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Although the long-range temporal correlation (LRTC) of the amplitude fluctuations of neuronal EEG/MEG os-
cillations is widely acknowledged, the majority of studies to date have been performed in sensor space,
disregarding themixing effects implied by volume conduction and confounding noise.While the effect ofmixing
on the evaluation of evoked responses and connectivitymeasures has been extensively studied, there are, to date,
no studies reporting on the differences in the values of the estimated Hurst exponents when moving between
sensor and source space representations of the multivariate data or on the effect of noise. Such differences, if
not duly acknowledged, may lead to erroneous data interpretations. We show in simulations and in theory
that measuring Hurst exponents in sensor space may lead to an incomplete picture of the LRTC properties of
the underlying data and that noise may significantly bias the estimate of the Hurst exponent of the underlying
signal. Moreover, these predictions are confirmed in real data, where we analyze the amplitude dynamics of
neuronal oscillations in the resting state from EEG data. By moving either to an independent components repre-
sentation or to a source representation which maximizes the signal to noise ratio in the alpha frequency range,
we observe greater variance, skewness and kurtosis over measured Hurst exponents than in sensor space. We
confirm the suitability of conventional source separation methodology by introducing a novel algorithm
HeMaxwhich obtains a source maximizing the Hurst exponent in the amplitude dynamics of narrow band oscil-
lations. Our findings imply that the long-range correlative properties of the EEG should be studied in source
space, in such away that the SNR ismaximized, or at least with spatial decomposition techniques approximating
source activities, rather than in sensor space.

© 2014 Published by Elsevier Inc.
Introduction

Awidely observed phenomenon in the study of cortical neuronal dy-
namics is the presence of long-range temporal correlation (LRTC)which
corresponds to slowly attenuating autocorrelations or the 1/f shape of
the power-spectrum. In EEG andMEG analysis, LRTC time-series include
not only the raw electrode data (Miller et al., 2009; Novikov et al., 1997;
Pritchard, 1992; Watters and Martin, 2004) but also the amplitude en-
velopes of narrow band oscillatory signals (Linkenkaer-Hansen et al.,
2001; Nikulin and Brismar, 2004, 2005; Palva et al., 2013; Smit et al.,
2011). The ubiquity of LRTC has been further demonstrated by the dis-
covery of its presence in subcortical structures (subthalamic nucleus,
(Hohlefeld et al., 2012)). In this paper we consider the effect of volume
conduction on the estimation of the Hurst exponents of both EEG raw
utational Neuroscience, Berlin,

Blythe).
electrode data and the EEG amplitude time-series of narrow-band oscil-
lations, but with a particular focus on the latter.

The importance of the LRTC property of amplitude time-series has
been elucidated by its relation to hypotheses concerning the optimal
functioning of large distributed neuronal networks; this is because on
theonehand the LRTCof amplitude time-series has been shown in com-
putational work to coexist with neuronal avalanche activity (Poil et al.,
2012), and thus suggests a relationship between oscillatory activity ob-
served in the EEG and the criticality hypothesis (Beggs and Plenz, 2003;
Friedman et al., 2012); thus a potential connection between LRTC in the
amplitude of oscillations and optimal information processing has been
established (Beggs and Plenz, 2003; Shew et al., 2009, 2011). On the
other hand, the relevance of the LRTC property to optimal function has
been confirmed in clinical studies, where it has been observed that a
number of neurological diseases are associated with altered LRTC prop-
erties in the amplitude of oscillatory activity including Alzheimer's dis-
ease (Montez et al., 2009), schizophrenia (Nikulin et al., 2012), major
depressive disorder (Linkenkaer-Hansen et al., 2005) and epilepsy
(Monto et al., 2007). The importance of these scale free phenomena
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implied by the presence of the LRTC property is further corroborated by
numerous fMRI studies (Cabral et al., 2013; Ciuciu et al., 2014; Fox and
Raichle, 2007).

The degree of LRTC may be characterized by the magnitude of
the Hurst exponent, H, whereby values of 0.6–0.8 have been observed
as typical in the alpha and beta frequency ranges, across EEG electrodes
for healthy subjects (Linkenkaer-Hansen et al., 2001; Nikulin and
Brismar, 2004, 2005). Thus studies have pointed towards exponent
values which suggest the possibility of universality across subjects.

To date, however, no study has considered whether the observation
of LRTC across the scalp is an artifact of either volume conduction or
confounding noise sources, or whether the LRTC properties observed
in EEG sensor data present a distorted picture of the underlying sources,
as has been shown for other quantitative measures, such as measures
for connectivity (Meinecke et al., 2005; Nolte et al., 2004, 2008). Thus
no consideration has yet been given to the possibility that the LRTC
property may be spatially restricted andmay only through volume con-
duction appear in all ormany EEG (orMEG) sensors. Conversely no con-
sideration has been given to the possibility that the Hurst exponent
values observed in EEG source spacemay be in facthigher than those ob-
served in sensor space, implying the presence of stronger dependence
properties than previously reported. The validation of such a conjecture
would then potentially imply that, for instance, the presence of critical
states is heterogeneous across brain regions, or that the diminished
values in Hurst exponent measured from the EEG or MEG of patients
occur in virtue of attenuation of LRTC in selected brain regions.

In this paper we show in simulations, theory and analysis of experi-
mental EEG resting data that an overestimation of the prevalence of
LRTC, an underestimation of the largest Hurst exponent present in the
source representation of the data and an overestimation of the lowest
Hurst exponent may occur as a result of mixing effects. Importantly,
the framework we develop, applied to volume conduction, can be equally
generalized to the effects of superimposed noise on an LRTC signal. Thus
themeasured Hurst exponents in sensor spacemay be shown in theory
and simulations to display less diversity than those in source space and
to be biased towards the exponents of superimposed noise.

Methods

Hurst exponent estimation

The Hurst exponentH of a time-series X(t) quantifies to what extent
information relating to the past history of X(t) is preserved in future
samples; if H = 0.5 then samples far apart are approximately indepen-
dent and X(t) is short-range dependent.

However if 0.5 bH b 1 then X(t) is said to be LRTC,with higher values
of H denoting a stronger LRTC property; in these LRTC cases, the auto-
correlation function of X(t) takes the form of a power-law for large lags:

E X tð ÞX t þ δð Þð Þ∼ α
δ2−2H : ð1Þ

Notice that for narrow band oscillatory signals X(t) corresponds to
the amplitude envelope of the oscillatory signal and not the raw oscilla-
tory signal. In the analysis of alpha range amplitude dynamics, values of
H close to 1 have been found empirically to occur with significant auto-
correlations persisting in the amplitude dynamics over thousands of cy-
cles (Linkenkaer-Hansen et al., 2001; Nikulin and Brismar, 2004, 2005).

Testing for the presence of LRTC thus implies measuringH accurate-
ly. In principle, using Eq. (1), an analysis of empirical time-lagged corre-
lations should yield an estimate of H. However, in practice, use of
the empirical autocorrelations for estimation of H is unreliable, due to
the influence of confounding non-stationarities in the low-frequencies
of the amplitude dynamics. These non-stationarities, in the raw elec-
trode data, may include, for example, electrode drifts, postural changes
or ocular activity.
Thus numerous methodologies have been proposed for the estima-
tion ofH to circumvent the difficulties associated with the empirical au-
tocorrelations. In this paper we use two such estimators, viz. Detrended
Fluctuation Analysis (DFA) (Peng et al., 1994) and a wavelet estimator
using a Daubechies mother wavelet (WD) (Abry and Veitch, 1998;
Simonsen et al., 1998). Most importantly, estimation of the Hurst expo-
nentwith DFA orWD assumes that our LRTC signals may bemodeled as
x(t) + r(t) where r(t) is a polynomial trend of fixed degree and x(t) is
LRTC with covariance function obeying Eq. (1). DFA and WD are then
invariant to the presence of r(t) and may be shown to be consistent es-
timators of the Hurst exponent of x(t) (Bardet and Kammoun, 2007;
Moulines et al., 2007). For DFA and WD, log-spaced scales n1,…,nr are
specified (window lengths) as input, and statistics, resp. F(ni) and
w(ni) are computed at these scales. For DFA, F(ni) is computed by first
integrating the time-series to get y(t) = ∑i = 1

t x(i), then detrending
y(t) in time-windows of length ni, to get yni

tð Þ; F(ni) is obtained by com-
puting the average standard deviation in these time-windows of yni

tð Þ.
For WD, w(ni) is computed by the pyramidal fast wavelet algorithm;
high and low pass filters are specified which together constitute a filter
bank decomposing x(t)= a(t)+ b(t), thus a(t) represents the low-pass
component and b(t) the high pass component. This filtering may be
applied recursively, substituting at each stage x(t) by a(t) from the pre-
vious stage subsampled at every second time point. Thus we obtain
time-series bni tð Þ where the ni is log-2 spaced values. w(ni) is given as
the standard deviation of the time-series bni tð Þ. Intuitively both w(ni)
and F(ni) may be thought of as the level of fluctuation when the time-
series is viewed at the scale given by ni. (See Section A.1 of the Supple-
mentary material for the formal definition of F(ni).)

One may then show that w(ni) and F(ni) scale as nH. Thus H is esti-
mated by considering the slope of the line of best fit of log(ni) against
log(F(ni)), resp. log(w(ni)).

We choose two separatemethods sinceDFA iswell established in the
neuroscience literature and achieves high resolution in the frequency
domain,while on theother hand,wavelet analysis is computationally ef-
ficient and thus proves useful in the optimization procedurewe describe
in the Spatial filtered Hurst exponent maximization (HeMax) section.

Theory

Mixing effects
When we speak of mixing effects on Hurst exponent estimation, we

refer to the difference between the estimated Hurst exponent of a
weighted sum as1(t) + bs2(t) and the distinct exponents of s1(t) and
s2(t), or more generally, to the estimated exponent of:

x tð Þ ¼
XN
j¼1

c js j tð Þ; ð2Þ

as opposed to the exponents of each of the sj(t).
In this frameworkwemay consider the effects of signal to noise ratio

and volume conduction on Hurst exponent estimation from the EEG.
This is because, for the EEG, signal and noise are superimposed linearly
(Haufe et al., 2013; Nikulin et al., 2011), yielding data of the form s(t) +
n(t), where s(t) corresponds to the signal and n(t), the noise. For exam-
ple, s(t) may correspond to a signal displaying a prominent spectral
peak in the alpha range, whereas n(t) a signal displaying a power spec-
trum of 1/f form. Moreover, and likewise volume, conduction may be
understood as the phenomenon, whereby the data at each electrode is
measured as a linear superposition of distinct sources of activity, both
signal and noise (Nunez et al., 1997; van den Broek et al., 1998). Thus
an electrode recording xi(t) consists of the sum of weighted activities
originating from N distinct sources sj(t):

xi tð Þ ¼
XN
j¼1

ai; js j tð Þ: ð3Þ
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Notice, however, that a number of the terms sj(t) may correspond to
noise (previously denoted n(t)). Thus volume conduction and SNR may
be considered simultaneously by modeling the electrode recordings as
superpositions of signal sources and noise sources. Thus from now on
we consider volume conduction and noise in the same framework, viz.
as per Eq. (3).

Assumptions
Thus from this point onwards, we assume that the EEG data in sen-

sor space is generated by a mixture of a finite number of sources, both
signal and noise. Since these sources are assumed to originate from dis-
tinct neural processes, we assume that their dependence is weak. Thus
for our simulations and theory we consider independent sources.

Since the sources sj(t) generating the EEG signal originate from dis-
tinct physiological sources, they are each subject to distinct Hurst expo-
nents Hj.

The effect of mixing on estimation of the Hurst exponent of the raw data
The question then arises: what are the Hurst exponents of time-

series at the sensors, x1(t),…,xN(t) and what does estimation of the
Hurst exponents in sensor space (i.e. on the xi(t)) tell us aboutH1,…,HN?

Let us first consider the situation in which the raw signal is long-
range dependent. We show in Section A of the Supplementary material
that, if the Hurst exponents of independent time-series s1(t) and s2(t)
are H1 and H2, such that, H2 N H1 and so that:

cov s1 tð Þ; s1 t þ δð Þð Þ∼ α
δ2−2H1

ð4Þ

cov s2 tð Þ; s2 t þ δð Þð Þ∼ β
δ2−2H2

ð5Þ

then the Hurst exponent of the weighted sum as1(t) + bs2(t) is simply
max(H1,H2). However, in practice, if the difference H1 − H2 is not large
thenwe show that the expected value of theDFA-estimatedHurst expo-
nent, HDFA, of as1(t) + bs2(t), on finite data, satisfies an approximate re-
lation, as follows: let f Hð Þ :¼ 1−Hð Þ

2þ2Hð Þ Hþ1ð Þ Hþ2ð Þ, then,

E HDFAð Þ≈H1 þ
b2βf H2ð Þ

b2βf H2ð Þ þ a2α f H1ð Þ

 !
H2−H1ð Þ: ð6Þ

Thus since a2α2f(H1) + b2β2f(H2) N b2β2f(H2) we have that, on aver-
age, the DFA exponent of the sum lies strictly between H1 and H2. Since
for smallH2−H1, we have that f(H1)≈ f(H2) then, when theweightings
of the sumand the asymptotic correlations are equal, i.e. a= b andα=β,
the relation given by Eq. (6) implies that E HDFAð Þ≈ H1 þ H2ð Þ=2.

Mixing and estimation of the Hurst exponent of the amplitude of
narrow-band oscillations

A difficulty, however, with the interpretation of the Hurst exponents
of the rawdata, is that theymay be influenced by thefilteringproperties
of the media separating brain and electrode. Thus several papers have
argued that these Hurst exponents are of debatable functional sig-
nificance (Dehghani et al., 2010; Touboul and Destexhe, 2010). More-
over, their measurement is made more difficult by the presence of
artifactual activity in the low-frequencies of the raw time-series (polar-
ization potentials, ocular activity etc.). On the other hand, these argu-
ments (of the papers (Dehghani et al., 2010; Touboul and Destexhe,
2010)) which assert the spurious values of Hurst exponents on the
raw data do not apply to the amplitude time-series of band passed EEG
data. This is because for narrow band data the passive filtering proper-
ties of the brain tissue are approximately constant and are not likely
to explain scaling behavior of the amplitude envelopes. For this reason
and also, in addition, since narrowband oscillations such as alpha oscil-
lations and beta oscillations are well studied (Engel and Fries, 2010;
Palva and Palva, 2007) in particular with regard to their relevance for
brain functionality, we focus in the remainder of the paper on their
amplitude time-series, rather than on broad-band raw EEG data. The
results obtained for these two bands may easily be generalized to
other frequency ranges.

The theoretical analysis, however, when considering narrowband
signals possessing LRTC in their amplitude dynamics is, however, differ-
ent to the raw signal. In this case we model s(t) = r(t)cos(ωt + ϵt)
where ϵt is a random variable with small variance modeling phase
slips and r(t) is a slow broad-band time series variable modeling ampli-
tude fluctuations. In particular, we cannot prima facie apply the same
transforms to derive Eq. (6) to predict the influence of mixing on the
values of estimated Hurst exponents. This is because the Hilbert trans-
form and the following rectification of the analytic signal represent a
non-linear transform of the narrow-band time-series. Since the sum of
two narrowband signals at a single frequency is also narrowband at
that frequency (consider Fourier representation), then we are interest-
ed in the estimated Hurst exponent of q(t) where:

q tð Þ cos ωt þ ϵ3;t
� �

¼ r1 tð Þ cos ωt þ ϵ1;t
� �

þ r2 tð Þ cos ωt þ ϵ2;t
� �

: ð7Þ

Eq. (6) is derived by considering the Hurst exponent of broadband
raw signals. We are now interested in the relationship between the
Hurst exponents of the amplitudes q(t) and r1(t),r2(t). (Note that r1
and r2 can also be considered as signal and noise, respectively. Therefore
the same logic should be applied to the effects of volume conduction
and SNR.) Thus a straightforward application of Eq. (6) is not possible
since Eq. (6) gives the expected Hurst exponent estimate of y(t) =
as1(t) + bs2(t), for scalars a,b, but this relationship does not hold be-
tween q(t) and r1(t) and r2(t) when we sum the underlying oscillatory
signals as per Eq. (7). Thus, r1(t) is the Hilbert transform of s1(t),
whichwe denote,H(s1(t))= r1(t), and similarly for r2(t); however, a di-
rect application, in this scenario, of Eq. (6) would require that H(s1(t) +
s2(t)) = H(s1(t)) + H(s2(t)), which does not hold in general.

However, under the assumption that the amplitude time-series
are approximately Gaussian, we are able to apply theoretical arguments
(Section B.2 of the Supplementary material) relating the behavior of
scaling to mixing of oscillatory sources which imply that the estimated
Hurst exponent of the sum of two oscillatory sources lies between the
Hurst exponent of each source. Moreover, we check in the simulations
of the following section that Eq. (6) provides a useful prediction for
the measured exponent on the amplitude of the mixture of two signals
providedH1 andH2 are not significantly different. Notice, however, that
our simulations do not assume Gaussianity. However, we show that the
theoretical results which assume Gaussianity yield a useful prediction
for non-Gaussian amplitudes.

The theoretical argument, in summary, shows that the scaling expo-
nent of the amplitude of narrowband oscillations is related to the vari-
ance of the sample variance estimate of the oscillatory signal. Under
the assumption that the amplitude of the oscillations is LRTC Gaussian
processes, we may moreover show that the variance of the sample vari-
ance scales log-linearly in data points and proportionally to H. Since,
under the assumption of independence of sources, the variance of the
sample variance also distributes under addition of narrow-band sources,
we arrive in a situation analogous to Eq. (6), which leads to the fact that
the exponent of a sum of sources lies between the exponent of the indi-
vidual sources (technical details are provided in the Supplementaryma-
terial, Sections B1 and B2).

Simulations

In this sectionwe describe simulations involving narrowband signals
possessing LRTC amplitude dynamics. For the analysis of the simulated
data, we extract the amplitude of the signal via the Hilbert transform
and use DFA to estimate the Hurst exponents in each case. For all
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simulations the following parameters apply: T= 200, 000 (no. of time-
points), d=1 (DFA detrending degree), and 20 evenly log-space values
for n in the range 1000,…,50, 000.

Method of simulation of LRTC oscillatory sources

In order to generate LRTC oscillatory sources, we use the Kuramoto
model (Kuramoto, 2003); in this way we are able to generate oscilla-
tions whose amplitude time-series are LRTC in a principled fashion,
avoiding ad hoc constructions, whereby the phase and amplitude of
the signal are sampled separately1. Thuswe generate samples according
to the followingmodel, for i=1,…,N andwhere the ξi(t) is uncorrelated
Gaussian processes:

∂ϕi

∂t ¼ Dξi tð Þ þω0 þ
κ
N

X
j≠i

cos ϕi tð Þ−ϕ j tð Þ
� �

:

The parameter D controls the noise strength, κ controls the strength
of synchrony between the oscillators ϕi and ω0 denotes the basic oscil-
latory frequency of the ensemble. In order tomeasure the joint behavior
of all N oscillators one considers themean field of the ensemble, viz.:

M ¼ 1
N

XN
j¼1

exp iϕ j tð Þ
� �

:

Thus full synchrony in the ensemble is achieved when |M| = 1
whereas in the asynchronous regime |M|→ 0 asN→∞. For a fixed con-
nectivity strength κ, which regime the ensemble occupies is determined
by the noise strength D (see theMethod of simulation of LRTC oscillato-
ry sources section for a description of the model and the parameters).
Most importantly for our purposes, whenD is chosen so that the ensem-
ble approaches the phase transition between synchrony and asynchro-
ny, then the measured Hurst exponents of |M| imply LRTC, and,
moreover, the real part of M is approximately narrow band due to the
fact that each individual oscillator shares the same carrier frequency,
and the fact that the noise strength is insufficient in proportion to the
connectivity to force significant contributions at frequencies differing
from ω0 to remain negligible. Note that this approach to generating os-
cillatory sources with fluctuations in their amplitude dynamics was re-
cently applied by Deco et al. (Cabral et al., 2013).

Addition of pairs of amplitude-LRTC sources
In the current section, we simulate pairs of amplitude-LRTC oscilla-

tory sources subject to varying Hurst exponents, which we control via
the noise parameter D; the remaining parameters are taken as follows:
κ = 0.1, N = 80, ω = 40, and dt = 0.01. In particular we take pairs of
oscillatory sources s1(t) and s2(t) (modeling equally two oscillatory
sources volume-conducted to the sensors or a signal and noise superpo-
sition) over a grid of valuesD1 andD2 implying that wemeasureH1 and
H2 in the range 0.5,…,1. We measure the Hurst exponent using DFA for
s1(t), s2(t) and s1(t) + s2(t).

The effect of SNR
In the current section we simulate an amplitude-LRTC oscillatory

signal as before, superimposed by a noise signal at SNRs ranging be-
tween 27 and 2−7. For the LRTC source, we setD=7.8. The noise source
is generated by filtering Gaussian white noise in the alpha range, yield-
ing a Hurst exponent for the amplitude dynamics of H= 0.5. The Hurst
exponents are measured as in the previous simulation (the Addition of
pairs of amplitude-LRTC sources section).
1 Such an adhoc procedure leads to spurioushigh frequency artifacts due to the fact that
the phase and amplitude do not arise from a single generative process.
Simulation of mixing of cortical LRTC sources using an EEG forward model
In this simulation we use an EEG forward model calculated on the

basis of the MRI scans of 152 human participants (Fonov et al., 2011)
and implementing a forward mapping from simulated dipoles to volt-
ages at the electrodes computed using the semi-analytic methods of
Nolte and Dassios (2005). The electrode placement is chosen as analo-
gous to the placement in the EEG data we study later in the paper. We
simulated 10 alpha sources with LRTC amplitude dynamics over a
range of Hurst exponents between 0.5 and 1. These were placed ran-
domly in the cortex with 76 noise sources whose amplitude dynamics
displayed no LRTC (H = 0.5), placed randomly throughout the model-
brain. Thus as many sources as electrodes (80) were generated. We
set the signal to noise ratio to 0.4, where the SNR was measured as
the ratio of average variance per source in the alpha range of the LRTC
sources to the average cumulative variance in same range over all
non-LRTC sources, measured on average in sensor space. The Hurst ex-
ponents weremeasured with DFA in sensor and source space. This sim-
ulationwas repeated 100 times and themean, kurtosis and skewness of
the empirical distribution obtained by pooling all exponents were mea-
sured in source/component and sensor space.

Notice thatwe include a further iteration of this simulation, checking
for the effects of electrode density in Section C of the Supplementary
material.

Source representations

In this section we discuss techniques for computation of a plausible
source representation inwhich the Hurst exponents of the amplitude of
neuronal oscillations may be calculated. The most appropriate method
should allow us to more reliably calculate the value of the largest and
smallest Hurst exponents present in the multivariate data.

Spatial filtering
The most straightforward source representations we apply are ob-

tained via Laplacian and bipolar spatial filtering (Srinivasan et al.,
1996); in this representation spatial smearing or volume conduction ef-
fects between recordings at sensors are reduced by moving to sources
which are obtained by subtracting from each electrode a weighted
sum of neighboring electrodes, which computes a high-pass spatial
filtering (Graimann and Pfurtscheller, 2006). We apply this spatial fil-
tering in 3 variants; in the first variant a sum of surrounding channels
are subtracted (Laplacian), in the remaining variants, we calculate
resp. transverse and longitudinal bipolar derivations. The advantages
of this approach are its simplicity and low computational complexity.
Disadvantages include the fact that the number of sources obtained is
less than the number of channels recorded and that no consideration
is taken of the subject specific information present in the data.

TDSEP
The most broadly used source separation technique in EEG data

analysis is independent components analysis (ICA), of which numerous
variants exist (Hyvärinen and Oja, 2000). We apply TDSEP (Ziehe and
Müller, 1998; Ziehe et al., 2004), a variant of ICA which uses time-
lagged autocorrelations, since the neural sources often exhibit limited
non-Gaussianity, upon which alternative ICA methodologies, based on
higher order-statistics, are based. The advantage of this method is that
only the time-lags need be specified as parameters and that themethod
is robust to Gaussianity of the underlying sources. The disadvantages of
themethod include sensitivity to, in particular, motion artifacts, as is the
case formost ICA algorithms; in fact, TDSEP is often used exactly to iden-
tify these artifacts. In the present study only weak movement artifacts
are present due to the fact that we study EEG in the resting state. Thus
the power of TDSEP to identify oscillatory sources may be limited for
datasets contaminated by stronger artifactual components. Another im-
portant limiting factor is the spectral similarity of many oscillatory
sources. Given that TDSEP favors components with different spectra,
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similar frequency content of neuronal signals may lead to components
combining the activities of different sources.

Spatial–spectral decomposition (SSD)
We consider a source separation procedure, spatio-spectral decom-

position (SSD) (Nikulin et al., 2011), which explicitly calculates a source
representationwhich optimizes for oscillatory sources. In particular SSD
computes a basis of sources which are ordered in such a way that the
signal to noise ratio in a frequency band of interest is maximized; the
SNR is measured by considering the ratio of power in the frequency
band of interest to the power in the flanking frequencies. The advan-
tages of this method include its low computational efficiency (solvable
as a generalized eigenvalue problem) and the fact that the method
can be configured to optimize for signal to noise ratio in the frequency
band in which LRTC is measured. On the other hand, there is no guaran-
tee that SSD results in sources maximizing independence between the
respective sources.

Spatial filtered Hurst exponent maximization (HeMax)
Finally, in order to gain insight into the correct source representation

we present a novel algorithm which we term spatial filtered Hurst ex-
ponent maximization or HeMax. The algorithm explicitly optimizes a
spatial filter w so that the estimated Hurst exponent of the amplitude
dynamics in the alpha range of the spatially filtered data w⊤x(t) is
maximized.

In summary, we define a loss functionL(w,x(t)) whose output is the
estimated Hurst exponent under the spatial filterw, using a wavelet es-
timator with a Dauchechies mother wavelet of order 6. We then com-
pute the derivative of this objective function and optimize by gradient
descent.

Our motivation in deriving and presenting this method is that there
is no a priori reason for believing that the source separation algorithms
TDSEP and SSD are suitable for obtaining optimal source approxima-
tions with respect to obtaining Hurst exponent values corresponding
to the values of the underlying neural processes. We may use HeMax
to test whether these methods are suitable for this purpose, since we
know from our theory that a time series obtained by spatial filtering
with maximal Hurst exponent cannot be a mixture of multiple sources.

The details of themethod are given in Section B.4 of the Supplemen-
tary material, and the algorithmic flow is summarized in Algorithm 1.
H1

H
2

Hurst exponent of mixture
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Algorithm 1. HeMax (Supplementary material B.3)
Analysis of real EEG data

In this sectionwe compare Hurst exponents calculated in source and
sensor space from real EEG data. Seven subjects participated in the
study (1 female). The experimental protocol was approved by the Insti-
tutional Review Board of the Charité, Berlin. EEG recordings were ob-
tained at rest with subjects seated comfortably in a chair with their
eyes open. Recordings were made during three sessions of 5 min each,
with each data set thus comprising altogether roughly 15 min of data.
EEG data were recorded with 96 Ag/AgCl electrodes, using BrainAmp
amplifiers and BrainVision Recorder software (Brain Products GmbH,
Munich, Germany). The signals were recorded in the 0.016–250 Hz fre-
quency range at a 1000 Hz sampling frequency.

The data analytic steps taken were as follows:
Outlier channels were rejected after visual inspection for frequent

shifts in voltage and poor signal quality. The data was then re-
referenced according to the common average and filtered forwards
and backwards using a fourth order Butterworth filter in the alpha
range (8 to 12 Hz).

Following these preprocessing steps, the amplitude envelopes of
the oscillatory signal were computed in sensor space using the
Hilbert transform and the Hurst exponents were computed as per the
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Addition of pairs of amplitude-LRTC sources section but applying
detrending of polynomial degree, d = 5 (we used a more conservative
detrending for the experimental data, to ensure that results do not de-
pend on artifactual influence).

Subsequently 3 varieties of spatialfilter (Laplacian and2 bipolar)were
computed (see the Spatial filtering section) and applied these to the
preprocessed sensor space data, and on the amplitude of this Laplacianfil-
tered data Hurst exponents were computed as before using DFA.

After these steps the dimensionality of the (originally preprocessed)
data was reduced by 1 using PCA spca(t)=Wpcax(t) in order to compen-
sate for the rank reducing effects of common average referencing.
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Fig. 3. Thefigure displays results of computing Hurst exponents on narrowbandoscillationswhe
the left, the individual exponents on resp. sensors, sources are displayed (each blue line denot
displayed in red. On the right the exponents are displayed over 100 realizations of the data se
sensor space (upper panel) are biased towards the mean of exponents (lower panel), in the se
than in source space; moreover, the mean in sensor space overestimates the mean in source
space. The kurtosis and skewness in source space are significantly larger (on average resp. 18
right panels we present blown up visualization of the tails in the bottom row. See the Simulati
Then sources were computed with TDSEP (stdsep(t) = Wtdsepspca(t))
and SSD (sssd(t) = Wssdspca(t)); sources with artifactual topographies
or power spectra were rejected and the Hurst exponents of the ampli-
tude of the computed components were estimated using DFA.

Finally, the 10 SSD sources displaying the largest signal to noise
ratio in the alpha range were selected and a further linear spatial filter
was computed using HeMax maximizing the wavelet-estimated Hurst
exponent in the alpha range (Daubechy wavelet order = 6) as de-
scribed in the Simulations section (smax(t) = wmaxsssd(t). The Hurst ex-
ponent was estimated on the calculated source using DFA as before.

Results

Simulations and theory

Addition of pairs of amplitude-LRTC sources
The results of the simulation described in the Addition of pairs of

amplitude-LRTC sources section are displayed in Fig. 1. The left panel
displays all Hurst exponents measured, and the right hand panel
demonstrates that for H1, H2 not significantly different, we observe
agreement between the prediction made by Eq. (6) and the empirical
results. For the range of D (noise strength) considered, we find H1 and
H2 to lie between approx. 0.6 and 1. Further simulations (not presented
here) suggest that similar behavior extends to the range 0.5 to 1.
We may conclude that for H1 and H2 between 0.5 and 1, the DFA-
measured Hurst exponent of s1(t) + s2(t) lies strictly between H1 and
H2. By transitivity this will imply that for an arbitrary sum of sources,
themeasured Hurst exponent of the sources will lie between the largest
and smallest exponent of the sources participating in the sum. This con-
clusion holds for the summation of two signals and for a summation of
signal and noise.

The effects of SNR
The results of the simulation described in the Effect of SNR section

are displayed in Fig. 2. The figure shows that with decreasing SNR, the
estimated Hurst exponent of the signal is biased towards the exponent
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es one exponent) for one realization of the data setup. The mean in each representation is
tup as a histogram for resp. sensor and source space. The estimates of Hurst exponents in
nse that the largest exponents and smallest exponents in sensor are closer to their mean
space and the range over exponents in sensor space is drastically lower than in source
7% and 317% larger) than in sensor space. To confirm the behavior in the tails of the top
on of mixing of cortical LRTC sources using an EEG forward model section for details.
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of the noise (in this case≈0.5). Notice however, that noise sources need
not be uncorrelated, such that H = 0.5. We show in Section D.2 of the
Supplementarymaterial that non-oscillatory frequency bands of resting
state EEG data (i.e. noise sources) may also exhibit LRTC dynamics. In
such cases, further simulations show that the qualitative effect of SNR
is identical, i.e. the exponents of the signal are nevertheless biased to-
wards the exponents of the noise sources.

Simulation of mixing of cortical LRTC sources using an EEG forward model
The results of the forward model simulation described in the

Simulation of mixing of cortical LRTC sources using an EEG forward
model section are displayed in Fig. 3 and show that the largest exponent
in sensor space is smaller than the largest in source space, and likewise
the smallest in source space is smaller than the smallest in sensor space;
we observe a diminished range in exponents in source space, with ap-
parent LRTC visible in all sensors. Moreover, the kurtosis and skewness
over all exponents are resp. 187% and 317% greater in source space than
sensor space and themean in sensor space is 6% larger than themean in
source space.

Notice that in Section C of the Supplementary material, we find that
increasing the number of electrodes beyond approximately 50 elec-
trodes has little effect on the results. Thus increasing electrode density
in sensor space does not serve to diminish the problems posed by SNR
and volume conduction.

Implications/predictions of the simulations and theory
The simulations and theory show that:

1. The addition of 2 independent sources with identical Hurst expo-
nents yields a source whose measured exponent lies between the
larger and the smaller of the exponents of the individual components
(the Addition of pairs of amplitude-LRTC sources section).

2. If LRTC narrowband sources are mixed with random noise by means
of an EEG forward model, then the exponents measured in sensor
space are biased towards values which do not reflect the distribution
of exponents in the true sources; the largest exponent measured in
sensor space is smaller than the largest in source space; the smallest
exponent measured in sensor space is larger than the smallest mea-
sured on the true sources.

Thus, as a result of our theoretical considerations and simulations,
we find the following to be true:

If the maximum and minimum Hurst exponents in source space are
Hmax
s N Hmin

s and in sensor space: Hmax
x N Hmin

x , then:

Hs
min≤Hx

minbH
x
max≤Hs

max:

EEG data

In Fig. 4 we display the results of calculating the exponents for
all subjects in sensor space and each of the source representations
discussed in the Source representations section and in Fig. 5 we present
the exponents by subject. The results of Fig. 4 show that all source rep-
resentations generate a wider diversity than the sensor space represen-
tation in their distribution over measured exponents when all subjects
are considered— the variance over exponents is in each case significant-
ly greater than in source space (two-sided f-test) and themean andme-
dian over exponents in sensor space significantly overestimate the
corresponding statistics in source space (two sided t-test; Wilcoxon
sign-rank). Moreover, themean over subjects of the difference between
the largest exponent in the TDSEP representation and the largest in
sensor space is significantly greater than zero (two-sided t-test). The re-
sults of Fig. 5 show that the minimum exponent in source space for all
representations is smaller than the minimum in sensor space for all
subjects and the mean of the minimum is significantly smaller (two-
sided t-test). Finally one observes that the higher order statistics
(when considering the distribution of exponents) of the source repre-
sentations imply more pronounced non-Gaussianity than those of the
sensor space representations: in all cases, with the exception of the
skewness of the small Laplacian derivation and the kurtosis of the verti-
cal Laplacian derivation, we find that the skewness and kurtosis of the
exponents in each of the source representation are significantly greater
than the corresponding statistics in sensor space (1000 bootstrap itera-
tions). This is in complete agreement with the findings of the EEG
forward model simulation (the Simulation of mixing of cortical LRTC
sources using an EEG forwardmodel section). All p-values are displayed
in Table 1.

In Fig. 6 we present scalp maps resulting from the optimization pro-
cedure outlined in the Spatial filtered Hurst exponent maximization
(HeMax) section above. In each case we display the pattern obtained
by optimization and the most similar SSD and TDSEP patterns. The re-
sults show a high degree of similarity between the SSD and TDSEP pat-
terns and the maximized exponent pattern. Note that in general the
topographies correspond to the typical maps of alpha oscillations
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Fig. 5. The figure displays the individual Hurst exponents obtained in resp. sensor space and SSD, TDSEP and Laplacian (3 derivations). For each subject themagnitude of the Hurst expo-
nent on each sensor or source, resp. is displayed by a blue line. Each subplot for each subject corresponds, resp. to either a sensor space, or an approximation to source space (SSD, TDSEP
etc.). Themean overmeasurements is displayed in red and, for comparison, theDFAmeasured exponent of the source obtained byoptimization of thewavelet-estimatedHurst exponent is
displayed in green. The results show that both SSD and TDSEP are competitive with the maximization procedure, and in most cases find a representation whose measured largest Hurst
exponent exceeds the corresponding value in sensor space. Moreover, in each case SSD and TDSEP finds a source whose Hurst exponent is smaller than anymeasured in sensor space and
in all cases, the range of the SSD and TDSEP Hurst spectrum exceeds the range in sensor space.
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generated in occipito-parietal and central areas (mu rhythm). This con-
firms that SSD and TDSEP are suitable in the context of resting state EEG
for elucidating the range of Hurst exponents characterizing source
space.
Discussion and conclusion

In this paper we presented theory and simulations which show that
mixing effects may lead to significant differences in estimated Hurst ex-
ponent values in source and sensor space. The obtained predictions
were confirmed in simulations and analyses of real resting state EEG
data.
Previous results on the existence of LRTC are not spurious

Thefirst encouraging result of our simulations, theory and data anal-
ysis is that the LRTC observed in sensor space is not an artifact of volume
conduction or confounding noise; if we observe LRTC in sensor space,
then sources must be present which display LRTC. This is because the
Hurst exponents of a mixture lie between the exponents of the sources
forming the mixture. More precisely: it is not possible by mixing sources
withwhite-noise exponents (H=0.5) to obtain a signal with exponent ex-
ceeding 0.5 regardless of the weighting factors. Moreover the fact that in-
creasing the SNR in the alpha range via the application of SSD confirms
that the LRTC property resides primarily in the signal and not the linear-
ly superimposed noise.



Table 1
p-Values for differences in distribution in the respective source representations vs. sensor space.

Variance Median Mean Max. mean Min. mean Skew. Kurt.

SSD 0.0464 ≪0.0001 ≪0.0001 0.0592 0.000544 ≪0.0001 ≪0.0001
TDSEP ≪0.0001 ≪0.0001 ≪0.0001 0.0164 0.000926 ≪0.0001 0.0002
Laplacian small 0.0042 ≪0.0001 ≪0.0001 0.78 0.0376 0.065 0.0032
Laplacian horizontal 0.0062 ≪0.0001 ≪0.0001 0.570 0.0136 0.0004 0.007
Laplacian vertical ≪0.0001 ≪0.0001 ≪0.0001 0.402 0.0128 0.016 0.232
H optimization – – – 0.0428 – – –

In each case we perform a two-sided, two-sample test for equality of distribution using the statistics displayed in the first row. See the EEG data section for details.
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Thus the existence of LRTC in the amplitude dynamics of neuronal
oscillations, asserted by numerous previous contributions (Linkenkaer-
Hansen et al., 2001; Nikulin and Brismar, 2004; Nikulin and Brismar,
2005; Palva et al., 2013; Smit et al., 2011), does not require revision.

