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On maximal vector spaces of finite non-cooperative

games ∗

Victoria Kreps

Abstract

We consider finite non-cooperative N person games with fixed numbers mi, i =

1, . . . , N , of pure strategies of player i. We propose the following question: is it

possible to extend the vector space of finite non-cooperative m1 ×m2 × . . . ×mN -

games in mixed strategies such that all games of a broader vector space of non-

cooperative N person games on the product of unit (mi − 1)-dimensional simpleces

have Nash equilibrium points? We get a necessary and sufficient condition for the

negative answer. This condition consists of a relation between the numbers of pure

strategies of the players. For two-person games the condition is that the numbers of

pure strategies of the both players are equal.

Keywords: Finite non-cooperative N person games; vector space; Nash equilibrium

point; maximality.

Subject Classification: C72

1 Introduction

In game theory, as a rule results on equilibrium point existence are proved not for a

particular game but rather for classes of games. Often these classes or games turn out to

be vector spaces.

For example, Nash theorem [1] states equilibrium point existence for elements of the

vector space of finite non-cooperative N person games of any fixed size. When the set of

strategy profiles is fixed, a linear combination of games is defined as the game with payoff

functions equal to linear combinations of their payoff functions.
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Differential games provide us with another source of objects for which existence of

equilibrium points is important for all elements of some vector space of games. There a

necessary condition for equilibrium existence in pure strategies is the equality of maxmin

and minmax of the left hand side of the Isaacs equation [2]. The coefficients of this equation

are the derivatives of the game value of which little is known. Thus one has to consider

these coefficients as arbitrary real numbers and check the equality of maxmin and minmax

with arbitrary coefficients, and this is equivalent to checking equilibrium existence for all

games of the corresponding vector space.

Note that linear combinations of games appear in the theory of games with incomplete

information where the payoffs are not commonly known, i.e. players do not know exactly

what game is played. In these games the state of knowledge of a player is represented by

a linear combination of all the possible games (see Harsanyi [3] and Aumann, Maschler

[4]). In classical setting matrix game with incomplete information on both sides is given

by payoff matrices A1, A2, . . ., AK of the same size. Before the game starts a chance move

determines the ”state of nature” k ∈ {1, 2, . . . , K} and therefore the payoff matrix Ak

according to probability distribution p = (p1, p2, . . . , pK). Thus the matrix Ak is played

with probability pk. Players know the probability vector p and do not know the result of

chance move. In this game players are faced with the matrix game given by payoff matrix

A(p) =
K∑
k=1

pkAk.

To describe a set of vector spaces of games it is sufficient to characterize its maximal

elements. For two-person zero-sum games maximality may be treated in the sense of

partial order by inclusion. In the general case maximality of a vector space of games

means that this space can not be extended in any essential way, i.e. in any extension the

class of functions a player has to maximize is preserved for each player.

Consider the vector space of 2×2 matrix games, or, equivalently, the four-dimensional

vector space of matrices of size 2 × 2. The subset of such 2 × 2 matrices having saddle

points is not a vector space. Indeed, the sum of two matrices with saddle points does not

necessarily have a saddle point, for example one may take matrices[
1 0

0 0

]
and

[
0 0

0 1

]
.

But there are vector spaces contained in the set of matrices with saddle points. It is easy
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to see that if 2 × 2 matrix A has a saddle point then all matrices αA, where α ∈ R1,

have saddle points as well. This one-dimensional vector space is not maximal in the set

of matrices having saddle points as it is contained in the set of matrices αA + βC where

β ∈ R1 and C is the matrix consisting of 1’s only, and these matrices have saddle points.

Let us show that there exist four three-dimensional vector spaces of 2 × 2 matrices

with saddle points. Consider two linear independent matrices

A1 =

[
1 0

0 0

]
and A2 =

[
0 1

0 0

]
.

Matrices αA1 + βA2, where α, β ∈ R1, form two-dimensional vector space of matrices

with saddle points. As in the previous example with the help of the constant matrix C it

may be expanded to a three-dimensional vector space of matrices with saddle points. The

matrices of this vector space have the following form[
α β

γ γ

]
,

i.e. the elements of the second row are equal. An analogous result is true for the vector

space of matrices with equal elements in the first row as well as with equal elements of

the first (or second) column. Obviously each of these four three-dimensional vector spaces

is maximal in the set of matrices with saddle points as the latter is a strict subset of the

four-dimensional space.

Sobolev [3] considered the set of all vector spaces of n×nmatrix games with equilibrium

points in pure strategies (n×n matrices with saddle points) and showed that the dimension

of maximal vector space belonging to this set does not exceed (n− 1)2 + 1, (n ≥ 3). For

the case of n = 2, as we demonstrated above it is 3 = (n− 1)2 + 2.

