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Two novel approaches to triclustering of three-way binary data are proposed. Tricluster is
defined as a dense subset of a ternary relation Y defined on sets of objects, attributes, and
conditions, or, equivalently, as a dense submatrix of the adjacency matrix of the ternary
relation Y. This definition is a scalable relaxation of the notion of triconcept in Triadic Concept
Analysis, whereas each triconcept of the initial data-set is contained in a certain tricluster.
This approach generalizes the one previously introduced for concept-based biclustering. We
also propose a hierarchical spectral triclustering algorithm for mining dense submatrices of the
adjacency matrix of the initial ternary relation Y. Finally, we describe some applications of the
proposed techniques, compare proposed approaches and study their performance in a series of
experiments with real data-sets.

Keywords: formal concept analysis; data mining; triclustering; three-way data; folksonomy;
spectral triclustering

1. Introduction

Extraction of relevant patterns from two-dimensional (object-attribute) data is one of the most
thoroughly studied topics in data mining. Direct clustering was first proposed in Hartigan (1972)
and was later extended to biclustering by Mirkin (1996). A bicluster emerges when there is
a strong association between a subset of the objects and a subset of the attributes in a data
table. A particular kind of bicluster is a formal concept in Formal Concept Analysis (FCA)
(Ganter and Wille 1999). A formal concept is a pair of the form (extent, intent), where extent
consists of all objects sharing all attributes from the intent and intent consists of all attributes shared
by objects from the extent. Formal concepts have the desirable property of being homogeneous
and closed in algebraic sense.Agrawal, Imielinski, and Swami (1993) introduced frequent itemset
mining of two-dimensional data; many efficient algorithms for computing (closed) itemsests
are known, among them CHARM (Zaki and Hsiao 2002), CLOSET (Pei, Han, and Mao 2000),
Close (Pasquier et al. 1999). In FCA terms, itemset is a subset of attributes and a closed itemset
is intent, a closed subset of attributes. Approximate biclustering was addressed in many set-
tings of soft computation, e.g. in fuzzy-set setting (Belohlávek 2011, 2001), rough-set setting
(Ganter and Kuznetsov 2008), and interval setting (Kaytoue et al. 2011, 2013); one can find more
examples of biclustering techniques in biological setting in the survey (Madeira and Oliveira
2004).

*Corresponding author. Email: dignatov@hse.ru

© 2013 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

H
ig

he
r 

Sc
ho

ol
 o

f 
E

co
no

m
ic

s]
 a

t 0
4:

49
 1

1 
Ju

ne
 2

01
3 



2 D.I. Ignatov et al.

Recently, the focus of research shifted from two-dimensional to three-dimensional and
n-dimensional data mining. Partially, this evolution is driven by the increase in popularity of
social resource sharing systems (e.g. Flickr and Del.icio.us) where users can assign tags to
resources. These systems rely on so-called folksonomies (Vander Wal 2007), which are three-
way data structures describing interrelations between users, resources, and tags that can be
attributed by users to resources. To deal with three-way data within FCA, an extension to
Triadic ConceptAnalysis (TCA) was proposed by Lehmann and Wille (1995) and Wille (1995). In
Jäschke et al. (2006) the authors introduced TRIAS algorithm for mining all frequent triconcepts
from three-dimensional data and applied it to the popular Bibsonomy (users-tags-papers) data-set
in Jäschke et al. (2007). Voutsadakis (2002) extended triadic concept analysis to n-dimensional
contexts. Kaytoue et al. (2011) apply the methods of interval pattern structures to the analysis of
gene expression data. Kaytoue et al. (2013) analyze these data by representing maximal biclusters
of similar values by triconcepts using interordinal scaling. This approach is further extended to
n-dimensional data.

Usual difficulties in mining binary data are the lack of fault tolerance, the huge number
of patterns leading to large computational complexity, and artifacts in the form of numerous
small patterns. In triadic or n-ary contexts, these problems are seriously aggravated. To cope
with these issues, several techniques have been introduced for faster selection of interesting
patterns. First, these are relaxations of the formal concept for the dyadic case, including rele-
vant and dense bisets (Besson, Robardet, and Boulicaut 2006), concept factorization techniques
(Belohlavek and Vychodil 2009), tensor factorization (Miettinen 2011), dense biclusters
(Ignatov et al. 2010; Ignatov, Kuznetsov, and Poelmans 2012), and box clustering (Mirkin 2005;
Mirkin and Kramarenko 2011). For the triadic case, there is an extended box clustering approach
(Mirkin and Kramarenko 2011), triadic concept factorization (Belohlavek and Vychodil 2010).
Another approach, called constrain-based mining, also scales up to n-ary relations and is discussed
in Cerf et al. (2008, 2009). In this method, the user specifies constraints on the extracted patterns.
The Data-Peeler algorithm in Cerf et al. (2008) is able to extract closed patterns in n-ary relations
under constraints for n ≥ 3 and was shown to have better efficiency than that of TRIAS and
CubeMiner for 3-ary relations.

There are also pruning techniques based on concept indices. One of the first approaches are
based on indices such as sizes of extents (closed sets of objects) and intents (closed sets of
attributes, or closed itemsets) (Kuznetsov 1989, 1996) (subsets of concepts satisfying constraints
on this kind of indices are also known as iceberg lattices (Stumme et al. 2002)), which, in FCA
terms, cut order filters (ideals) of the concept lattice. The index called concept stability (Kuznetsov
1990, 2007) also helps to prune concepts in various applications, some recently proposed efficient
indices are independence and concept probability (Klimushkin, Obiedkov, and Roth 2010).

