OPERATORS OF RANK 1, DISCRETE PATH INTEGRATION
AND GRAPH LAPLACIANS

YURII BURMAN

ABSTRACT. We prove a formula for a characteristic polynomial of an operator
expressed as a polynomial of rank 1 operators. The formula uses a discrete
analog of path integration and implies a generalization of the Forman—Kenyon’s
formula for a determinant of the graph Laplacian [6, 4] (which, in its turn,
implies the famous matrix-tree theorem by Kirchhoff) as well as its level 2
analog, where the summation is performed over triangulated nodal surfaces
with boundary.

INTRODUCTION

The primary impulse to write this article was the famous Matrix-tree theorem
(MTT), first discovered by Kirchhoff [7] in 1847 and re-proved more than a dozen
times since then. The theorem in its simplest form expresses the number of spanning
trees in a graph as a determinant of a suitably chosen matrix M. See [3] for a review
of existing proofs and generalizations. One of the proofs, given in [1], makes use of
the fact that the matrix in question is a weighted sum of special rank 1 matrices
(identity minus reflection). This structure of M explains why the MTT appeares
sometimes in quite unexpected contexts (see [2] for just an example).

Suppose M be any operator expressed explicitly as a (noncommutative) poly-
nomial of arbitrary operators of rank 1. The article contains a formula (Theorem
1.1) for the characterstic polynomial of M in terms of these operators. Corollaries
of the formula include (but are not limited to!) the MTT (cf, Corollary 1.3), the
D-analog of the MTT ([1], cf. Corollary 1.4), a formula for the determinant of the
Laplacian of a line bundle on a graph [4, 6] (Section 1.2.2; actually, we compute the
whole characteristic polynomial), a Pfaffian Hypertree theorem due to Massbaum
and Vaintrob [8], and a level 2 analog of the formula from [4] proved in Sections
1.2.3 and 2.3.

The right-hand side of the main formula (1.4) involve summation over the graphs
consisting of several cycles and/or several chains. The summand (the weight Wp,
see (1.2)) is a function on edges of the graph obtained also by symmation over the
set of paths joining the endpoints of the edge. Consequently, corollaries of the main
theorem involve summation over various objects, including trees (the MTT), hyper-
trees (the Massbaum—Vaintrob theorem), cycle-rooted trees (the Forman—Kenyon
formula) and nodal surfaces with boundary (the level 2 analog from Section 1.2.3).
The standard expression of a determinant via summation over the permutation
group also follows from Theorem 1.1 — see Section 1.2.1.

The article is organized as follows. Section 1.1 contains the formulation and the
proof of the main theorem (Theorem 1.1). Section 1.2 lists several corollaries of the
theorem. Proofs of some corollaries require not only Theorem 1.1 but also some
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additional reasoning, which is given in Section 2. Section 2.1 contains technical
lemmas (including a duality lemma 2.5 for the angle between two subspaces of a
Euclidean space). Section 2.2 contains the proof of the generalization of Forman’s
formula (Theorem 1.2), and Section 2.3 is devoted to the proof of Theorem 1.9
about the level 2 analog of the graph Laplacian.

The summation is Theorem 1.1 involves a sort of “discrete path integration” and
summation over “discrete 1-manifolds”. A tempting direction of the future research
here is to send dimension to infinity, getting “real” path integration and summation
over 2-varieties. The author plans to write a special paper about this.
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1. SUMS OF OPERATORS OF RANK 1

1.1. The main theorem. Let V be a vector space of dimension n with a scalar
product (-, -). Choose an integer N and fix two sequences of vectors, e1,...,exy € V
and ayq,...,ay € V. For any i denote by M; the operator given by M;(v) =
(i, vYe;; one has rk M; =1 or M; = 0. Consider an operator

(L.1) M = P(M,,...,My)
where
k
P(xla"'amN):Z Z Diy,..isTiy « - T
$=1 1<i1,0enyis <N
is a noncommutative polynomial of degree k. This section contains a description of
the characteristic polynomial charys(t) of the operator M.

Let G be a finite graph with the vertices 1,2,...,N; let a and b be its vertices.
Define the weight Wp(a,b) by

k
(12) WP(aa b) = Z Z Piy,...is (aiz ) ei1><ai376i2> s <ais ) 6i571>,

s=1 i1:a,i27...,is:b

(the internal summation is taken over the set of paths i1,...,is of length s joining
the vertices a = i; and b = i5). Also, denote
(1.3) Wp(G) & II Wp(a,b)

(a,b) is an edge of G

A directed graph G with the vertices 1,2, ..., N is called a discrete oriented one-
dimensional manifold with (possibly empty) boundary (abbreviated as DOOMB) if
every its connected component is either an oriented chain (a graph with ¢ distinct
vectices i1, ...,i¢ and the edges are (i1,i2), (i2,43), ..., (i¢g—1,%¢)) or an oriented
cycle (the same edges but the vertices are 41, ...,4,—1 and i, = i1).
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Theorem 1.1. chary(t) = Y _, (= 1)*upt™ 1 =* where
(1.4) = Z Wp(G) det((ad;,ed;)).
GEDn ke

Here Dy, 1, is the set of DOOMBs with the vertices 1,2,...,n and k edges; di and
d> run through the set of all edges of the graph G; d~ and d* are the initial and
the terminal vertex of the directed edge d.

Remark. The main theorem of [1] is a particular case of Theorem 1.1.

