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Abstract

For a given deBranges space H(E) we investigate deBranges sub-
spaces defined in terms of majorants on the real axis: If ω is a non-
negative function on R, we consider the subspace

Rω(E) = ClosH(E)

{
F ∈ H(E) : ∃C > 0 : |E−1

F | ≤ Cω on R
}

.

We show that Rω(E) is a deBranges subspace and describe all sub-
spaces of this form. Moreover, we give a criterion for the existence of
positive minimal majorants.
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1 Introduction

The theory of Hilbert spaces of entire functions introduced by L. deBranges
is an important branch of modern analysis. It is an intriguing example for
a fruitful interplay of function theory and operator theory, which has deep
applications in mathematical physics, namely in differential operators and
scattering theory.

One of the striking features of a deBranges space is the structure of its
deBranges subspaces (that is, subspaces which are themselves deBranges
spaces) revealed by deBranges’ Ordering Theorem. This theorem states,
roughly speaking, that, for a given space, the set of all its deBranges sub-
spaces ‘with the same real zeros’ is totally ordered with respect to set-
theoretic inclusion. However, given an individual deBranges space, there
is no explicit way to determine the chain of its deBranges subspaces.

In a recent series of papers V. Havin and J. Mashreghi introduced the
notion of admissible majorants for shift-coinvariant (model) subspaces of the
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Hardy space H2(C+). Since deBranges spaces are, essentially, particular
model subspaces of the Hardy space, this notion is applicable. Of course,
due to the rich structure of deBranges spaces, much more specific results
than in the general setting can be expected.

It is the aim of our present work to show that admissible majorants give
rise to deBranges subspaces and to study the structure of these subspaces.
Our main results are a description of all subspaces which are induced by
admissible majorants and a criterion for the existence of minimal majorants
which are separated from zero.

As already indicated in the above abstract, an admissible majorant defines
a deBranges subspace by means of a restriction on the growth along the real
axis. It is an interesting observation that this concept is complementary to
imposing growth conditions off the real axis. In the recent paper [KW2]
deBranges subspaces were defined by means of restriction on mean type.
We will see that the subspaces defined by majorants cannot be described by
mean type conditions. Hence these two methods can, in conjunction, lead
to a description of the whole chain of subspaces of a deBranges space. An
elaboration of this idea will be subject of future work.

Let us describe the organization and content of the present paper. After
this introduction, in Section 2, we provide the necessary preliminaries con-
cerning deBranges spaces and admissible majorants. Section 3 is devoted to
the study of subspaces induced by majorants by means of Definition 3.1 and
Proposition 3.2. The main result in this context is the characterization of
those subspaces which can be realized in this way, given in Theorem 3.4 and
Proposition 3.9. As corollaries we obtain a couple of conditions for density
of ‘small’ functions in a given deBranges space. Moreover, we give some,
rather general, examples to illustrate these results. In Section 4 we turn to
a thorough investigation of minimal majorants. Our main result is Theorem
4.2 where we relate minimal majorants to one-dimensional subspaces. In
combination with Theorem 3.4 this leads to a characterization of existence
of minimal majorants separated from zero, cf. Theorem 4.9. This result is
closely related to the recent work [BH].

2 Preliminaries

An entire function E is said to belong to the Hermite-Biehler class HB,
if it satisfies |E(z̄)| < |E(z)|, z ∈ C+. Sometimes, in the literature it is
only required that |E(z̄)| ≤ |E(z)|. This, however, is no essential gain in
generality. Throughout this paper we will, for any function F , denote by F#

the function F#(z) := F (z̄).

2



2.1 Definition. If E ∈ HB, the deBranges space H(E) is defined as the
set of all entire functions F which have the property that E−1F, E−1F# ∈
H2(C+). This spaces will be endowed with the norm

‖F‖E :=
(∫

R

∣
∣
∣
∣

F (t)

E(t)

∣
∣
∣
∣

2

dt
)1/2

, F ∈ H(E) .

