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Abstract. A novel method for visualization of a fuzzy or crisp topic set
is developed. The method maps the set’s topics to higher ranks of the
taxonomy tree of the field. The method, coined ‘Lifting method’, involves
a penalty function summing penalties for the chosen “head subjects” to-
gether with penalties for emerging “gaps” and “offshoots”. The method
finds a mapping minimizing the penalty function in recursive steps in-
volving two different scenarios, that of ‘gaining a head subject’ and that
of ‘not gaining a head subject’. We illustrate the method by applying it
to illustrative and real-world data.

1 Background and motivation

The concept of ontology as a computationally feasible environment for knowl-
edge representation and maintenance has sprung out rather recently. The term
refers, first of all, to a set of concepts and relations between them. These per-
tain to the knowledge of the domain under consideration. At the inception, the
relations typically have been meant to be rule-based and fact-based. However,
with the concept of “ontology” expanding into real-world applied domains such
as in biomedicine, it would be fair to say that the core knowledge in ontology
currently is represented by a taxonomic relation that usually can be interpreted
as ”is part of”. Such are the taxonomy of living organisms in biology, ACM
Classification of Computing Subjects (ACM-CCS) [1], and more recently a set
of taxonomies comprising the SNOMED CT, the 'Systematized Nomenclature of
Medicine Clinical Terms’ [15]. Most research efforts on computationally handling
ontologies may be considered as falling in one of the three areas: (a) developing
platforms and languages for ontology representation such as OWL language (e.g.
[14]), (b) integrating ontologies (e.g. [17,7,4,8]) and (c) using them for various
purposes. Most efforts in (c) are devoted to building rules for ontological rea-
soning and querying utilizing the inheritance relation supplied by the ontology’s
taxonomy in the presence of different data models (e.g. [5,3,16]). These do not
attempt at approximate representations but just utilize additional possibilities



supplied by the ontology relations. Another type of ontology usage is in using
its taxonomy nodes for interpretation of data mining results such as association
rules [10,9] and clusters [6]. Our approach naturally falls within this category.
We assume a domain taxonomy has been built. What we want to do is to use the
taxonomy for representation and visualization of a query set comprised of a set
of topics corresponding to leaves of the taxonomy by related nodes of the tax-
onomy’s higher ranks. The representation should approximate a query topic set
in a "natuaral” way, at a cost of some “small” discrepancies between the query
set and the taxonomy structure. This sets our work apart from other work on
queries to ontologies that rely on purely logical approaches [5, 3, 16].

Computational treatises such as [11] mainly rely on the definition of visu-
alization presented in the Merriam-Webster dictionary regarding the transitive
verb “visualize” as follows: “to make visible, to see or form a mental image of”
(see http://www.merriam-webster.com/dictionary /visualize). Here we assume a
somewhat more restrictive view that computational visualization necessarily in-
volves the presence of a ground image which should be well known to the viewer.
This can be a Cartesian plane, a geography map, or a genealogical tree. Visu-
alization of a data set is such a mapping of the data to the ground image that
translates important features of the data into visible relations in the ground im-
age. Say, objects can be presented by points on a Cartesian plane so that the
more similar are the objects the nearer to each other the corresponding points.

Such is the visualization for a company delivering electricity to homes in a
town zone: Figure 1, taken from [2], represents the energy network over a map
of the corresponding district on which the topography and the network data
are integrated in such a way that gives the company “an unprecedented ability
to control the flow of energy by following all the maintenance and repair issues
on-line in a real time framework.

There are three major ingredients that allow for a successful representation
of the energy network:

(1) map of the district (the ground image),
(2) the energy network units (entities to be visualized), and
(3) mapping of (2) to (1).

The mapping here needs not be overly complicated because the units are
located at the very same ground image in real. Moreover, one could imagine
an extension of this mapping to other infrastructure items, such as the water
supply, sewage type, and transports, so that the map could be used for more
long-term city planning tasks such as development of leisure or residential areas.