In this paper, we propose a novel triclustering algorithm that extracts dense approximate
triclusters from Boolean three-way data. This algorithm has a better theoretical time complexity
than existing exact algorithms like TRIAS and is, therefore, better suited for very large data-
sets. Moreover, during experimentations with the Bibsonomy data-set, we found that the number
of triclusters generated by our algorithm is significantly lower than the number of triconcepts
extracted by TRIAS. Manual validation of the extracted tricommunities revealed that a majority
of them were meaningful. In this paper, we also adapt spectral clustering, one of the fastest
algorithms for graph partitioning (Drineas et al. 1999; Shi and Malik 2000; Ding et al. 2001;
Ng, Jordan, and Weiss 2001; Dhillon 2001; Verma and Meila 2003; Kannan, Vempala, and Veta
2004), to the triclustering setting.

The remainder of the paper is organized as follows. In Section 2, we describe some key
notions of triadic concept analysis. In Section 3 we define the operators for generating triclusters,
introduce some other necessary definitions, and describe our triclustering algorithm TRICL. In
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Section 4, we describe our algorithm SpecTric, an adaptation of the spectral clustering approach
to the triadic case. In Section 5, we first discuss experiments with SpecTric and TRICL on a small
piece of Bibsonomy data, and then pass to our main big-scale experiments.

In Section 6, we present the results of experiments with the Bibsonomy data and briefly
describe the problem setting of the Amsterdam–Amstelland police data. Section 7, concludes our
paper and describes some interesting directions for future research.

2. Main definitions

First, we recall some basic notions of FCA (Ganter and Wille 1999). Let G and M be sets called
the set of objects and attributes, respectively, and let I be a relation I ⊆ G×M : for g ∈ G, m ∈ M ,
gI m holds iff the object g has the attribute m. The triple K = (G, M, I ), is called a (formal)
context. If A ⊆ G, B ⊆ M are arbitrary subsets, then the Galois connection is given by the
following derivation operators:

A′ = {m ∈ M | gI m for all g ∈ A},
B ′ = {g ∈ G | gI m for all m ∈ B}. (1)

If we have several contexts, the derivation operators of a context (G, M, I ) is denoted by (.)I .
The pair (A, B), where A ⊆ G, B ⊆ M , A′ = B, and B ′ = A is called a (formal) concept

(of the context K ) with extent A and intent B (in this case, we have also A′′ = A and B ′′ = B).
For B, D ⊆ M the implication B → D holds if B ′ ⊆ D′ .

The concepts, ordered by (A1, B1) ≥ (A2, B2) ⇐⇒ A1 ⊇ A2 form a complete lattice,
called the concept lattice B(G, M, I ).

A triadic context K = (G, M, B, Y ) consists of sets G (objects), M (attributes), and B
(conditions), and ternary relation Y ⊆ G × M × B. An incidence (g, m, b) ∈ Y shows that the
object g has the attribute m under condition b.

For convenience, a triadic context is denoted by (X1, X2, X3, Y ). A triadic context K =
(X1, X2, X3, Y ) gives rise to the following diadic contexts

K
(1) = (X1, X2 × X3, Y (1)),

K
(2) = (X2, X1 × X3, Y (2)),

K
(3) = (X3, X1 × X2, Y (3)),

(2)

where gY (1)(m, b) :⇔ mY (1)(g, b) :⇔ bY (1)(g, m) :⇔ (g, m, b) ∈ Y . The derivation operators
(primes or concept-forming operators) induced by K

(i) are denoted by (.)(i). For each induced
dyadic context, we have two kinds of derivation operators. That is, for {i, j, k} = {1, 2, 3} with
j < k and for Z ⊆ Xi and W ⊆ X j × Xk , the (i)-derivation operators are defined by:

Z �→ Z (i) = {(x j , xk) ∈ X j × Xk | xi , x j , xk are related by Y for all xi ∈ Z},
W �→ W (i) = {xi ∈ Xi | xi , x j , xk are related by Y for all (x j , xk) ∈ W }. (3)

Formally, a triadic concept (or triconcept) of a triadic context K = (X1, X2, X3, Y ) is a triple
(A1, A2, A3) of A1 ⊆ X1, A2 ⊆ X2, A3 ⊆ X3, such that for every {i, j, k} = {1, 2, 3} with j < k
we have (A j × Ak)

(i) = Ai . For a certain triadic concept (A1, A2, A3), the components A1, A2,
and A3 are called the extent, the intent, and the modus of (A1, A2, A3). It is important to note that
for interpretation of K = (X1, X2, X3, Y ) as a three-dimensional cross table, according to our
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4 D.I. Ignatov et al.

definition, under suitable permutations of rows, columns, and layers of the cross table, the triadic
concept (A1, A2, A3) is considered as a maximal cuboid (parallelepiped) full of crosses. The set
of all triadic concepts of K = (X1, X2, X3, Y ) is called the concept trilattice and is denoted by
T(X1, X2, X3, Y ).

3. Mining all dense triclusters

3.1. Prime, double prime, and box operators of 1-sets

To simplify notation, we denote by (.)′ all prime operators, as it is usually done in FCA. For our
purposes, consider a triadic context K = (G, M, B, Y ) and introduce primes, double primes and
box operators for particular elements of G, M , B, respectively (see Table 1). In what follows, we
write g′ instead of {g}′ for 1-set g ∈ G and similarly for m ∈ M and b ∈ B: m′ and b′.

In what follows, we do not use double primes, because of their rigid structure; they do not
tolerate exceptions like missing pairs. To allow for missing pairs, we introduce the following box
operators:

g� = { gi | (gi , bi ) ∈ m′ or (gi , mi ) ∈ b′ for all (gi , mi , bi ) ∈ Y }
m� = { mi | (mi , bi ) ∈ g′ or (gi , mi ) ∈ b′ for all (gi , mi , bi ) ∈ Y }
b� = { bi | (gi , bi ) ∈ m′ or (mi , bi ) ∈ g′ for all (gi , mi , bi ) ∈ Y }.

(4)

3.2. Dense triclusters

Let K = (G, M, B, Y ) be a triadic context. For a certain triple (g, m, b) ∈ Y , the triple
T = (g�, m�, b�) is called a tricluster.As in case of triconcepts, we still call the three components
of a tricluster by extent, intent, and modus, respectively.