It is shown in [dB, Theorem 21] that H(E) is a Hilbert space with respect
to the norm ‖.‖E .

2.2 Remark. The definition of H(E) given above can be reformulated. In fact,
an entire function F belongs to H(E) if and only if E−1F, E−1F# ∈ N(C+),
mt E−1F, mt E−1F# ≤ 0, and E−1F |R ∈ L2(R).

Here N(C+) denotes the set of all functions of bounded type in C+, and
mt f denotes the mean type of a function f ∈ N(C+), i.e.

mt f := lim sup
y→+∞

y−1 log |f(iy)|,

see e.g. [RR]. In fact, this is the original definition given in [dB].

It is an important feature that deBranges spaces can be characterized
axiomatically, cf. [dB, Problem 50, Theorem 23]. Let H be a nonzero Hilbert
space whose elements are entire functions. Then H is equal to a space H(E)
including equality of norms if and only if H satisfies:

(dB1) for every v ∈ C the point evaluation functional χv : F 7→ F (v) is
continuous on H;

(dB2) if F ∈ H, then also F# ∈ H, and we have ‖F#‖ = ‖F‖, F ∈ H;

(dB3) if F ∈ H and z0 ∈ C \ R with F (z0) = 0, then also

z − z0

z − z0
F (z) ∈ H, and

∥
∥
∥
z − z0

z − z0
F (z)

∥
∥
∥ = ‖F‖ .

2.3 Remark. If a Hilbert space H which satsifies (dB1)-(dB3) is given, the
function E ∈ HB which realizes H as H(E) is not unique. In fact, if
E1, E2 ∈ HB, then H(E1) = H(E2) including equality of norms, if and
only if (A2, B2) = (A1, B1)U , where Ak = 1

2
(Ek + E#

k ), Bk = i
2
(Ek − E#

k ),
k = 1, 2, and where U is a 2 × 2-matrix with real entries and determinant
1. This result is contained in [dB], an explicit proof can be found in [KW1,
Corollary 6.2].
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For an entire function G let d(G) : C → N be the map which assigns to
a point v its multiplicity as a zero of G. For a deBranges space H we put
d(H)(v) := minF∈H d(F )(v). Then for any E ∈ HB with H = H(E) we have
d(H(E))(t) = d(E)(t), t ∈ R, cf. [dB, Problem 45]. Note that, by (dB3), we
always have d(H)|C\R = 0.

2.4 Remark. Let v ∈ R and F ∈ H(E) with F (v) = 0 be given. If d(F )(v) >
d(E)(v), then (z − v)−1F (z) ∈ H(E), cf. [dB, Problem 45].

By (dB1), a deBranges space H is a reproducing kernel Hilbert space of
entire functions. This means that there exists a (unique) function K(v, z),
entire in z and in v̄, such that for every fixed v ∈ C we have K(v, ·) ∈ H and
(F, K(v, ·)) = F (v), F ∈ H. If H is realized as H(E) with some E ∈ HB,
the reproducing kernel of H can be written explicitly in terms of E. In fact,
we have

K(v, z) =
E(z)E(v) − E#(z)E(v̄)

2πi(v̄ − z)
,

cf. [dB, Theorem 19].

2.5 Definition. A subset L of a deBranges space H is called a dB-subspace,
if it is itself, with the norm inherited from H, a deBranges space. We shall
denote the set of all dB-subspaces of a given space H by Sub(H).

In view of the above axiomatic characterization of deBranges spaces, a
subset L of H is a dB-subspace if and only if

(Sub1) L is a closed linear subspace of H;

(Sub2) if F ∈ L, then also F# ∈ L;

(Sub3) if F ∈ L and z0 ∈ C \ R with F (z0) = 0, then also z−z0

z−z0
F (z) ∈ L.

Those dB-subspaces L of a given deBranges space H with

(SubZ) d(L) = d(H)

are of particular importance. The set of all such dB-subspaces will be de-
noted by Subs(H). Note that, if H and L are written as H(E) and H(E1),
respectively, with some E, E1 ∈ HB, then the validity of (SubZ) just means
that d(E1)|Rd(E)|R.