Kreps [4] proved that the set of all vector spaces of two-person zero-sum continuous (i.e.,

with continuous payoff function) games on the unit square with saddle points contains,

besides maximal vector spaces of infinite dimension, maximal linear spaces of any finite

dimension greater than 3.

In this paper we consider finite non-cooperative N person games with fixed numbers

mi, i = 1, . . . , N , of pure strategies of player i. Finite non-cooperative N person game in

mixed strategies is given by an N -tuple of real payoff functions over the product of unit

simpleces S =
∏N

1 Si. Dimension of Si is equal to mi − 1. The payoff function of a player

depends linearly on the strategies of any player when the strategies of all other players are
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fixed. Such games form a vector space of games on S with Nash equilibrium points.

Then we consider non-cooperative N person games on S =
∏N

1 Si with arbitrary

continuous payoff functions over S. We denote Eq(S) the set of all vector spaces of

continuous games on S with equilibrium points in pure strategies. We will never go to

mixed extension of these games. Note that the set Si itself is the set of probability measures

on {1, . . . ,mi}.
We propose the following question: is it possible to extend the vector space of finite non-

cooperative m1×m2× . . .×mN -games in mixed strategies such that all games of a broader

vector space of non-cooperative N person games on S have Nash equilibrium points? So the

question is whether the vector space of finite non-cooperative m1 ×m2 × . . .×mN -games

on S is maximal in Eq(S).

Our main result is a necessary and sufficient condition for the vector space of finite

non-cooperative N person games on S to be maximal in Eq(S). This condition consists

of a relation between the numbers of pure strategies of the players. For two-person games

the condition is that the numbers of pure strategies of the both players are equal.

2 Basic notions and preliminary results

Let Xi be the set of strategies of Player i, i = 1, . . . , N , where Xi is a convex compact

subset of the non-negative orthant of a finite dimensional Euclidian space. Sometimes the

set Xi happens to be a simplex; in this case we denote it by Si to emphasize this fact. In

particular, we do so in the Introduction and in the statement of our main result.

Non-cooperative N person game F on X =
∏N

i=1Xi is given by payoff functions of

players Fi : X → R1, i = 1, . . . , N .

Strategy profile x∗ = (x∗1, . . . ,x
∗
N) ∈ X is the Nash equilibrium point of game F on X

if for all i = 1, . . . , N and all xi ∈ Xi the inequality

Fi(x
∗) ≥ Fi(x

∗
1, . . . ,x

∗
i−1,xi,x

∗
i+1 . . . ,x

∗
N)

holds.

A linear combination αH + βF , α, β ∈ R1 of non-cooperative games H and F on X

is defined as the game on X with payoff functions αHi + βFi, where Hi and Fi are Player

i’s payoff functions in the games H and F correspondingly.

Let G(X) be a set of vector spaces of non-cooperative games onX and let H(X) ∈ G(X)

be a vector space of non-cooperative games H on X.
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Definition of maximality. We say that H(X) is maximal in G(X) iff an inclusion

H(X) ⊂ H′(X) ∈ G(X) (1)

implies that for any player i, i = 1, . . . , N , the classes of functions maximized by Player

i in games in H(X) and in games in H′(X) coincide (up to functions not depending on

Player i’s strategies).

For zero-sum two-person games it means that the inclusion (1) implies H(X) = H′(X).

Now consider Eq(X) (the set of vector spaces of continuous games on X with equi-

librium points in pure strategies). As we indicated in Introduction we never go to mixed

extension of games on X.

Lemma 1. Let A be a set such that for some 1 ≤ i0 ≤ N it holds that A ⊂ Xi0 and

Ā 6= Xi0 where Ā denotes the closure of the set A. If for any game H ∈ H(X) there exists

an equilibrium point x∗ = (x∗1, . . . ,x
∗
N) ∈ X such that x∗i0 ∈ A, then the vector space H(X)

is not maximal in Eq(X).

Fix a non-cooperative game K on X with continuous payoff functions Ki, i = 1, . . . , N , on

X. Fix number i, 1 ≤ i ≤ N , and two points a ∈ Xi, b ∈ Xi, a 6= b. Denote xi a strategy

profile of all players but Player i and denote the set of such profiles X i =
∏

j 6=iXj. Let us

define function Ka,b
i on [a,b]×X i as follows: for any xi ∈ X i function Ka,b

i is linear on

xi over the interval [a,b] and

Ka,b
i (a,xi) = Ki(a,x

i), Ka,b
i (b,xi) = Ki(b,x

i).

