ⊂ â1 × · · · × âk of (not necessarily
periodic) k-orbits: the k-gons A1 . . . Ak such that for every 2 ≤ j ≤ k−1 one
has Aj 6= Aj±1, the line TAjaj is not isotropic and the lines AjAj−1, AjAj+1

are symmetric with respect to it and distinct from it. Let U0 = Int(Pk)
denote the interior of the subset Pk ⊂ Qk. Set

U = U0 ⊂ â1 × . . . âk : the closure is taken in the usual product topology.

The set U will be called the k-reflective set.
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Proposition 2.10 [5, proposition 2.14]. The k-reflective set U is an an-
alytic (algebraic) subset in â1 × · · · × âk. The billiard is k-reflective, if
and only if the k-reflective set U is non-empty; then each its irreducible
component is two-dimensional. If the billiard is k-reflective, then for every
point A1 . . . Ak ∈ U each triple Aj−1AjAj+1 satisfies the complex reflection
law from Definition 2.8 with respect to the line TAjaj, and each projection
U → âj × âj+1 is a submersion on an open dense subset in U .

Addendum. For every k-reflective billiard the latter projections U →
âj × âj+1 are local biholomorphisms on the set of those k-periodic orbits
whose vertices are not cusps of the corresponding mirrors.

The addendum follows from definition.

2.4 Triangular algebraic line fields and spirals

Here we deal with a 4-reflective complex analytic billiard a, b, c, d whose
k-reflective set U contains a quadrilateral ABCD with coinciding vertices
A = D. We show (Proposition 2.17) that under mild genericity assumptions
(implying, e.g., that ABCD is not a single-point quadrilateral) either the
mirrors b and c are conics, or they are so-called triangular spirals centered at
A: phase curves of algebraic line fields invariant under the rotations around
A. We show (Proposition 2.19) that every triangular spiral with two distinct
centers is algebraic.

To define triangular spirals and state the above-mentioned results, we in-
troduce yet another restricted Birkhoff distribution on the space of “framed
triangles with fixed vertex”. Let us fix a point A ∈ C2 (take it as the origin)
and a non-trivial complex isometry H ∈ SO(2,C) \ Id fixing A. Recall that
P = P(TCP2), and H is the standard contact plane field on P, see Subsec-
tion 1.2. Namely, for every x = (B,L) ∈ P, where B ∈ CP2, L ⊂ TBCP2

is a one-dimensional subspace, the plane H(x) ⊂ TxP is the preimage of
the line L under the differential of the bundle projection P → CP2. Con-
sider the product P2 equipped with the four-dimensional algebraic distri-
bution H2 = H ⊕ H. Let TA,H ⊂ CP2 × CP2 denote the subset of pairs
(B,C) such that B,C 6= A, the lines AB, AC are distinct, non-isotropic
and AC = H(AB). Let M0

A,H ⊂ P2 denote the subset of those pairs
((B,LB), (C,LC)), for which (B,C) ∈ TA,H , the lines LB, LC are non-
isotropic, the lines AB, BC are symmetric with respect to the line LB; AC,
BC are symmetric with respect to the line LC ; AB 6= LB, AC 6= LC . Set

MA,H = M0
A,H ⊂ P

2 : the closure in the usual topology.

13



This is a three-dimensional projective algebraic variety, and M0
A,H ⊂MA,H

is its Zariski open and dense subset.

Proposition 2.11 The variety M0
A,H is smooth and transversal to the dis-

tribution H2.

Proof The smoothness is obvious. The restriction ν : M0
A,H → TA,H of the

bundle projection P2 → (CP2)2 is a local diffeomorphism, by construction.
For every x = ((B,LB), (C,LC)) ∈ M0

A,H the subspace H2(x) ⊂ Tx(P2) is

the preimage of the direct sum LB⊕LC ⊂ T(B,C)(CP2)2 under the differential
of the bundle projection. Thus, it suffices to show that for every (B,C) ∈
TA,H the space T(B,C)TA,H is transversal to LB ⊕ LC . Here LB, LC are
arbitrary lines such that AB and BC are symmetric with respect to the line
LB and AC, BC are symmetric with respect to the line LC .

For every (B,C) ∈ TA,H finitely punctured lines AB × C and B × AC
are contained in TA,H , by definition. We identify AB and AC with the
corresponding one-dimensional subspaces in TBCP2 and TCCP2 respectively.
Thus, AB⊕AC ⊂ T(B,C)TA,H and AB⊕AC is transversal to LB⊕LC , since
AB 6= LB and AC 6= LC by definition. This proves the proposition. 2

Corollary 2.12 For every x ∈M0
A,H the intersection

DA,H(x) = H2(x) ∩ TxM0
A,H

is one-dimensional, and the subspaces DA,H(x) form an analytic (even al-
gebraic) line field on M0

A,H .

Proof The transversal variety M0
A,H and distribution H2 in the ambient

six-dimensional space P2 have dimensions 3 and 4 respectively. Hence, the
intersections of their tangent spaces are one-dimensional. The algebraicity
of the line field DA,H is obvious. 2

Proposition 2.13 The line field DA,H has an algebraic first integral: ap-
propriate branch holomorphic on M0

A,H of the multivalued squared perimeter

P 2 = P 2((B,LB), (C,LC)) = (|AB|+ |BC|+ |CA|)2, where

|AB| =
√
|AB|2, |BC| =

√
|BC|2, |CA| =

√
|CA|2 :

the complex distances defined up to sign. The space MA,H , the line field DA,H
and the above squared perimeter are invariant with respect to the complex
rotation group SO(2,C) fixing A.

14



Proof The SO(2,C)-invariance follows from construction. Let us show that
appropriate branch holomorphic on M0

A,H of the squared perimeter is a first
integral of the distribution DA,H . Appropriate local branch of the perimeter
is a first integral: this is a complexification of a classical real statement, see,
e.g., [2, section 2], and its proof is analogous to the real case. Let us show
how to choose the corresponding branch of the perimeter function. To do
this, we use the following remark.

Remark 2.14 For every non-isotropic line L ⊂ C2 the complex length func-
tion L×L→ C: (Q1, Q2) 7→ |Q1Q2| has two branches holomorphic on L×L
that differ only by sign; the latter branches will be referred to, as (holomor-
phic) length functions. There exists a unique affine coordinate z on L up
to sign and translation (a complex natural parameter) such that the holo-
morphic length functions are given by the formula ±(z(Q2) − z(Q1)). In
particular, each holomorphic length function is antisymmetric.

Take an arbitrary point ((B,LB), (C,LC)) ∈ M0
A,H . We identify the

lines LB and LC with the corresponding projective lines in CP2. Fix a
point B′ ∈ LB \ B, and let B′1 ∈ AB and B′2 ∈ BC denote its orthogonal
projections to the lines AB and BC respectively, see Fig.1 in the case, when
A,B,C ∈ R2. Let us fix a holomorphic length function on AB × AB in

            B

   A

  B

     B

    1

   2

B

 
 B

 C
    C
       1

C
          2

     
      

L

L
                                     

                    C

Figure 1: Length functions in the real case: here P = |AB|+ |BC| − |AC|.

an arbitrary way. Now let us choose the holomorphic length function on
BC × BC so that |BB′1| = |BB′2|. This is possible, since |BB′1|2 = |BB′2|2,
by symmetry. This definition is independent on the choice of the point B′.
Given the length function on BC × BC thus constructed, we choose the
length function on AC×AC analogously to the above construction, with B′
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replaced by C ′ ∈ LC . The perimeter |AB|+ |BC|+ |CA| thus constructed is
well-defined up to sign, as is the initial length function on AB×AB. Hence,
its square is well-defined and holomorphic on the whole set M0

A,H . Its level
surfaces are tangent to the distribution DA,H by construction, as in the real
case, see [2, section 2]. The proposition is proved. 2

Proposition 2.15 Let P 2 : M0
A,H → C be the squared perimeter function

from the above proposition. Let p ∈ C, Sp be an irreducible component of the
level set {P 2 = p} in M0

A,H . The projections νG : Sp → CP2 to the position
of the vertex G = B,C have discrete preimages, and thus, are submersions
on Zariski open dense subsets. The restriction to Sp of the line field DA,H is
sent by each projection to an SO(2,C)-invariant algebraic line field on CP2

(depending on the choice of G) called triangular line field centered at
A with parameters H, p.

Proof The contrary to the discreteness of preimages of the projection, say
νB would imply constance of the perimeter on a one-parameter family of
triangles ABC with fixed vertices A and B, fixed line AC = H(AB) = L
and variable C ∈ L. This is obviously impossible. The algebraicity and
invariance of the projected line field obviously follow from the algebraicity
and invariance of the surface Sp and submersivity. 2

Definition 2.16 A triangular spiral centered at A is a complex orbit of a
triangular line field centered at A, see Fig.2a).

Proposition 2.17 Let (a,A), (b, B), (c, C), (d,D) be germs of analytic
curves in CP2 forming a 4-reflective analytic planar billiard: the quadrilat-
eral ABCD is contained in the 4-reflective set U , cf. Remark 1.10. Let the
mirror germs a and d intersect: A = D. Let B,C 6= A, AB 6= TAa, TBb,
AC 6= TDd, TCc, and let the lines AB, TAa, TDd, TBb, TCc be not isotropic.
If AB 6= AC, then the mirrors b and c are triangular spirals centered at
A. Otherwise, if AB = AC, then the mirrors b and c are conics: complex
circles centered at A, see Fig.2.

Proof There exists an irreducible germ Γ ⊂ U of analytic curve at ABCD
parametrized by local small complex parameter t and consisting of quadri-
laterals ABtCtDt with fixed vertex A: AB0C0D0 = ABCD. Let us fix it.
One has Dt ≡ D = A. This follows from the fact that Dt is found as a point
of intersection of the curve d with the line Lt symmetric to ABt with respect
to the tangent line TAa. Indeed, the line L0 is transverse to TDd, as is AC,
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Figure 2: Family of degenerate orbits with A = D: the mirrors b and c are
either spirals, or conics

by assumption and since L0 and AC are symmetric with respect to the line
TDd. Therefore, the intersection point Dt ∈ Lt∩d identically coincides with
D = D0. Let H denote the composition of symmetries with respect to the
tangent lines, first TAa, then TDd. Thus, H is a complex isometry fixing
A with unit Jacobian: a complex rotation around the point A. For every
ABtCtD ∈ Γ one has H(ABt) = ACt, by definition.

Case 1): AB 6= AC. Then B 6= C and the germ Γ is embedded into
M0
A,H via the mapping t 7→ ((Bt, TBtb), (Ct, TCtc)), by construction and

non-isotropicity condition. Its image is a phase curve of the line field DA,H ,
analogously to discussions in [2] and [8, p.320]. This together with Propo-
sition 2.15 implies that the projection Γ→ CP2 to the position of each one
of the vertices B and C sends Γ to a triangular spiral centered at A, see
Fig.2a). Hence, b and c are triangular spirals.

Case 2): AB = AC. Then H = ±Id, being a complex rotation around
the point A that fixes three lines through A: two isotropic lines and the line
AB. Therefore, ABt ≡ ACt. Note that at least one of vertices, either Bt, or
Ct varies, since Γ is a curve. To treat the case under consideration, we use
the following remark.

Remark 2.18 There exist no k-reflective analytic planar billiard such that
some its two neighbor mirrors coincide with the same line. Indeed, in this
case it would have no k-periodic orbits in the sense of Definition 1.4 (cf. [5,
proof of corollary 2.19]).
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Subcase 2a): Bt ≡ Ct 6≡ const. This implies that b = c and the line ABt
is tangent to b at variable point Bt, as in loc. cit. Therefore, b = c = AB,
which is impossible by the above remark. Hence, this subcase is impossible.

Subcase 2b): Bt 6≡ Ct. Without loss of generality we consider that
B 6= C. Thus, for every t small enough the points A, Bt and Ct are distinct
and lie on the same line. Note that TBb, TCc 6= AB = AC, by the condition
of the proposition. Hence, TBtb, TCtc ⊥ ABt for all t. This implies that
Bt, Ct 6≡ const and b, c are complex circles centered at A, see Fig.2b). This
proves Proposition 2.17. 2

Proposition 2.19 Let a planar analytic curve be a triangular spiral with
respect to two distinct centers. Then it is algebraic.