One of the most fundamental and deepest results in the theory of deBranges
spaces is the so-called Ordering Theorem of deBranges, cf. [dB, Theorem 35]:

2.6. deBranges’ Ordering Theorem: Let H be a deBranges space and
let d : R → N ∪ {0} be given. Then the set {L ∈ Sub(H) : d(L) = d} is
totally ordered with respect to set-theoretic inclusion.
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2.7 Example. An important example of a deBranges space is the classical
Paley-Wiener space PWa, a > 0. It can be defined as the space of all entire
functions of exponential type at most a, whose restrictions to the real axis
belong to L2(R). The norm in the space PWa is given by the usual L2-norm,
‖F‖2 :=

∫

R
|F (t)|2 dt, F ∈ PWa. It is a consequence of a theorem of M.G.

Krein, cf. [RR, Examples/Addenda 2, p. 134], that PWa = H(e−iaz). The
chain Subs(PWa) is given as

Subs(PWa) =
{
PWb : 0 < b ≤ a

}
.

The name of the space PWa origins in a theorem of Paley-Wiener, by which
PWa is the Fourier image of L2(−a, a).

2.8 Example. More general examples of deBranges spaces occur in the theory
of canonical (or Hamiltonian) systems of differential equations, cf. e.g. [dB,
Theorems 37,38], [GK], [HSW]. Let H be a 2 × 2-matrix valued function
defined for t ∈ [0, l], such that H(t) is real and nonnegative, the entries of
H(t) belong to L1([0, l]) and H(t) does not vanish on any nonempty interval.
We call an interval (α, β) ⊆ [0, l] H-indivisible, if for some ϕ ∈ R and
some scalar function h(t) we have H(t) = h(t)(cos ϕ, sin ϕ)T (cos ϕ, sin ϕ),
t ∈ (α, β) a.e.

Let W (t, z) be the (unique) solution of the initial value problem

∂

∂t
W (t, z)

(
0 −1
1 0

)

= zW (t, z)H(t), t ∈ [0, l], W (0, z) = I .

Put (At(z), Bt(z)) := (1, 0)W (t, z), t ∈ [0, l], and Et(z) := At(z) − iBt(z).
Then Et ∈ HB, t ∈ (0, l], and E0 = 1. If 0 < s ≤ t ≤ l, then H(Es) ⊆ H(Et)
and the set-theoretic inclusion map is contractive. If s is not an inner point
of an H-indivisible interval, it is actually isometric. Moreover, we have

Subs(H(El)) =
{
H(Et) : t not an inner point of H-indivisible interval

}
.

Paley-Wiener spaces can be realized in this way. In fact, if H(t) = I, t ∈ [0, l],
then Et(z) = e−itz .

2.9 Remark. If E ∈ HB, then ΘE := E−1E# is an inner function in C+.
The mapping F 7→ E−1F is an isometric isomorphism of H(E) onto the
model subspace KΘE

:= H2(C+)⊖ΘEH2(C+), see e.g. [HM1, Theorem 2.10].
Therefore, deBranges spaces are in a sense particular cases of model sub-
spaces. However, deBranges spaces have many special properties, which
have no analoga in the general theory of model subspaces, first of all, the
ordered structure of their subspaces.
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2.10 Definition. Let E ∈ HB. A nonnegative function ω on the real axis
R is said to be an admissible majorant for the space H(E), if there exists a
nonzero function F ∈ H(E) such that |E(x)−1F (x)| ≤ ω(x), x ∈ R. The set
of all admissible majorants for H(E) is denoted by Adm(E).

2.11 Remark. If E1, E2 ∈ HB generate the same space, i.e. H(E1) = H(E2)
including equality of norms, then Adm(E1) = Adm(E2). This follows from
an elementary estimate using Remark 2.3.