Proof. Consider an orthonormal basis ug,...,u, € V and fix a sequence j, ..., jk,
1<j1 <+ <jr <N. Then

Sq
M(Ujl /\-../\Ujk) = E E H (p (q) . ig? H(aigq),ei&,_)l))
L PP\ r=2
1<m<sq,1<q<k

k
H Q. (q),’LLJq X eig11) VAN /\eigk’;)

k Sq
= > > Il | pio. i [Tt e
81,..,8k 1<i(q)<N qg=1 r=2

1<m<s4,1<q<k,
(1) <. <z(k)

k
X E ( H Q. (q),uh(q) X eig11) Ao A €ig1’z)

o €S}
The coefficient at wj, A --- Awj, in M(uj1 A .-+ Auj,) is then equal to

k Sq

> > P o [Ttewew)

81 4ee0sSk 1<i@ <N q=1 r=2
1<m<sq,1<g<k,

i <™

X det((aigq) y Uﬁ))lgq,rgk X det((’ujwei@)))lgqmgk‘
Sq

Hence
k Sq
(1L5) pe=TrMM= 3 > ] (pigﬂ,._.Jg? H<aiaq>aeiffn>>
81,4055k 1< <N q=1 r=2
1<m<sq,1<q<k,
iV <M
x det({a,om, €0 ))1<q,r<k
1 sq
A multi-index ¢ q),. zgz), 1 < g < k, can be interpreted as a directed graph
G with the edges (i; (0 zgg)) 1 < q <k, and a path igw,. (Q) joining endpoints
d_ = zIQ) and d; = zsq) of every edge. Conversely, a graph plus collection of paths

is just the multi-index. So one can rearrange summation in (1.5) to sum over the
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graphs G first, and then over the set of all paths for a given graph, getting W (Q)

times the determinant. The determinant may be nonzero only if no two z‘§‘1> and

no two z’ﬁ?) are equal. Thus, in a graph G entering the sum every vertex has at

most one outgoing edge and at most one incoming edge. This means that G is a
DOOMB. O

1.2. Graph Laplacians and other examples. Here are some corollaries of The-
orem 1.1.

1.2.1. Determinants. It’s a funny result demonstrating the nature of Theorem 1.1.

Let u1,...,u, be an orthonormal basis in R”. Take e;; def u; and ag; def uj
for all 1 <i,j <n. Take

n
P(x11,...,%0n) & Z Qi Tij

i,j=1
and apply Theorem 1.1. The matrix of the opertor M in the basis u1,...,u, is
(ai;). The polynomial P is linear, so the paths entering equation (1.2) all lave length
1. Consequently, the DOOMB G of (1.4) must be a union of k loops attached
to the vertices (i1,41),..., (ix,Jx). So the summation in (1.4) is over the set of
unordered k-tuples (i1,51),..., (ig,Jx) with 1 < ig,j, < N for all s. In other
words, the summation is over the set of graphs F' with the vertices 1,2,...,n and

k unnumbered directed edges (loops are allowed).
One has (w;j,er) = djk, so the contribution of a graph F into (1.4) is equal
t0 @iy gy - - - Qig jy, det(éiqu)}égéﬁ. It is easy to see that the determinant is nonzero
only if all the i, and all the j, are distinct (else the matrix has identical rows or

columns), and for every ¢ there is p def o(q) such that j, =i, (else a matrix has a
zero row). If these conditions are satisfied, the determinant is obviously (—1)&»(?)
where sgn(o) is the parity of the permutation o. Hence, Theorem 1.1 in this case is
reduced to the usual formula expressing coefficients of the characteristic polynomial
of the operator via its matrix elements.

1.2.2. Graph Laplacians. Let F be a directed graph without loops. Following [6],
give the following definition:

Definition. A line bundle with connection on F' is a function attaching a number
ve # 0 to every directed edge e of the graph. By definition, also take p_, = ¢!
where —e is the edge e with the direction reversed.

To explain the name, attach a one-dimensional space R (a fiber of the bundle) to

every vertex of F' and interpret the number ¢, as the 1 x 1-matrix of the operator

of parallel transport along the edge e. For a path A = (ey,...,er) denote pa def

Vey -+ Pe,, (the operator of parallel transport along A). If the path A is a cycle
then p is called a holonomy of the cycle.

Suppose now that F' has the vertices 1,2,...,n and no multiple edges. Supply
also every edge (i,7) of H with a weight ¢;; = ¢j;. Take N = n(n — 1)/2,

(16) P(wlg,...,wn_lm) = Z Cijilfij,

1<i<j<n

and e;; L — @iju; and oyj L — @jiuj), and consider the operator M like in
(1.1).
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If v =37, viu; then

(L7)  M(v) = Z cij(vi — @jiv) (ui — piju;) Z Ui Z cij(vi = @jivj)-

1<i<j<n i=1 j#i

The operator M is called in [6] a Laplacian of the bundle.

Call a graph F' a mized forest if every its connected component is either a tree
or a graph with one cycle (a connected graph with the number of vertices equal to
the number of edges). The graphs where each component contains one cycle are
called cycle-rooted spanning forests (CRSF) in [6]; hence the name “mixed forest”
here.

The following corollary of Theorem 1.1 generalizes the Matrix-CRSF theorem of
[4] and [6]:

Theorem 1.2. The characteristic polynomial of the Laplacian (1.7) of a line bundle
on a graph is equal to Y, _,(—1)*uxt® where

n—Fk 4
(1.8) =y I ]l ml+1H1—wJ )(1 = 1/w;).
FEMFn ke (pq) is i=1 j=1
an edge of F
Here MF, 10 is the set of mized forests containing n vertices, k edges and split
into n—k tree components and £ one-cycle componenets; m; is the number of edges
in the i-th component, and w; is the holonomy of the cycle in the j-th component.