Proof A triangular spiral is a phase curve of a triangular algebraic line
field. The latter field is invariant under complex rotations: the isometries
fixing the center of the spiral with unit Jacobian. Suppose the contrary: the
spiral under consideration is not algebraic. Then the corresponding line field
is uniquely defined: two algebraic line fields coinciding on a non-algebraic
curve (which is Zariski dense) should coincide everywhere. Thus, the latter
line field should be invariant under complex rotations around two distinct
centers. The latter rotations generate the whole group of complex isometries
of C2 with unit Jacobian. Thus, the line field is invariant under all the latter
isometries, which is impossible. The contradiction thus obtained proves the
proposition. 2

2.5 Tangencies in k-reflective billiards

Here we recall the results of [5, subsection 2.4].
We deal with k-reflective analytic planar billiards a1, . . . , ak in CP2. Let

U ⊂ â1×· · ·× âk be the k-reflective set. The results of loc.cit. presented be-
low concern degenerate quadrilaterals in U\U0: limits A1 . . . Ak of k-periodic
orbits such that for a certain j with aj being not a line the tangent line TAjaj
and the adjacent edges Aj±1Aj collide to the same non-isotropic limit. Then
the limit vertex Aj will be called a tangency vertex. Proposition 2.21 shows
that the latter cannot happen to be the only degeneracy of the limit k-gon.
Its Corollary 2.24 presented at the end of the subsection concerns the case,
when k = 4. It says that if the tangency vertex is distinct from its neigh-
bor limit vertices, then its opposite vertex should be either also a tangency
vertex or a cusp with a non-isotropic tangent line. Proposition 2.23 extends
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Proposition 2.21 to the case, when some subsequent mirrors coincide and
the corresponding subsequent vertices of a limiting orbit collide.

Definition 2.20 A point of a planar irreducible analytic curve is marked,
if it is either a cusp, or an isotropic tangency point. Given a parametrized
curve πa : â → a, a point A ∈ â is marked, if it corresponds to a marked
point of the local branch aA, see Convention 2.7.

Proposition 2.21 [5, proposition 2.16] Let a1, . . . , ak and U be as above.
Then U contains no k-gon A1 . . . Ak with the following properties:

- each pair of neighbor vertices correspond to distinct points, and no
vertex is a marked point;

- there exists a unique s ∈ {1, . . . , k} such that the line AsAs+1 is tangent
to the curve as at As, and the latter curve is not a line, see Fig.3.

Remark 2.22 A real version of Proposition 2.21 is contained in [8] (lemma
56, p.315 for k = 4, and its generalization (lemma 67, p.322) for higher k).

k−2

A

a
a

 1

  k

       k
  A

   1

                     k−1
               
   A

  k−1
    a

  k−2
 a

   A

Figure 3: Impossible degeneracy of simple tangency: s = k.

Proposition 2.23 [5, proposition 2.18] Let a1, . . . , ak and U be as at the
beginning of the subsection. Then U contains no k-gon A1 . . . Ak with the
following properties:

1) each its vertex is not a marked point of the corresponding mirror;
2) there exist s, r ∈ {1, . . . , k}, s < r such that a = as = as+1 = · · · = ar,

As = As+1 = · · · = Ar, and a is not a line;
3) For every j /∈ R = {s, . . . , r} one has Aj 6= Aj±1 and the line Aj−1Aj

is not tangent to aj at Aj, see Fig.4.
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Figure 4: Coincidence of subsequent vertices and mirrors: r = k.

Corollary 2.24 [5, corollary 2.20] Let a, b, c, d be a 4-reflective analytic
billiard, and let b be not a line. Let U ⊂ â× b̂× ĉ× d̂ be the 4-reflective set.
Let ABCD ∈ U be such that A 6= B, B 6= C, the line AB = BC is tangent
to the curve b at B and is not isotropic. Then

- either AD = DC is tangent to the curve d at D, πa(A) = πc(C), a = c
and the corresponding local branches coincide, i.e., aA = cC (see Convention
2.7): “opposite tangency connection”, see Fig.5a);

- or D is a cusp of the local branch dD and the tangent line TDd is not
isotropic: “tangency–cusp connection”, see Fig.5b).

   tangent line

A=C

a=c
b

 d

B

D

   a)                                                                     b)

a

A B

b

C

c

d
Dnon−isotropic

Figure 5: Opposite degeneracy to tangency vertex: tangency or cusp.
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2.6 Singular analytic distributions

Here we recall the classical definitions and properties of singular analytic
distributions.

Definition 2.25 Let W be a complex manifold, n = dimW , Σ ⊂ W be a
nowhere dense closed subset, m ≤ n. Let D be an analytic field of codi-
mension m vector subspaces D(y) ⊂ TyW , y ∈ W \ Σ. We say that D is a
singular analytic distribution of codimension m (dimension n−m) with the
singular set Σ = Sing(D), if it extends analytically to no point of the set Σ
and every x ∈W has a neighborhood U where there exists a finite collection
Ω of holomorphic 1-forms such that D(y) = {Ω(y) = 0} for every y ∈ U \Σ.

Remark 2.26 Every k-dimensional singular analytic distribution on a com-
plex manifold W is defined by a meromorphic2 section of the Grassmanian
k-subspace bundle Grk(TW ) of the tangent bundle TW , and vice versa:
each meromorphic section defines a k-dimensional singular analytic distri-
bution. Its singular set is an analytic subset in W of codimension at least
two, being the indeterminacy locus of a meromorphic section of a bundle
with compact fibers.

Example 2.27 Let M be a complex analytic manifold, N ⊂ M be a con-
nected complex submanifold, D be a (regular) analytic distribution on M .
The intersection D|N (x) = TxN ∩ D(x) with x ∈ N has constant and min-
imal dimension on an open and dense subset N0 ⊂ N . The subspaces
D|N (x) ⊂ TxN form a singular analytic distribution D|N on N that is called
the restriction to N of the distribution D. Its singular set is contained in the
complement N \N0: the set of those points x, where the above dimension is
not minimal. The restriction to N of a singular analytic distribution D on
M with N 6⊂ Sing(D) is defined analogously; it is also a singular analytic
distribution on N whose singular set is contained in the union of the inter-
section Sing(D) ∩ N and the set of those points x ∈ N , where the above
dimension dim(D|N (x)) is not minimal.

2Recall that a mapping V → W of complex manifolds (or analytic sets in complex
manifolds) is meromorphic, if it is well-defined and holomorphic on an open and dense
subset in V , and the closure of its graph is an analytic subset in V×W , see Convention 2.29.
It is well-known that if W is compact and V is irreducible, then the set of indeterminacies
of every meromorphic mapping V →W is contained in the union of the singular set of V
and an analytic subset in V of codimension at least two. A mapping is bimeromorphic, if
it is meromorphic together with its inverse.
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Example 2.28 Let D be a singular distribution on a complex manifold W .
Let M be another connected complex manifold, and let φ : M → W be a
non-constant holomorphic mapping. For every x ∈M set

φ∗D(x) = (dφ(x))−1(D(φ(x)) ∩ dφ(x)(TxM)) ⊂ TxM.

The subspaces φ∗D(x) form a singular analytic distribution on M called
the pullback distribution. In the case, when φ is an immersion on an open
and dense subset, the dimension of the distribution φ∗D equals the minimal
dimension of the above intersection.

Convention 2.29 Let W be a complex manifold, M ⊂ W be an analytic
subset. Everywhere below for simplicity we say that a subset N ⊂ M is
analytic, if it is an analytic subset of the ambient manifold W .

Definition 2.30 Let W be a complex manifold, M ⊂W be an irreducible
analytic subset, and let D be a singular analytic distribution on W , M 6⊂
Sing(D). There exists an open and dense subset of those points3 x ∈Mreg

regular for D, for which the intersection D|M (x) = D(x)∩TxM has minimal
dimension. Then we say that the subspaces D|M (x) form a singular analytic
distribution D|M on M . It is regular on an open dense subset M0

reg ⊂Mreg.
Its singular set M \M0

reg is the union of the set Msing and the set of those
points x ∈ Mreg where the distribution D|M does not extend analytically.
The distribution D|M is also called the restriction to M of the distribution
D. The restriction of a singular analytic distribution D|M to an irreducible
analytic subset V ⊂ M , V 6⊂ Sing(D|M ) is a singular analytic distribution
on V defined analogously: it coincides with D|V .

Example 2.31 The Birkhoff distribution Dk introduced at the end of Sec-
tion 1 extends to a singular analytic distribution on the closure R0,k ⊂ Pk.

Definition 2.32 An integral l-surface of a singular analytic distribution D
on an analytic variety4 M is a holomorphic connected l-dimensional surface
S ⊂ M lying outside the singular set of D such that TxS ⊂ D(x) for every
x ∈ S. An m-dimensional singular analytic distribution is integrable, if there
exists an integral m-surface through each its regular point.

3Everywhere below for an analytic set M by Mreg (Msing) we denote the set of its
smooth (respectively, singular) points

4Everywhere below by analytic variety we mean an analytic subset in a complex man-
ifold
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Remark 2.33 The singular set of a singular analytic distribution is always
an analytic subset in the ambient variety (see Convention 2.29), as in the
above remark. In general an integral surface is not an analytic set. Indeed,
a generic linear vector field on CP2 has transcendental orbits. Hence, they
are not analytic subsets in CP2, by Chow’s Theorem [9, p.183 of Russian
edition].

Proposition 2.34 Let an m-dimensional singular analytic distribution D
on an analytic subset N in a complex manifold have at least one m-dimensional
integral surface. Given an arbitrary union S of m-dimensional integral sur-
faces, let M ⊂ N denote the minimal analytic subset in N containing S.
Then the restriction D|M is an integrable singular m-dimensional distribu-
tion.

Proof The set {x ∈ M0
reg | D(x) ⊂ TxM} coincides with all of M0

reg,
since it contains S and its closure is an analytic subset in N contained in
M . Similarly, the set of those points in M0

reg where the distribution D|M
satisfies the Frobenius integrability condition coincides with all of M0

reg,
since it contains S and its closure is an analytic subset in M . Thus, D|M is
an m-dimensional integrable distribution. The proposition is proved. 2

2.7 Birkhoff distributions and periodic orbits

Here we recall the definition and basic properties of Birkhoff distribution and
its restricted versions. Consider the space P = P(TCP2), which consists
of pairs (A,L), A ∈ CP2, L being a one-dimensional subspace in TACP2.
Its natural projection to CP2 will be denoted by Π. The standard contact
structure is the two-dimensional analytic distribution H on P given by the
dΠ-pullbacks of the lines L:

H(A,L) = (dΠ(A,L))−1(L) ⊂ T(A,L)P.

The distribution Hk = ⊕kj=1H is the 2k-dimensional product distribution on

Pk. Recall that R0,k ⊂ Pk is the subset of k-tuples ((A1, L1), . . . , (Ak, Lk))
such that for every j = 1, . . . , k one has Aj 6= Aj±1, the lines AjAj−1,
AjAj+1 are symmetric with respect to the line Lj , and the three latter lines
are distinct and non-isotropic. This is a 2k-dimensional smooth quasipro-
jective variety. The Birkhoff distribution Dk is the restriction to R0,k of the
product distribution Hk:

Dk(x) = TxR0,k ∩Hk(x) for every x ∈ R0,k. (2.1)
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This is a k-dimensional analytic distribution. It is the complexification of
the real Birkhoff distribution introduced in [2]. For every two analytic curves
a, b ⊂ CP2 with maximal normalizations πa : â→ CP2, πb : b̂→ CP2 we will
denote

Ha = â× P3; Hab = â× b̂× P2.

We consider the natural embeddings ηa : Ha → P4, ηab : Hab → P4:

ηa(A, (B,LB), (C,LC), (D,LD)) = ((πa(A), TAa), (B,LB), (C,LC), (D,LD)),

ηab(A,B, (C,LC), (D,LD)) = ((πa(A), TAa), (πb(B), TBb), (C,LC), (D,LD)).

Remark 2.35 The critical points of the mappings ηa (ηab) are contained
in the sets Cuspa ⊂ Ha, Cuspab ⊂ Hab of those points for which A (A or
B) is a cusp of the corresponding curve (see Footnote 1 in Section 1). The
mappings ηa and ηab are immersions outside the sets Cuspa and Cuspab.

Consider the subsets

M0
a = η−1

a (R0,4) \ Cuspa ⊂ Ha, M0
ab = η−1

ab (R0,4) \ Cuspab ⊂ Hab, (2.2)

Ma = M0
a ⊂ Ha; Mab = M0

ab ⊂ Hab :

the closures are taken in the usual topology. The subsets Ma ⊂ Ha and
Mab ⊂ Hab are obviously analytic. The restricted (pullback) Birkhoff dis-
tributions Da on M0

a and Dab on M0
ab respectively are the pullbacks of the

Birkhoff distribution D4:

Da(x) = (dηa(x))−1(D4(ηa(x)) ∩ dηa(x)(TxM
0
a )) ⊂ TxM0

a , x ∈M0
a ; (2.3)

Dab(x) = (dηab(x))−1(D4(ηab(x)) ∩ dηab(x)(TxM
0
ab)) ⊂ TxM0

ab, x ∈M0
ab.
(2.4)

They extend to singular analytic distributions on Ma and Mab respectively
in the sense of Subsection 2.6. For example, Da is the restriction to Ma of
the distribution T â⊕H3 on Ha = â× P3. One has

dimMa = 6, dimDa = 3; dimMab = 4, dimDab = 2.