Since, for every F ∈ H(E) we have E−1F ∈ H2(C+), a necessary condi-
tion for a function ω to be an admissible majorant for H(E) is the convergence
of the logarithmic integral

∫

R

log− ω(x)

1 + x2
dx < ∞ . (2.1)

The description of admissible majorants for the Paley-Wiener spaces PWa =
H(e−iaz) is a classical problem of harmonic analysis. By what we just said,
any admissible majorant for a space PWa must satisfy (2.1). The fact that
this, obvious, necessary condition is in many cases also sufficient is the con-
tent of the famous Beurling–Malliavin Multiplier Theorem, cf. [BM]:

2.12.Beurling-Malliavin Multiplier Theorem: Let ω be a positive func-
tion on R satisfying (2.1), and assume that the function log ω is Lipschitz on
R. Then ω is an admissible majorant for every space PWa, a > 0.

This is one of the deepest results of harmonic analysis and several different
proofs of it are known, see e.g. [HJ, HMN, K]. It is referred to as Multiplier
Theorem since it means that for any a > 0 there exists a nonzero multiplier
f ∈ PWa such that fω−1 ∈ L∞(R).

Admissible majorants for general de Branges spaces (and even in a more
general setting of the model subspaces of the Hardy class) were studied for
the first time by V.P. Havin and J. Mashreghi in [HM1, HM2], where a
complete parametrization of the class Adm(E) is found and a number of
conditions sufficient for admissibility are obtained. Further applications of
this approach may be found in [BH, BBH] and in [HMN] where a new and
essentially simpler proof of the Beurling-Malliavin theorem is given.

All cited papers are concerned with admissibility of an individual majo-
rant w. A novel feature of the present paper is that we study the whole class
of functions majorized by w.

2.13 Definition. Let E ∈ HB. We say that an admissible majorant ω for
H(E) is separated from zero, if each point x ∈ R has a neighbourhood U(x) ⊆
R such that inf{ω(t) : t ∈ U(x)} > 0. The set of all admissible majorants
for H(E) which are separated from zero will be denoted by Adm+(E).
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2.14 Example. Examples of admissible majorants can be obtained from el-
ements of H(E). For F ∈ H(E) \ {0}, consider the function ωF (x) :=
|E(x)−1F (x)|, x ∈ R. Then, by definition, |E(x)−1F (x)| ≤ ωF (x), and hence
ωF is an admissible majorant for H(E). Clearly, in this situation, we have
ωF ∈ Adm+(E) if and only if d(F )|R = d(E)|R.

3 Subspaces generated by majorants

Throughout this paper we will use the following notation: we write f . g if
there exists a positive constant C such that f ≤ Cg for all admissible values
of variables. Moreover, we write f ≍ g if f . g and g . f .

The relation . is reflexive and transitive, hence it induces an order on
equivalence classes of functions modulo the equivalence relation ≍. In par-
ticular, given E ∈ HB, we obtain an order on the set Adm(E)/≍ as well as
on Adm+(E)/≍. Clearly, if ω ∈ Adm(E), or ω ∈ Adm+(E), and ω1 ≍ ω,
then also ω1 ∈ Adm(E), or ω1 ∈ Adm+(E), respectively.

Admissible majorants give rise to dB-subspaces of H(E).

3.1 Definition. For E ∈ HB and ω ∈ Adm(E) define

Rω(E) :=
{
F ∈ H(E) : |E(x)−1F (x)| . w(x), x ∈ R

}
,

and Rω(E) := ClosH(E) Rω(E).

3.2 Proposition. Let E ∈ HB and let ω ∈ Adm(E). Then the space Rω(E)
is a dB-subspace of H(E). The assignment R : ω 7→ Rω(E) defines a mono-
tone map of Adm(E)/≍ into Sub(H(E)). Moreover, ω ∈ Adm+(E) if and
only if Rω(E) ∈ Subs(H(E)).

Proof. By its definition Rω(E) is a closed linear subspace of H(E). Clearly,
Rω(E) is invariant under the map F 7→ F#. Since this map is continuous
with respect to the norm of H(E), (Sub2) follows.