A special case of Theorem 1.2 arises if ¢;; = 1 for all 4,j. Then (1.7) implies
M =37 pcy<n Cpa(l — 0pq) Where 0y is a reflection exchanging the p-th and the
g-th coordinate: o,(up) = g, opg(tq) = up and opy(u;) = u; for i # p,q. The
reflections o, generate the Coxeter group A,,. The holonomies here are all equal
to 1, so a mixed forest entering a summation in Theorem 1.2 cannot have cycles
and should be a “real” forest:

Corollary 1.3. The characteristic polynomial of the operator M =37, o . | ¢py(1—
Opq) 15 equal to Y ) (—1)*pytk where

n—k
> I e J]mi+ D).
FEFn (pq) is =1
an edge of F
Here Fy 1, is the set of forests with n vertices, k edges and n — k components; m;
is the number of edges in the i-th component.

Apparently, det M = 0 (there are no forests with n vertices and n edges), so the
summation is indeed up to kK = n — 1. This corollary follows also from the classical
Principal Minors Matrix-Tree Theorem, see e.g. [3] for proofs and related results.

Another possibility is to join every pair of vertices (i, j) with two edges: (i,7)—
with ¢;; = 1 (“a —edge”, because e;; = u; — u;) and (i, )+ with cpj;- = -1 (“a
+-edge” because e} = u; + u;); the weights are ¢/
holonomy of a cycle is w = (—1)? where d is the number of + edges in the cycle.
By (1.7), M =371 cpcy<n Cpg(1 — 0pg) + ¢y (1 — Tpg) Where 0,4 is as before and 7,
is a reflection mapping 7p (up) = —uq, Tpe(ug) = —up and 74 (u;) = u; for i # p, g;
the reflections o and 7 generate a Coxeter group D,. So one has

and c;; s respectively. The
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Corollary 1.4. The characteristic polynomial of the operator
M = Z Cpg(1 = 0pg) + C;q(l ~ Tpq)
1<p<g<n

is equal to Y p_o(—1)* gtk where

n—=k
=) II e [T+,
FEMFDy ke (pq)s is i=1

an edge of F

Here MFDy, 1,0 is the set of mized forests with k edges (pq)s, n—k tree components
and ¢ one-cycle components such that the number of +-edges in every cycle is odd;
m; s the number of edges in the i-th components.

This corollary generalizes [1, Theorem 3.2].

1.2.3. The level 2 Laplacian. Take up the same setting as in Section 1.2.2 (a line
bundle with a connection over a graph F'), and take

(1.9) P(z12,...,Tn-1n) = Z Cijk (TijTix — TipTij) = Z CijhTij Tik;
1<i<n, 1<i,j,k<n
1<j<k<n
here the constants c;;, are defined for all 1 <4,j,k < n and possess the property
Cijk = —Cik; for all 4, j, k (in particular, ¢;;; = 0 for all ¢,5). Define M by (1.1):

M d:ef P(M12, ey Mn—Ln) where Mij (’U) = <aij7v>€ij- EXpllCltly, ifv= Zn UpUp

p=1
then
Mi;(v) = (vi — @jivj) (wi — pjiug) = (Vi — @jivi)ui + (v — Pijvi)u;.

and

(1.10) M(v) = Zuivj Pij Z (cijk + cjri) + Z Ckij ik Phj

i#] k#i,j k#i,j
Remark 1.5. Note that Mi]’ = M]’i because Qj; = —PjiQ; and €ji = —Pij€ij-
Nevertheless, since a and e enter the equation (1.4) separately, one has to choose
the ordering of indices in every pair (i,7) used; the final result, of course, does not
depend on the choice. We will write a[;; meaning a;; or aj; depending on the
choice; the same for e.

Remark 1.6. In particular, if ;; = 1for all 4, j, then M(v) = }2, i <, WijkVit;

where w;i, def Cijk + Cjki +crij. Note that w;jy, is totally skew-symmetric in all the
three indices, and therefore the operator M is skew-symmetric. In [8] a beautiful
formula for the Pfaffian of M was proved; see also [1] for a proof of the same formula
using a technique close to Theorem 1.1.

We call M the level 2 Laplacian of the bundle, by an apparent analogy with the
operator defined by (1.7). Note that M;; and My, commute if {i,j}N{k,[} = @ or
{i,j} = {k,1}, that’s why P contains no terms like ;;xp — Zmz;;.

Application of Theorem 1.1 to the level 2 Laplacian gives the formula similar to
(1.8), where the summation is done over the set of triangulated polyhedra of special
kind.
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A nodal surface is obtained from a smooth surface (a 2-manifold, not necessarily
connected, possibly with boundary), by gluing a finite number of points. If the
surface has boundary then boundary points also can be glued. A boundary of the
nodal surface is still well-defined, but unlike the boundary of a smooth surface,
it can be any graph, not just collection of circles. Nodal surfaces with boundary
attracted much attention in recent years due to their connection with the geometry
of moduli spaces of complex structures, see [9].

Depending on the surface, we will speak about nodal disks, annuli, Moebius
bands, etc.