Definition 2.36 (complexification of [8, definition 14]) Let k ∈ N. A k-gon
A1 . . . Ak ∈ (CP2)k is said to be non-degenerate, if for every j = 1, . . . , k
(we set Ak+1 = A1, A0 = Ak) one has Aj+1 6= Aj , Aj−1Aj 6= AjAj+1 and
the line AjAj+1 is not isotropic. We will call the complex lines AjAj±1 the
edges adjacent to Aj .
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Remark 2.37 The above sets R0,k, M
0
a , M0

ab are projected to the sets of
non-degenerate k-gons (quadrilaterals). A periodic billiard orbit in the sense
of Definition 1.4 is non-degenerate, provided that its edges are non-isotropic
and every two adjacent edges are distinct. The k-reflective set U of a k-
reflective billiard contains an open and dense subset U1 ⊂ U of those non-
degenerate orbits whose vertices are not marked points of the corresponding
mirrors.

Definition 2.38 (cf. [8, definition 16]) An integral surface of one of the
above (restricted) Birkhoff distributions is non-trivial, if its projection to
the position of each vertex is non-constant. (Then its projection image is a
holomorphic curve, since the distribution subspaces are projected to lines.)

For every analytic billiard a, b, c, d there exist natural analytic embed-
dings Ψa : â× b̂× ĉ× d̂→ Ha, Ψab : â× b̂× ĉ× d̂→ Hab:

Ψa(ABCD) = (A, (B, TBb), (C, TCc), (D,TDd));

Ψab(ABCD) = (A,B, (C, TCc), (D,TDd)). (2.5)

Proposition 2.39 Let a, b, c, d be a 4-reflective billiard. The mappings
Ψa, Ψab send the subset U1 ⊂ U (see Remark 2.37) to M0

a , M0
ab, and the

images of its connected components are non-trivial integral surfaces of the
restricted Birkhoff distributions Da and Dab respectively. Vice versa, each
non-trivial integral surface of any of the latter distributions is the image of
an open set of quadrilateral orbits of a 4-reflective billiard a, b, c, d with
given mirror a (respectively, given mirrors a and b).

The proposition is the direct complexification of an analogous result from
[2] and [8, section 2, lemmas 17, 18].

Everywhere below for every x ∈M0
ab ⊂ Hab = â× b̂× P2 we denote

la = la(x) = A(x)D(x), lb = lb(x) = B(x)C(x).

Remark 2.40 The lines la and lb depend only on (A,B) = (A(x), B(x)):
these are the lines symmetric to AB with respect to the lines TAa and TBb
respectively. Sometimes we will write la = la(A,B), lb = lb(A,B).

For every x ∈ M0
ab (x ∈ M0

a ) the corresponding lines LG, G = (B, )C,D,
will be denoted by LG(x). The projections to the positions of vertices will
be denoted by

νa : Ha → â, νab : Hab → â× b̂,
νG : Ha,Hab → CP2, x 7→ G(x) for G = B,C,D (respectively, G = C,D).
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Remark 2.41 The above projections νa and νab are proper and epimorphic.
The corresponding preimages of points are compact and naturally identified
with projective algebraic varieties.

Proposition 2.42 Each integral surface of the Birkhoff distribution Dab is
non-trivial.

Proof Suppose the contrary: there exists a trivial integral surface S ⊂M0
ab.

Then its projection to the position of some vertex is constant.
Case 1): the projection νab : S → â × b̂ has rank 1 at a generic point.

Then S is fibered by holomorphic curves on which A,B ≡ const, hence
la, lb ≡ const, see Remark 2.40. Some of the vertices D or C, say D should
be non-constant along some one-dimensional fiber Γ of the latter fibration.
Thus, while y moves along the curve Γ, the line la(y) = A(y)D(y) remains
constant and distinct from C(y)D(y), while the point D(y) moves along the
constant line la. Hence, LD(y) = la = A(y)D(y), by definition and since Γ is
tangent to the distribution Da. On the other hand, LD(y) 6= A(y)D(y), by
definition and since y ∈M0

ab ⊂ η−1
ab (R0,4). The contradiction thus obtained

shows that Case 1) is impossible.
Case 2): the projection νab is constant on S. This case is treated analo-

gously to Case 1) and is also impossible.
Case 3): the projection νab|S has rank 2 at a generic point, while some of

the vertices D or C, say D is constant along the surface S. This means that
the lines A(y)B(y) with y ∈ S form a two-dimensional family, while their
reflection images la(y) from TAa pass through the same point D and hence,
form a one-dimensional family. This is obviously impossible. Proposition
2.42 is proved. 2

3 Non-integrability of the Birkhoff distribution Dab
and corollaries

3.1 Main lemma, corollaries and plan of the proof

In the present section we prove the following lemma on the non-integrability
of the two-dimensional Birkhoff distribution Dab and corollaries.

Lemma 3.1 For every pair of analytic curves a, b ⊂ CP2 distinct from
isotropic lines that are not both lines the corresponding Birkhoff distribution
Dab is non-integrable. Moreover, there is no three-dimensional irreducible
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analytic subset M ⊂ Mab (see Convention 2.29) tangent to Dab such that
M ∩M0

ab 6= ∅ and the restriction Dab|M is two-dimensional and integrable.

Corollary 3.2 In the conditions of Lemma 3.1 the union of all the inte-
gral surfaces of the Birkhoff distribution Dab in M0

ab is contained in a two-
dimensional analytic subset in Mab.

Proof The minimal analytic subset M ⊂ Mab containing all the integral
surfaces should be tangent to Dab, and the distribution Dab should be in-
tegrable there (Proposition 2.34). Hence, dimM = 2, by Lemma 3.1. This
proves the corollary. 2

Remark 3.3 In the case, when a and b are lines, the statements of Lemma
3.1 and the corollary are false. In this case there exists a one-parametric
family of 4-reflective billiards a, b, c, d of type 2) from Theorem 1.6. The
corresponding open sets of quadrilateral orbits form a one-parametric family
of integral surfaces of the distribution Dab. They saturate an open and dense
subset in a three-dimensional analytic subset in Mab.

Let Ψ = Ψab : â× b̂× ĉ× d̂→ Hab be the embedding from (2.5).

Corollary 3.4 Let a, b, c, d be a 4-reflective planar analytic billiard, and let
U be the 4-reflective set. Then the image Ψ(U) ⊂ Hab is a two-dimensional
analytic subset lying in Mab. The natural projection U → â× b̂ is a proper
epimorphic mapping.

Proof It suffices to prove the first statement of the corollary. Then its sec-
ond statement, which is equivalent to the properness and the epimorphicity
of the analytic set projection νab : Ψ(U) → â × b̂, follows from the proper-
ness of the projection Hab → â× b̂, Proposition 2.10 and Remmert’s Proper
Mapping Theorem [9, p.46 of Russian edition]. The image Ψ(U) lies in Mab,
which follows from definition. Recall that U1 ⊂ U denote the open and dense
subset of non-degenerate orbits whose vertices are not marked points. Let
S ⊂ Hab denote the minimal analytic subset containing Ψ(U1), which obvi-
ously contains Ψ(U). Each its irreducible component is two-dimensional, as
is U1, by Corollary 3.2 and since Ψ(U1) is a union of integral surfaces of the
distribution Dab, see Proposition 2.39. The projections νC , νD : S → CP2

to the positions of the vertices C and D have rank one, and νC(S) ⊂ c,
νD(S) ⊂ d: this holds on Ψ(U1), and hence, on each irreducible compo-
nent of the set S. Let Ŝ denote the normalization of the analytic set S,
and πS : Ŝ → S denote the natural projection. The above projections lift to
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holomorphic mappings νĝ : Ŝ → ĝ, g = c, d: νG◦πS = πg◦νĝ on Ŝ (Corollary

2.4). This yields an “inverse” mapping Ψ−1 = νab×νĉ×νd̂ : Ŝ → â×b̂×ĉ×d̂.
Its image is contained in U , by analyticity and since the image U1 of the
set Ψ(U1) (lifted to Ŝ) is contained in U . This together with the inclusion
Ψ(U) ⊂ S implies that Ψ(U) = S and proves the corollary. 2

Corollary 3.5 Let a, b, c, d be a 4-reflective planar analytic billiard, and
none of the mirrors a, b be a line. Let a and b intersect at a point A
represented by some non-marked points in â and b̂. Then a = c and a 6= b.

At the end of the section we prove Theorem 1.8 and Corollary 3.5. Both
of them will be used further on in the proof of Theorem 1.9.

Plan of the proof of Lemma 3.1. Recall that a and b are not both
lines. In the case, when both a and b are algebraic curves, there exist at most
unique analytic curves c and d such that the billiard a, b, c, d is 4-reflective,
and if they exist, they are algebraic (Proposition 2.1 and Remark 1.7). Thus,
the only integral surfaces of the distribution Dab are given by the open set of
its quadrilateral orbits, by Propositions 2.39 and 2.42. Moreover, the latter
orbit set is a Zariski open dense subset in a projective algebraic surface.
This immediately implies the statement of Lemma 3.1. Everywhere below
we consider that some of the curves a or b is transcendental and prove the
lemma by contradiction. Suppose the contrary to Lemma 3.1: there exists
a three- or four-dimensional irreducible analytic subset M ⊂ Hab contained
in Mab such that M ∩M0

ab 6= ∅ and the restriction DM to M0 = M ∩M0
ab of

the distribution Dab is two-dimensional and integrable. (In the second case
M = Mab.) The complement

Σ0 = M \M0 = M \M0
ab ⊂M (3.1)

is an analytic subset of positive codimension in M , and M0 is dense in
M . Thus, every x ∈ M0 is contained in an integral surface, and the latter
is formed by quadrilateral orbits of a 4-reflective billiard a, b, c(x), d(x)
(Propositions 2.39 and 2.42). We show that there exists an x ∈ M0 such
that the corresponding mirrors c(x), d(x) are algebraic. This together with
Proposition 2.1 implies that a and b are algebraic. The contradiction thus
obtained will prove Lemma 3.1.

For the proof of Lemma 3.1 we study the projections of the set M to
the positions of three vertices (A,B,D) and to the positions of the same
vertices and the line LD: set

νab,D : x 7→ (A(x), B(x), D(x)); νLab,D : x 7→ (A(x), B(x), D(x), LD(x)),
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MD = νab,D(M) ⊂ â× b̂× CP2, MD,LD
= νLab,D(M) ⊂ â× b̂× CP2 × CP2∗,

pL,D : MD,LD
→MD : (A,B,D,LD) 7→ (A,B,D).

Analogous projections and spaces are defined with D replaced by C.

Remark 3.6 The images MD = νab,D(M) and MD,LD
= νLab,D(M) are

analytic subsets in â×b̂×CP2 and â×b̂×CP2×CP2∗ respectively, by Remark
2.41 and Remmert’s Proper Mapping Theorem. Analogous statements hold
for similarly defined sets MC and MC,LC

. All the latter analytic subsets are
irreducible, as is M .

For every G = D,C the correspondence λ : MG → CP2∗: (A,B,G) 7→
LG induced by the inverse p−1

L,G will be called the line correspondence. In
Subsections 3.3 and 3.4 respectively we treat separately the following cases:

- some of the above line correspondences is multivalued on an open set;
- both line correspondences are meromorphic (see Footnote 2 in Subsec-

tion 2.6).
Basic properties of the above projections and line correspondences used

in the proof of Lemma 3.1 are presented in Subsection 3.2.

3.2 Line correspondence

Recall that by DM we denote the restriction to M of the distribution Dab.
In what follows, we denote Σ1 ⊂M0 the subset of points x ∈M0 such that

- either x is a singular point of the variety M ,
- or it is a singular point of the distribution DM ,
- or the restriction to DM (x) of the differential dνab(x) has rank less than

two,
- or x is a critical point of some of the projections νLab,D, νab,D: a point

where the rank of differential is not maximal,
- or its image under some of the latter is a singularity of the image,
- or the differential of the projection νD : M0

ab → CP2: y 7→ D(y)
vanishes on the distribution plane DM (x),

- or one of the three latter statements holds with D replaced by C.
Let Σ0 be the same, as in (3.1). Set

Σ = Σ0 ∪ Σ1 ⊂M. (3.2)

This is an analytic subset in Hab that has positive codimension in M . Its
complement in M is contained in M0 and dense in M .
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Remark 3.7 For every point x ∈M \Σ the corresponding germs (g,G(x))
of mirrors g = a, b, c(x), d(x), G = A,B,C,D, are regular, and the points
G(x) are not marked. This follows from the definition of the set Σ0 ⊂ Σ
(for the mirrors a and b) and from the two last conditions in the definition
of the set Σ1 ⊂ Σ (for the mirrors c(x) and d(x)). The projection νab : S →
â × b̂ of each integral surface S of the distribution DM in M \ Σ is a local
diffeomorphism, by the Addendum to Proposition 2.10.

Proposition 3.8 The projections νLab,D, ν
L
ab,C : M → MD,LD

,MC,LC
are

biholomorphisms on the complement M \ Σ.

Proof Let us prove the statement of the proposition for the projection
νLab,D: the case of νLab,C is symmetric. Recall that its restriction to M \Σ has
no critical points, by the definition of the set Σ. Fix a y = (A,B,D,LD) ∈
νLab,D(M \Σ). Let us show that a point x ∈ (νLab,D)−1(y)∩(M \Σ) is uniquely
determined by y. The lines BC and DC are uniquely determined by y: BC
is symmetric to the line AB with respect to the line TBb; DC is symmetric
to the line AD with respect to the line LD. Therefore, so is their intersec-
tion point C = BC ∩ DC. (Note that BC 6= DC, since the quadrilateral
corresponding to a point x /∈ Σ should be non-degenerate.) Consider the
germ at ABCD of one-parametric family of quadrilaterals A′B′C ′D with
A′ ∈ a, B′ ∈ b and fixed D that satisfy the latter symmetry conditions,
and in addition, we require that the line A′B′ be symmetric to A′D with
respect to the line TA′a. The vertex C ′ varies along a holomorphic curve γ
that depends only on y. One should obviously have γ = c(x) (as in [8, proof
of lemma 41]), and TCγ = LC(x). Hence, x is uniquely defined by y. The
proposition is proved. 2

Proposition 3.9 The projections νab,D : M → MD, νab,C : M → MC have
rank three on an open and dense subset; hence dimMD = dimMC = 3.

Proof The latter projections have rank at least two, since the projection
νab is epimorphic and M is irreducible. Suppose the contrary: one of the
latter projections, say νab,D has rank two on an open subset V ⊂M \Σ. We
can and will choose V so that the integral surfaces of the distribution DM in
V are diffeomorphically projected by νab onto Y = νab(V ) ⊂ â × b̂ (see the
above remark) and the two-dimensional projection image νab,D(V ) ⊂MD is
a graph of an implicit function D = ∆(A,B) ∈ la = la(A,B) ⊂ CP2 (see
Remark 2.40), ∆ being holomorphic on Y . For every (A,B) ∈ Y and every
x ∈ ν−1

ab (A,B) ∩ V the germ at D = ∆(A,B) of the mirror d(x) is uniquely
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defined by (A,B): it coincides with the germ of holomorphic curve ∆(A× b̂).
Therefore, the line LD(x) = TDd(x) also depends only on (A,B). Finally,
the projection νLab,D(x) is completely defined by (A,B). This together with
Proposition 3.8 implies that dimM = dimMD,LD

= 2. The contradiction
thus obtained proves Proposition 3.9. 2

Corollary 3.10 For every G = C,D one of the following statements holds
(depending on the choice of G):

1) dimM = dimMG,LG
= 4; then the projection pL,G : MG,LG

→ MG is
a fibration by algebraic curves over an open and dense subset in MG.

2) dimM = dimMG,LG
= 3 = dimMG, dimΣ ≤ 2, set

σG = νab,G(Σ), M0
G = MG \ σG; (3.3)

then pL,G : p−1
L,G(M0

G)→M0
G is a non-ramified finite covering.

a) Either the degree of the latter covering is greater than one;
b) Or it equals one: then the projection pL,G : MG,LG

→ MG is bimero-
morphic; its inverse is holomorphic on M0

G.

The corollary follows immediately from the above propositions.

3.3 Case of multivalued line correspondence

Here we consider that the line correspondence λ : (A,B,D) 7→ LD is multi-
valued (Cases 1) or 2a) in Corollary 3.10). We show that both curves a and
b are algebraic, and hence, this case is impossible. (The case of vertex C is
symmetric.) The proof is based on the following key observation.

Proposition 3.11 Let Σ be the same, as in (3.2). For every two points
x, y ∈M\Σ projected to the same (A,B) ∈ â×b̂ such that either (C(x), LC(x)) 6=
(C(y), LC(y)), or (D(x), LD(x)) 6= (D(y), LD(y)), the billiard c(x), d(x),
d(y), c(y) is 4-reflective.

Proof The proof of the proposition repeats the final argument from [5,
proof of lemma 3.1].

Case (i): C(x) 6= C(y) and D(x) 6= D(y). Then the quadrilateral
C(x)D(x)D(y)C(y) is an orbit of the billiard c(x), d(x), d(y), c(y), by defi-
nition and reflection law, see Fig.6. Let us deform x and y along their inte-
gral surfaces of the distribution DM so that νab(x) = νab(y): this does not
change the billiards. The quadrilateral orbits ABC(z)D(z) of the billiards
a, b, c(z), d(z), z = x, y depend locally holomorphically on two parameters
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(A,B) = νab(z) ∈ â × b̂ (the Addendum to Proposition 2.10). Therefore,
the above quadrilateral orbits C(x)D(x)D(y)C(y) form a two-dimensional
family. Hence, the billiard c(x), d(x), d(y), c(y) is 4-reflective.

   b

A

 C(y) 

a

  c(x)

D(y)    c(y)

d(x)
   D(x)

C(x)

d(y)

     B

Figure 6: The 4-reflective billiard c(x), d(x), d(y), c(y): open set of quadri-
lateral orbits C(x)D(x)D(y)C(y).

Case (ii): D(x) = D(y) = D0 but LD(x) = TD(x)d(x) 6= LD(y) =
TD(y)d(y) (the same case with D replaced by C is symmetric). Let us show
that one can achieve the inequalities of Case (i) by deforming x and y as
above. The mirrors d(x) and d(y) intersect transversely at D0. Therefore,
deforming (A,B), one can achieve that the line la = la(A,B) intersects d(x)
and d(y) at two distinct points close to D0. This lifts to deformation of
x and y along their integral surfaces (the last statement of Remark 3.7),
and we get new x, y with νab(x) = νab(y) and D(x) 6= D(y). One has
(C(x), LC(x)) 6= (C(y), LC(y)), since otherwise, νLab,C(x) = νLab,C(y) but
x 6= y, – a contradiction to Proposition 3.8. Hence, one can achieve that
C(x) 6= C(y) via small deformation, by the above argument. This reduces
us to Case (i) and proves the proposition. 2

In what follows, we fix arbitrary

x, y ∈M \ Σ with νab,D(x) = νab,D(y), LD(x) 6= LD(y).

They exist by multivaluedness of the line correspondence. Set
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D0 = D(x) = D(y), (A,B) = νab(x) = νab(y).

Claim 1. The curves c(x), c(y) are either both triangular spirals cen-
tered at D0, or both conics: complex circles centered at D0.
Proof The germ at C(x)D0D0C(y) of billiard c(x), d(x), d(y), c(y) is
4-reflective (Proposition 3.11). It satisfies the non-isotropicity and line non-
coincidence conditions of Proposition 2.17, since x, y correspond to non-
degenerate quadrilaterals. For example, the tangent line to a mirror through
each vertex is non-isotropic and distinct from the adjacent edges, by non-
degeneracy. This together with Proposition 2.17 implies the claim. 2

Corollary 3.12 The mirrors c(z) and d(z) are algebraic for z = x, y.

Proof It suffices to prove that the mirrors c(z), z = x, y, are both algebraic:
then so are d(z), by 4-reflectivity of the billiard c(x), d(x), d(y), c(y) and
Proposition 2.1. Suppose the contrary: say c(x) is not algebraic. Take
an arbitrary y′ ∈ M \ Σ close to y with νab(y

′) = (A,B) = νab(y) and
D(y′) 6= D0. It exists, since the projection νab,D is a local submersion at y.
The mirror d(y′) intersects d(x) at a point D1 6= D0 close to D0, since both
mirrors d(x), d(y) are regular at D0, see Remark 3.7, and the lines AD0,
LD(x) = TD0d(x), LD(y) = TD0d(y) are pairwise transverse. The billiard
c(x), d(x), d(y′), c(y′) is 4-reflective, by Proposition 3.11, and its 4-reflective
set contains a degenerate quadrilateral C1D1D1C2 close to C(x)D0D0C(y).
This together with Proposition 2.17 implies that c(x) is a triangular spiral
centered at D1, as in Claim 1. Thus, c(x) is a triangular spiral with two
distinct centers D0 and D1. Hence, it is algebraic, by Proposition 2.19. The
contradiction thus obtained proves the corollary. 2

Thus, the 4-reflective billiard a, b, c(x), d(x) has two neighbor algebraic
mirrors c(x) and d(x). Hence, a and b are also algebraic, by Proposition
2.1. The contradiction thus obtained shows that for every G = C,D the line
correspondence λ : (A,B,G) 7→ LG cannot be multivalued.

3.4 Meromorphic line correspondence

Here we consider that Case 2b) of Corollary 3.10 holds for both G = D,C:
dimM = dimMG,LG

= dimMG = 3, and the inverse p−1
L,G : MG →MG,LG

is

holomorphic on M0
G = MG \ σG, see (3.3). Thus, the line correspondence

λ : MG → CP2∗ : (A,B,G) 7→ LG,
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which is the composition of the latter inverse with the projection to the
position of the line LG, is also holomorphic onM0

G. We show that there exists
an open and dense set of points x ∈M \Σ such that both c(x) and d(x) are
lines. This will bring us to contradiction as above and prove Lemma 3.1. It
suffices to prove the above statement for the mirrors d(x) only. We identify
the line LD = λ(A,B,D) with the corresponding tangent line in TDCP2. We
first show (the next proposition) that the line LD locally depends only on
D ∈ CP2. We then deduce (the next corollary) that for every (A,B) from an
open and dense subset R ⊂ â× b̂ the lines LD = λ(A′, B′, D) ⊂ TDCP2 with
(A′, B′) close to (A,B) induce a holomorphic line field on a neighborhood
of the projective line la = la(A,B). Afterwards we show that the latter line
field is transverse to la (Proposition 3.16). This implies (Lemma 3.17) that
its phase curves, which coincide with the mirrors d(x), form a pencil of lines
through the same point.

Let Is ⊂ â × b̂ denote the set of those points (A,B), for which the line
TAa is isotropic and contains B. This is a discrete set, by definition. Let
µab : MD → â × b̂ denote the natural projection. The set MD is a regular
fibration by lines A×B×la(A,B) = µ−1

ab (A,B) over the complement â×b̂\Is,
by definition and since dimMD = 3. Thus, its singular set is contained in
µ−1
ab (Is). The mapping λ : MD → CP2∗ is meromorphic, by assumption (see

Corollary 3.10, case 3b)). Hence, the set Ind of its indeterminacies (if non-
empty) is contained in the union of the set µ−1

ab (Is) and an analytic set of

codimension at most two (see Footnote 2 in Subsection 2.6). Let Σab ⊂ â× b̂
denote the union of the sets µab(Ind), Is and the set of those points (A,B)
for which either WAB = ν−1

ab (A,B) ∩M ⊂ Σ, or the line AB coincides with
la(A,B) (e.g., if AB = TAa = la(A,B)), or some of the points A, B is a
marked point of the corresponding curve a (respectively, b). Set

R = â× b̂ \ Σab, M
′
D = µ−1

ab (R) ⊂MD. (3.4)

Remark 3.13 The set Σab is analytic of positive codimension, by Rem-
mert’s Proper Mapping Theorem and Chevalley–Remmert Theorem [10,
p.189, statement (10)]. Hence its complement R is open, connected and
dense. The set M ′D is a regular three-dimensional complex analytic mani-
fold dense in MD, and λ is analytic on M ′D, by construction. The projection

µD : M ′D → CP2, (A,B,D) 7→ D

is a submersion.

Let F denote the foliation of the manifold M ′D by connected components
of level curves µD = const. Its leaf through a point y will be denoted F (y).
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Proposition 3.14 The function λ is constant on leaves of the foliation F .

Proof It suffices to prove the constance of the function λ on the leaves
F (y) through y = νab,D(x) with x ∈ M \ Σ, since the latter y are dense in
M ′D. Fix an x ∈ M \ Σ with y = νab,D(x) ∈ M ′D. The integral surface of
the distribution DM through x contains an analytic curve Γ(x) through x
where D ≡ D(x). It corresponds to a one-parametric family of quadrilateral
orbits of the billiard a, b, c(x), d(x) with fixed vertex D = D(x). The
projection νab,D is non-constant on Γ(x) and sends its germ at x to the leaf
F (y). The line LD = TD(x)d(x) being obviously constant along the curve
Γ(x), the function λ is constant on the leaf F (y). This together with the
above discussion proves the proposition. 2

Corollary 3.15 For every (A,B) ∈ R, set la = la(A,B), and every small
neighborhood V of the line A×B× la ⊂M ′D the lines λ(A′, B′, D) ⊂ TDCP2

with (A′, B′, D) ∈ V form an analytic line field Λ = Λ(D) on a neighborhood
of the projective line la in CP2.