Let F ∈ Rω(E) and v ∈ C \ R with F (v) = 0 be given. Then also
z−v̄
z−v

F (z) ∈ Rω(E), i.e. Rω(E) ∩ ker χv, where χv is the point evaluation

functional at v, is mapped into Rω(E) by the map Φ : F (z) 7→ z−v̄
z−v

F (z).
Note that, in particular, one can always find an element G ∈ Rω(E) with
G(v) = 1.

Since Φ maps ker χv isometrically and, thus, continuously into H(E), it
follows that

Φ
(
ClosH(E)(Rω(E) ∩ ker χv)

)
⊆ ClosH(E) Rω(E) = Rω(E) .
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Let F ∈ Rω(E) ∩ ker χv, and choose Fn ∈ Rω(E) such that Fn → F . More-
over, choose G ∈ Rω(E) with G(v) = 1. Since Fn(v) → F (v) = 0, we have
Fn − Fn(v)G → F . Hence Rω(E) ∩ ker χv ⊆ ClosH(E)(Rω(E) ∩ ker χv), and
(Sub3) follows.

If ω1, ω2 ∈ Adm(E), ω1 . ω2, then, clearly, Rω1(E) ⊆ Rω2(E) and,
therefore, Rω1(E) ⊆ Rω2(E). It follows that Rω(E) depends only on the
equivalence class ω/≍ and is monotone.

We come to the proof of the last assertion. Let ω ∈ Adm(E). Assume first
that Rω(E) ∈ Subs(H(E)) and let t ∈ R be given. Choose F ∈ Rω(E) with
d(F )(t) = d(E)(t). Then, by continuity, there exists δ > 0 and a compact
neighbourhood U(t) of t such that |E(x)−1F (x)| ≥ δ, x ∈ U(t). Choose a
sequence Gn ∈ Rω(E) such that Gn → F in the norm of H(E). Then Gn also
converges to F locally uniformly. Since d(Gn)(x) ≥ d(E)(x) for all n ∈ N
and x ∈ R, by the Maximium Modulus Principle, E−1Gn → E−1F locally
uniformly on C \ {v ∈ C− : E(v) = 0}. Hence there exists n ∈ N such that
|E(x)−1Gn(x)| ≥ δ/2, x ∈ U(t). Let C > 0 be such that |E(x)−1Gn(x)| ≤
Cω(x), x ∈ R, then infx∈U(t) ω(x) ≥ δ

2C
> 0. It follows that ω ∈ Adm+(E).

Conversely, assume that ω ∈ Adm+(E). Let t ∈ R be given and choose
F ∈ Rω(E)\{0}. Put n := d(F )(t)−d(E)(t), then n ∈ N∪{0}, the function
(z− t)−nF (z) belongs to H(E), and d((z− t)−nF (z))(t) = d(E)(t). Let U(t)
be a compact neighbourhood of t such that infx∈U(t) ω(x) > 0. Then, by
continuity, [(x − t)nE(x)]−1F (x) is bounded on U(t). Thus

|[(x − t)nE(x)]−1F (x)| . ω(x), x ∈ U(t).

Since 1
|x−t|

is bounded for x 6∈ U(t), clearly,

|[(x − t)nE(x)]−1F (x)| . |E(x)−1F (x)| . ω(x), x 6∈ U(t).

Hence F (z)
(z−t)n ∈ Rω(E), and it follows that Rω(E) ∈ Subs(E). ❑

3.3 Remark. Taking the closure ClosH(E) in the definition of Rω(E) is actually
necessary in order to obtain deBranges subspaces. Although the linear space
Rω(E) always satisfies (Sub2) and (Sub3) it will, in general, not be closed. In
fact, if one assumes that ω ∈ L2(R), then the linear space Rω(E) is not closed
unless it is finite-dimensional. This is seen by an application of a theorem of
Grothendieck with the probability measure

dµ(x) :=
ω2(x)

∫

R
ω2(t) dt

dx ,

cf. [R, Theorem 5.2]. The assumption ω ∈ L2(R) is not too restrictive;
for example, it is met by every admissible majorant of the form ωF , F ∈
H(E) \ {0}, cf. Example 2.14.
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In the next theorem we characterize the dB-subspaces of a given space
H(E) which are of the form Rω(E). This is the first main result of this
paper.