Table 1. Prime and double prime operators of 1-sets.

Prime operators of Their double prime
1-sets counterparts

g′ = { (m, b) |(g, m, b) ∈ Y } g′′ = { g̃ |(m, b) ∈ g′ and (g̃, m, b) ∈ Y for all g̃ ∈ G}
m′ = { (g, b) |(g, m, b) ∈ Y } m′′ = { m̃ |(g, b) ∈ m′ and (g, m̃, b) ∈ Y for all m̃ ∈ M}
b′ = { (g, m) |(g, m, b) ∈ Y } b′′ = { b̃ |(g, m) ∈ b′ and (g, m, b̃) ∈ Y for all b̃ ∈ B}

Figure 1. An illustration of the addition of new object g to the extent g� of a certain tricluster.
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International Journal of General Systems 5

Table 2. Atoy example with Bibsonomy data for users {u1, u2, u3}, resources {r1, r2, r3} and tags {t1, t2, t3}.

Let us explain the structure of the proposed triclusters. Suppose K = (G, M, B, I ) is a
triadic context, and triple (g, m, b) ∈ I is considered. Then, object g will be added to g� iff
|{(g, m, b̃)|̃b ∈ B}| = ∅ ∨ |{(g, m̃, b)|m̃ ∈ M}| = ∅. It is clear that this condition is equivalent
to the one in equation (4), and can be illustrated in a simple way (Figure 1): if at least one of the
elements from “grey” cells is an element of I , then g is added to g�.

The density of a certain tricluster (A, B, C) of a triadic context K = (G, M, B, Y ) is given
by the fraction of all triples of Y in the tricluster, that is ρ(A, B, C) = |I∩A×B×C |

|A||B||C | .
The tricluster T = (A, B, C) is called dense if its density is greater than a predefined minimal

threshold, i.e. ρ(T ) ≥ ρmin . For a given triadic context K = (G, M, B, Y ), we denote by
T(G, M, B, Y ) the set of all its (dense) triclusters.

Property 3.1 For every triconcept (A, B, C) of a triadic context K = (G, M, B, Y ) with
nonempty sets A, B, and C , we have ρ(A, B, C) = 1.

Property 3.2 For every tricluster (A, B, C) of a triadic context K = (G, M, B, Y ) with
nonempty sets A, B, and C , we have 0 ≤ ρ(A, B, C) ≤ 1.

Proposition 3.3 Let K = (G, M, B, Y ) be a triadic context and ρmin = 0. For every Tc =
(Ac, Bc, Cc) ∈ T(G, M, B, Y ) there exists a tricluster T = (A, B, C) ∈ T(G, M, B, Y ) such
that Ac ⊆ A, Bc ⊆ B, Cc ⊆ C.

Proof Let (g, m, b) ∈ Ac × Bc × Cc. By the definition of box operators g� = { gi | (gi , bi ) ∈
m′ or (gi , mi ) ∈ b′ for all (gi , mi , bi ) ∈ Y }. Since m ∈ Bc, then by the definition of formal
triconcept m is related by Y to every (g̃, b̃) ∈ Ac × Cc, therefore m′ ∩ Ac × Cc = Ac × Cc.
Consequently, for all gi ∈ Ac we have gi ∈ g�. For m� and b� tricluster components the proof
is similar. Finally, we have Ac ⊆ A = g�, Bc ⊆ B = m�, and Cc ⊆ C = b�. �

In other words, proposition 3.3 says that every concept of initial context is included into some
tricluster of the same context. Thus, in a certain sense, there is no information loss in triclustering
results.

Example 1

In Table 2, we have 33 = 27 formal triconcepts, 24 with ρ = 1, and 3 void triconcepts with
ρ = 0 (they have either emptyset of users or resources or tags). Although the data are small,
we have 27 patterns to analyze (maximal number of triconcepts for the context size 3 × 3 × 3 );
this is due to the data being the power set triadic context. We can conclude that users u1, u2,
and u3 share almost the same sets of tags and resources. So, they are very similar in terms of
(tag, resource) shared pairs and it is convenient to reduce the number of patterns describing
this data from 27 to 1. The tricluster T = ({u1, u2, u3}, {t1, t2, t3}, {r1, r2, r3}) with ρ = 0.89 is
exactly such a reduced pattern, but its density is slightly less than 1. Each of the triconcepts from
T = {(∅, {t1, t2, t3}, {r1, r2, r3}), ({u1}, {t2, t3}, {r1, r2, r3}), . . . ({u1, u2, u3}, {t1, t2}, {r3})} is
contained, w.r.t. component-wise set inclusion, in T . In case of large trisubcontext (in initial
tricontext) size n × n × n, where only main diagonal does not contain crosses, we will have
tricluster of the same size with ρ = n2−1

n3 .
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6 D.I. Ignatov et al.

3.3. An algorithm: Tricl

The idea behind TRICL is simple: for all (g, m, b) ∈ Y with ρ(g�, m�, b�) ≥ ρmin the algo-
rithm stores T = (g�, m�, b�) in T. In the pseudocode of TRICL (see Algorithm 1), we provide
more computational details rather than a simple algebraic description. It allows us to better evaluate
the algorithmic complexity of the main algorithm’s steps and give some ideas on how to implement
the code. The dictionaries PrimesObj , Primes Attr , and PrimesCond store pairs (attribute,
condition), (object, condition), and (object, attribute) for the respective prime operator
(.)′. These stored values are then used for computing box operators. In their turn, the results
of box operators are placed in BoxesObj , Boxes Attr , and BoxesCond, respectively. The
complexity of the first “for” loop (steps 2-10) is O(|Y |). The main loop complexity (steps 15-
19) is trickier: O(|Y ||T||log(|T|)|G||M||B|) or, as we know that |T| ≤ |Y |, O(|Y |2||log(|Y |)
|G||M||B|). The factor |G||M||B| arises because of computing the density of a tricluster ρ; this
value is indeed difficult to compute for large triclusters.

We propose a heuristic to estimate ρ(T ) in Monte-Carlo way, checking only some amount of
randomly selected triples contained in the given tricluster T . For a certain tricluster T = (A, B, C),
we compute the density estimation ρ̂(T ) = |P|/|N |, where P = {(g, m, b)|(g, m, b) ∈ N ∩ Y },
and N is a set of |N | randomly chosen elements of the tricluster. The |N | parameter can be chosen to
be relatively small, say 1/10|A||B||C |. Finally, this heuristic is able to make the density calculation
in |N |/(|A||B||C |) times faster. It is also clear that the time complexity of the probabilistic
algorithm is in |N ||/(|G||M||B|) times better than for the original algorithm with the exhaustive
strategy of density calculation. To differentiate between exhaustive TRICL algorithm and its
probabilistic version, we call them TriclEx and TriclProb, respectively, in the experiments section.
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4. Spectral triclustering

In this section, we show that a problem of finding (dense) triclusters for a given context can be
solved by means of graph-partitioning algorithms. There is a well-known reduction of bipartite
graph partitioning to traditional spectral partitioning of a simple graph (see, e.g. (Dhillon 2001)).
Some authors also made attempts to extend this approach for the case of tripartite graphs (Gao et al.
2005; Nanopoulos, Gabriel, and Spiliopoulou 2009; Liu, Fang, and Zhang 2010). Furthermore,
Gao et al. (2005) worked on a specific case of multiple biclustering in which there is a central type
of entity that connects the other types so as to form a star topology of the interrelationships. Doing
so, the authors analyzed triadic data which represent the three types of objects. However, they
did not use spectral partitioning of this graph directly due to a slightly different problem setting;
actually, they analyzed spectral partitioning of two bipartite graphs, which share one partition
(the center of the star structure), but not a tripartite graph. Nanopoulos, Gabriel, and Spiliopoulou
(2009) describe analyzing folksonomies, which contain (user, tag, resource) triples, however,
the researchers also did not perform spectral triclustering to their data directly. They composed
a multidigraph which captures multiple similarities between resources (items) and analyzed this
graph (namely, corresponding Laplacian tensor) by means of spectral partitioning algorithms. The
paper by Liu, Fang, and Zhang (2010) aimed to cope with tag sense ambiguity in folksonomies.
Unfortunately, the authors did not keep the tripartite structure of their graphs due to elimination
of one valuable relation between users and resources, even though they used spectral clustering
of triadic data and called the analyzed graph as “the tripartite hypergraph.” Therefore, we cannot
consider their algorithm as a relevant candidate for comparison purposes in our paper. The basic
notions of spectral clustering and method description can be found in Appendix 1.

4.1. SpecTric: spectral triclustering algorithm

Let us formulate the spectral triclustering problem for the triadic case in a similar way as we did
for the bipartite graph described above.

We consider the adjacency matrix M for an initial tricontext K = (U, T, R, Y ⊆ U × T × R)

(we can always do that since every formal tricontext describes a corresponding tripartite graph),
which represents a ternary relation between three sets: users U , tags T , and resources R.

M =
⎛⎝ 0 AU T AU R

AT
U T 0 AT R

AT
U R AT

T R 0

⎞⎠ (5)

Here, AU T is an adjacency matrix, which shows which tags particular users use. Similarly,
AU R is an adjacency matrix of the user resource relation, AT R is an adjacency matrix of the tag
resource relation. Hence, a single triple (user, tag, resource) corresponds in the tripartite graph
to the triangle, which connects vertices user , tag, and resource. Let n be a number of users, m be
a number of tags, k be a number of resources. Then, M has size (n + m + k)× (n + m + k). As in
the case of bipartite graphs (two-way data), partitioning of a tripartite graph results in eigenvector
of Laplacian matrix L, which corresponds to the second largest eigenvalue of the system Lx = λx
or for the generalized eigenvector system Lx = λW x .

Similarly, as for a bipartite graph, the Laplacian matrix can be represented as

L =
⎛⎝ DU −AU T −AU R

AT
U T DT −AT R

−AT
U R −AT

T R DR

⎞⎠ . (6)
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8 D.I. Ignatov et al.

The corresponding system is written down below⎛⎝ DU −AU T −AU R

AT
U T DT −AT R

−AT
U R −AT

T R DR

⎞⎠ ⎛⎝ u
t
r

⎞⎠ = λ

⎛⎝ DU 0 0
0 DT 0
0 0 DR

⎞⎠ ⎛⎝ u
t
r

⎞⎠ . (7)

We can easily devise a recursive procedure using the spectral method as a partitioning
technique at every level. For every subgraph, we extract the corresponding adjacency matrix from
the graph adjacency matrix and then apply spectral bipartition again. Thus, we build a binary tree
with leaves containing triclusters (submatrices). Every leaf Tk at level k should ultimately contain
at least one user–tag–resource triple. We devise several stopping criteria which are based on size
and density constraints for the tree construction:

(1) Csize constraint: every leaf Tk = Ak, Bk, Ck has nonempty sets of users Ak , tags Bk , and
resources Ck and each set size is greater than 1.

(2) ρ(Tk) ≥ ρmin .

Some further ideas for the recursive spectral clustering can be found in Cheng et al. (2003).

5. Illustration of TRICL, SpecTric, and TRIAS results on a small piece of Bibsonomy-like
data

We have three sets U , T , and R: scientists U = {Jäschke, Stumme, Poelmans, Ignatov, Dedene}
use tags T = {Machine Learning, Ontology, Domestic Violence, Formal Concepts, Triclustering}
to mark papers R = {paper1, paper2, paper3}.

Initial triples are written down below:

(J äschke, Machine Learning, paper1)

(J äschke, Formal Concepts, paper2)

(Stumme, Ontology, paper2)

(Poelmans, Domestic V iolence, paper3)

(Ignatov, Machine Learning, paper3)

(Dedene, Domestic V iolence, paper2)

(Ignatov, T riclustering, paper3).
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International Journal of General Systems 9

The tripartite graph of the initial context K = (U, T, R, Y ) is shown in Figure 2 (To us,
scientists being a bit lazy as typical users use the short form of the original words.) Since our
users preferred shorter tags as real ones, the full words are included here for clarity.

The corresponding system and its solution for this data are given below.

J
S
P
I
D

M L
O

DV
FC
T
P1
P2
P3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 0 0 0 0 −1 0 0 −1 0 −1 −1 0
0 2 0 0 0 0 −1 0 0 0 0 −1 0
0 0 2 0 0 0 0 −1 0 0 0 0 −1
0 0 0 3 0 −1 0 0 0 −1 0 0 −1
0 0 0 0 2 0 0 −1 0 0 0 −1 0

−1 0 0 −1 0 4 0 0 0 0 −1 0 −1
0 −1 0 0 0 0 2 0 0 0 0 −1 0
0 0 −1 0 −1 0 0 4 0 0 0 −1 −1

−1 0 0 0 0 0 0 0 2 0 0 −1 0
0 0 0 0 − 1 0 0 0 0 0 2 0 0 −1

−1 0 0 0 0 −1 0 0 0 0 2 0 0
−1 −1 0 0 −1 0 −1 −1 −1 0 0 6 0
0 0 −1 −1 0 −1 0 −1 0 −1 0 0 5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.0380
−0.2727
0.1005
0.2150

−0.1059
0.1217

−0.2727
−0.0027
−0.1277
0.2350
0.0517

−0.1688
0.1654

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0.1905

⎛⎝ DU 0 0
0 DT 0
0 0 DR

⎞⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.0380
−0.2727
0.1005
0.2150

−0.1059
0.1217

−0.2727
−0.0027
−0.1277
0.2350
0.0517

−0.1688
0.1654

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

All the negative components of the solution vector correspond to the components of left
tricluster at first splitting on Figure 3, similarly, all the positive components of the solution vector
describe the elements of the right tricluster.

A recursive call of the triclustering procedure produces a tree of generated triclusters. We stop
triclustering generation if the next step results in a tricluster containing less than either two objects
or tags or resources.

As a result, we get three triclusters in Example 2. With respect to the termination criterion,
for further interpretation we are interested in those triclusters that contain more than one user, tag
or resource for each tricluster component, respectively. In this example, we have only two such
triclusters after the first splitting and one after the second splitting (see Figure 3).

To differentiate between triclusters generated by box operators and spectral partitioning
hierarchical procedure, we will call former as conceptual triclusters and later as spectral tri-
clusters.

Let us consider the results of TRICL for the same data.
We consider the triple (Ignatov, T riclustering, P3) and apply box-operators to its compo-

nents: Ignatov� = {Ignatov, Poelmans}, T � = {MachineLerning, T riclustering,
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10 D.I. Ignatov et al.

Figure 2. A tripartite graph of the Bibsonomy from Example 2.

Figure 3. Tree-like partitioning of the Bibsonomy from Example 2.

DomesticV iolence}, P�
3 = {P3}. These computation involves the following prime opera-

tors results: Ignatov′ = {(MachineLearning, P3), (T riclustering, P3)}, T riclustering′ =
{(Ignatov, P3)}, P ′

3 = {(Poelmans, DomesticV iolence), (Ignatov, T riclustering),

(Ignatov, MachineLearning)}.
The first three conceptual triclusters sorted by their density have density no less than 0.25 and

are rather well-interpreted scientific communities:
({Poelmans, Ignatov}, {MachineLearning, DomesticV iolence, T riclustering},

{paper3}), with ρ = 0.5, ({J äschke, Stumme, Dedene}, {FormalConcept, Ontology,

DomesticV iolence}, {paper2}), with ρ = 0.3333,
({J äschke, Ignatov}, {MachineLearning, FormalConcept},{paper1, paper2,

paper3}), with ρ = 25.
The rest four conceptual triclusters are worse interpretable, so ρ = 0.25 can be chosen as a

suitable minimal threshold:
({Poelmans, Ignatov, Dedene}, {MachineLearning, DomesticV iolence,

T riclustering}, {paper2, paper3}), with ρ = 0.2222,
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({J äschke, Poelmans, Ignatov}, {MachineLearning, DomesticV iolence,
T riclustering}, {paper1, paper3}), with ρ = 0.2222,

({J äschke, Stumme, Dedene}, {MachineLearning, FormalConcept, Ontology,

DomesticV iolence},{paper1, paper2}), with ρ = 0.1667,
({J äschke, Stumme, Poelmans, Dedene}, {FormalConcept, Ontology,

DomesticV iolence}, {paper2, paper3}), with ρ = 0.1667.
It is hard to say which results for such a small data are better, but note that both methods

capture both different communities {J äschke, Stumme, Dedene} and {Poelmans, Ignatov}
grouped around paper2 and paper3, respectively. The sets of their tags slightly differ for spectral
and conceptual triclusters, but anyway they can shed a light on the community interests.

For the same data, we found that the results of TRIAS are unsatisfactory. Among the generated
concepts without void extent, intent or modus (6 out of 11), almost all the triconcepts are trivial
communities, i.e. they are triples of original relation I :

{Dedene}, {DomesticV iolence}, {paper2},
{Ignatov}, {MachineLearning, T riclustering}, {paper3},
{Poelmans}, {DomesticV iolence}, {paper3},
{Stumme}, {Ontology}, {paper2},
{J äschke}, {FormalConcept}, {paper2},
{J äschke}, {MachineLearning}, {paper1}.

6. Real data and experiments

The performance of our triclustering algorithm was empirically validated on two real world
data-sets. In the Bibsonomy case study, communities of researchers were extracted from triples
indicating which scientists assigned which tags to scientific papers. We also describe some
preliminary results obtained during the case study with the Amsterdam–Amstelland police where
we aimed to extract criminal communities from observational police reports.

To make the results of comparison more informative, we introduce some additional measures
of triclusters quality.

6.1. Coverage and diversity

In addition to execution time, number of triclusters, and tricluster density, we introduce coverage
and diversity.

Coverage is defined simply as a fraction of the triples of the context (alternatively, objects,
attributes or conditions) included in at least one of the triclusters of the resulting set.

Diversity is a useful measure for Feature Selection and Ensemble Learning
(Tsymbal, Pechenizkiy, and Cunningham 2005). To define diversity in triclustering setting, we
will use binary function of 2 triclusters intersect :

intersect (Ti , T j ) =
{

1, GTi ∩ GT j = ∅ ∧ MTi ∩ MT j = ∅BTi ∩ BT j = ∅
0, otherwise

(9)

where T is a tricluster set.
It is also possible to define intersect for the sets of objects, attributes, and conditions. For

instance, intersectG is defined as follows:

intersectG(Ti , T j ) =
{

1, GTi ∩ GT j = ∅
0, otherwise

(10)
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12 D.I. Ignatov et al.

Now we can define diversity of the tricluster set T :

diversi t y(T ) = 1 −
∑

j
∑

i< j intersect (Ti , T j )

|T |(|T |−1)
2

(11)

Once again, it is possible to define diversity for the sets of objects, attributes or conditions:

diversi t yG(T ) = 1 −
∑

j
∑

i< j intersectG(Ti , T j )

|T |(|T |−1)
2

(12)

We suppose, the higher coverage and diversity, the better results of triclustering algorithm.
However, not all triples may be relevant, especially in case of noise or errors in the input data, so,
we do not expect 100% coverage for the best algorithms. If the diversity is high and the number
of tricluster is relatively small, then we can expect the moderate number of rather well-interpreted
triclusters.

Thus, the portrait of the best triclustering results should be described by the following features:
the smallest number of dense triclusters with high diversity and coverage values calculated in the
shortest time.

6.2. Bibsonomy case study

In our experiments, we have analyzed the popular social bookmarking system Bibsonomy. The
data are freely available from http:\Bibsonomy.org for research purposes. For detecting commu-
nities of users which have similar tagging behavior, we ran the TRICL algorithm on a part of the
data consisting of all users, resources, tags, and tag assignments.

We used only the data-set that contains a list of tuples (tag assignments): who attached which
tag to which resource/content.

(1) user (number, no user names available),
(2) tag,
(3) content_id (matches bookmark.content_id or bibtex.content_id),
(4) content_type (1 = bookmark, 2 = bibtex), and
(5) date.

For our purposes, we need only fields 1, 2, and 3 of the tuple above.
The resulting folksonomy (Bibsonomy) consists of |U | = 2,337 users, |T | = 67,464 different

tags, and |R| = 28,920 resources (bookmarks and bibtex entries), which are linked by |Y | =
816, 197 triples. We should note that we must deal with a cuboid consisting of 4,559,624,602,560
cells.

Before running the TRICL algorithm, we analyzed the data statistics. In particular, we plotted a
histogram for users and their number of (tag, document) assignment pairs, and similar histograms
for tags and their number of (user, document) pairs, and for documents and their number of (user,
tag) pairs.

One can easily see that the data exhibits power law behavior. For example, for Figure 4 plotted
in log–log scale we revealed power law (p(x) = Cx−α) with α = 1, 5 (we followed the method
proposed in Newman (2005) to compute this coefficient). The power law distribution of the data
points justifies the use of a greedy approach to mining large and (relatively) dense triclusters,
since the small part of users have the most portion of (tag, user) assignments (similar conclusions
for tags and documents distributions).

We measured the run-time of the implementations (in Python 2.7.1) on a Pentium Core Duo
system with 2 GHz and 2 GB RAM. To build all triconcepts of a certain context we used a Java
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Figure 4. Histogram of numbers of pairs (document, tag) for all triples of the Bibsonomy data.

Figure 5. Histogram of numbers of pairs (users, tags) for all triples of the Bibsonomy data.

Figure 6. Histogram of numbers of pairs (user, document) for all triples of the Bibsonomy data.

implementation of the TRIAS algorithm by Jäschke et al. (2006). The last two columns in Table 3
mean time of execution of TRICL with full density and probabilistic density calculation strategy,
respectively.
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14 D.I. Ignatov et al.

Table 3. Experimental results for k first triples of Bibsonomy data set with ρmin = 0.

k, number of |U | |T | |R| |T| |TT ricl | |TSpecT ric| TRIAS, s TriclEx,s TriclProb,s SpecTric,c
first triples

100 1 47 52 57 1 1 0.2 0.2 0.2 0.2
1000 1 248 482 368 1 1 1 1 1 1
10,000 1 444 5193 733 1 1 2 46.7 47 2
100,000 59 5823 28,920 22,804 4462 131 3386 10,311 976 6215
200,000 340 14,982 61,568 - 19,053 - > 24 h > 24 h 3417 -

Table 4. Density distribution of TRICL-generated triclusters for 200,000 first triples of Bibsonomy data set
with ρmin = 0.

Low bound of ρ Upper bound of ρ Number of triclusters

0 0.05 18617
0.05 0.1 195
0.1 0.2 112
0.2 0.3 40
0.3 0.4 20
0.4 0.5 10
0.5 0.6 8
0.6 0.7 1
0.7 0.8 1
0.8 0.9 0
0.9 1 49

Table 5. Density distribution of spectral triclusters for 100,000 first triples of Bibsonomy data set with
ρmin = 0.