Previous quantitative assessments of the Hurst exponent on EEG data
require revision

The quantitative differences observed in sensor and source space are
pronounced; thus results derived in EEG (MEG) sensor space deserve
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Fig. 6. The figure displays the spatial patterns obtained by maximization of the wavelet-estimat
results show a high degree of similarity between the optimized pattern and each of the TDSEP a
hand panels display resp. themost similar TDSEP and SSD patterns. The results confirm that both
exhibiting the largest Hurst exponents, since the pattern obtained by optimizing the magnitud
longing to the TDSEP or SSD representations.
further attention in the light of this observation, given that an interpreta-
tion in sensor space of Hurst exponent valuesmay lead to erroneous con-
clusions. Thus although we may safely conclude that LRTC is present on
the basis of existing results, the exact configuration of this LRTC in source
space requires further investigation.

The dangers of ignoring the effects of volume conduction have al-
ready been acknowledged in the connectivity literature. We hope to
avert similar misinterpretations in the emerging domain of long-range
dependence analysis by bringing the effects of volume conduction on
Hurst exponent estimation to the EEG/MEG community's attention.
Max. Hurst Alpha Envelope Most similar ssd component Most similar tdsep component

Max. Hurst Alpha Envelope Most similar ssd component Most similar tdsep component

Max. Hurst Alpha Envelope Most similar ssd component Most similar tdsep component

ed Hurst exponent under a spatial filter and themost similar TDSEP and SSD patterns. The
nd SSD patterns. Thus each panel denotes the results obtained on one subject and the right
TDSEP and SSD yield close to optimal representations for the study of the source activities

e of the estimated Hurst exponent under the corresponding filter is similar to patterns be-
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No evidence for universality of Hurst exponent values across the scalp

Our analysis shows that anunwarranted conclusion,which is tempt-
ing when only looking at sensor space, is to interpret the narrow range
of exponent values in sensor space as evidence for universal dynam-
ical system properties, as has been argued on the basis of neuronal
avalanche exponents (Poil et al., 2012). However, consideration of
source space exponent values lends less support to this thesis: in source
space we observe a wide range of exponent values, with exponent
values close to the exception rather than the norm. Thus the wide
range of Hurst exponents observed in source space allows for the possi-
bility that only a subset of distributed neuronal networks exist in a re-
gime which generates LRTC amplitudes in oscillations. However, notice
that this remains only a possibility; an alternative explanation for the
wide range of exponents in source space is that we observe amplitude
time-series in source space at varying SNRs. Thus oscillationsmay be in
fact subject to Hurst exponents close toH≈ 1, butwemeasure these os-
cillations confounded by noisy non-LRTC components in source space.
Support for this scenario in the alpha range is provided by the observa-
tion that the highest values of H observed correspond to oscillations
with the highest SNRs (visual alpha and mu). Moreover, in our simula-
tions we showed that decreasing SNR shifts the scaling exponents to-
wards the exponents of the noise (H = 0.5).

The use of Hurst exponents as experimental observables requires revision

A further contextwhichmust be reconsideredwith respect to source
representations vs. sensor space is in the use of Hurst exponent values
as experimental observables. For instance, numerous studies of patho-
logical EEG have used Hurst exponents as a basis for distinguishing be-
tween neurological or psychiatric patients (P) and healthy controls (C)
(Linkenkaer-Hansen et al., 2005;Montez et al., 2009;Monto et al., 2007;
Nikulin et al., 2012). In such a scenario, focusing on source space should
yield greater statistical power, since if a certain small subset of sources
present in the EEG of subjects in P possess lower Hurst exponents
than in C, then this difference may only be clearly visible in source
space. In sensor space due to the measurement of superpositions of
sources, caused by volume conduction, small exponents may not be ob-
servable at all. Moreover, even if the difference in P and C is visible in
sensor space, if this discrepancy is due to certain specific sources, then
the use of decomposition techniques should yield more detailed physi-
ological hypotheses, differentiating for instance between contributions
from sensory and higher order brain areas in psychiatric disorders,
such as schizophrenia. In another scenario, it might be the case that all
sources of subjects in C possess slightly larger exponent values than
most sources of subjects in P, but a few selected sources of subjects in
P possess very high exponent values, with the result that no difference
between P and C is visible in sensor space, although highly significant
differences exist at source level (due volume conduction effects). Such
potential misinterpretations must be respected and avoided. Over and
above comparing groups of subjects (such as patients and healthy con-
trols), similar logicmay also be applied for comparing scaling exponents
between experimental conditions, for instance comparing neuronal dy-
namics at rest and during a task. All the abovementioned peculiarities in
the expression of exponents in sensor space, as opposed to sources
space, are readily applicable to this comparison. (To check the relevance
of our study in these contexts we present analysis of the data from one
stroke patient in Section C of the Supplementarymaterial, wherewe see
that the same predictions from our theory and simulations apply.)

SSD, TDSEP and HeMax may be used to study Hurst exponent values from
resting state EEG

We presented above, a new method for optimizing spatial filters
from empirical EEG data, viz. HeMax. The algorithm proved useful, for
the resting state EEG analysis, by demonstrating that SSD and TDSEP
succeed in obtaining source activities which correspond to activities
with maximal Hurst exponent. Further work is required to show that
SSD and TDSEP are suitable for a range of paradigms. In such cases, a
comparison using HeMax is necessary.

Conclusion

In conclusion, as well as providing a mathematical and critical as-
sessment of volume conduction and SNR effects on the expression of
scaling exponents in EEG/MEG sensor space, we also advocate the use
of spatial decomposition techniques for a more reliable quantification
of LRTC in the amplitude dynamics of neuronal oscillations. Future stud-
ies will focus on analyzing task based paradigms as well as clinical data
sets using a source based Hurst exponent analysis.
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