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Abstract 
 

Fractional differential equation of particle transfer in porous and tubular media was 
obtained in the paper. It differs from the generally accepted ones by the dependence of the 
effective diffusion coefficient on the concentration. Together with 1D case problem also 
3D problem of diffusion in normal random field was analyzed. For scales, lager then 
correlation lengths, fractional diffusion equation was derived which is valid for any time 
intervals. Diffusion equations in fractional derivatives in the limiting case of a zero 
correlation length of a random field of porosity or tube curvature were shown to be reduced 
to an ordinary diffusion equation with a renormalized diffusion coefficient. In case of a 
non-zero correlation length a general solution for the average square of the particle shift 
during random wandering was found. It was also found that in a certain time interval the 
coefficient of diffusion is time dependent, i.e. anomalous diffusion takes place. 
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1.  Introduction 
It is known [1, 2], that a number of models for the transport of matter in a complex porous medium, 
saturated by motionless fluid were proposed. Complexity there was modeled by coefficients in the form 
of random processes. In addition [3] it was assumed the transport of matter to be ruled by one-
dimensional (in space) partial differential equations. The random process also was assumed to be one-
dimensional. This approach helped to see that the place where random coefficients appear in the small 
scale model influences the macroscopic equation which rules the evolution of the concentration, averaged 
with respect to those random fields. Other properties, e.g. the correlation function, have less importance. 
One-dimensional settings, such as the ones, considered up to this point, may correspond to realistic 
situations, such as for media, made of tubes randomly inter-twisted around a general direction [4, 5]. 

Now we perform a similar approach, in the dimension three. We start from a small scale model, 
designed for the spreading of solute in a fluid, with nearly spherical obstacles. Such a model may 
describe a saturated porous medium, whose solid matrix is composed up of the obstacles. Averaging 
with respect to the sample paths of a random process, meant to describe the complexity of the medium, 
allows us here again to bridge between small scales, where the medium appears as being disordered, 
and larger scales where disorder is less visible. This step will be achieved under strong hypotheses, 
concerning the random process itself: they concern the place, it enters the small scale equation, and the 
fact that it may be Gaussian, or not. This study only deals with rather easy situations, from this point of 
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view. Once the structure of a random process has been set, some variants correspond to properties of 
the correlations. For a Gaussian process, only the two-points (or two-wave vectors) correlation has to 
be considered. The influence of the correlation function could be addressed for Gaussian (or nearly 
Gaussian) processes in the one-dimensional case and we learned that the point is not very important for 
the transport of matter over scales, larger than the correlation length, at least in the one-dimensional 
approach. 

We address the question in a definitely three-dimensional setting [6-11], such as the one, 
described on the small scale by the three-dimensional version of equation [3]. This means that we 
assume that the logarithm of the porosity is a comfortable random process, within the frame-work of 
solute transport in a quiescent fluid, saturating the porous medium. In fact, this equation is also 
appropriate for solute spreading in a fluid, whose internal motions depend randomly on the location. 
We will average the concentration of solute with respect to some random process and obtain from this 
an equation, for the macroscopic scale. We will address the influence of the correlation function. 

This way, we will arrive at an equation, whose Fourier-Laplace symbol is an integral, which 
depends on the correlation function of the random process, modeling the complexity of the medium. 
We will check against particular (but different) cases the influence on the correlation function, and see 
that it is apparently not crucial. 
 
 
2.  Diagram Technique for Porous Media in 3D Case 
In [3] formerly we derived equation for diffusion process in three-dimensional random media. Let us 
present it again for convenience: 
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Here ),( tu r  denotes the concentration of solute in point r  at time t , while ( ) r  is the random 
porosity. The concentration is a functional of the porosity; hence it in turn is a random field. As in [3], 
we derive here an equation for the averaged concentration u . 

Let us as in {2, 3] put 
)(e)( rr   

in order to have at least a positively valued coefficient in the dispersive term. 
Then (1) takes the form: 
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which is the three-dimensional. Formally (2) is equivalent to the diffusion equation in a random force 

potential ( ) r . The stationary variant ( 0
u

t





) of (2) was addressed in [6, 7]. 

It is convenient for analysis (2) to use ( , )qk  - representation, that is to use Fourier transform 
over space and Laplace transform over time. Then direct and backward Fourier transforms are used in 
such form: 
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Therefore, we have: 
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where 0P  is defined by
 0 0 2

0 0

1
( , )P k q

q D k



. Moreover, we have set 0( ) ( )D  k k , with , 

0k  k and 0( ) k  is the Fourier image of the initial concentration 0( ) ( , )u r r 0 . 

The graphical representation of (3) is: 

 

which gives the solution to (4.3) for 0( )u k  represented by  

(Argument q  is omitted), in the form of an infinite sum of diagrams 

= + 
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+ (4) 
 
according to the rules, sated in [2, 3]: 

 each  single horizontal line   marked k , corresponds to the value )(0 kP ; 

 each vertical line  ,  marked by wave number k , corresponds to multiplier )(~ k ; 

 each three lines vertex of the form  corresponds the scalar product 

)( 212 kkk   

 each horizontal line, marked by k , and leaving a three-lines vertex carries multiplier )(k  

 each vertical line bearing wave vector  k  carries integration over 3R with respect to k . 
We are interested in the evolution of the concentration, on a large scale, so (4) ought to be 

averaged over realizations of random field ( ) r  (or ( ) k ). We will assume, that ( ) r  is a 
homogeneous and isotropic normal random field with zero mean and correlation function 