A compact 2-dimensional polyhedron H is called reducible if it can be split into
a union H = H; U---U H; where the polyhedra H; are compact and edge-disjoint
(but not necessarily vertex-disjoint!). Every reducible polyhedron is a union of
irreducible components.

A 2-dimensional polyhedron is called a cycle polyhedron if it is ireducible, home-
omorphic to a nodal surface, and every its face is a triangle with exactly one side on
the boundary. A 2-dimensional polyhedron is called a chain polyhedron, if the last
condition is satisfied for all the faces except two. Each of these two faces has two
sides on the boundary. One face is called an initial face; one of its boundary sides
is marked an called an initial side. The other exceptional face is called a terminal
one; one of its boundary sides is marked and called a terminal side.

Choosing an orientation of a face of a cycle polyhedron is equivalent to ordering
its sides: the first internal side, the second, the boundary side. For a chain polyhe-
dron the rule is the same except for the initial and the terminal face. For the initial
face the ordering is: the initial side, the internal side, the second boundary side; for
the terminal face: the internal side, the terminal side, the second boundary side.
Say that an orientation of two adjacent faces sharing a side a is compatible if a is
the first internal side in one face and the second internal side in the other.

Lemma 1.7. A cycle polyhedron is one of the following:

(1) a nodal annulus where all vertices lie in the boundary;

(2) a nodal Moebius band with the same property;

(3) a disk (smooth) with a vertex in the interior joined by edges with all the
other vertices, which lie on the boundary.

A chain polyhedron is a nodal disk.

For every cycle polyhedron there are exactly two ways to orient all its faces
compatibly. For every chain polyhedron (where the initial and terminal sides are
chosen) there is exactly one way to orient all its faces compatibly.

See Section 2.3 for proof.

Ezample 1.8. See Fig. 1. The left-hand side is a cycle polyhedron (a nodal Moebius
band with the node c¢), the right-hand side is a chain polyhedron (a nodal disk with
the node ¢). Solid lines represent internal edges and exceptional edges (ab and
ef at the nodal disk); dotted lines represent boundary edges. The graph G is
drawn below; the cycle is directed clockwise and a line is directed left to right. The
corresponding ordering of edges inside every face of H is shown by the numbers
1,2,3.

Denote by CP, i the set of polyhedra with the vertices 1,2,...,n, having k
faces, such that every its irreducible component is either a cycle polyhedron or a
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L ¢ a b ¢ g
1 3 3
1 ’ Y 2 > ]
AMaNls 2 ‘a
a ¢ d b a ¢ q e
(a,b)
(a,b) (b,d) (c.e)

(bv C) (b7 C) (b; C) (C, d) (67 f)

(c,d) (b,d)
FIGURE 1. A cycle polyhedron and a chain polyhedron

chain polyhedron with compatibly oriented faces. By ess;(H) denote the graph
formed by the internal edges of H and initial and terminal edges of its chain com-
ponents. The initial and the terminal edges themselves denote by I (H),. .., Is(H)
and Ty (H),...,Ts(H), respectively. Let H € CP, be such that the graphs

H! Y essy (H)\ {L(H),...,I,(H)} and HT % ess,(H) \ {T1(H), ..., T,(H)} are
mixed forests. Let H{,...,H] and HT,... HI be connected components of H’
and HT, respectively, that are trees (the number of such components ¢t = m —n —s,
where m is the number of edges in H, is the same for both graphs). Choose in
every tree a root r® € H} and i€ H]T and consider a matrix M (H) such that

M(H)! = > pina
A€L;;

where L;; is the set of paths joining r§ with ri*, and ny is the number of vertices
along the path A that belong both to H} and H]T

For an oriented face F of a cycle or a chain polyhedron denote by s;(F') its i-th
side (i = 1,2,3); by v;(F) denote the vertex opposite to the side number i. The
internal sides are directed away from their common point; direction of the boundary

side is not important.

Theorem 1.9. Let M be a level 2 Laplacian of a line bundle on a graph F. Then
charp (t) = > 5o (=1)* uxt® where

Pk = Z H Cos(®)v1 (@)v2(®) (U1 ()] €52 (P)])
HECPn a fa%)eif)f H

x det M (H) x H 11 ©pa

,j=1  (pq)€H lies
in a path joining
ri with rs

(1.11)

See Remark 1.5 for the notation apy, ), €[s,]-

2. PROOFS

2.1. Technical lemmas. Let H be a directed graph without loops or multiple
edges.
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Definition ([6]). A line bundle with connection on H is a function a number ¢;; # 0
to every directed edge (i,j) of the graph. By definition, also take ¢;; = goi_jl.

To explain the name, attach a one-dimensional space R (a fiber of the bundle)
to every vertex and interpret the number ¢;; as the 1 x 1-matrix of the operator
of parallel transport along the edge (7,j). Consider the space R (which can be
interpreted as a total space of the bundle) with the standard basis ui,...,u,. For
every ¢, j consider the vectors a;; L wiju; and e;; e — @jiuj. Denote by
Ap and Eg the sets of vectors ay; or e;;, respectively, where (7, 5) runs through
the edges of H.

Introduce in R™ a standard scalar product making wq,...,u, an orthonormal
basis. For two sequences of vectors M = (u1,...,u;) and X = (&1,...,&;) of the
same size k denote by G(M, X) the k x k-matrix where the (i, j)-th entry is equal to
the scalar product (p;,&;). Call two sequences, M and M’, elementarily equivalent,
if M' can be obtained from M by a finite number of substitutions p; — p; + tp;
where ¢ is any number. The matrices G(M, X) and G(M', X)) are also connected
by elementary equivalence (a row is replaced by the sum of itself with a multiple of
another row), and therefore det G(M, X) = det G(M', X); the same applies to X.