Low bound of ρ Upper bound of ρ Number of triclusters

0 0.05 117
0.05 0.1 7
0.1 0.2 5
0.2 0.3 0
0.3 0.4 1
0.4 0.5 1
0.5 0.6 0
0.6 0.7 0
0.7 0.8 0
0.8 0.9 0
0.9 1 0

In our experiments, the estimation ρ̂ has only 0.13 mean absolute error for |N | = 1/10 of a
tricluster size, ρmin = 0, and 200,000 first triples of the Bibsonomy data. It is clear the probabilistic
algorithm TriclProb becomes drastically faster than TRIAS and TriclEx (TRICL with exhaustive
density calculation) in the case of our probabilistic computational strategy.
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Table 6. Results of the experiments in terms of density, coverage, and diversity.

Algorithm BibSonomy

Number of triclusters ρav , % Cov, % Div, % DivU , % DivT , % DivR , %

TRICL 398 4.16 100 79.59 67.28 42.83 79.54
SpecTric 2 0.5 100 100 100 100 100
Trias 1305 100 100 99.98 91.70 99.78 99.92

Distribution of density of triclusters for 200,000 first triples of Bibsonomy data-set is given
in Table 4.

Analyzing the results of triclusters’density distribution in Tables 4 and 5, we can conclude that
conceptual triclusters are able to capture the densest triclusters (formal triconcepts) and focus on
more dense cuboids of the original data-set. In these experiments, spectral triclustering is not able
to find formal triconcepts and results in triclusters of lower density, which are not so ap propriate for
further human-expert analysis. However, we should note that our spectral triclustering algorithm
is almost two times faster than the direct conceptual triclustering algorithm and results in no more
than 2 × log(m + n + k) spectral triclusters.

In Table 6, we provide the comparison of diversity and coverage for 3000 randomly chosen
triples of Bibsonomy data with the following parameters: |U | = 51, |T | = 924, |R| = 2844, and
ρ = 2.2385 × 10−5.

TRIAS is the most time consuming algorithm. Though the resulting triclusters (triconcepts)
can be easily interpreted, their number and small size make it impossible to understand the general
structure of a large context. For example, in Table 3 we can see that TRICL does not consider tags
and papers of one user belonging to the same tricluster. On the contrary, TRICL and SpecTric
correctly identify only one tricluster in this case. Since all triconcepts have been generated, every
triple is covered and coverage is equal to 1. Since the concepts are small, general diversity is
rather high. Moreover, the set diversity depends on the size of the corresponding set (|U |, |T | or
|R|): the smaller the set – the greater chance of intersection and the lower the diversity.

SpecTric has displayed rather good computation time. Main part of this time is used for the
eigenvalue decomposition of Laplacian matrix. The resulting triclusters can be interpreted, though
their average density is too low and size is rather huge. Their small number makes this method
good for dividing the context into several nonoverlapping parts. Also, the diversity measure for
SpecTric is always equal to 1 because the method generates partitions of the initial context.

TRICL was relatively successful in terms of computation time and number of triclusters even
for ρ = min. It leads to the high coverage (1 for ρmin = 0) and rather low diversities. The
diversity measures have acceptable level for users U and resources R, but it is not the case for
tags set T .

6.3. Amsterdam–Amstelland Police Triclustering Application

In this case study, we analyzed 22,672 observational police reports filed in the Amsterdam–
Amstelland police region in years 2006, 2007, and 2008. The reports contain a textual description
of observation made by police officers during a police patrol, a motor vehicle inspection, an
intervention, and other similar cases of suspicious situation. We were particularly interested in
situations which may indicate that a person is involved in human trafficking. Human trafficking
is defined by the United Nations as the recruitment, transportation, harboring, and receipt of
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16 D.I. Ignatov et al.

Table 7. Density distribution of triclusters for the police reports data set with ρmin = 0.

Low bound of ρ Upper bound of ρ Number of triclusters

0 0.05 4561
0.05 0.1 579
0.1 0.2 333
0.2 0.3 119
0.3 0.4 59
0.4 0.5 30
0.5 0.6 24
0.6 0.7 3
0.7 0.8 13
0.8 0.9 3
0.9 1 146

people for the purpose of slavery, forced labor, and servitude (United Nations 2001). Examples
of human trafficking-related situations may include a man who walks around in the red light
district with a large amount of cash money, or a mail driver who drive the ID papers of the
girls in his car, etc. In our data, the 22,672 observational reports are used as objects, the 28,203
persons mentioned in them are used as attributes, and the human trafficking indicators observed
for this persons are used as conditions. The result of the triclustering execution on this data are
communities of people. These communities may contain criminals who are operating together,
but also may reveal which women are potential victims of these communities. Dense communities
are persons who are very frequently seen together, e.g. a pimp and his prostitute. Each of these
communities is a second component of a certain tricluster. Nonedense communities are persons
who are rarely observed to have contact with each other. In our preliminary experiments on
specially preselected reports (number of reports – |G| = 22, 672, number of persons – |M| =
28, 203, and number of indicators – |B| = 15), we have revealed 5859 conceptual triclusters, see
their density distribution for ρmin = 0 in Table 7. The police experts noticed that for high-density
thresholds, our approach results in rather well-interpreted communities. Unfortunately, due to
confidentiality reasons, we restrict ourselves to this short description of preliminary experiments
in mining criminal communities.

7. Conclusion

FCA-based and spectral partitioning approaches to triclustering were proposed. We showed that:

• (dense) conceptual triclustering is a good alternative for TCA because the total number
of triclusters for real data example is drastically less than the number of triconcepts,

• (dense) conceptual triclustering is able to cope with a huge number of triconcepts in the
worst cases of tricontexts (or dense cuboids in them) where only their main diagonal is
empty and considers such cuboids as a whole tricluster; it is very relevant property for
mining tri-communities in social bookmarking systems,

• the proposed algorithm has good scalability on real-world data especially when we apply
greedy covering approach and optimized version of the density calculation procedure,
and
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• spectral hierarchical partitioning of ternary relations can be a good alternative to concep-
tual triclustering as a tool for fast exploratory (preliminary) analysis.