Proof If V is small enough, then any its two points with the same µD-image
lie in the same leaf of the foliation F , by submersivity of the projection µD.
This together with Proposition 3.14 implies the corollary. 2

Proposition 3.16 The above line field Λ is transverse to the line la.

Proof We prove the proposition by contradiction. Suppose the contrary:
the line field Λ is tangent to la at some point. This means that there exist
x ∈ ν−1

ab (A,B) \ Σ with LD(x) = TD(x)d(x) being arbitrarily close to la in
the Fubini-Studi metric of the dual projective plane. Fix an x as above such
that in addition D(x) /∈ a and the mirror d(x) be not a line. The latter
condition is possible to achieve, since otherwise, if all the corresponding
mirrors d(x) were lines, then la would be a phase curve of the line field Λ
(tangency assumption). This is impossible: x ∈ ν−1

ab (A,B) \ Σ correspond
to non-degenerate quadrilateral billiard orbits, and the corresponding lines
LD(x) are obviously transverse to la. We show that the 4-reflective set of
the corresponding billiard a, b, c(x), d(x) contains a degenerate quadrilateral
with tangency that is forbidden by one of Propositions 2.21 or 2.23. The
contradiction thus obtained will prove the proposition.

Set y = νab,D(x) ∈ M ′D, D0 = D(x). The leaf F (y) of the foliation
F contains a point z = (A1, B1, D0) such that LD(z) = Λ(D0) = A1D0;
with A1, B1 close to A, B, as LD(x) is close to la = AD0. The leaf F (y)
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lifts to an analytic family of quadrilaterals A′B′C ′D0 in the 4-reflective set
U of the billiard a, b, c(x), d(x). Indeed, the three vertices A′, B′, D0

are given by the point of the leaf. The fourth vertex C ′ is found as the
intersection of the lines symmetric to A′B′, A′D0 with respect to TB′b and
LD(x) = TD0d(x) respectively; it depends analytically on the parameter
of the curve F (y). The point z corresponds to a degenerate quadrilateral
A1B1C1D0 with A1D0 = TD0d(x). There exists an irreducible germ at
A1B1C1D0 of analytic curve γ ⊂ U consisting of quadrilaterals A′B′C ′D′

with A′D′ = D′C ′ = TD′d(x). Let us now check that a generic quadrilateral
in the curve γ satisfies the conditions of some of Propositions 2.21 or 2.23.

Recall that the quadrilateral ABCD0 corresponding to x ∈ M \ Σ is
non-degenerate and thus, has no vertex collisions. Moreover, its vertices are
not marked points, by assumption. Hence, A1 6= B1 and A1, B1 are not
marked, being close to (A,B), D0 6= A1 since D0 /∈ a. Note that C ′ 6≡ const
along the curve γ, since C ′ is a point of intersection of the curve c(x) with
a variable tangent line TD′d(x).

Case 1): C ′ 6≡ B′, D′ along the curve γ. Then a generic quadrilateral in
γ has no coinciding neighbor vertices and no marked vertices, by the above
statements. Therefore, the latter quadrilateral is forbidden by Proposition
2.21, – a contradiction.

Case 2): C ′ ≡ D′ 6≡ B′ along the curve γ; c(x) = d(x). Then the quadri-
lateral A1B1C1D0 ∈ Γ is forbidden by Proposition 2.23, – a contradiction,
The case C ′ ≡ B′ ≡ D′ is analogous.

Case 3): C ′ ≡ B′ 6≡ D′ along γ; c(x) = b(x). Then the variable tangent
line TD′d(x) would be tangent to the curves c(x) and d(x) at two distinct
points C ′ and D′, which is impossible. Proposition 3.16 is proved. 2

Lemma 3.17 Let a holomorphic line field Λ on a neighborhood of a projec-
tive line L ⊂ CP2 be transverse to L. Then Λ is tangent to a pencil of lines
through the same point.

As it is shown below, the lemma is implied by the two following propo-
sitions.

Proposition 3.18 Let L ⊂ CP2 be a projective line, and let Λ : L→ CP2∗,
D 7→ Λ(D) be a holomorphic family of lines through points D ∈ L transverse
to L. Then the lines Λ(D) pass through the same point.

Proof The lines Λ(D) form a rational curve λ ⊂ CP2∗. Its dual curve
λ∗ ⊂ CP2 is disjoint from the line L. Indeed, both curves are analytically
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parametrized by D ∈ L, let us write the parametrization λ∗ = λ∗(D). Sup-
pose the contrary, λ∗ intersects L at some point λ∗(D), see Fig.7. By defi-

(D )
D=    (D)λ*

 λ∗λ∗

 L

  D

Figure 7: The curve λ∗ intersecting the line L transversely: dist(D′, D) =
o(dist(λ∗(D′), λ∗(D)))

nition, Tλ∗(D)λ
∗ = Λ(D), Λ(D)∩L = D (transversality), hence D = λ∗(D).

Consider the parametrized germ of the curve λ∗ at λ∗(D), which is trans-
verse to L. For every parameter value D′ ∈ L close to D the tangent
line Tλ∗(D′)λ

∗ = Λ(D′) intersects L at D′. On the other hand, the dis-
tance of the intersection point D′ to D should be o(dist(λ∗(D′), λ∗(D))) =
o(dist(D′, D)), as D′ → D, by transversality and tangency. This is obvi-
ously impossible. Thus, λ∗ is an irreducible algebraic set disjoint from the
line L. Hence, it is a point and Λ is a pencil of lines through it. This proves
the proposition. 2

Proposition 3.19 Let Λ be a holomorphic line field on a domain V ⊂ CP2

that satisfies the following
collinearity property: for every three points D1, D2, D3 ∈ V lying on

the same line the corresponding projective lines Λ(Dj), j = 1, 2, 3 intersect
at the same point.

Then the field Λ is tangent to a pencil of lines through the same point.

Proof It suffices to show that the phase curves of the field Λ are lines: then
the statement of the proposition follows immediately. Suppose the contrary:
there exists a non-linear phase curve l. Fix a point D ∈ l. The projective
tangent line L = TDl = Λ(D) is obviously transverse to the field Λ in a
punctured neighborhood of the point D in L. Therefore, for every two points
D1, D2 ∈ L in the latter neighborhood the intersection point Λ(D1)∩Λ(D2)
lies outside the line L, while the three lines L = Λ(D), Λ(D1), Λ(D2) should
intersect at the same point by the collinearity property. The contradiction
thus obtained proves the proposition. 2

Proof of Lemma 3.17. The line field Λ(D) satisfies the above collinearity
property for triples of points on each line close enough to L, by Proposition
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3.18. Hence, the collinearity property holds on a neighborhood of the line
L. This together with Proposition 3.19 proves the lemma. 2

The phase curves of the line field Λ from Corollary 3.15 form a pencil
of lines through the same point, by Proposition 3.16 and Lemma 3.17. This
implies that for every x from open and dense subset ν−1

ab (R) \ Σ ⊂ M
the mirror d(x) is a line. This together with the similar statement for the
mirrors c(x) (proved analogously) and Proposition 2.1 implies that a and b
are algebraic curves. The contradiction thus obtained proves Lemma 3.1.

3.5 Case of one algebraic mirror. Proof of Theorem 1.8

In the present subsection we consider that a, b, c, d is a 4-reflective analytic
planar billiard, and the mirror a is algebraic. Without loss of generality we
consider that the curve b is transcendental: in the opposite case Theorem
1.8 follows immediately from Proposition 2.1 and [5, theorem 1.11]. As it is
shown below, Theorem 1.8 is implied by the following proposition.

Proposition 3.20 In the above conditions the mirror c is also algebraic.

Proof The projection νb : U → b̂ of the 4-reflective set U is proper and
epimorphic, by Corollary 3.4 and since a is algebraic. This implies that for
every non-marked B ∈ b̂ the preimage ν−1

b (B) ⊂ U is a compact analytic
curve with non-constant holomorphic projection to ĉ. Hence, ĉ is compact
and c is algebraic. The proposition is proved. 2

Now let us prove Theorem 1.8. If the mirror d is algebraic, then all
the mirrors are algebraic (Proposition 2.1), and we are done. Let now d be
non-algebraic. Fix a non-marked point B ∈ b̂ and consider an irreducible
component ΓB of the above compact analytic curve ν−1

b (B) ⊂ U . The
image of its projection to the position of the vertex D in CP2 is either an
algebraic curve, or a single point. The former case is impossible, by the non-
algebraicity of the mirror d. Hence, for an open and dense set of points B ∈ b̂
the projection of the curve ΓB to the position of the vertex D is constant
and is determined by B. Thus, there exists a mapping b̂ → d̂, B 7→ DB,
defined on an open set V ⊂ b̂ such that for every fixed B ∈ V and variable
A ∈ â the lines AB and ADB are symmetric with respect to the tangent
line TAa. This implies that either a is a line and B, DB are symmetric
with respect to a for every B ∈ b̂, or a is a conic with one-dimensional
family of foci pairs (B,DB), see [5, proposition 2.32]. The latter case being
obviously impossible, the curves b, d are symmetric with respect to the line
a. Applying the above argument to the algebraic mirror c instead of a, we
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get that B and DB are symmetric with respect to the line c. Thus, the
above pairs (B,DB) are symmetric with respect to both lines a and c, by
construction. Therefore, a = c 6= d, and the billiard is of type 1) from
Theorem 1.6. Theorem 1.8 is proved.

3.6 Intersected neighbor mirrors. Proof of Corollary 3.5

In the conditions of the corollary no mirror is a line, by Theorem 1.8 and
since a, b are not lines. Without loss of generality we consider that all the
mirrors are transcendental, since otherwise, all of them are algebraic and
a = c, by Theorem 1.8. Let U be the 4-reflective set. Its projection to â× b̂
is proper and epimorphic, by Corollary 3.4.

Claim 1. a 6= b.
Proof Suppose the contrary: a = b. Then U contains a one-parametric
analytic family T of quadrilaterals AACD with variable A, C, D, by the
above epimorphicity statement. A generic quadrilateral in T is forbidden
by Proposition 2.23. The contradiction thus obtained proves the claim. 2

The projection preimage of the pair (A,A) in U is a non-empty compact
analytic subset Γ ⊂ U of dimension at most one.

Case 1): dimΓ = 1. Then at least one of the curves ĉ, d̂, say ĉ is a com-
pact Riemann surface, – a contradiction to our non-algebraicity assumption.
Thus, this case is impossible.

Case 2): dimΓ = 0: Γ is a finite set.
Claim 2. Every quadrilateral AACD ∈ Γ is a single-point quadrilateral:

the mirrors c and d pass through the same point A; πc(C) = πd(D) = A.
Proof Suppose the contrary: say, πc(C) 6= A. The projection U → â × b̂
is open on a neighborhood of the point AACD, since it contracts no curve
to (A,A) by assumption. Therefore, each converging sequence (Ak, Bk) →
(A,A) lifts to a converging sequence AkBkCkDk → AACD in U . Let us
take two sequences (Akj , B

k
j )→ (A,A), j = 1, 2, with lines AkjB

k
j converging

to different limits for j = 1, 2; this is possible, since a 6= b. We get two
sequences of quadrilaterals AkjB

k
jC

k
jD

k
j converging to the same quadrilateral

AACD. On the other hand, the lines symmetric to AkjB
k
j with respect to the

tangent lines TBk
j
b should converge to two distinct limits Hj , j = 1, 2, which

follows from assumption and since A is not a marked point of the curve b.
The distinct limit lines H1 and H2 pass through the same two distinct points
A and πc(C), by construction. The contradiction thus obtained proves the
claim. 2
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Thus, Γ is a finite set of points corresponding to the single-point quadri-
lateral AAAA. Fix one of them and denote it AAAA: the corresponding
vertices C ∈ π−1

c (A) and D ∈ π−1
d (A) will be denoted by A. The projection

U → ĉ × d̂ is open on a neighborhood of the point AAAA, as in the above
discussion. Let γ ⊂ ĉ× d̂ be an irreducible germ at (A,A) of analytic curve
consisting of pairs (C ′, D′) with variable C ′ and D′ for which C ′ ∈ TD′d. The
germ γ lifts to an irreducible germ γ̃ of analytic curve through AAAA in U .
The curve γ̃ consists of quadrilaterals A′B′C ′D′ ∈ U for which B′, D′ 6≡ C ′

(Proposition 2.23). Therefore, A′ ≡ C ′, by Corollary 2.24 and since A is not
a marked point of the mirror b. Hence, a = c. Corollary 3.5 is proved.

4 Algebraicity: proof of Theorem 1.9

Theorem 1.6, and thus, Theorem 1.9 are already proved in the case, when
at least one mirror is algebraic (Theorem 1.8). Here we prove Theorem 1.9
in the general case by contradiction. Suppose the contrary: there exists a
4-reflective billiard a, b, c, d with no algebraic mirrors. We study Birkhoff
distribution Da on the space Ma and consider its integral surface S formed
by an open set of quadrilateral orbits of the billiard. Recall that Ma ⊂ Ha
is a six-dimensional analytic subset, and Da is a singular three-dimensional
distribution on Ma, see Subsection 2.7. Set

M = the minimal analytic subset in Ma containing S.

This is an irreducible analytic subset in Ha, by definition, see Convention
2.29. The intersections

DM (x) = Da(x) ∩ TxM, x being a smooth point of the variety M,

induce a singular analytic distribution DM on M , for which S is an in-
tegral surface. This is either two- or three-dimensional distribution, since
dimS = 2 and dimDa = 3. We study the corresponding Pfaffian system:
the problem to find two-dimensional surfaces of the distribution DM . The
cases, when either dimDM = 2, or dimDM = 3 and the Pfaffian system
is non-involutive in the sense of Cartan–Kuranishi–Rashevsky theory are
treated in Subsection 4.2. The case, when dimDM = 3 and the Pfaffian
system is involutive is treated in Subsection 4.3. The methods of proof of
Theorem 1.9 in both cases are similar. We show that an open set of points
x ∈M lie in integral surfaces corresponding to 4-reflective billiards a, b(x),
c(x), d(x) with regularly intersected mirrors a and b(x). Then either b(x) is
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a line, or c(x) = a, by Corollary 3.5. We then show that either νC(M) ⊂ a,
or the mirror b of the initial billiard is a line. We get a contradiction in both
cases.

The background material on involutive Pfaffian systems is recalled in the
next subsection.

Recall that νa : Ha → â is the natural projection. It is proper, epimor-
phic and for every A ∈ â the projection preimage

WA = ν−1
a (A) ∩M

is a projective algebraic set. One of the key statements used in the proof of
Theorem 1.9 in both cases is the following proposition.

Proposition 4.1 There exists a complement â0 ⊂ â to a discrete subset in
â such that for every A ∈ â0 the projection νB : WA → CP2 is epimorphic
and has rank two on a non-empty Zariski open and dense subset in WA.

Proof For every A ∈ â the image of the projection νB : WA → CP2

is either the whole projective plane, or an algebraic subset of dimension
at most one (Remmert’s Proper Mapping and Chow’s Theorems). Either
νB(WA) = CP2 for all but a discrete set of points A (and then the statement
of the proposition obviously holds), or it is at most one-dimensional algebraic
set for an open and dense set Q of points A ∈ a, by analyticity. The latter
case cannot happen, since otherwise for every non-marked A ∈ νa(S) ∩ Q
the set νB(WA ∩ S) would be an analytic curve lying simultaneously in the
transcendental curve b and in at most one-dimensional algebraic set νB(WA),
– a contradiction. This proves the proposition. 2

Corollary 4.2 For every open dense subset N ⊂ M whose complement
M \N ⊂M is an analytic subset there exists an open dense subset âN ⊂ â
such that for every A ∈ âN the intersection νB(WA ∩ N) ∩ a contains the
πa- image of an open dense subset in â: a complement to a discrete subset.

Proof Let â0 be the same, as in Proposition 4.1. There exists an open dense
subset âN ⊂ â0 such that for every A ∈ âN the subset WN

A = WA∩N ⊂WA

is dense, since N is open and dense. Then for the same A the complement
WA \WN

A ⊂WA is an algebraic subset, since it is analytic (as is M \N) and
by Chow’s Theorem. Therefore, the complement CP2\νB(WN

A ) is contained
in an algebraic subset in CP2 of positive codimension (Proposition 4.1 and
Chevalley–Remmert and Chow’s Theorems). Its πa-preimage is at most
discrete, since a is non-algebraic. This implies the statement of the corollary.

2
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4.1 Background material: Phaffian systems and involutivity

Everywhere below in the present subsection whenever the contrary is not
specified, F is a k-dimensional analytic distribution on an analytic manifold
M , F(x) ⊂ TxM are the corresponding subspaces.

Definition 4.3 [16, p.290] Let k, l ∈ N, k ≥ l, and let F be as above. A
Pfaffian system Fk,l is the problem to find l-dimensional analytic integral
surfaces of the distribution F .

Definition 4.4 [16, p.298] An m-dimensional integral element of the distri-
bution F is an m-dimensional vector subspace Em(x) ⊂ F(x) such that for
every 1-form ω on the ambient manifold vanishing on the subspaces of the
distribution F its differential dω vanishes on Em(x).

Definition 4.5 [16, p.300] A Pfaffian system Fk,l is in involution (or briefly,
involutive), if for every x ∈M , p < l each p-dimensional integral element in
TxM is contained in some (p+ 1)-dimensional integral element.

Example 4.6 A tangent subspace to an integral surface is an integral sub-
space. Every Pfaffian system defined by a Frobenius integrable distribution
is involutive.

Remark 4.7 A Pfaffian system on a connected manifold is involutive, if
and only if it is involutive on an open subset. Let a Pfaffian system Fk,l be
involutive. Then for every p < l and every p-dimensional integral element
Ep(x) the set of (p+ 1)-dimensional integral elements containing Ep(x) is a
projective space. An integral element Ep(x) is said to be nonsingular, if the
dimension of the latter projective space is minimal, and singular otherwise
[16, p.306]. The p-dimensional integral elements form an analytic subset
Ip ⊂ Grp(F) in the p-Grassmanian bundle of the subbundle F ⊂ TM . The
nonsingular integral elements form a non-empty open subset in Ip. The
singular integral elements form an analytic set. The two latter statements
follow from definition, compactness of Grassmanian fibers and Remmert’s
Proper Mapping Theorem. See also loc. cit. and [16, formula (58.13)],
which characterizes p + 1-dimensional integral elements containing a given
p-dimensional one.

Theorem 4.8 (a version of Cauchy–Kovalevskaya Theorem; implicitly con-
tained in [16, section 60]). Let an analytic Pfaffian system Fk,l on a man-
ifold M be involutive. Let p ≤ l, Γ ⊂ M be a (p − 1)-dimensional ana-
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lytic integral surface such that all its tangent spaces be nonsingular (p− 1)-
dimensional integral elements. Then for every x ∈ Γ there exists a germ of
p-dimensional integral surface through x that contains the germ of Γ at x.

Remark 4.9 The above definitions and theorem obviously extend to the
case of singular analytic Pfaffian systems corresponding to singular analytic
distributions on (singular) analytic varieties, i.e., analytic subsets in complex
manifolds: we assume that the corresponding x lies in the open set of points
regular for both the variety and the distribution. In this case we use the
following stronger analyticity properties of the above-defined sets of integral
elements. To formulate them, let us recall the following definition.

Definition 4.10 [10, p.188]. A subset N of a complex manifold V is called
analytically constructible, if each point of the manifold V has a neighborhood
U such that the intersection N ∩ U is a finite union of subsets defined by
finite systems of equations fj = 0 and inequalities gi 6= 0; fj and gi are
holomorphic functions on U .

Recall that for a singular analytic distribution DM on an analytic subset
M in a complex manifold V by M0

reg ⊂ M we denote the open and dense
subset of points regular both for M and DM ; the complement M \M0

reg ⊂ V
is an analytic subset.

Proposition 4.11 For every involutive singular analytic Pfaffian system
on an analytic subset M in a complex manifold V (let DM denote the cor-
responding distribution) the set of its one-dimensional nonsingular integral
elements (see Remark 4.7) is open and dense in the projectivized bundle
P(DM |M0

reg
). It is an analytically constructible subset in P(TV ).

Proof Each one-dimensional subspace in the bundle DM |M0
reg

is an inte-
gral element. The set of nonsingular integral elements is open and dense
in its projectivization. Both statements follow from definition. Now for
the proof of the proposition it suffices to show that the set of singular in-
tegral elements is analytically constructible. The singular distribution DM
is the restriction to M of a singular analytic distribution D on the ambi-
ent manifold V ; the latter distribution is locally defined by zeros of finite
collections of holomorphic 1-forms ω1, . . . , ωs. A one-dimensional singular
integral element is a one-dimensional subspace in DM (x), x ∈ M0

reg, for
which the projective space of ambient two-dimensional integral elements is
not of minimal dimension. For every x ∈ M0

reg and every one-dimensional
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subspace E1(x) ⊂ DM (x) the latter condition is locally defined by vanish-
ing of appropriate collection of minors of appropriate holomorphic matrix
function: the latter matrix function depends meromorphically on E1(x) and
the coefficients of the forms ωj and their differentials, analogously to [16,
formula (58.13) and p.306]. The above vanishing of minors may be writ-
ten as a system of meromorphic equations in a neighborhood of each point
E1 ∈ P(DM |M0

reg
) in P(TV ). This proves analytic constructibility. Another,

more explicit argument deals with the set of all the two-dimensional integral
elements E2 ⊂ DM |M0

reg
. It is analytically constructible, being locally de-

fined by the system of meromorphic equations dωj |E2 = 0, E2 ∈ Gr2(TV ),
and the inclusion E2 ∈ Gr2(DM )|M0

reg
into an analytically constructible

set. The set of pairs (L,E2), L ∈ P(DM |M0
reg

), E2 ⊃ L being a two-

dimensional integral subspace in DM |M0
reg

, is an analytically constructible

subsetW ⊂ P(DM |M0
reg

)×Gr2(TV ). The singular elements are those points

in P(DM |M0
reg

), whose product projection preimages in W do not have the
minimal possible dimension. Hence, they form an analytically constructible
set (properness of the product projection, Remmert’s Proper Mapping and
Chevalley-Remmert Theorems). The proposition is proved. 2

Proposition 4.12 Every three-dimensional singular analytic distribution
F on an irreducible analytic variety M satisfies one of the two following
incompatible statements:

- either the corresponding Pfaffian system F3,2 is involutive;
- or there exists an analytic subset Σ ⊂M such that for every x ∈M \Σ

the corresponding subspace F(x) ⊂ TxM contains one and the same number
(one or two) of integral planes, i.e., two-dimensional integral elements.

Proof For every point x ∈M0
reg set

I(x) = {v ∈ F(x) | v is contained in an integral plane of F}.

Claim. For every x ∈ M0
reg either I(x) = F(x), or I(x) is a union of

at most two integral planes of the distribution F .
Proof The distribution F is locally defined as the field of kernels of a finite
system of holomorphic 1-forms ω1, . . . , ωk. By definition, a vector v ∈ F(x)
is contained in I(x), if and only if the 1-forms νj(x) = ivdωj(x) ∈ T ∗xM ,
j = 1, . . . , k, vanish simultaneously on some two-dimensional plane Ex(v) ⊂
F(x) containing v. Since the plane Ex(v) is a hyperplane in F(x), the latter
is equivalent to the statement that the restrictions to F(x) of the forms νj ,
j = 1, . . . , k, are proportional. This holds if and only if the matrix formed
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by the coordinate components of the latter restrictions has zero two-minors
(cf. [16, p.300]). Vanishing of two-minors yields a system of homogeneous
quadratic equations on the components of the vector v. The set I(x) is
a union of integral planes (by definition), and it is defined by a system of
quadratic equations in the ambient three-dimensional space F(x). This is
possible, if and only if either I(x) = F(x), or I(x) is a union of at most two
integral planes. The claim is proved. 2

If I(x) = F(x) for every x ∈ M0
reg, then the Pfaffian system F3,2 is

involutive, by definition. Otherwise, the set of those points x ∈ M0
reg, for

which I(x) = F(x), is an analytically constructible subset in M ; its closure
Inv ⊂M is an analytic subset in M of positive codimension, and so is

Σ = Inv ∪ (M \M0
reg).

This follows by the above discussion with forms ωj , as in the proof of Propo-
sition 4.11. For every y ∈M\Σ the set I(y) is a union of at most two integral
planes, by the above claim. Passing to a complement of a bigger analytic
subset one can achieve that for every y ∈ M \ Σ the set I(y) is a union
of one and the same number of integral planes: one or two. This proves
Proposition 4.12. 2

Corollary 4.13 Let DM be a three-dimensional singular analytic distribu-
tion on an irreducible analytic subset M of a complex manifold V . Let the
corresponding Pfaffian system (DM )3,2 be non-involutive. Then there exist

an analytic subset M̃ ⊂ Gr2(TV ) and a singular two-dimensional analytic

distribution D̃M on M̃ (i.e., on each its irreducible component) satisfying
the following statements:

1) the bundle projection π : Gr2(TV )→ V maps M̃ onto M with degree
at most two (the number of preimages of a generic point);

2) each integral surface of the three-dimensional distribution DM lifts to
an integral surface of the two-dimensional distribution D̃M .

Proof There exists an analytic subset Σ ⊂ M such that for every x ∈
M \ Σ the corresponding subspace DM (x) ⊂ TxM contains one and the
same number (one or two) of integral planes, by Proposition 4.12. Let

M̃ ⊂ Gr2(TV ) denote the closure of the set M̃0 of all the integral planes

in DM |M\Σ. The set M̃ is analytic, since M̃0 is analytically constructible,
see the proof of Proposition 4.11. Statement 1) follows from construction.
Consider the canonical distribution C on Gr2(TV ): for every y ∈ Gr2(TV )
the subspace C(y) ⊂ TyGr2(TV ) is the dπ(y)-preimage of the plane y ⊂
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Tπ(y)V . Let D̃M denote the restriction C|
M̃

. By construction, this is a two-
dimensional singular analytic distribution, and its subspaces are projected
to all the integral planes of the distribution DM . The tangent planes to
each integral surface of the distribution DM are integral planes. Hence, its
appropriate lifting to M̃ is an integral surface of the distribution D̃M . The
corollary is proved. 2

4.2 Two-dimensional and non-involutive cases

Here we treat the cases, when either dimDM = 2, orDM is three-dimensional
and the Pfaffian system (DM )3,2 is non-involutive. The latter case is reduced
to the two-dimensional one. Namely, consider the corresponding analytic set
M̃ and two-dimensional distribution D̃M from Corollary 4.13. The integral
surface S ⊂ M of the distribution DM formed by open set of quadrilateral
orbits of the initial billiard a, b, c, d lifts to an integral surface S̃ ⊂ M̃ of the
distribution D̃M , by the corollary. The irreducible component containing
S̃ of the set M̃ is the minimal analytic set containing S̃, by the similar
assumption for S and M . Then we denote the latter component by M , the
distribution D̃M by DM and the lifted surface S̃ by S. Thus, in both cases

- M is an irreducible analytic set in a complex manifold;
- DM is a two-dimensional singular analytic distribution on M ;
- S is its two-dimensional integral surface;
- M is the minimal analytic set containing S;
- the distribution DM is integrable.
The four former statements follow from construction. The fifth one fol-

lows from Proposition 2.34.
We keep the previous notations νa, νG, G = B,C,D for the projections

to the positions of vertices. Set

M ′ = {x ∈M0
reg | A(x)B(x)C(x)D(x) is non-degenerate and

dνa(x), dνG(x) 6≡ 0 on DM (x) for G = B,C,D}. (4.1)

This is a non-empty set: it contains an open subset in the surface S. It is an
open and dense subset in M , and its complement Σ = M \M ′ is analytic.

Remark 4.14 The integral surface of the distribution DM through each
point x ∈ M ′ is non-trivial. The germ of its image under each one of the
projections νG, G = B,C,D, is a germ of analytic curve at its non-marked
point. The regularity of germ follows by definition from the inequalities
in (4.1). The non-isotropicity of tangent line to the germ follows from the
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definition of the distribution DM and non-degeneracy of the quadrilateral
corresponding to x. Thus, the above integral surface corresponds to an open
set of quadrilateral orbits of a 4-reflective billiard a, b(x), c(x), d(x), and
the above germs are germs of mirrors at non-marked points.

We show that there exists an open subset V ⊂ M ′ of those x for which
the mirrors a and b(x) intersect at some their common regular point (easily
follows from Corollaries 4.2 and 3.5). Afterwards we deduce that either
c(x) = a for all x, or b(x) is a line for all x. We show that this contradicts
either Proposition 4.1, or non-algebraicity of the curve b.

Recall that we denote WA = ν−1
a (A) ∩M . Set W 0

A = WA ∩M ′.
There exists an open dense subset â′ ⊂ â such that for every A ∈ â′ the

intersection νB(W 0
A) ∩ a contains a regularly embedded disk α ⊂ a with-

out marked points (Corollary 4.2). Fix α and an x0 ∈ M ′ ∩ ν−1
B (α). The

point νB(x0) ∈ b(x0) ∩ α is a non-marked point of the corresponding lo-
cal branches of the curves b(x0) and α (Remark 4.14). The latter local
branches are distinct, by Corollary 3.5. Therefore, there exists a neighbor-
hood V = V (x0) ⊂ M ′ such that for every x ∈ V a regular branch of the
curve b(x) intersects α at a non-marked point for both curves (Remark 4.14
and analyticity of the foliation by integral surfaces). Then either c(x) = a
for all x ∈ V , or the curve b(x) is a line for all x ∈ V , by Corollary 3.5 and
analyticity. Hence, either νC(M) ⊂ a, or the mirror b of the initial billiard
is a line. The second case is obviously impossible, since b is non-algebraic
by assumption. To treat the first case, we use the following proposition.

Proposition 4.15 For every analytic billiard a, b, c, d with a non-algebraic
mirror b in every one-parametric family of quadrilateral orbits ABCD with
fixed non-isotropic vertex A 6= I1, I2 the vertex C is non-constant.

Proof If C ≡ const, then b would be either a line, or a conic, by [5,
proposition 2.32], – a contradiction. 2

Thus, we assume that νC(M) ⊂ a. Fix an A ∈ â such that πa(A) is
not an isotropic point at infinity and there exists a one-parametric family
of quadrilateral orbits ABCD of the initial billiard a, b, c, d with the given
vertex A. The subset νC(WA) ⊂ CP2 is non-discrete, by Proposition 4.15.
On the other hand, it is an algebraic subset in CP2 (Remmert’s Proper
Mapping and Chow’s Theorems). It lies in a transcendental curve a. Hence,
it is discrete. The contradiction thus obtained proves Theorem 1.9.
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4.3 Case of involutive three-dimensional distribution

Here we treat the case, when the distribution DM is three-dimensional and
involutive.

Corollary 4.2 easily implies the next proposition and corollary, which
state that there exist a connected open subset V ⊂M0

reg, a regular analytic
hypersurface Va ⊂ V , νB(Va) ⊂ a, and an analytic field L of one-dimensional
nonsingular integral elements in DM on V whose all complex orbits intersect
Va transversely (plus a mild genericity condition (4.2)). The germ through
every x ∈ V of complex orbit is included into an integral surface of the
distribution DM , by Theorem 4.8. Condition (4.2) implies that the integral
surface is non-trivial, and hence, corresponds to an open set of quadrilateral
orbits of a 4-reflective billiard a, b(x), c(x), d(x). If x ∈ Va, then the mirrors
a and b(x) intersect at νB(x), and we deduce that either c(x) = a, or b(x)
is a line (Corollary 3.5). This easily implies that either νC(M) ⊂ a, or the
image under the projection νB of every analytic curve tangent to DM is a
line. We show that none of the latter cases is possible. The contradiction
thus obtained will prove Theorem 1.9.

Let M ′ ⊂M0
reg be the subset from (4.1) defined for our three-dimensional

distribution DM . It is open, dense and the complement M \M ′ is analytic,
as at the same place.

Proposition 4.16 There exist an x ∈ M ′ and a one-dimensional nonsin-
gular integral element Lx ⊂ DM (x) such that νB(x) ∈ a and

(dνa(x))(Lx) 6= 0, (dνG(x))(Lx) 6= 0 for every G = B,C,D; (4.2)

the line (dνB(x))(Lx) is transverse to TνB(x)a. (4.3)

Proof The set Q̃ of nonsingular integral elements L ⊂ DM satisfying (4.2)
is open and dense in the projectivization of the subbundle DM ⊂ TM0

reg,
by definition and density of the set M ′. It is an analytically constructible
subset in P(THa), see Proposition 4.11 and its proof. Let Q denote the
projection of the set Q̃ to M . (One has Q ⊂M ′, by definition.) The subset
Q ⊂ M is open, dense and analytically constructible, as is Q̃, by proper-
ness of the projection P(THa)|M → M and Chevalley–Remmert Theorem.
Therefore, the intersection νB(Q) ∩ a contains a regularly embedded disk
α ⊂ a without isotropic tangent lines (Corollary 4.2). Fix an x ∈ Q with
νB(x) ∈ α. By definition, there exists a one-dimensional non-singular inte-
gral element Lx ⊂ DM (x) satisfying (4.2). Let us show that one can achieve
transversality condition (4.3) as well. Suppose the contrary. Then for every
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x ∈ Q∩ν−1
B (a) each one-dimensional nonsingular integral element in DM (x)

is tangent to the analytic hypersurface σ(a) = ν−1
B (a). This implies that

the distribution DM is tangent to σ(a): the tangent spaces to σ(a) contain
the distribution subspaces. Therefore, every irreducible germ γ of integral
curve of the distribution DM at a point in σ(a) is contained in σ(a). Let
us choose the latter germ γ to be tangent to a nonsingular one-dimensional
integral element satisfying inequalities (4.2). Then γ is contained in a germ
of integral surface (Theorem 4.8), and the latter is non-trivial by the same
inequalities. Note that νB(γ) ⊂ a. Therefore, the latter surface is formed by
an open set of quadrilateral orbits of a 4-reflective billiard a, a, c′, d′ with
two coinciding nonlinear neighbor mirrors, – a contradiction to Corollary
3.5. This proves the proposition. 2

Corollary 4.17 There exist an open subset V ⊂ M ′, a regularly embedded
disk α ⊂ a without isotropic tangent lines, a non-empty analytic hypersurface
Va ⊂ V with νB(Va) ⊂ α and an analytic line field L on V transverse to
Va such that for every x ∈ V the line Lx is a nonsingular integral element
satisfying inequalities (4.2) and each complex orbit of the line field L in V
intersects Va.

The corollary follows immediately from the proposition and openness of
the set of nonsingular integral elements satisfying (4.2).

Proposition 4.18 Let V , Va and L be as in the above corollary. Then there
are two possible cases:

Case 1): νC(V ) ⊂ a;
Case 2): the projection νB sends each complex orbit of the field L to a

line.

Proof For every x ∈ V the germ of the orbit of the field L through x lies in
a germ of integral surface of the distribution DM (Theorem 4.8). The latter
surface is non-trivial by the inequalities from (4.2), and hence, is given by an
open set of quadrilateral orbits of a 4-reflective billiard a, b(x), c(x), d(x).
If x ∈ Va, then the mirrors a and b(x) intersect at the point B(x) = νB(x),
and the latter is not marked for both corresponding local branches of curves
a and b(x). This follows from construction and the inequalities from (4.2).
Hence, for every x ∈ Va either c(x) = a, or b(x) is a line (Corollary 3.5).
Recall that each orbit of the field L intersects Va, by assumption. Hence,
either the projection νC sends it to a, or the projection νB sends it to a
line. One of the two latter statements holds for all the orbits together, by
analyticity. This proves the proposition. 2
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Now for the proof of Theorem 1.9 it suffices to show that none of the
cases from the above proposition is possible.

Case 1): νC(V ) ⊂ a. Then νC(M) ⊂ a, and we get a contradiction, as
at the end of the previous subsection. Hence, Case 1) is impossible.

Case 2): νC(M) 6⊂ a. Let V and L be the same, as in the above corollary.
Let us deform L. The set of line fields L satisfying the conditions of the
corollary is open in the space of line fields contained in the distribution DM .
This together with the corollary implies that for every line field L contained
in DM the projection νB sends each its complex orbit to a line. This is
equivalent to say that each analytic curve in M0

reg tangent to DM is sent
to a line by νB. In particular, this holds for every one-parametric family of
quadrilateral orbits lifted to M of the initial billiard a, b, c, d with variable
B ∈ b. This implies that the curve b is a line. The contradiction thus
obtained proves Theorem 1.9. The proof of Theorem 1.6 is complete.

5 Applications to real pseudo-billiards

In Subsection 5.1 we introduce and classify the 4-reflective real planar an-
alytic pseudo-billiards. In Subsections 5.2, 5.3 we present applications re-
spectively to Tabachnikov’s commuting billiard problem and Plakhov’s in-
visibility conjecture.

5.1 Classification of real planar analytic 4-reflective pseudo-
billiards

Here by real analytic curve we mean a curve in RP2 analytically parametrized
by either R, or S1 and distinct from the infinity line. For each real analytic
curve a ⊂ RP2 (which may have singularities: cusps or self-intersections) we
consider its maximal real analytic extension πa : â → a, where â is either
R, or S1, see [8, lemma 37, p.302]. The parametrizing curve â will be called
here the real normalization. The affine plane R2 ⊂ RP2 is equipped with
Euclidean metric.

Definition 5.1 [5, remark 1.6] Let a line L ⊂ R2 and a triple of points
A,B,C ∈ R2 be such that B ∈ L, A,C 6= B and the lines AB, BC are
symmetric with respect to the line L. We say that the triple A, B, C and
the line L satisfy the usual reflection law, if the points A and C lie on the
same side from the line L. Otherwise, if they are on different sides from the
line L, we say that the skew reflection law is satisfied.

50



Example 5.2 In every planar billiard orbit each triple of consequent ver-
tices satisfies the usual reflection law with respect to the tangent line to the
boundary of the billiard at the middle vertex.

Definition 5.3 (cf. [5, definition 6.1]) A planar pseudo-billiard is a collec-
tion of k real curves a1, . . . , ak ⊂ RP2, none of them being the infinity line.
Its k-periodic orbit is a k-gon A1 . . . Ak, Aj ∈ aj ∩ R2, such that for every
j = 1, . . . , k one has Aj 6= Aj±1, AjAj±1 6= TAjaj and the lines AjAj−1,
AjAj+1 are symmetric with respect to the tangent line TAjaj . The latter
means that for every j the triple Aj−1, Aj , Aj+1 and the line TAjaj satisfy
either the usual, or the skew reflection law. For brevity, we then say that
the usual (skew) reflection law is satisfied at the vertex Aj . Here we set
ak+1 = a1, Ak+1 = A1, a0 = ak, A0 = Ak. A real pseudo-billiard is called
(piecewise-)analytic/smooth, if so are its curves. It is called k-reflective, if
the set of its k-periodic orbits has positive two-dimensional Lebesgue mea-
sure.

Remark 5.4 In the piecewise-analytic case k-reflectivity is equivalent to
the non-emptiness of the interior of the set of k-periodic orbits, i.e., existence
of a two-parameter family of k-periodic orbits. The orbits from the latter
interior will be called k-reflective, cf. loc.cit. The complexification of each
k-reflective planar analytic pseudo-billiard is a k-reflective complex billiard.

Theorem 5.5 A collection of 4 real planar analytic curves a, b, c, d is a
4-reflective pseudo-billiard, if and only if it has one of the following types:

1) a = c is a line, the curves b, d 6= a are symmetric with respect to it;
2) a, b, c, d are distinct lines through the same point O ∈ RP2, the line

pairs (a, b), (d, c) are transformed one into the other by rotation around O
(translation, if O is an infinite point), see Fig.9;

3) a = c, b = d and they are distinct confocal conics: either ellipses, or
hyperbolas, or ellipse and hyperbola, or parabolas.

In every 4-reflective orbit the reflection law at each pair of opposite ver-
tices is the same; it is skew for at least one opposite vertex pair.

Addendum 1. In every pseudo-billiard of type 1) from Theorem 5.5
each quadrilateral orbit ABCD has the same type, as at Fig.8. It is sym-
metric with respect to the line a, and the reflection law at A, C is skew. The
reflection law at B, D is either usual at both, or skew at both.

Addendum 2 [5, addendum 3 to theorem 6.3]. In every pseudo-billiard
of type 3) the 4-reflective orbits have the same types, as at Fig.8–13.
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Remark 5.6 The main result of paper [8] (theorem 2) concerns usual real
planar billiards with piecewise-smooth boundary; the reflection law is usual.
It says that the quadrilateral orbit set has measure zero. In the particular
case of billiard with piecewise-analytic boundary this result follows from the
last statement of Theorem 5.5.
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Figure 8: 4-reflective pseudo-billiards symmetric with respect to a line mirror
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Figure 9: 4-reflective pseudo-billiards on two positively-isometric line pairs

Proof of Theorem 5.5 and Addendum 1. The pseudo-billiard a, b,
c, d under question being 4-reflective, its complexification is obviously 4-
reflective, by Remark 5.4. This together with Theorem 1.6 implies that it
is one of the above types 1)–3) (up to cyclic renaming of the mirrors). The
4-reflectivity of each pseudo-billiard of types 2), 3) and the classification of
open sets of their quadrilateral orbits and reflection law configurations was
proved in [5, section 6]. The proof of 4-reflectivity of pseudo-billiards of type
1) and Addendum 1 (symmetry of quadrilateral orbits) repeats the proof of
analogous addendum 1 (algebraic case) from loc.cit. 2
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Figure 10: A 4-reflective pseudo-billiard on confocal ellipses

a) Skew law at a, usual at b.         b) Skew law at both a and b.        c) Skew law at  b, usual at a. 
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Figure 11: Open sets of orbits on confocal hyperbolas: three types

5.2 Application 1: Tabachnikov’s commuting billiard prob-
lem

The following theorem solves the piecewise-analytic case of S.Tabachnikov’s
problem on commuting convex planar billiards. It deals with two billiards
in nested convex compact domains Ω1 b Ω2 b R2, set a = ∂Ω1, b = ∂Ω2.
We consider that both a and b are piecewise-smooth. For every Ωj consider
the corresponding billiard transformation acting on the space of oriented
lines in the plane. It acts as identity on the lines disjoint from Ωj . Each
oriented line l intersecting Ωj is sent to its image under the reflection from
the boundary ∂Ωj at its last intersection point x with ∂Ωj in the sense of
orientation: the orienting arrow of the line l at x is directed outside Ωj .
The reflected line is oriented by a tangent vector at x directed inside Ωj .
This is a continuous dynamical system, if the boundary ∂Ωj is smooth and
piecewise-continuous (measurable) otherwise.

Theorem 5.7 Let two nested planar convex piecewice-analytic Jordan curves
be such that the corresponding billiard transformations commute. Then they
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Figure 12: Open sets of orbits on confocal ellipse and hyperbola: two types
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b) oppositely directed parabolas:
skew law at both of them. 

Figure 13: Open set of orbits on confocal parabolas: one type

are confocal ellipses.

In the proof of Theorem 5.7 we use the following commutativity criterion.

Proposition 5.8 Let a, b ⊂ R2 be nested convex Jordan curves, as at the
beginning of the subsection. The corresponding billiard transformations com-
mute, if and only if each pair (A,B) ∈ a× b extends to a quadrilateral orbit
ABCD of the pseudo-billiard a, b, a, b as at Fig.10: the reflection law is
usual at b and skew at a; only one of the segments AB, BC intersects the
domain bounded by the curve a, if both ambient lines intersect it.

The proposition follows from definition.
Proof of Theorem 5.7. The interior of the set of quadrilateral orbits
ABCD from the proposition contains an open and dense subset of quadrilat-
eral orbits whose vertices lie in analytic pieces of the curves a and b. Thus,
each pair of their analytic pieces a′ ⊂ a, b′ ⊂ b extends to a 4-reflective
pseudo-billiard a′, b′, c′, d′; c′ ⊂ a, d′ ⊂ b. Hence, the latter pseudo-billiards
have some of types 1)–3) from Theorem 5.5.
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Case 1): the curve a has only one analytic arc (at most one singular
point). Note that no analytic piece b′ ⊂ b is a line. Indeed, otherwise a
quadrilateral orbit ABCD with B ∈ b′ would be symmetric with respect to
b′ (Addendum 1), which is impossible by convexity and the obvious inclusion
ABCD ⊂ Ω2. Hence, a is an ellipse and each analytic piece b′ ⊂ b is a conic
confocal to a. Note that the tangent lines to b′ are disjoint from a and
hence, from the focal segment, by convexity. This implies that b′ cannot be
a hyperbola, and thus, b′ is an ellipse. Finally, each analytic piece b′ ⊂ b is
an ellipse confocal to a, and hence, so is b.

Case 2): the curve a has at least two singular points. Fix one of them,
A. Then the interior of the set of quadrilateral orbits of the pseudo-billiard
a, b, a, b accumulates to a finite union of one-parametric analytic families of
quadrilaterals ABj,tCj,tDj,t with the given vertex A and regular Bj,t, Dj,t ∈ b
(analyticity points) arranged as in Proposition 5.8; t ∈ [0, 1], j = 1, . . . , N ,
N ∈ N. In each one of the latter families the vertex Cj = Cj,t ∈ a is
singular and constant, as is A. Indeed, suppose the contrary: for some t the
germs of the curve b at Bj,t, Dj,t and the germ of the curve a at Cj,t are
regular, while that of the curve a at A is singular. The latter germs represent
germs of mappings acting on the space of lines by reflections; their product
should be identity, by 4-reflectivity. This is impossible, since all of them are
regular except for the reflection from the singular germ (a,A) (cf. [5, proof
of proposition 2.16]), – a contradiction. Therefore, the variable lines ABj,t
and Bj,tCj through fixed finite points A and Cj are symmetric with respect
to the line TBj,tb. This together with the discussion from the previous case
implies that the analytic arc of the curve b containing the vertices Bj,t is an
ellipse arc with foci A and Cj . This together with Proposition 5.8 implies
that each analytic arc of the curve b is an ellipse with focus A. Taking
another singular point A′ ∈ a and applying the above arguments, we get
that each analytic arc of the curve b is an ellipse with focus at A′. This
implies that the curve a contains at most two distinct singular points and
each analytic arc of the curve b is an ellipse with foci at them. This together
with continuity implies that b is an ellipse. The curve a has two distinct
analytic pieces and each of them is bounded by its singular points: the foci
A and A′ of the ellipse b. At least one of the latter pieces is non-linear and
hence, it is an arc of conic confocal to b (Theorem 5.5). It passes through
its own foci A and A′, which is obviously impossible. Therefore, the case
under consideration is impossible. This proves Theorem 5.7. 2
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5.3 Application 2: planar Plakhov’s Invisibility Conjecture
with four reflections

This subsection is devoted to Plakhov’s Invisibility Conjecture: the ana-
logue of Ivrii’s conjecture in the invisibility theory [13, conjecture 8.2]. We
recall it below and show that it follows from a conjecture saying that no fi-
nite collection of germs of smooth curves can form a k-reflective billiard for
appropriate “invisibility” reflection law. In the case, when the curves are an-
alytic, the invisibility reflection law is a real form of complex reflection law.
As it was shown in [6, subsection 5.2, proposition 8], both Plakhov’s and
Ivrii’s conjectures have the same complexification. We prove the piecewise-
analytic case of planar Plakhov’s Invisibility Conjecture for four reflections
as an immediate corollary of Theorem 5.5.

Definition 5.9 [13, chapter 8] Consider an arbitrary perfectly reflecting
(may be disconnected) closed bounded body B in a Euclidean space. For
every oriented line (ray) R take its first intersection point A1 with the bound-
ary ∂B and reflect R from the tangent hyperplane TA1∂B. The reflected ray
goes from the point A1 and defines a new oriented line, as in billiards (see
the previous subsection). Then we repeat this procedure. Let us assume
that after a finite number k of reflections the output oriented line coincides
with the input line R and will not hit the body any more. Then we say
that the body B is invisible for the ray R, see Fig.14. We call R a ray of
invisibility with k reflections.

Invisibility Conjecture (A.Plakhov, [13, conjecture 8.2, p.274].) There
is no body with piecewise C∞ boundary for which the set of rays of invisibility
has positive measure.

Remark 5.10 As is shown by A.Plakhov in his book [13, section 8], there
exist no body invisible for all rays. The same book contains a very nice sur-
vey on invisibility, including examples of bodies invisible in a finite number
of (one-dimensional families of) rays. See also papers [1, 14, 15] for more
results. The Invisibility Conjecture is equivalent to the statement saying
that there are no k-reflective bodies for every k, see the next definition. It
is open even in dimension 2.

Definition 5.11 [6, subsection 5.2, definition 12] A body B with piecewise-
smooth boundary is called k-reflective, if the set of invisibility rays with k
reflections has positive measure.
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Figure 14: A body invisible for one ray.

Definition 5.12 (cf. [6, subsection 5.2, definition 13]) Let a1, . . . , ak be
a real planar smooth pseudo-billiard. A k-gon A1 . . . Ak with Aj ∈ aj ,
Ak+1 = A1, A0 = Ak is said to be a k-invisible orbit, if it is a k-periodic
orbit of the pseudo-billiard with usual reflection law at aj for j 6= 1, k and
skew reflection law at a1 and ak, see Fig.15. We say that the pseudo-billiard
a1, . . . , ak is k-invisible, if the set of its k-invisible orbits has positive measure.
(in particular, the pseudo-billiard should be k-reflective).

Proposition 5.13 Let k ∈ N and B ⊂ R2 be a body with piecewise-smooth
(piecewise-analytic) boundary such that no collection of k germs of its bound-
ary forms a k-invisible smooth (analytic) pseudo-billiard. Then the body B
is not k-reflective.

Proposition 5.13 is implicitly contained in [13, section 8].

Theorem 5.14 There are no 4-reflective bodies in R2 with piecewise-analytic
boundary.

Proof The existence of a 4-reflective body as above implies the existence of
a 4-invisible planar analytic pseudo-billiard (Proposition 5.13). This is a 4-
reflective planar analytic pseudo-billiard having an open set of quadrilateral
orbits with skew reflection law at some pair of neighbor vertices and usual
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Figure 15: A k-invisible k-gon: skew reflection law at A1 and Ak.

reflection law at the other vertices. Thus, in these quadrilateral orbits the
reflection laws at each pair of opposite vertices are different, – a contradiction
to the last statement of Theorem 5.5. This proves Theorem 5.14. 2
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