Number the edges of H arbitrarily and consider the matrices Py def G(An,An),

Qn :d:ef G(AH,EH), Ry :d:ef G(EH,EH). The matrix element of Py, Qm and

Ry corresponding to the pair of edges s and ¢ depends on their mutual position as
follows:

e If s and ¢ do not intersect then the matrix element is zero.
e If s and ¢ have one common vertex b then the matrix element is equal to
the product v 41 , Where

1, if the edge r points away from the vertex a,
—,, if the edge r points towards the vertex a
Yrq = and corresponds to the vector a,
—@ 1, if the edge r points towards the vertex a
and corresponds to the vector e.

e If the edges have two common vertices @ and b then the product is equal
to the sum ¢s7a¢t,a + ¢s,b¢t7b-
The most important cases later will be when H is a tree or a graph with one
cycle Describe the determinants of Py, Qg and Ry for such H. For a directed
path A = (A, ..., Ar) in the graph denote by a the product ©xox, - - ©rp_12p-

Lemma 2.1. Let H be a rooted tree. Then
(2.12) det Pr = [[ ¢3 - > i
ij A

where the product is taken over all the edges of H directed away from the root, and
and the sum, over all chains A joining vertices of the tree with the root. Similarly,

det Ry = Hap?l . Z@Xz
i A

in the same notation.
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Proof. Clearly, the statements for Py and Ry are equivalent, so consider the Py
case. Since aj; = ¢j;yj, changing the direction of an edge (4, j) — (j,¢) multiplies
both sides of (2.12) by go?l So, it is enough to prove the lemma for trees where all
the edges are directed away from the root.

Let p be a hanging edge of H and g, its parent. Then (ay,,a,) = 1-|-<p§, (ap,aq) =
—pq (the edge ¢ is directed towards p, and p, away from ¢), and (o, ;) = 0 for
all the other edges . Develop the determinant det Py by the row p and then by
the row ¢; this gives a relation

(213) detPH: (1+1/g012)) detPHr —l/wi-detPHn

where H' and H" are H with p deleted and p and ¢ deleted, respectively.
Suppose by induction that the theorem is proved for H' and H". Multiply both
sides of (2.13) by [], ¢? where e runs through the set of edges of . It gives

[Teidet P =30k +1/05- > h —1/9} Y i
e A’ A A

where A’, A" are chains in H' and H", respectively, joining vertices with the root.
The first sum is over all the chains in I" not containing p. The second sum is over
all the chains containing p, plus the union of p with a chain in T (because p is
hanging). The third sum cancels the second term. O

Lemma 2.2. If H is a tree with m edges (and m+1 vertices) then det Qg = m+1.

Proof. Let (i,7) be an edge of H. The graph H \ (,7) is a union of two trees H;
and H, containing vertices i and j, respectively. The matrix Qg looks like

2 1 . 1 —Pji . —Pji
1
: Qm, 0
Qu = 1
—Pij
: 0 Qm,
—Pij

(we suppose that the edge (i, j) corresponds to the first row and the first column).

Denote the sizes of the first and the second block (i.e. the numbers of edges in
H, and H») by my and ms respectively (thus, m = mq +mo +1). Let p > my > q.
Then the last mo rows of the minor [QHHZii (deleted columns 1 and p + 1 and
rows 1 and g+ 1) have zeros at the m; initial positions; only the last m —2 —m; =
ms — 1 positions may be nonzero. Hence the rows are linearly dependent, so that
det[QH]}:gﬂ = 0. The same is true if p < m; < q. Having det Qg decomposed
by the first row and then by the first column, one is left only with the terms
Q)1 p+1(Qm)g+11 det[QH]}:gﬁ where either p,q < my or p,q > my + 1. In both
cases (Qm)1,p+1(Qm)g+1,1 = 1, and therefore det Q i does not depend on ¢;; (recall
that Qg, and Q g, contain no ¢;; because neither H; nor H, have an edge (4, j)).
Since (i,7) is just an arbitrary edge of H, it proves that det Qg does not depend
on any ,, and is a constant.

Suppose now that pp,, = 1 for all p and ¢q. Then e, = up—u, = (up—ug) + (ug —
Up) = €pg + €4r, and the same is true for a. Suppose the tree H contains edges pg
and gr. Consider a tree H' where the edge gr is replaced by pr; then the systems of
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vectors Ag and Ap, as well as Eg and Eg, differ by an elementary transformation,
and therefore det Qg = det Qg . By such operations one can convert H into a line,
i.e. a tree with the edges (po,p1), (P1,02),-- -, (Pm—1,Pm). The matrix Qg for such
tree is: (Qm)ii = 2, (Qm)ii+1 = (Qm)ii—1 = 1 for all . An easy induction shows
that det Qg = m + 1. O

Let now H be a graph with one cycle, i.e. a connected graph with n vertices
and n directed edges. It consists of a cycle py,...,ps and, possibly, some trees
(“antlers”) attached to the vertices p;. The direction of edges in the cycle and

in the antlers can be arbitrary. Following [6], call the holonomy of the cycle the
product w % @l .. @Fl  where the i-th exponent is +1 if the corresponding

edge is directed along the cycle (from p; to p;+1) and —1 otherwise.