Lemma 2. Let x̄ ∈ [a,b] × X i be an equilibrium point of the game H + βK where

H ∈ H(X), K is a continuous game on X and β ∈ R1. Then the following inequality

holds

βKi(x̄) ≥ βKa,b
i (x̄),

where function Ka,b
i is defined above.

Lemma 3. Assume that for any x∗ ∈ IntX there exists a game H ∈ H(X) with the

unique equilibrium point x∗.

Let K be a continuous game on X. If for any game H ∈ H(X) and for any β > 0 the

game H + βK has an equilibrium point, then Player i’s payoff function Ki, i = 1, . . . , N ,

is concave as a function of his strategy xi (i.e. its subgraph is convex) for any fixed strategy

profile of other players xi ∈ X i.
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The proofs of Lemmas 1-3 is given in Appendix.

3 Main result

Let us consider finite non-cooperative m1 ×m2 × . . .×mN -games of N players in mixed

strategies, i.e. games on S =
∏N

i=1 Si (dimension of simplex Si is equal to mi − 1, i =

1, . . . , N) with linear player payoff function on strategies of any player. Let H(S) denote

the vector space of such games, H(S) ∈ Eq(S).

The proof of the main result is based on the lemmas above and on the following fact

(see [5]). The inequality

max
i=1,...,N

(mi − 1) = (mi0 − 1) ≤
∑
i 6=i0

(mi − 1) (2)

for the dimensions of simplices Si, i = 1, . . . , N , is the necessary and sufficient condition

that any completely mixed strategy profile in S =
∏N

i=1 Si is the unique equilibrium point

of some finite non-cooperative game of size m1 ×m2 . . .×mN .

A strategy si ∈ Si of Player i is completely mixed if all components of vector si are

positive, i.e. si ∈ IntSi. A strategy profile s = (s1, . . . , sN) ∈ S =
∏N

i=1 Si is completely

mixed if all strategies si, i = 1, . . . , N , are completely mixed, i.e. s ∈ IntS.

Our main result is as follows:

Theorem 1. The vector space H(S) of finite non-cooperative N person games on S is

maximal in Eq(S) iff the inequality (2) holds.

For two-person games this means the equality m1 = m2.

Proof. Necessity. Let inequality (2) be not satisfied. It means that there exists a number

1 ≤ i0 ≤ N such that

(mi0 − 1) >
∑
i 6=i0

(mi − 1).

In this case any finite non-cooperative m1× . . .×mN -game H ∈ H(S) has an equilibrium

point s∗ = (s∗1, . . . , s
∗
N) such that the component si0 belongs to the boundary of the simplex

Si0 (see [5] or [6]). Hence the condition of Lemma 1 is satisfied and H(S) is not maximal

in Eq(S).

Sufficiency. Let inequality (2) hold. Then for any completely mixed strategy profile

s ∈ IntS there exists a game in H(S) which has a unique equilibrium point s (see [5]).

Let K be a continuous non-cooperative game on S such that for any game H ∈ H(S)
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and for any β ∈ R1 the game H + βK has an equilibrium point. Then the conditions of

Lemma 3 are satisfied both for game K and for game −K. Hence payoff functions Ki

and −Ki are concave (i.e. the subgraph is convex) on si. So we get that functions Ki,

i = 1, . . . , N are linear on si. It means that the vector spaceH(S) of finite non-cooperative

m1× . . .×mN -games is maximal in the set Eq(S) of all vector spaces of continuous games

on S with equilibrium points.

Remark 1. The result of Theorem 1 remains true if we restrict ourselves to games with

infinitely differentiable payoff functions.

Remark 2. Let H0(S), S = S1 × S2, be the vector space of m1 × m2-matrix games in

mixed strategies. As in the case of bimatrix games, the equality m1 = m2 is still the

criterion of maximality of H0(S) in the set Eq0(S) of vector spaces of zero-sum continuous

(infinitely differentiable) games on S having saddle points.

Remark 3. Compactness is the only property of a simplex used in the proofs of Theorem 1

and of the mentioned result from [5]. Thus, the result of Theorem 1 is true for a vector

space H(X) of games on a product X =
∏N

i=1Xi of convex compact subsets Xi ⊂ Rmi−1
+

such that the payoff function of a player is linear on the set of strategies of any player.
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Appendix.

Proof of Lemma 1. Let fix i1, 1 ≤ i1 ≤ N , i1 6= i0. Consider a non-cooperative

game K on X with the following payoff functions

Ki(x) ≡ 0, if i 6= i1; Ki1(x) = ϕ(xi0) · ψ(xi1), (3)

where x ∈ X, ψ is a continuous non-linear function on Xi1 , ϕ is a continuous function on

Xi0 , such that ϕ(xi0) = 0, if xi0 ∈ A and ϕ is not identically equal to zero on Xi0 .

Here is the simplest example of the set A ⊂ Xi0 satisfying Lemma’s condition and of

the function Ki1 on X described above. Let N = 2 and

X1 = {x = (x1, x2) : x1 + x2 = 1, x1, x2 ≥ 0};

X2 = {y = (y1, y2, y3) : y1 + y2 + y3 = 1, yi ≥ 0, i = 1, 2, 3}.

Let A be equal to the boundary of the simplex X2. It is easy to see that the set A satisfies

the lemma’s condition. Thus we get i0 = 2 and i1 = 1. We may define function K1 on

X = X1 ×X2 using formula (3) where

ϕ(y) = y1 · y2 · y3 and ψ(x) = (x1 + x2)
2.

Now come back to the Lemma 1’s proof. Note that ϕ(x∗i0) = 0 where x∗ is an equilib-

rium point of a game H ∈ H(X) such that x∗i0 ∈ A. By the lemma such equilibrium point

exists for any game H ∈ H(X).

Consider the vector space H′(X) ⊃ H(X) of non-cooperative games on X of the form

H + βK, where game H ∈ H(X)), β ∈ R1 and the non-cooperative game K on X is

described above.

It is easy to see that for any β ∈ R1 the equilibrium point x∗ of a game H ∈ H(X)

such that x∗i0 ∈ A is an equilibrium point of the game H + βK on X as well. Thus,

H′(X) ∈ Eq(X).

As function ψ is non linear on Xi1 , the set of functions maximized by Player i1 in games

in H′(X) is essentially broader than the set of functions maximized by him in games in

H(X). Hence, the vector space H(X) is not maximal in Eq(X).

Proof of Lemma 2. As function Hi(xi, x̄
i) + βKa,b

i (xi, x̄
i) depends linearly on xi over
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interval [a,b] and x̄i ∈ (a,b), we get

Hi(x̄) + βKa,b
i (x̄) ≤ max

xi∈[a,b]
(Hi(xi, x̄

i) + βKa,b
i (xi, x̄

i)) =

max(Hi(a, x̄
i) + βKa,b

i (a, x̄i), Hi(b, x̄
i) + βKa,b

i (b, x̄i)).

But as functions Ki and Ka,b
i coincide at points a and b,

Hi(x̄) + βKa,b
i (x̄) ≤ max(Hi(a, x̄

i) + βKi(a, x̄
i), Hi(b, x̄

i) + βKi(b, x̄
i)) ≤

≤ max
xi∈[a,b]

(Hi(xi, x̄
i) + βKi(xi, x̄

i)).

Since x̄ is an equilibrium point of the game H + βK, the last maximum is obtained at

the point x̄i. It proves the required inequality.

Proof of Lemma 3. The lemma is proved by contradiction. Assume that the hypothesis

of the lemma is satisfied. Suppose that for a certain number i there exists a strategy

profile x̄i ∈ X i of all players but Player i such that function Ki(xi, x̄
i) is not concave as

a function of xi. In view of continuity of function Ki on all variables it can believed that

x̄i ∈ IntX i. So there exists an interval (a,b) ⊂ IntXi such that x̄i ∈ (a,b) and the

following inequality holds

Ki(x̄i, x̄
i) < Ka,b

i (x̄i, x̄
i),

function Ka,b
i over [a,b]×X i is defined before Lemma 2.

Using continuity of function Ki once again we get that there exists an ε-neighborhood

of the point x̄ = (x̄i, x̄
i), ε(x̄) ⊂ IntX, such that for all x = (xi,x

i) ∈ ε(x̄) the inequality

Ki(xi,x
i) < K

a,b(xi)
i (xi,x

i), (4)

holds where

b(xi) ∈ IntXi and xi ∈ (a,b(xi)).

By Lemma’s condition there exists game H ∈ H(X) with the unique equilibrium point

x̄. If positive β sufficiently small then an equilibrium point of game H +βK, which exists

by Lemma’s condition, belongs to ε(x̄). Denote x∗ this point. By inequality (4) we get

that for β > 0

βKi(x
∗) < βK

a,b(x∗
i )

i (x∗).

On the other hand as the conditions of Lemma 2 are satisfied the contrary inequality
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holds as well. Hence our supposition is not true and payoff functions functions Ki, i =

1, . . . , N , are concave in the Player i’s strategy.
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