Is a similar mapping possible for a long-term analysis of an organization
whose activity is much less tangible? For a university research department, the
following analogues to the elements of the mapping in Fig. 1 can be considered:

(1’) a tree of the ACM-CCS taxonomy of Computer Science, the ground image,

(2’) a subset of CS research subjects being developed by members of the depart-
ment, and

(3’) representation of the research on the taxonomy tree.
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Fig. 1. Energy network of Con Edison Company on Manhattan New-York USA visu-
alized by Advanced Visual Systems [2].

Potentially, this can be used for:

- Positioning of the organization within the ACM-CCS taxonomy;

- Analyzing and planning the structure of research being done in the organi-
zation,

- Finding nodes of excellence, nodes of failure and nodes needing improvement
for the organization;

- Discovering research elements that poorly match the structure of AMS-CCS
taxonomy;

- Planning of research and investment;

- Integrating data of different organizations in a region, or on the national
level, for the purposes of regional planning and management.

2 Lifting model and method

2.1 Statement of the problem

We assume that there are a number of concepts in an area of research or practice
that are structured according to the relation ”a is part of b” into a taxonomy,
that is a rooted hierarchy T'. We denote the set of its leaves by I. Each interior
node t € T corresponds to a concept that generalizes the concepts corresponding
to the subset of leaves I(t) descending from ¢, viz. the leaves of the subtree T'(t)
rooted at t, which will be referred to as the leaf-cluster of ¢.

A fuzzy set on I is a mapping u of I to the non-negative real numbers
assigning a membership value u(i) > 0 to each i € I. We refer to the set S, C I,
where S, = {i : u(i) > 0}, as the support of u.

Given a taxonomy 7" and a fuzzy set u on I, one can think that w is a, possibly
noisy, projection of a high rank concept to the leaves I. Under this assumption,



there should exist a “head subject” h among the interior nodes of the tree T
that more or less comprehensively (up to small errors) covers S,,. Two types of
possible errors are gaps and offshoots as illustrated in Figure 2.
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Fig. 2. Three types of features in lifting a topic set within taxonomy.

A gap is a maximal node g in the subtree T'(h) rooted at h such thatI(g) is
disjoint from S,,. The maximality of g means that I(parent(g)), the leaf-cluster
of g’s parent, does overlap S,. A gap under the head subject h can be interpreted
as a loss of the concept h by the topic set u. In contrast, establishing a node h
as a head concept can be technically referred to as a gain.

An offshoot is a leaf i € S,, which is not covered by h, i.e., i ¢ I(h),

Since no taxonomy perfectly reflects all of the real-world phenomena, some
topic sets u may refer to general concepts that are not captured in 7. In this
case, two or more, rather than just one, head subjects are needed to cover them.
This motivates the following definition.

The pair (T, u) will be referred to as an interpretation query. Consider a set
H of nodes of T' that covers the support S,; that is, each i € S, either belongs
to H or is a descendant of a node in H, viz. S, C UpegI(h). This set H is
a possible result of the query (7, u). Nodes in H will be referred to as head
subjects if they are interior nodes of T' or offshoots if they are leaves. A node
g € T is a gap for H if it is a gap for some h € H. Of all the possible results
H, those bearing the minimum penalty are of interest only. A minimum penalty
result sometimes is referred to as a parsimonious one.

Any penalty value p(H) associated with a set of head subjects H should
penalize the head subjects, offshoots and gaps commensurate with the weighting
of nodes in H determined from the membership values in the topic set u. We
assign the head penalty to be head, offshoot penalty, off, and the gap penalty,
gap.

To take into account the u membership values, we need to aggregate them to
nodes of higher rank in T'. In order to define appropriate membership values for
interior nodes of tree T', we assume one of the following normalization conditions:

(P) Probabilistic condition



(Q) Quadratic condition

ZuQ(z) =1
iel

(N) No condition
0<u(i) <1

We observe that a crisp set S C I can be considered as a fuzzy set with the
non-zero membership values defined according to the normalization principle.