3.4 Theorem. Let E, E1 ∈ HB be given, such that H(E1) ∈ Sub(H(E)).
Then H(E1) ∈ R(Adm(E)) if and only if mt E1

E
= 0.

3.5 Remark. The mean type condition in this theorem does not depend on
the choice of E and E1. In fact, by Remark 2.3, if H(E1) = H(E2) with
equality of norms, then mt E1

E2
= mt E2

E1
= 0.

In the proof of Theorem 3.4 we will use a class of dB-subspaces defined by
a growth condition, cf. [KW2]: If H(E) is a deBranges space and β+, β− ≤ 0,
denote by H(E)(β+,β−) the linear subspace

H(E)(β+,β−) :=
{
F ∈ H(E) : mt

F

E
≤ β+, mt

F#

E
≤ β−

}
.

Then the space H(E)(β+,β−) is closed. Moreover, if β+ = β−, it actually
belongs to Subs(H(E)) ∪ {0}, cf. [KW2, Lemma 2.6, Corollary 5.2].

3.6 Lemma. Let H(E) be a deBranges space, β < 0, and assume that
H(E)(β,β) 6= {0}. Then dim

(
H(E)(β′,β′)

/
H(E)(β,β)

)
= ∞, β ′ ∈ (β, 0].

Proof. It is enough to show that for all β with H(E)(β,β) 6= {0} and β ′ ∈ (β, 0]
we have H(E)(β,β) 6= H(E)(β′,β′). To see this, choose F ∈ H(E)(β,β) \{0} and
put α : mt F

E
. Then the function G(z) := ei(α−β′)zF (z) belongs to H(E), cf.

[KW2, Lemma 2.6], and satisfies mt G
E

= β ′. Since α ≤ β ≤ β ′, we have

mt G#

E
= α − β ′ + F#

E
≤ α − β ′ + β ≤ β ′. Hence G ∈ H(β′,β′) \ H(β,β). ❑

3.7 Lemma. Let E, E1 ∈ HB, H(E1) ∈ Sub(H(E)), and β < 0 be given.
Then H(E1) ⊆ H(E)(β,β) if and only if mt E1

E
≤ β.

Proof. Assume that H(E)(β,β) 6= {0}. Then [KW2, Lemma 5.5] implies

that H(E)(β,β) = H(Eβ) with Eβ ∈ HB and mt
Eβ

E
= β. Hence, if H(E1) ⊆

H(E)(β,β), we get

mt
E1

E
= mt

E1

Eβ
︸ ︷︷ ︸

≤0

+ mt
Eβ

E
≤ β .

Conversely, if mt E1

E
≤ β, we obtain for every F ∈ H(E1) \ {0}

mt
F

E
= mt

(
F

E1

·
E1

E

)

mt
F

E1

+ mt
E1

E
≤ β .
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Hence F ∈ H(E)(β,0). Since with F also F# belongs to H(E1), the same
argument will show that F ∈ H(E)(0,β) and, therefore, F ∈ H(E)(β,β). ❑
Proof (of Theorem 3.4). Let E, E1 ∈ HB, H(E1) ∈ Sub(H(E)), be given.

Sufficiency: Assume that mt E1

E
= 0.

Since H(E1) ∈ Sub(H(E)), we have d(E1)|R ≥ d(E)|R. Define ω as

ω(x) :=
|E1(x)|

(1 + |x|)|E(x)|
, x ∈ R , (3.1)

then ω is a continuous and nonnegative function on R. Let v ∈ C \ R and
consider the reproducing kernel

K1(v, z) =
E1(z)E1(v) − E#

1 (z)E1(v̄)

2πi(v̄ − z)

of H(E1). