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Abstract. We compute the Newton–Okounkov bodies of line bundles on the complete flag variety of
GLn for a geometric valuation coming from a flag of translated Schubert subvarieties. The Schubert
subvarieties correspond to the terminal subwords in the decomposition (s1)(s2s1)(s3s2s1)(. . .)(sn−1 . . . s1)
of the longest element in the Weyl group. The resulting Newton–Okounkov bodies coincide with the Feigin–
Fourier–Littelmann–Vinberg polytopes in type A.

1. Introduction

Newton–Okounkov convex bodies generalize Newton polytopes from toric geometry to a more
general algebro-geometric as well as representation-theoretic setting. In particular, Newton–
Okounkov bodies of flag varieties and of Bott–Samelson resolutions for different valuations have
recently attracted much interest due to connections with representation theory and Schubert cal-
culus. The Newton–Okounkov body can be assigned to a line bundle on an algebraic variety X
[KaKh, LM]. In contrast with Newton polytopes, Newton–Okounkov bodies depend heavily on
a choice of a valuation on the field of rational functions C(X). In the case of flag varieties, it is
especially interesting to consider various geometric valuations, namely, valuations coming from a
complete flag of subvarieties pt = Yd ⊂ . . . ⊂ Y1 ⊂ Y0 = X, where d := dimX, since the resulting
Newton–Okounkov convex bodies can often be identified with polytopes that arise in representation
theory.

The first explicit computation of Newton–Okounkov polytopes of flag varieties is due to Ok-
ounkov [O]. For a geometric valuation, he identified Newton–Okounkov polytopes of symplectic
flag varieties with symplectic Gelfand–Zetlin polytopes. Since then several other computations
were made for different valuations [An, Fu, FFL14, HY, Ka, Ki14], see also [An15, FK, SchS] for
related results. In the present paper, we use a natural geometric valuation introduced by Anderson
in [An, Section 6.4] who computed an example for GL3. In this example, the Newton–Okounkov
polytope was identified with the 3-dimensional Gelfand–Zetlin polytope.

Let X be the complete flag variety for GLn(C). We compute Newton–Okounkov convex bodies
of semiample line bundles on X for the geometric valuation coming from the flag of translated
Schubert subvarieties

w0Xid ⊂ w0w
−1
d−1Xwd−1

⊂ w0w
−1
d−2Xwd−2

⊂ . . . ⊂ w0w
−1
1 Xw1 ⊂ X,
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where w1, w2,. . . , wd−1 are terminal subwords of the decomposition

(s1)(s2s1)(s3s2s1)(. . .)(sn−1 . . . s1)

of the longest element in Sn (see Section 2.1 for a precise definition). The valuation can be
alternatively described as the lowest term valuation associated with a natural coordinate system
on the open Schubert cell in X (see Section 2.2). The computation is based on simple algebro-
geometric and convex-geometric arguments. The only representation-theoretic input is the well-
known fact that the number of integer points in the Gelfand–Zetlin polytope for a dominant weight
λ is equal to the dimension of the irreducible representation of GLn with the highest weight λ.

Surprisingly, the resulting polytopes for n > 3 are not, in general, combinatorially equivalent
to the Gelfand–Zetlin polytopes and coincide instead with Feigin–Fourier–Littelmann–Vinberg
polytopes in type A. The complete list of cases when Feigin–Fourier–Littelmann–Vinberg polytopes
in type A are combinatorially equivalent to the Gelfand–Zetlin polytopes can be found in [Fo].
Though Feigin–Fourier–Littelmann–Vinberg polytopes can also be defined in type C an analogous
result for Newton–Okounkov polytopes does not hold already for Sp4(C) (see Section 2.4 for
more details). In both types A and C, Feigin–Fourier–Littelmann–Vinberg polytopes were earlier
obtained as Newton–Okounkov bodies for a completely different valuation that does not come from
any decomposition of the longest element (see [FFL14, Examples 8.1,8.2]). The fact that valuations
considered in [FFL14] and in the present paper yield the same Newton–Okounkov polytopes served
as the starting point for the recent preprint [FaFL15], which gives a conceptual explanation for
this coincidence (see [FaFL15, Example 17]).

The paper is organized as follows. In Section 2, we define the valuation, formulate the main
result and consider several examples. Section 3 contains the proof of the main theorem mod-
ulo the result on comparison between the Gelfand–Zetlin and Feigin–Fourier–Littelmann–Vinberg
polytopes. The latter result is explained in Section 4 using purely convex-geometric arguments.

I am grateful to Alexander Esterov, Evgeny Feigin and Evgeny Smirnov for useful discussions.
I would also like to thank the referee for valuable comments.

2. Main result

In this section, we define the valuation on C(X), recall the inequalities defining Feigin–Fourier–
Littelmann–Vinberg polytopes and formulate the main theorem. We also define a geometrically
natural coordinate system on the open Schubert cell and use it do the simplest examples by hand.
Finally, we discuss the case of symplectic flag varieties.

2.1. Valuation

Fix the decomposition w0 = (s1)(s2s1)(s3s2s1) . . . (sn−1 . . . s1) of the longest element w0 ∈ Sn.
Here si := (i i+ 1) is the i-th elementary transposition. Denote by d :=

(
n
2

)
the length of w0.

Fix a complete flag of subspaces F • := (F 1 ⊂ F 2 ⊂ . . . ⊂ Fn−1 ⊂ Cn) (this amounts to fixing
a Borel subgroup B ⊂ GLn). In what follows, wk for k = 1,. . . , d denotes the subword of w0

obtained by deleting the first k simple reflections in w0, and wk denotes the corresponding element
of Sn. Consider the flag of translated Schubert subvarieties:

w0Xid ⊂ w0w
−1
d−1Xwd−1

⊂ w0w
−1
d−2Xwd−2

⊂ . . . ⊂ w0w
−1
1 Xw1

⊂ GLn/B, (∗)

where Schubert subvarieties are taken with respect to the flag F •, i.e., Xw = BwB/B (cf. [An,
Section 6.4] and [Ka, Remark 2.3]). Let y1, . . . , yd be coordinates on the open Schubert cell C
(with respect to F •) that are compatible with (∗), i.e., w0w

−1
k Xwk

∩ C = {y1 = . . . = yk = 0}. A
possible choice of such coordinates is described in Section 2.2.
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Fix the lexicographic ordering on monomials in coordinates y1, . . . , yd, i.e., yk1
1 · · · ykd ≻

yl1 · · · yld iff there exists j ≤ d such that ki = li for i < j and kj > lj . Let v denote the lowest
order term valuation on C(Xw0) = C(GLn/B) associated with these coordinates and ordering.
Let Lλ be the line bundle on GLn/B corresponding to a dominant weight λ := (λ1, . . . , λn) ∈ Zn

of GLn (dominant means that λ1 ≥ λ2 ≥ . . . ≥ λn). Recall that the bundle Lλ is semiample iff
λ is dominant and very ample iff λ is strictly dominant, i.e., λ1 > λ2 > . . . > λn. Denote by
∆v(GLn/B,Lλ) ⊂ Rd the Newton–Okounkov convex body corresponding to GLn/B, Lλ and v
(see [KaKh, LM] for a definition of Newton–Okounkov convex bodies).

Theorem 2.1. The Newton–Okounkov convex body ∆v(GLn/B,Lλ) coincides with the Feigin–
Fourier–Littelmann–Vinberg polytope FFLV (λ).

We now recall the definition of FFLV (λ). Label coordinates in Rd corresponding to (y1, . . . , yd)
by (u1

n−1;u
2
n−2, u

1
n−2; . . . ;u

n−1
1 , un−2

1 , . . . , u1
1). Arrange the coordinates into the table

λ1 λ2 λ3 . . . λn

u1
1 u1

2 . . . u1
n−1

u2
1 . . . u2

n−2

. . .
. . .

un−2
1 un−2

2

un−1
1

(FFLV )

The polytope FFLV (λ) is defined by inequalities ul
m ≥ 0 and∑

(l,m)∈D

ul
m ≤ λi − λj

for all Dyck paths going from λi to λj in table (FFLV ) where 1 ≤ i < j ≤ n (see [FFL] for more
details).

Example 2.2. (a) For n = 3, there are six inequalities

0 ≤ u1
1 ≤ λ1 − λ2; 0 ≤ u1

2 ≤ λ2 − λ3; 0 ≤ u2
1; u1

1 + u2
1 + u1

2 ≤ λ1 − λ3.

In this case, there is a unimodular change of coordinates that maps FFLV (λ) to the Gelfand–Zetlin
polytope GZ(λ) (see Section 4 for a definition of GZ(λ)).

(b) For n = 4, there are 13 inequalities

0 ≤ u1
1 ≤ λ1 − λ2; 0 ≤ u1

2 ≤ λ2 − λ3; 0 ≤ u1
3 ≤ λ3 − λ4; 0 ≤ u2

1, u2
2, u3

1;

u1
1 + u2

1 + u1
2 ≤ λ1 − λ3; u1

2 + u2
2 + u1

3 ≤ λ2 − λ4;

u1
1 + u2

1 + u1
2 + u2

2 + u1
3 ≤ λ1 − λ4; u1

1 + u2
1 + u3

1 + u2
2 + u1

3 ≤ λ1 − λ4.

In this case, FFLV (λ) and GZ(λ) are combinatorially different whenever λ is strictly dominant
because they have different number of facets (cf. [Fo, Proposition 2.1.1]).

2.2. Coordinates

We now introduce coordinates on the open Schubert cell in GLn/B that are compatible with the
flag (∗). These coordinates seem to be natural from a geometric viewpoint and will be used to
compute by hand some examples in the end of this section. However, they are not needed for the
proof of the main result.
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To motivate the definition consider first the Bott–Samelson variety Xw0 . Its points are collec-

tions of d subspaces {V i
j ⊂ Cn | i + j ≤ n, i, j > 0} such that dimV i

j = i, and V i
j , V

i
j+1 ⊂ V i+1

j

where we put V i+1
n−i := F i+1. Incidence relations between subspaces V i

j can be organized into the
following table (similar to the Gelfand–Zetlin table).

V 1
1 V 1

2 . . . V 1
n−1 F 1

V 2
1 . . . V 2

n−2 F 2

. . .
. . . · · ·

V n−2
1 V n−2

2 Fn−2

V n−1
1 Fn−1

where the notation
U V

W

means U, V ⊂ W .

Collections of spaces (V i
j ⊂ Cn | i + j ≤ n, i, j ≥ 1) appear naturally when we start from the

fixed flag F • and apply d one parameter deformations to get the moving flag M• := (V 1
1 ⊂ V 2

1 ⊂
. . . ⊂ V n−1

1 ⊂ Cn). The deformations are encoded by the word w0 as follows. The elementary
transposition si corresponds to P1-family of complete flags that differ only in the i-th subspace.
To go from F • to M• we first move F 1 inside F 2 and get the flag (V 1

n−1 ⊂ F 2 ⊂ . . . ⊂ Fn−1),
second we move F 2 inside F 3 and get (V 1

n−1 ⊂ V 2
n−2 ⊂ F 3 ⊂ . . . ⊂ Fn−1), third we move V 1

n−1

inside V 2
n−2 to get V 1

n−2 and so on.

Example 2.3. Let n = 4. Below is the sequence of intermediate flags between F • and M•.

F • s1→ (V 1
3 ⊂ F 2 ⊂ F 3)

s2→ (V 1
3 ⊂ V 2

2 ⊂ F 3)
s1→ (V 1

2 ⊂ V 2
2 ⊂ F 3)

s3→

(V 1
2 ⊂ V 2

2 ⊂ V 3
1 )

s2→ (V 1
2 ⊂ V 2

1 ⊂ V 3
1 )

s1→ M•

Remark 2.4. The word w0 is the same (after switching si and sn−i) as the word used in [V, 2.2] to
encode the path from the fixed flag to the moving flag in order to establish a geometric Littlewood–
Richardson rule for Grassmannians. According to [V, 3.12] not every reduced decomposition of w0

can be used for this purpose which is another manifestation of the special properties of w0.

Note that if F • and M• are in general position (that is, M• lies in the open Schubert cell C with
respect to F •), then all subspaces V i

j are uniquely defined by M•, namely, V i
j = Fn−j+1∩M i+j−1.

In particular, the natural projection

πw0
: Xw0

→ GLn/B; πw0
: (V i

j ) 7→ M•

is one to one over C. Fix a basis e1,. . . , en in Cn compatible with F •, i.e., F i = ⟨e1, . . . , ei⟩
(fixing such a basis is equivalent to fixing a maximal torus T ⊂ B, and hence, an ac-
tion of the Weyl group on flags). Using the word w0 we now introduce natural coordinates

(x1
n−1;x

2
n−2, x

1
n−2; . . . ;x

n−1
1 , xn−2

1 , . . . , x1
1) on C ≃ π−1

w0
(C). The origin in this coordinate system

is the flag w0F
• := (w0F

1 ⊂ w0F
2 ⊂ . . . ⊂ w0F

n−1). The coordinate xi
j determines the position

of V i
j inside the P1-family of dimension i subspaces V i

j (x
i
j) such that V i−1

j+1 ⊂ V i
j (x

i
j) ⊂ V i+1

j . To

define the coordinate xi
j on P1 uniquely up to a constant factor it is enough to choose V i

j (0) and

V i
j (∞). The following choice seems to be the most natural.
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PHF1L PHF2L PHV2
1L PHV2

1H0LL

PHV1
1H0LL PHV1

2H0LL

PHM 1L

PHM 2L

PH<e3>L

Figure 1. Coordinates on flags for n = 3.

Since M• and F • are in general position, that is, dim(Fn−j ∩M i+j) = i, we have inclusions of
pairwise distinct subspaces:

V i−1
j+1 = Fn−j ∩M i+j−1

V i
j = Fn−j+1 ∩M i+j−1 ̸= V i

j+1 = Fn−j ∩M i+j

V i+1
j = Fn−j+1 ∩M i+j

Put V i
j (∞) := V i

j+1 and V i
j (0) := ⟨Fn−i−j , en−j+1⟩ ∩M i+j + V i−1

j+1 . Note that ⟨Fn−i−j , en−j+1⟩ ∩
M i+j is the line spanned by a vector en−j+1 + v for some v ∈ Fn−i−j since Fn−i−j ∩M i+j = {0}.
It follows that dimV i

j (0) = i, and V i
j (0) ̸= V i

j (∞) because en−j+1 /∈ Fn−j . By construction,

V i−1
j+1 ⊂ V i

j (0) ⊂ V i+1
j . Note also that V i

j lies in A1 = P1 \ {V i
j (∞)} when M• and F • are in

general position.

Remark 2.5. It is not hard to check that coordinates (y1, . . . , yd) :=
(x1

n−1;x
2
n−2, x

1
n−2; . . . ;x

n−1
1 , xn−2

1 , . . . , x1
1) are compatible with the flag (∗) of Schubert sub-

varieties.

Example 2.6. Let n = 3. Then

V 1
1 = ⟨(x1

1x
1
2 − x2

1)e1 + x1
1e2 + e3⟩; V 1

2 = ⟨x1
2e1 + e2⟩;

V 2
1 = ⟨x1

2e1 + e2,−x2
1e1 + e3⟩.

Figure 1 depicts projectivizations in P2 of various subspaces involved in this example.