2 1 2 1( ) ( ) ( )   r r r r   . Then, in wave vector k  - representation, we have 
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Under these assumptions, the averaged equation (4) will only include diagrams with even 
numbers of vertices. Using fourth-order diagram for the case, let us examine in details the diagrams 

transformation for (4.4) after averaging. Because random field 
~

 is normal and homogeneous, we 
have, according to (5): 
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Therefore, after averaging the diagram 
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0k  10 kk  210 kkk 

3k1k
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 (7) 
turns into the sum of A, B and C, defined as follows: 
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All this means that it necessary to connect by all possible means vertical lines pairs in initial 
diagram, so that to turn them into arcs with the same wave vector k . After averaging incoming and 
leaving horizontal lines have the same vector 0k . For our 3D case, the rules defining averaged 

diagrams (8) are such: 
 each arc, marked k  corresponds to multiplier )(~ k ;  

 each horizontal line   , marked k , corresponds multiplier )(P k0 . 

 for crossing from right to left over vertex   for horizontal line, 

right from vertex there corresponds wave vector )( 21 kk  . Vertex itself corresponds factor 
)( 212 kkk  ; 

 for crossing from left to right vertex  ,  leaving horizontal line 

carries wave vector )( 21 kk  . Vertex itself corresponds factor )()1( 212 kkk  . 

 integration is held over all arc vectors. 
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When all rules for diagrams are formulated for the three-dimensional, we can use the 
corresponding results. Summation results for all possible diagrams can be expressed via the sum of 
irreducible diagrams, that is the diagrams that split into sub diagrams separated by horizontal lines with 
wave vector 0k , not being surrounded by any dashed bended line. If we denote by i  the sum of all 

those irreducible diagrams, then we can derive in ( , )qk  - representation the following equation, which 
is the three-dimensional 

  )(),( 00
1

0 kk  quP i

, (9) 
which brings the formal solution of our task. 
 
 
3.  Small Fluctuation. Fractional Equation 
Herewe will examine the case when the amplitude of the fluctuations of random field  is small 

2
0( 1)a  . Then, i  is dominated by the first irreducible diagram with ( ) k  in the first degree: 
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If we assume that process  is isotropic, then ˆ ( ) k  in a function of the modulus k  of k . 

Setting  for the angle between wave-vectors 0k  and k , and 0k for the modulus of vector 0k  while 

for k it is 0kk , also setting 2
0 0q D Qk , the integral on the right-hand side of (10) is 
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The one-dimensional case could be worked out with more or less general assumptions, 
concerning the correlation function ( ) r  (here in wave vector representation) of process  . There is 

some hope to arrive at similar conclusions in the three-dimensional case. Nevertheless, the task is more 
complex, and we only could obtain i  from two different correlation functions, which are proportional to 
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Here l  is the correlation length of process   , and r  denotes r . Since we look at what happens 

when l  tends to zero when 0k  and q are fixed, we set 0L lk . In can be derived, that, with the above 

correlation functions, the leading terms in the expansion of 
i with respect to L  are of the form 
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with positively valued 1  and 2 when the Fourier transform of the correlation function ( ) r  
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When 2 2
0 /a l is small, 0 'D  is just smaller than 0D  and   is small ( 2 2

0 0 2 0' (1 )D D a Ll   and 
2
0 1 0a l D  ). Hence (13) rules the evolution on the macroscopic scale of the concentration of solute 

in a tree-dimensional porous medium whose porosity is the exponential of a Gaussian process. 
 
 
4.  Anomalous Diffusion 
As we noticed before for usual media, stratum particle displacement media is proportional to t . This is 
not so for random media. It is known that for a special class of one-dimensional problems there exists 
finite time intervals, during transients, such that stratum particle displacement is not proportional to t . 
In this section, we will see that this also happens for (13). 

Concentration function u , being the solution to (13) under initial condition ( ) ( ) r r , can 

be interpreted as being the probability distribution density of finding in point r and at time t  a particle 
that was in the origin for 0t  . Let us denote it as being the density function ( , )t r . 

In ( , )qk  - representation the solution of (13) which corresponds to the initial condition 
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with 3/2( ) 1F q q  . 
Backwards three-dimensional Fourier transform gives: 
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from which the density function ( , )r q  over r  r  is: 
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With the help of (15) the mean displacement for 
____

2 ( )r q  as the function of Laplace parameter q  
is: 
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By substituting the above expression for ( )F q  into (16) and after backward Laplace 

transforms, we obtain that 
____

2r  is the following time function: 
____

2 1/2 1/2
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The above expression is valid for all time values. As it follows from (17) that if the correlation length 

(or equivalently  )
2
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l
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 is zero, then we have the renormalization of diffusion coefficient. When 

l  is different from zero, the figure 1 shows that during transients the mean square displacement is not 
proportional to t , and that it even does diverge in the limit 0t   . After some time, it finally 
becomes proportional to t . 

Together with mean displacement coefficient, let us insert also the differential diffusion 

coefficient 

____
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 . We obtain 
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Figure 1: The mean square displacement as a function of time, in logarithmic coordinates, for various values 

of  with ' 0D   

 

 
 
 
6.  Summary and Concluding Remarks 
Here we have presented a three-dimensional diffusion problem for random force field with normal 
stochasticity potential function. 

1. For averaged concentration diffusion process diagrammatic technique was developed in 
analogy with the stationary case. Equation (9) was derived for 0( , )u qk . Assuming that 

heterogeneities correspond to small but disordered fluctuations led us to an expression in closed 
form for 0( , )u qk . From the latter we derived the integro-differential equation (16) for the 

evolution of the macroscopic concentration, over scales large compared with the length 
characterizing the randomness of the medium. This equation is valid for any times, and includes 

a fractional operator of order 3
2  , combined with the Laplacian. 

2. Anomalous diffusion effect was found to take place during transients, but to disappear after 
some time. 
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