Lemma 2.3. Let H be a graph with one cycle. Then
det Py = (1 —w)” [ ] 3,
i,

det Ry = (1 —w™")? H go{f,
i,J
det Qu = —(1—w)(1 —wY),
where the product is taken over the set of all the edges in the antlers directed away
from the cycle.

Proof. The proofs of all the three statements are similar; here is the proof of the
statement about Q.
Consider a system of vectors ES) elementarily equivalent to Eg. To obtain Eg)

def . .
from Ep replace every vector €; = €p,p,., = Up, — Ppiy1piUpiprs t = 1,...,5, with
8(1) where

i
(1) def _
€61 = €s—1 T Pppo_1€s = Us—1 — Pp,,p,_1Pp1,p, U1,
(1) def 1 _
€g g = €5—2F Pp,_1,ps0€sl1 = Us—2 = Pp,_1,ps—2Pps,ps—1Pp1,ps Uls

sgl) =1 (1 = Qpopy - Op1p.) = (1 — 1/w)us.
Consider also a system Ag) obtained from Ay in a similar way. One has det G(E("), Ag)) =
Qg by elementary equivalence.
If w = 1 then &) = 0, so det Qg = det G(E(l),Ag)) = 0, and the lemma is
proved; we suppose from now on that w # 1.

(1)

Consider now the sequence Eg), which is Ey;’ with every e

i

replaced with
552) = 51(1) - 651)/(1 —1/w) = —pp; pi_ Ui-

Consider also Ag) obtained from Ag) in a similar way. The sequences Eg), Ag)
are elementarily equivalent to Eg), Ag), so det G(Eg),Ag)) =Qu

Denote by H; a subtree of H attached to the vertex p;, 1 < i < s, and let
Bj = eq;r;» 1 < j < m; be vectors in Ex (and Eg)) corresponding to its edges. For
all edges attached immediately to p; (so that g¢; = p;) replace 8; — BJ(-D =B+
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€iPpis1.pi = —Prip1tr;. Then do the same for all the edges attached to endpoints

of B](-l), etc. Having done this for all 4, 1 < i < s, one obtaines the system E% =
((1-1/w)uy, —p12us, . . ., —P1mUny,) elementarily equivalent to Ey. Similarly, Ay is
elementarily equivalent to Ay = ((1—w)uy, —p12ua, ..., —Pmi1Um,). Now det Qg =
det G(EYy, Aly); the matrix G(EYy, Ay) is a diagonal matrix with (1 —w)(1 —1/w)
in the corner and 1 in all the other positions on the main diagonal. a

Below we will need two more statements from the general linear algebra.

Lemma 2.4. Let eq,...,e, be an orthonormal basis in R™, and u; = 2?21 a;je;j.
Then det G(M, M) is equal to the sum of squares of all the k x k-minors of the
matriz A = (a;;) S50

The lemma is classical, see e.g. [5, IX§5] for proof.

Let now M,X C R™ be two linear subspaces of the same dimension k, and
M= (p1,...,p) and X = (&,...,&) be bases in them. Denote

Z(M,X) ¥ det G(M, X)2/(det G(M, M) - det G(X, X)).
Lemma 2.5. (1) (M, X) depends only on the subspaces and not on the choice
of the bases M and X in them.
(2) LML X)) = 24(M, X).

Proof. Let N = (v1,...,v;) be another basis in M; denote by A = (a;;) the
transfer matrix: v; = Ele a;jpj. Then G(N,X) = AG(M,X), and G(N,N) =
AG(M,M)A*; 50 G(N, X)?/(det G(N, N)-det G(X, X)) = det A% det G(M, X)?/(det A2
det G(M, M) - det G(X, X)) = £(M, X); the same is for X.

Let now M7, My C R™ be two spaces of equal dimension, and let M def (M U
M) be their linear hull. Then M; = Mil’M @ M+, i =1,2; here L means an
orthogonal complement in R", and (L, M) means an orthogonal complement in M.
Choose an orthonormal basis T = (71, ...,7,;) in M*, and bases A; = ()\gi) ey )\ﬁ,i))
in /\/lil’M, i =1,2, normal to M'. Denote Y] = (,\§1), .. .,)\5,1),71, oo, Tg)and Yo =
(/\§2), . /\22) ,T1,-..,T,) are bases in Mi and My, respectively. By the first state-
ment of the theorem, Z(Mi, M5 ) = det G(Y1, Y2)?/(det G(Y1.Y1) - det G(Ya, Y2)).
The matrix G(Y1,Y3) is block diagonal; its first block is the matrix G(A1, A2), and
the second block is the unit matrix G(T,T); thus det G(Y1,Y>) = det G(Ay, Az).
Similarly, det G(Y1,Y1) = det G(A1, A1) and det G(Ys,Ys) = det G(A2, A2). Hence,
LM, M3 ) = LM M),

Let now X = M;NMs; # 0. A similar choice of a basis shows that Z(M;, Mz) =
Z(X, Xp) where X; = X+-Mi § = 1,2, So, it is enough to prove the second
statement of the theorem for the k-dimensional subspaces M1, Ms C R™ such
that n = 2k and M; N Mz = 0, so that R® = (M; N M,). To do this take an
orthonormal basis eq,..., e in R” such that X; def (e1,...,ex) is a basis in My,

and X, & (€kt1,---,e€2k) is a basis in M. Let F = (fi,..., fr) be a basis in

k . . <j<k
Mo, fi =375 bijej + cijejir. Since My N My = 0, the matrix C' = (Cij)iggik
is nondegenerate. By elementary transformations of rows one can make C a unit
matrix; assume that C' = id from the very beginning, so that f; = 2?21 bijej+eirk-

Then G(F, X1) = B, and therefore det G(F, X1) = A L det B. By Lemma 2.4, the

determinant det G(F, F') is equal to the sum of squares of all k£ X k-minors of the
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k x (2k)-matrix composed of two blocks, B and the identity k x k-matrix. It is easy
to see that the latter sum is the sum of squares of all the minors of B (of all sizes),
including A? and 1 (the square of the empty minor).