2.3. Examples

Theorem 2.1 will be proved in the next section. Here we verify it by hand in three simplest
examples.
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Example 2.7. cf. [An, Section 6.4] Let n = 3, and λ = (2, 1, 0). The flag variety GL3/B can be
regarded as a hypersurface in P2×P2∗ under the embedding (V 1

1 , V
2
1 ) 7→ V 1

1 ×V 2
1 . The line bundle

Lλ on GL3/B is the pullback of the dual tautological line bundle O(1) on P8 under the embedding:

pλ : GL3/B ↪→ P2 × P2∗ Segre−→ P8.

Using Example 2.6 we get that in coordinates (y1, y2, y3) = (x1
2, x

2
1, x

1
1) the map pλ takes the form

pλ : (y1, y2, y3) 7→

y1y3 − y2
y3
1

×
(
y2 y1 1

)
.

Hence, H0(GL3/B,Lλ) has the basis 1, y1, y2, y3, y1y3, y2y3, y1y2y3 − y22 , y
2
1y3 − y1y2. Applying

the valuation v we get 8 integer points (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1), (0, 2, 0),
(1, 1, 0), whose convex hull in R3 is given exactly by inequalities of Example 2.2(a).

Example 2.8. Let n = 4, and λ = (1, 1, 0, 0). The line bundle Lλ on GL4/B is the pullback
of the dual tautological line bundle O(1) on P5 under the natural projection GL4/B → G(2, 4)
composed with the Plücker embedding G(2, 4) ↪→ P5 of the Grassmannian. Using Example 2.3 we
get that in coordinates (y1, . . . , y6) the plane V 2

1 is spanned by the vectors (y4y6 + y5, y4, 1, 0) and
(y2y6 + y3, y2, 0, 1). Hence, the map pλ has the form

pλ : (y1, . . . , y6) 7→ (y2y5 − y3y4 : −(y2y6 + y3) : y4y6 + y5 : −y2 : y4 : 1).

The valuation v takes the sections of H0(GL4/B,Lλ) to 6 integer points in the 4-space {u1
1 = u1

3 =
0}. In coordinates (u2

1, u
3
1, u

1
2, u

2
2), these points are (0, 1, 1, 0), (0, 1, 0, 0), (0, 0, 0, 1), (1, 0, 0, 0),

(0, 0, 1, 0), (0, 0, 0, 0). Their convex hull in R4 is given exactly by inequalities of Example 2.2(b).

Example 2.9. The previous example can be extended to G(3, 6), that is, n = 6 and λ =
(1, 1, 1, 0, 0, 0). This is the minimal example when FFLV (λ) and GZ(λ) are not combinatori-
ally equivalent (cf. [Fo, Proposition 2.1.1]). When computing V 3

1 in coordinates (y1, . . . , y15) one
can immediately ignore all monomials that contain y15, y14, y13 since they never appear as the
lowest order terms. The same holds for y3, y2, y1. If y15 = y14 = y13 = 0, then pλ takes the
following simple form:

pλ : (y4, . . . , y12) 7→ 3× 3 minors of

y10 y11 y12 1 0 0
y7 y8 y9 0 1 0
y4 y5 y6 0 0 1

 .

Hence, we have to compute the lowest order terms of all minors of the 3× 3 matrix formed by the
first three columns. After rotating this matrix as follows

y10
y7 y11

y4 y8 y12
y5 y9

y6

it is easy to see that the lowest order monomials in the minors are in bijective correspondence with
those collections of ui

j (where 3 ≤ i + j ≤ 6, j ≤ 3) in table (FFLV ) that can not occur in the

same Dyck path. By definition, FFLV (λ) contains an integer point with ui
j = 1 and ul

m = 1 iff

no Dyck path passes through both ui
j and ul

m. Hence, the valuation v maps bijectively the minors
to the integer points in FFLV (λ).
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Remark 2.10. Arguments of Example 2.9 allow one to identify ∆v(GLn/B,Lωi) with FFLV (ωi)
for any fundamental weight ωi of GLn. This might lead to an alternative proof of Theorem 2.1
if one uses that ∆v(GLn/B,Lλ) for λ = k1ω1 + . . . + kn−1ωn−1 contains the Minkowski sum
k1∆v(GLn/B,Lω1) + . . .+ kn−1∆v(GLn/B,Lωn−1).

2.4. Symplectic case

A statement analogous to Theorem 2.1 does not hold in type C already in the case of Sp4. We now
discuss this case in more detail. For the rest of this section, X denotes the complete flag variety
for Sp4. The flag of translated Schubert subvarieties analogous to (∗) has the form

s1s2s1s2Xid ⊂ s1s2s1Xs2 ⊂ s1s2Xs1s2 ⊂ s1Xs2s1s2 ⊂ X,

where s1, s2 are simple reflections. The resulting Newton–Okounkov polytopes were computed in
[Ki14, Proposition 4.1]. Regardless of whether s1 corresponds to the shorter or the longer root,
these polytopes have 11 vertices (for a strictly dominant weight) while Feigin–Fourier–Littelmann–
Vinberg polytopes (as well as string polytopes) for Sp4 have 12 vertices. In particular, the former
are not combinatorially equivalent to the latter.

Note that the string polytopes for the decomposition

w0 = (s1)(s2s1s2)(. . .)(snsn−1 . . . s2s1s2 . . . sn−1sn), (Sp)

where s1 corresponds to the longer root, coincides (after a unimodular change of coordinates) with
the symplectic Gelfand–Zetlin polytopes by [L, Corollary 6.3]. The latter were exhibited in [O] as
the Newton–Okounkov bodies of the symplectic flag variety Sp2n/B for the lowest term valuation
associated with the B-invariant flag of (not translated) Schubert subvarieties corresponding to the
initial subwords of w0:

Xid ⊂ Xw0w
−1
1

⊂ . . . ⊂ Xw0w
−1
d−1

⊂ Sp2n/B,

where d = n2 = dimSp2n/B.
Finally, note that string polytopes for any connected reductive group G and any reduced de-

composition w0 were obtained in [Ka] as the Newton–Okounkov bodies of the complete flag variety
G/B for the highest term valuation associated with the B-invariant flag of Schubert subvarieties:

Xid ⊂ Xwd−1
⊂ . . . ⊂ Xw1 ⊂ G/B.

Here d denotes the dimension of G/B (and the length of w0). Note that for G = GLn and w0

as in Section 2.1, the string polytope coincides with the Gelfand–Zetlin polytope in type A by [L,
Corollary 5.2]. While the highest term valuation comes naturally when dealing with crystal bases
and string polytopes the lowest term valuation is more natural from a geometric viewpoint since
it can be interpreted using the order of the pole of a rational function along a hypersurface.

3. Proof of Theorem 2.1

We first formulate and prove simple general results about Newton–Okounkov bodies and recall
classical facts about divisors on Schubert varieties. Then we prove Theorem 2.1.

3.1. Preliminaries

We will need the following two simple lemmas on Newton–Okounkov convex bodies.

Lemma 3.1. Let X be a variety, L a line bundle on X, and v a valuation on C(X). If D is an
effective divisor on X, then

∆v(X,L) ⊂ ∆v(X,L⊗O(D)).
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Proof. Since D is effective, 1 ∈ H0(X,O(D)). The lemma follows directly from the definition of
Newton–Okounkov bodies since for any l ∈ N we have the inclusion i : H0(X,L⊗l) ⊂ H0(X, (L⊗
O(D))⊗l) given by i(s) = s⊗ 1.

The lemma below is a partial case of [LM, Theorem 4.24]. We provide a short proof for the reader’s
convenience.

Lemma 3.2. Let X ⊂ PN be a projective variety of dimension d, and Y• = ({x0} = Yd ⊂ . . . ⊂
Y1 ⊂ Y0 = X) a complete flag of subvarieties at a smooth point x0 ∈ X. Consider a valuation v
on C(X) associated with the flag Y•, and the corresponding coordinates a1, . . . , ad on Rd. Let v1
be the restriction of the valuation v to C(Y1). Denote by L the restriction of the dual tautological
bundle OPN (1) to X. Then we have

∆v1(Y1, L|Y1) = ∆v(X,L) ∩ {a1 = 0}.

Proof. It is well-known that the natural restriction map H0(PN ,OPN (l)) → H0(X,L⊗l) is sur-
jective for sufficiently large l. Similarly, the map H0(PN ,OPN (l)) → H0(Y1, L

⊗l|Y1) is surjective.
Hence, the map H0(X,L⊗l) → H0(Y1, L

⊗l|Y1) is surjective, and ∆v1(Y1, L|Y1) ⊂ ∆v(X,L). For a
section s ∈ H0(X,L⊗l), denote by s̄ its restriction to Y1. Then s̄ ̸= 0 iff v(s) ∈ {a1 = 0}. Hence,
∆v1(Y1, L|Y1) = ∆v(X,L) ∩ {a1 = 0} as desired.

We will also use the classical Chevalley formula [B, Proposition 1.4.3] and the description of Cartier
divisors on Schubert varieties [B, Proposition 2.2.8]. When applied to Xw from (∗) and Lλ these
propositions immediately yield the following

Lemma 3.3. Let w = (si . . . s1)(sn−j+1 . . . s1) . . . (sn−1 . . . s1) where i + j ≤ n. Then the Picard
group of Xw is spanned by the classes of Xws where s runs through transpositions s1, s2. . . , sj−1;
(j j+1), (j j+2),. . . , (j i+ j) and (j− 1 i+ j+1), (j− 1 i+ j+2),. . . , (j− 1 n). In particular,

Lλ|Xw =

j−1⊗
l=1

O(Xwsl)
λl−λl+1 ⊗

i⊗
l=1

O(Xw(j l+j))
λj−λl+j⊗

⊗
n⊗

l=i+j+1

O(Xw(j−1 l))
λj−1−λl .

Remark 3.4. Lemma 3.3 implies the following important property of the decomposition w0. For
every k ≤ d, the Schubert subvariety Xwk

is a Cartier divisor on Xwk−1
. This property is used

in the proof below. It would be interesting to find decompositions with this property for other
reductive groups (decomposition (Sp) for Spn does not have this property).

Moreover, it is easy to check that all Xwk
are smooth by [M, Theorem 3.7.5] but this is not used

in the proof.

3.2. Proof of Theorem 2.1

We will prove by induction the following more general statement. Put Yk := w0w
−1
k Xwk

,
and let vk be the restriction of the valuation v to C(Yk) ≃ C(yk+1, . . . , yd) (see Remark
2.5). We will also use an alternative labeling of coordinates in Rd, namely, (a1, a2, . . . , ad) =
(u1

n−1;u
2
n−2, u

1
n−2; . . . ;u

n−1
1 , un−2

1 , . . . , u1
1). Let Fk(λ) be the face of FFLV (λ) given by equations

ul
m = 0 for all pairs (l,m) such that either m > j, or m = j and l ≥ i. Here k and (i, j) are related

via the above identification of coordinates ak and ui
j , i.e., ak = ui

j .
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Theorem 3.5. The Newton–Okounkov convex body ∆vk(Yk, Lλ|Yk
) coincides with the face Fk(λ).

In particular, this theorem reduces to Theorem 2.1 when k = 0 (we put F0(λ) = FFLV (λ)). The
main idea of the proof is to identify the slices of ∆vk−1

(Yk−1, Lλ|Yk−1
) by hyperplanes {ak = const}

with Fk(µ) for suitable µ. We will need a convex-geometric lemma for slices of Fk−1(λ) and a similar
algebro-geometric lemma for ∆vk−1

(Yk−1, Lλ|Yk−1
).

Lemma 3.6. There exists a path of dominant weights µ(t) such that

(t− λi+j)ek + Fk(µ(t)) = Fk−1(λ) ∩ {ak = t− λi+j}.
for all t ∈ [λi+j , λj ]. Here ek denotes the k-th basis vector in Rd. In particular,

Fk−1(λ) = conv{(t− λi+j)ek + Fk(µ(t)) | λi+j ≤ t ≤ λj}.
Proof. Define µ(t) = (µ1(t), . . . , µn(t)) as follows

µl(t) =

{
max{λl, t} if j < l ≤ i+ j
λl otherwise

In particular, λ = µ(λi+j), and every µl(t) is a piecewise linear concave function of t. The lemma
now follows immediately from the definitions of Fk(λ) and FFLV (λ).

In particular, Fk−1(λ) fibers over the segment [0, λj − λi+j ], and the fiber polytope is analogous
to Fk(λ) for strictly dominant λ.

Lemma 3.7. Take µ(t) as in the proof of Lemma 3.6. Then

(t− λi+j)ek +∆vk
(Yk, Lµ(t)|Yk

) ⊂ ∆vk−1
(Yk−1, Lλ|Yk−1

) ∩ {ak = t− λi+j}
for all integer t ∈ [λi+j , λj ]. In particular,

conv{(t− λi+j)ek +∆vk(Yk, Lµ(t)|Yk
) | λi+j ≤ t ≤ λj , t ∈ Z} ⊂ ∆vk−1

(Yk−1, Lλ|Yk−1
).

Proof. By definition, Yk and Yk−1 are translates of the Schubert varieties Xwk
and Xwk−1

, respec-
tively, where wk = (si−1 . . . s1)(sn−j+1 . . . s1) . . . (sn−1 . . . s1) and wk−1 = siwk. Put τ = t− λi+j .
It is easy to check using Lemma 3.3 that

Lλ|Yk−1
⊗O(−τYk) = Lµ(t)|Yk−1

⊗O(τ(siYk − Yk))⊗ E(τ)

for an effective Cartier divisor E(τ) on Yk−1. Indeed, E(τ) = L(λ−µ(t))|Yk−1
⊗ O(−τsiYk) is a

translate of the following divisor on Xwk−1
:

i−1⊗
l=1

O(Xw(j l+j))
max{0,t−λl+j}.

Note that ∆vk−1
(Yk−1, Lµ(t)|Yk−1

⊗O(τ(siYk−Yk))) = τek+∆vk−1
(Yk−1, Lµ(t)|Yk−1

) since siYk−Yk

is the divisor of the rational function yk. Applying Lemma 3.1 to Yk−1, Lµ(t)|Yk−1
⊗O(τ(siYk−Yk))

and E(τ) we get

τek +∆vk−1
(Yk−1, Lµ(t)|Yk−1

) ⊂ ∆vk−1
(Yk−1, Lλ|Yk−1

⊗O(−τYk)).

Intersecting both sides with the hyperplane {ak = τ} yields

τek +∆vk−1
(Yk−1, Lµ(t)|Yk−1

) ∩ {ak = 0} ⊂ ∆vk−1
(Yk−1, Lλ|Yk−1

⊗O(−τYk)) ∩ {ak = τ}.
Since Lµ(t) is semiample we can apply Lemma 3.2 and get that

∆vk(Yk, Lµ(t)|Yk
) = ∆vk−1

(Yk−1, Lµ(t)|Yk−1
) ∩ {ak = 0}.

It follows that

τek +∆vk(Yk, Lµ(t)|Yk
) ⊂ ∆vk−1

(Yk−1, Lλ|Yk−1
⊗O(−τYk)) ∩ {ak = τ}.

It remains to note that ∆vk−1
(Yk−1, Lλ|Yk−1

⊗O(−τYk)) ⊂ ∆vk−1
(Yk−1, Lλ|Yk−1

) by Lemma 3.1.

We are now ready to prove Theorem 3.5.
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Proof of Theorem 3.5. Let us first prove that Fk(λ) ⊂ ∆vk
(Yk, Lλ|Yk

) for all dominant λ by back-
ward induction on k. For k = d, we have that both convex bodies coincide with the origin in Rd.
Suppose the inclusion holds for k. We now prove it for k − 1. By Lemma 3.6

Fk−1(λ) = conv{(t− λi+j)ek + Fk(µ(t)) | λi+j ≤ t ≤ λj}.

Moreover, when taking the convex hull it is enough to consider only integer values of t, since µ(t)
is linear at all non-integer points. Using the induction hypothesis Fk(µ(t)) ⊂ ∆vk

(Yk, Lµ(t)|Yk
) we

get that

Fk−1(λ) ⊂ conv{(t− λi+j)ek +∆vk
(Yk, Lµ(t)|Yk

) | λi+j ≤ t ≤ λj , t ∈ Z}.

Hence, Fk−1(λ) ⊂ ∆vk−1
(Yk−1, Lλ|Yk−1

) by Lemma 3.7.
Finally, for k = 0 we get F0(λ) ⊂ ∆v(GLn/B,Lλ). Since both convex bodies have the same

volume they must coincide. Here we use that by Theorem 4.3 the volume of F0(λ) = FFLV (λ)
coincides with the volume of the Gelfand–Zetlin polytope GZ(λ). Hence, inclusions Fk(λ) ⊂
∆vk(Yk, Lλ|Yk

) are equalities for all k.

Remark 3.8. Results of Section 4 (see Theorem 4.3 and Remark 4.1) imply that the number of
integer points in Fk(λ) (and hence, in the Newton–Okounkov polytope ∆vk

(Yk, Lλ|Yk
)) is equal to

the dimension of the Demazure module H0(Yk, Lλ|Yk
) for all k = 0, . . . , d and dominant λ.

To illustrate the proof of Theorem 3.5 consider the simplest meaningful example.

Example 3.9. Let k = d− 1, i.e., wk = s1 and wk−1 = s2s1. Then Yk−1 = P̂2 is the blow up of P2

at one point, and Yk = P1 is embedded into Yk−1 as one of the fibers of the P1-bundle P̂2 → P1.
The Picard group of P̂2 is spanned by O(Yk) and O(E) where E ⊂ P̂2 is the exceptional divisor.
Note that O(E)a ⊗O(Yk)

b is semiample iff 0 ≤ a ≤ b. We have

Lλ|Yk−1
= O(E)λ1−λ2 ⊗O(Yk)

λ1−λ3 .

Hence, the line bundle Lλ|Yk−1
⊗ O(−(t − λ3)Yk)) is no longer semiample if λ2 < t ≤ λ1. How-

ever, it has the same global sections (modulo multiplication by yt−λ3

k ) as the semiample bundle
Lµ(t) = O(E)λ1−t ⊗ O(Yk)

λ1−t. Hence, Lµ(t) can be used instead of Lλ|Yk−1
⊗ O(−(t − λ3)Yk))

when computing ∆vk−1
(Lλ|Yk−1

, Yk−1). Figure 2 shows the Newton–Okounkov polygons of Lλ|Yk−1

(trapezoid) and Lµ(t)|Yk−1
(triangle), which are just Newton polygons since Yk−1 is toric.

4. Comparison of Gelfand–Zetlin polytopes and Feigin–Fourier–Littelmann–Vinberg
polytopes

We start with an elementary construction of polytopes fibered over a segment. Then we apply
this construction to get the Gelfand–Zetlin and Feigin–Fourier–Littelmann–Vinberg polytopes in
a uniform way.

4.1. Construction with fiber polytope

Let P ⊂ Rl be a convex polytope. The set of linear functionals, whose restrictions to P attain
their maximal values at a face F ⊂ P , form a cone CF ; the normal fan of P is defined as the set
of cones CF corresponding to all faces F ⊆ Q. We say that a polytope Q ⊂ Rl is subordinate to P
if the normal fan of P is a subdivision of the normal fan of Q. Note that the set of all polytopes
subordinate to P forms a semigroup under the Minkowski sum. Denote this semigroup by SP .

Let µ(t) be a piecewise-linear continuous function from a segment I ⊂ R to SP . We say that
µ(t) is convex if

µ(t1) + µ(t2)

2
⊂ µ

(
t1 + t2

2

)
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ad-1

ad

Figure 2. Newton polygons of Lλ|Yd−2
and Lµ(t)|Yd−2

for d = 3, λ = (3, 1, 0) and t = 2.

for all t1, t2 ∈ I. In other words, the set

Pµ :=
∪
t∈I

µ(t)× {t} ⊂ Rl × R = Rl+1

is a convex polytope. In this case, Pµ fibers over I and the fiber polytope is subordinate to P .
Suppose now that µ′(t) is a convex function from I to SQ for a convex polytope Q ⊂ Rl. If the

polytopes µ(t) and µ′(t) have the same Ehrhart polynomials for all t ∈ I then obviously so do Pµ

and Pµ′ . The simplest example is when P = Q and µ′(t) is a parallel translate of µ(t). In this
case, Pµ and Pµ′ also have the same fiber polytope but might be combinatorially different even for
quite simple µ(t) and µ′(t) (see Example 4.4).

4.2. GZ(λ) vs FFLV (λ)

We now show that both GZ(λ) and FFLV (λ) can be obtained inductively from a point using
the above construction. Recall that the Gelfand–Zetlin polytope GZ(λ) ⊂ Rd is defined by the
following inequalities

λ1 λ2 λ3 . . . λn

z11 z12 . . . z1n−1

z21 . . . z2n−2

. . .
. . .

zn−2
1 zn−2

2

zn−1
1

where the notation
a b

c

means a ≥ c ≥ b. Let Gk(λ) be the face of the Gelfand–Zetlin polytope GZ(λ) given by the
equations zlm = zl−1

m+1 for all pairs (l,m) such that either m > j, or m = j and l ≥ i (we put
z0m = λm).
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Remark 4.1. In [Ki, Theorem 3.4], there is an inductive construction of the Gelfand–Zetlin polytope
via convex geometric Demazure operators. The flag of faces

Gd(λ) ⊂ Gd−1(λ) ⊂ Gd−2(λ) ⊂ . . . ⊂ G1(λ) ⊂ GZ(λ) =: G0(λ).

is exactly the flag used in this construction. In particular, by [Ki, Corollary 4.5] the number
of integer points in Gk is equal to the dimension of the Demazure module H0(Yk, Lλ|Yk

) for all
k = 0, . . . , d and dominant λ.

Lemma 4.2. Take µ(t) as in the proof of Lemma 3.7. There exists a path z(t) ∈ Rd such that

Gk−1(λ) ∩ {zij = t} = z(t) +Gk(µ(t))

for all integer t ∈ [λi+j , λj ]. In particular,

Gk−1(λ) = conv{z(t) +Gk(µ(t)) | λi+j ≤ t ≤ λj}.

Proof. Define the coordinates zlm(t) of z(t) ∈ Rd as follows:

zlm(t) =



(t− λi+j) if m > j, l +m = i+ j, λi+j ≤ t
(t− λi+j−1) if m > j, l +m = i+ j − 1, λi+j−1 ≤ t
...

...
(t− λj+2) if m > j, l +m = j + 2, λj+2 ≤ t
0 otherwise

.

In particular, z(t) = 0 if i = 1. The statement of the lemma now follows by direct calculation from
the definition of GZ(λ) and Gk(λ).

Lemmas 3.6 and 4.2 together with the backward induction on k immediately yield an elementary
proof of the following theorem.

Theorem 4.3. Polytopes Fk(λ) and Gk(λ) have the same Ehrhart polynomial for all k = 0,. . . ,
d. In particular, Gelfand–Zetlin polytope GZ(λ) and Feigin–Fourier–Littelmann–Vinberg polytope
FFLV (λ) have the same Ehrhart polynomial.

The last statement of the theorem also follows from [FFL]. The first elementary proof of this
statement was given in [ABS] using a different approach.

Lemmas 3.6 and 4.2 imply that both FFLV (λ) and GZ(λ) can be obtained inductively from
a point by iterating the construction of Section 4.1. Note that both Fk−1(λ) and Gk−1(λ) fiber
over a segment of length λj − λi+j , and fibers are equal (up to a parallel translation) to Fk(µ(t))
and Gk(µ(t)), respectively, for the same piecewise linear function µ(t) on the segment. The only
difference between these two cases is the presence of the shift vector z(t) in the second case.

Example 4.4. cf. [Fo] For n = 3, k = 0, . . . , 3, and n = 4, k = 2, . . . , 6, there exists a unimodular
change of coordinates that maps Fk to Gk. Let n = 4, and k = 1. Then Fk provides the minimal
example when Fk is not combinatorially equivalent to Gk.

We now illustrate how to obtain the inequalities defining F1 from those of F2 using Lemma 3.6
or equivalently the construction of Section 4.1 (and not the definition of F1). For k = 2, we have
i = j = 2, and

µ(t) =

{
(λ1, λ2, λ3, t) if λ4 ≤ t ≤ λ3

(λ1, λ2, t, t) if λ3 ≤ t ≤ λ2
.
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By Example 2.2 the inequalities defining F2 are

0 ≤ u1
1 ≤ λ1 − λ2; 0 ≤ u1

2 ≤ λ2 − λ3; 0 ≤ u2
1, u3

1;

u1
1 + u2

1 + u1
2 ≤ λ1 − λ3; u1

1 + u2
1 + u3

1 ≤ λ1 − λ4.

Put u2
2 := t − λ4. Using the last statement of Lemma 3.6 as a definition of F1, we get that F1 is

defined by inequalities:

0 ≤ u1
1 ≤ λ1 − λ2; 0 ≤ u1

2 ≤ λ2 − µ3(u
2
2 + λ4); 0 ≤ u2

1, u3
1;

u1
1 + u2

1 + u1
2 ≤ λ1 − µ3(u

2
2 + λ4); u1

1 + u2
1 + u3

1 ≤ λ1 − (u2
2 + λ4);

0 ≤ u2
2 ≤ λ2 − λ4.

Using that µ3(t) = max{λ3, t} and eliminating redundant inequalities we get

0 ≤ u1
1 ≤ λ1 − λ2; 0 ≤ u1

2 ≤ λ2 − λ3; u1
2 + u2

2 ≤ λ2 − λ4; 0 ≤ u2
1, u3

1, u2
2;

u1
1 + u2

1 + u1
2 ≤ λ1 − λ3; u1

1 + u2
1 + u1

2 + u2
2 ≤ λ1 − λ4;

u1
1 + u2

1 + u3
1 + u2

2 ≤ λ1 − λ4.

Similarly, one can restore G1 from G2 and check that there are only 10 inequalities for G1.
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