However, in our study there is no one leading algorithm with reference to all the quality
measures. Therefore, we would like better describe typical circumstances in which a particular
triclustering method can be applied. There are some methods which seem to be appropriate for
deeper evaluation, e.g. TriBox (Mirkin and Kramarenko 2011) and DataPeeler (Cerf et al. 2008),
and some possible modification of TRICL, i.e. conceptual triclustering.

Our further work on triclustering will continue in the following directions:

(1) Improvement and evaluation of the proposed approaches:

• mixing several constraint-based approaches to triclustering (e.g., mining dense
triclusters first and then frequent tri-sets in them),

• finding better approaches for estimating tricluster’s density,
• developing a unified theoretical framework for triclustering and multimodal clus-

tering based on closed sets,
• developing a multicriteria system of quality measures for triclustering and mul-

timodal clustering (density, diversity, coverage, etc.), and
• taking into account the nature of real-world data for optimization (their sparsity,

value distribution, etc.).

(2) New experiments in various application areas where we have made some first steps:

• extracting communities of criminals operating in Amsterdam–Amstelland police
region from unstructured observational police reports (Poelmans et al. 2012),

• finding tricommunities in the massive amount of unstructured texts resulting from
brainstorm sessions (in collaboration with the Witology company) (Ignatov et al.
2013),

• automatically identifying suitable descriptors for groups on social network sites
based on the interests which users indicated on their profile (Gnatyshak et al.
2012), and

• developing Collaborative Filtering algorithms for folksonomy-like data.

There are some prospective ways to adapt the proposed FCA-based approach in rough-
set setting using ideas on bireducts from (Slezak and Janusz 2011) and rough clustering from
(Lingras and Peters 2011).
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Appendix 1

Basic spectral partitioning definitions and methodology

Spectral graph partitioning problem can be formulated as a minimization of some objective func-
tion through the solution of a corresponding eigenvalue problem. The second smallest eigenvalue
provides the lower bound on the value of optimization function and the second eigenvector (Fiedler
1973) is used to construct the partitioning of the graph.

Consider a graph G = (V, E) consisting of a set of vertices V = {v1, v2...} and a set of edges
with edge weight ei j connecting those vertices. It can be represented using an adjacency matrix

E =
{

ei j , i f {vi , v j } ∈ E
0, otherwise

(13)

Since our graphs are undirected, the adjacency matrix is always symmetric.
The vertex set of a graph can be divided into two groups according to some properties, thus

inducing a graph partitioning. The degree of dissimilarity between the two subgraphs can be
computed as a total weight (sum of all weights) of the edges that have been removed during the
cut :

cut (V1, V2) =
∑

i∈V1, j∈V2

ei j (14)

When using graph partition for clustering, we usually value big clusters more than small ones
and would like to prevent cutting off singletons or very small subgraphs. This can be achieved
by augmenting the cut value with a normalization procedure. Then, the objective function can be
written as

Q(V1, V2) = cut (V1, V2)

W (V1)
+ cut (V1, V2)

W (V2)
(15)

where, W is the sum of the weights of all nodes in the partition

W (V ) =
∑
i∈V

wi (16)
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Various choices of node weight function W lead to different partition criteria and clustering
results. Normalized Cuts criterion was proposed by Shi and Malik (2000) for image segmentation
problems and gained further popularity in general clustering algorithms. In Normalized Cuts,
weight of every vertex is chosen to be the sum of the weights of incident edges, i.e. w(i) = ∑

k eik .
The graph cut value can be expressed through a partitioning indicator vector x taking integer

values of ±1 depending on the partition side the corresponding node belongs to

cut (V1, V2) = 1

4
xT (D − E)x (17)

where, Dii = ∑
j Ei j .

This leads to the following expression for the Normalized Cuts objective function

Q = xT (D − E)x

xT Dx
(18)

This is a nonlinear integer optimization problem that is NP-hard. Instead of solving the problem
exactly, Fiedler (1973) proposed to look for an approximate solution by relaxing the integer
constraints and allowing the elements of vector x to take real values.

The minimum of the objective function Q will be reached on an eigenvector (Fiedler vector),
corresponding to the second smallest eigenvalue of the problem

(D − E)x = λDx (19)

The solution vector x can then be used to partition the graph by placing the nodes with
greater than zero x(i) values into one partition and those with less than zero values into another.
Every partition can then be recursively repartitioned by setting up a new eigenproblem for the
corresponding submatrix.

The standard matrix diaganolization methods require O(n3) operations, where n is the number
of nodes in the graph, and are impractical here. We can take advantage of the sparsity of
the graph using iterative methods (Lanczoc or Arnoldi algorithms, see for descriptions, e.g.,
textbook (Golub and van Loan 1989)), especially since only one vector should be computed. The
complexity of Lanczos type algorithm is only O(km), where m is the number of edges in the
graph and k is the number of iterations required for the convergence (see (Golub and van Loan
1989; Shi and Malik 2000)). In practice, it is usually k � √

n.
Further discussion and details of the spectral graph partitioning method for clustering can be

found in Ding et al. (2001), Ng, Jordan, and Weiss (2001), Verma and Meila (2003),
Kannan, Vempala, and Veta (2004) and Drineas et al. (1999).

Spectral method for bipartite graphs

Let M be a bipartite graph corresponding to a user-resource matrix A with m users and n resources
(in our case m � n)

M =
(

0 A
AT 0

)
(20)

In this ordering, the first m nodes in the graph are interpreted as users and the last n nodes
correspond resources.

Written out component-wise according to definition (see Equation (19)), the eigensystem
becomes (Dhillon 2001) :(

D1 −A
−AT D2

) (
x
y

)
= λ

(
D1 0
0 D2

) (
x
y

)
(21)
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where D1,i i = ∑
j Ai j and D2, j j = ∑

i Ai j are diagonal matrices with diagonals equal to
corresponding sums of rows and columns of matrix A. The solution vector can be thought of as
a sequence of m nodes (subvector x) corresponding to resources followed by n nodes (subvector
y) corresponding to users z = (x, y)T .
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