Consider now the vectors h; = —e; + 2521 bjiejrk, © = 1,...,k. Apparently,
H = (hy,...,ht) is a basis in M3; also G(H, X5) = BT = G(F, X;)T, and also
det G(H,H) = det G(F, F') by Lemma 2.4. This proves the lemma. O

2.2. Proof of Theorem 1.2. To apply Theorem 1.1 note that the polynomial
P of (1.6) has degree 1, so every path involved should contain one vertex only.
Therefore, the DOOMB G must be a union of k loops attached to the vertices
(¢1,71),- -+, (ik, Jr). So the summation is over the set of unordered k-tuples (i1, j1), . .
with 1 <ig,7s < N for all s. In other words, the summation is over the set of graphs
F with the vertices 1,2,...,n and k£ unnumbered directed edges.

Let Fi,...,F; be connected components of F. If the edges d; and d> belong
to different components then (ag4,,eq,) = 0. So the matrix Qr is block diago-
nal, and det Qr = detQp, ...det Qp,. If F is a connected graph with m edges
(t1,41)5-- -, (im,Jm) and p < m vertices then the vectors e;, j,,...,€;,, ;. belong
to a vector space of dimension u spanned by the corresponding basis elements ;.
Therefore they are linearly dependent, so that det @r = 0. Thus, if det Qp # 0
then every connected component F; of F' should be either a tree (with p =m + 1)
or a graph with one cycle (u = m). So, F' is a mixed forest.

Theorem 1.2 now follows from Theorem 1.1, Lemma 2.2 and Lemma 2.3.

2.3. Proof of Theorem 1.9. Apply Theorem 1.1 to the operator M of (1.10).
Like in Section 2.2, vertices of the graph G are pairs (i,7), 1 <14 < j < n, that
is, edges of a directed graph with the vertices 1,...,n. The polynomial P contains
only terms z;;z;x; therefore if (a,b) is an edge of G then the pairs a = {i,j} and
b = {i,k} have exactly one common element. Represent such edge by a triangle
ijk. Color its sides ij and ik (corresponding to the vertices of G) black, and the
third side jk, red (they are shown as sold and the dashed lines, respectively, in
Fig. 1). Thus a graph G is represented by 2-dimensional polyhedron (call it H)
with triangular faces and edges colored red and black so that every face has two
black sides and one red side. The black edges of H form a graph denoted by ess; (H)
and called an essential 1-skeleton of H.

If G consists of connected components Gy, ...,Gs then the corresponding sub-
polyhedra Hi,...,H; of H are edge-disjoint but not necessarily vertex-disjoint;
thus, H is reducible, and Hy,..., H, are its irreducible components. By Theorem
1.1 every G, is either an oriented cycle or an oriented chain.

Let first G; be an oriented cycle. In the corresponding H; every black edge
belongs to two faces and every red edge, to one face. Hence H; is a nodal surface
with boundary where every face has two internal sides and one boundary side.
An orientation of an edge of G; gives rise to an orientation of the corresponding
face of H;; since the orientations of the edges in a cycle GG; are compatible, so
are orientations of the faces in H;. The graph G; is connected, so the polyhedron
H; is irreducible. Hence, H; is a cycle polyhedron. Conversely, if H; is a cycle
polyhedron, then G; is connected and every its vertex has valency 2 — hence, G;
is a cycle.

In a similar manner one proves that GG; is an oriented chain if and only if H; is
a chain polyhedron.

B (Zka.yk)
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Proof of Lemma 1.7. Let H be a cycle polyhedron with the vertices 1,2,...,n.
Build the graph G such that the vertices of G are internal edges of H (elements of
ess;(H)), and two vertices are joined by an edge if the corresponding edges belong
to a face.

As proved before, the graph G is an oriented cycle where every vertex is marked
by two indices (4, 7), and the neighbouring vertices have exactly one common index.
For every index i denote by K; the set of vertices in G containing i as one of the
indices. If for some i the corresponding K; contains all the vertices, then the second
indices j in all the vertices are pairwise distinct, and we have a disk described in
clause 3 of the lemma. From now on suppose that for every index i there is at least
one vertex of G not containing it.

Every K; is a union of several “solid arcs” K; 1, ..., K; 5, (asolid arc is one vertex
or a sequence of several successive vertices in a cycle). Consider an auxiliary graph
G’ where for all i and p = 1,...,s; the index 7 in the vertices in K; , is renamed
into a new index i,. Thus, the polyhedron H is obtained from the polyhedron H'
corresponding to G' by identification of some vertices. Thus it is enough to prove
that if every K; is one solid arc (but not the whole cycle) then the polyhedron H
is an annulus or a Moebius band.