The three normalization conditions correspond to three possible ways of ag-
gregating a set of individual membership values. For each interior node t € T,
its membership weight is defined as follows:

(P) u(t) = > ierq) ul@)
(Q) ul®) = /> ierq ul@)? (1)
(N) u(t) = maX;ey(t) U(Z)

Under each of the definitions, the weight of a gap is zero. The membership
weight of the root is 1 with each of the three normalizations. In the case of a
crisp set S with no condition (N), the weight of node ¢t € T is equal to zero if
1(t) is disjoint from S, and it is unity, otherwise.

We now define the notion of pruned tree. Pruning the tree T" at ¢ results in the
tree remaining after deleting all descendants of t. The definitions in (1) are con-
sistent in that the weights of the remaining nodes are unchanged by any sequence
of successive prunings. Note, however, that the sum of the weights assigned to
the leaves in a pruned tree with normalizations (Q) and (N) is typically less
than that in the original tree. With the normalization (P), it unchanges. One
can notice, as well, that the decrease of the summary weight at the repeated
pruning of the tree is steeper with no normalization (N).

We consider that weight u(¢) of node ¢ influences not only its own contri-
bution, but also contributions of those gaps that are children of ¢. Therefore,
the contribution to the penalty value of each of the gaps g of a head subject
h € T is weighted according to the membership weight of its parent, as defined
by v(g) = u(parent(g)). Let us denote by I'(h) the set of all gaps below h. The
gap contribution of h is defined as y(h) = deF(h) ~(g). For a crisp query set S
with no condition, (N), this is just the number of gaps in I'(h).

To distinguish between proper head subjects and offshoots in H we denote
the set of leaves and interior nodes in H as H~ and H™, respectively.

Then our penalty function p(H) for the tree T is defined by:

p(H) = head x Z u(h) + gap x Z v(h) +of f x Z u(h).

heH+ heH+ heH—



The problem is to find such a set H that minimizes the penalty - this will be
the result of the query (T',u).

2.2 Lifting method

A preliminary step is to prune the tree T' of irrelevant nodes. We then annotate
all interior nodes t € T by extending the leaf membership values as in (1). Those
nodes in the pruned tree that have a zero weight are gaps; they are assigned
with a ~y-value which is the u-weight of its parent. This can be accomplished as
follows:

(a) Label with 0 all nodes ¢t whose clusters I(t) do not overlap S,,. Then remove
from T all nodes that are children of 0-labeled nodes since they cannot be
gaps. We note that all the elements of 5, are in the leaf set of the pruned
tree, and all the other leaves of the pruned tree are labelled 0.

(b) The membership vector u is extended to all nodes of the pruned tree accord-
ing to the rules in (1).

(¢) Recall that I'(¢) is the set of gaps, that is, the 0-labeled nodes of the pruned
tree, and (1) = }_ ¢ () u(parent(g)). We compute y(t) by recursively as-
signing I'(¢) as the union of the I'-sets of its children and ~y(¢) as the sum of
the ~-values of its children. For leaf nodes, I'(t) = @ and v(t) = 0 if t € S,,.
Otherwise, i.e. if ¢ is a gap node (or, equivalently, if ¢ is labelled 0), I'(t) = ¢
and y(t) = u(parent(t)).

The algorithm proceeds recursively from the leaves to the root. For each node ¢,
we compute two sets, H(t) and L(t), containing those nodes at which gains and
losses of head subjects occur. The respective penalty is computed as p(t).

I Initialisation
At each leaf i € I: If w(i) > 0, define H(#) = 4, L(i) = @ and p(i) =
of f x u(i).
If u(i) = 0, define H(i) = @, L(i) = © and p(i) = 0.
II Recursion
Consider a node ¢t € T having a set of children W, with each child w € W
assigned a pair H(w), L(w) and associated penalty p(w). One of the following
two cases must be chosen:
(a) The head subject has been gained at ¢, so the sets H(w) and L(w) at its
children w € W are not relevant. Then H(¢), L(t) and p(t) are defined
by: H(t) = t;
L(t) = I'(¢);
p(t) = head x u(t) + gap x y(t)
(b) The head subject has not been gained at ¢, so at ¢ we combine the H-
and L-sets as follows:

H(t)= |J Hw),Lt)= | Lw) and pt)= ) p(w).

weWw weWw weWw



Table 1. A cluster of research activities undertaken in a research centre

Membership|Code|ACM-CCS

value Topic

0.69911 1.5.3 |Clustering

0.3512 1.5.4 |Applications in I.5 PATTERN RECOGNITION

0.27438 J.2 |PHYSICAL SCIENCES AND ENGINEERING (Applications in)

0.1992 1.4.9 |Applications in .4 IMAGE PROCESSING AND COMPUTER VISION
0.1992 1.4.6 |Segmentation

0.19721 H.5.1|Multimedia Information Systems

0.17478 H.5.2|User Interfaces

0.17478 H.5.3|Group and Organization Interfaces

0.16689 H.1.1|Systems and Information

0.16689 1.5.1 |Models in 1.5 PATTERN RECOGNITION

0.14453 1.5.2 |Design Methodology (Classifiers)

0.13646 H.5.0|General in H.5 INFORMATION INTERFACES AND PRESENTATION
0.13646 H.0 |GENERAL in H. Information Systems

0.16513 H.1.2|User/Machine Systems

Choose whichever of (a) and (b) has the smaller value of p(t).
IIT Output: Accept the values at the root:
H(root) - the heads and offshoots, L(root) - the gaps, p(root) - the penalty.

It is not difficult to prove that the algorithm does produce a parsimonious
result.

3 An example of application

Table 1 presents a fuzzy cluster obtained in our project (on the data from a
survey conducted in Centre for Artificial Intelligence (CENTRIA) of Faculdade
de Ciéncias e Tecnologia, Universidade Nova de Lisboa in 2009) by applying
our Fuzzy Additive Spectral clustering (FADDIS) algorithm [13]. This cluster is
visualized with the lifting method applied at penalty parameter values displayed
in Figure 3. The description of the visualization is presented in Table 2.

4 Conclusion

The lifting method should be a useful addition to the methods for interpreting
topic sets produced by various data analysis tools. Unlike the methods based on
the analysis of frequencies within individual taxonomy nodes, the interpretation
capabilities of this method come from an interplay between the topology of the
taxonomy tree, the membership values and the penalty weights for the head
subjects and associated gap and offshoot events.

On the other hand, the definition of the penalty weights remains of an issue in
the method. One can think that potentially this issue can be overcome by using
the maximum likelihood approach. This can happen if a taxonomy is used for
visualization queries frequently — then probabilities of the gain and loss events
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Fig. 3. Visualization of the optimal lift of the cluster in Table 1 in the ACM-CCS tree;
most irrelevant leaves are not shown for the sake of simplicity.

Table 2. Interpretation of the cluster with optimal lifting

HEAD SUBJECTS

H. |Information Systems
1.5 |PATTERN RECOGNITION

OFFSHOTS

1.4.6 |Segmentation
1.4.9 |Applications
J.2 |PHYSICAL SCIENCES AND ENGINEERING

GAPS

H.2 |DATABASE MANAGEMENT

H.3 |INFORMATION STORAGE AND RETRIEVAL
H.4 |INFORMATION SYSTEMS APPLICATIONS
H.5.4|Hypertext/Hypermedia

H.5.5|Sound and Music Computing

1.5.5 |Implementation




can be assigned to each node of the tree. Using this annotation, under usual
independence assumptions, the maximum likelihood criterion would inherit the
additive structure of the minimum penalty criterion. Then the recursions of the
lifting algorithm will remain valid, with respective changes in the criterion of
course.

We can envisage, that such a development may put the issue of building
the taxonomy tree onto a firm computational footing according to the structure
of the flow of queries. An ideal taxonomy in an ideal world would be annotated
with very contrast, one or zero probabilities, because most query topic sets would
coincide with the leaf-clusters. On the contrary, the taxonomy at which the loss
probabilities are similar to each other across the tree may be safely claimed
unsuitable for the current query flow.
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