Let G contain m vertices. Consider an auxiliary circle S* with m equidistant
points ay, ..., a, onit. Let K; be a solid arc covering the vertices p,p+1,...,p+q.
Define a subset L; C S! as an arc from a,, to a,4, including both endpoints. Every
two neighbouring vertices in G have a common index %, So every point of every arc
[ap, ap+1] belongs to some L;, hence | J L; = S'. Triple intersections of different L;s
are all empty; the intersections L; N L; are either empty or one point. There are
exactly m pairs with nonempty intersection, because L; are arcs. Thus, the Euler
characteristics is

0=x(s")=x(\Jr) = ZX(Li) - ZX(Li N Lj).

One has x(L;) = 1 for all 4 and x(L;NL;) = 1 for m pairs i, j where the intersection
is nonempty, and x(L; N L;) = 0 otherwise. So, the number of indices 4, that is,
the number of vertices of the polyhedron H, is equal to m. The total number
of its faces is the number of edges in G, that is, m. Also H contains m red
edges (one per face) and m black edges (corresponding to the vertices of G). Thus
X(H) =m —2m +m =0, and H is either an annulus or a Moebius band.

The proof in the chain case is similar. O

So, summation in the right-hand side of Theorem 1.1 for the charps(t) is per-
formed over the set of nodal sufraces with boundary H = H, U---U H,, where the
irreducible components Hy, ..., H; are either cycle polyhedra or chain polyherda.

The weight Wp(H) of a polyhedron is equal to the product of the weights of the
faces. The weight of a triangular face pgr where pq is the first internal edge, pr,
the second, and ¢r, a boundary edge, is equal to cpgr(Q[pq], €[pr])- S0, the second
factor is equal to 1, —@pq, —@pr OF Ppe@pr depending on how the edges pg and pr
are directed. The weight of H is Wp(H) = Wp(Hy)...Wp(Hp,).

Let Hy,...,H; be chain polyhedra with the initial edges I (H),...,Is(H) and
the terminal edges T1(H),...,Ts(H), and Hgy1, ..., Hp be cycle polyhedra. The

determinant in (1.4) is equal to det G(Agr, Egr) where H! L g5y (H\{L(H),...,I,(H)}

and HT % ess; (H) \ {T\(H),...,Ts(H)}. In particular, if the determinant is
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nonzero, then e;,i # I(H),...,I;(H), as well as aj,j # Th(H),...,Ts(H), are
linearly independent. According to Section 2.2, this implies that the graphs H'
and HT are mixed forests.
Thus, equation (1.4) for the case considered looks as follows: if M is the level 2
Laplacian then chary(t) = > p_,(—1)F uxt® where
(2.14)
[k = > I co@yo@yoa(@) Qs (@)1 €psa@y) X det G(Agr, Egr)

HeCPy i

H' and HT ar
mixed forests

P is
o ® face of H,

The determinantal term in (2.14) can be simplified using Lemma 2.5:
(det G(Agr, Egr))? = Z({(Agr), (Egr)) - det G(Agr, Agr) det(Egr, Egr)
= /((Agr)t, (Bgr)t) - det G(Agr, Agr) det(Egyr, Eyr)
. det G(AYy, Efyr)?
(2.15) det G(Alyr, Alyr) det G(Elyr, Elyr)
x det G(Agr, Apr)det(Egr, Egr);

here (X) mean the subspace in R” spanned by X, - means an orthogonal comple-
ment, and A',,, B} are bases in (Agr) and (Egr)™*, respectively.

By Lemma 2.5 the formula above is true for any choice of the bases A%;;, Elr;
below we describe orthogonal bases the most convenient for our purposes. For
any graph G denote by C(G) the set of its connected components. Let C(H!) =
{HE,...,HI} and ¢(HT) = {HI,...,H!'}; denote by V! C R® and V;I' C R the
subspaces spanned by the vertices of H! and H!, respectively. Then

8
(Apr)t = Pl =,
i=1
where the summands are pairwise orthogonal; the same is true for Egr.

Every HZI and HZT is either a tree or a graph with one cycle; choose a root in

every tree component and denote it by r{* and r{, respectively.

Lemma 2.6. If H is a tree with a root r, then the spaces (Ap)* and (Eg)*

have dimension 1 and are spanned by vectors by aef Y Wour and fig def Y WPru,
respectively, where the summation is over the set of vertices of H, and ur, ru are
paths joining w with r and r with u.

If H is a graph with one cycle with monodromy w # 1 then (Ay) = (Eg) = R™.

Proof. Let H be a tree. The spaces (Ag) and (Eg) are spanned by n — 1 vectors
in R"; the vectors are linearly independent by Lemma 2.2. Hence, dim({Ax)+ =
dim(Eg)* = 1. Apparently, (b, a;;) = 0 and (fu,e;;) = 0 for any edge ij of H,
and the first statement follows.

The second statement follows from Lemma 2.3. O

The number of rows and columns of the matrix G(AY;;, Efr) is equal to the
number of tree components of the graphs H! and H?. If H! is a tree compo-
nent of H' and H] is a tree component of HT, then, obviously, G(A%,, By )l =
(bmr, fur) =X rer, @ina = M(H){ (recall that L;; is the set of paths joining ¢

i J 7

(2
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with 7® and na is the number of vertices along the path A that belong both to H/
and H).
Lemmas 2.6 and 2.1 imply now that

det G(Agr, Egr) =det M(H)x [[ [  @waxII I w

i=1 (pq)€H] looks Jj=1 (pq)eHjT looks
away from r{ away from rj§

S
=det M(H) x [] 11 pas
i,j=1 (pg)EH lies
in a path joining

. e
ri with r;

and Theorem 1.9 is proved.
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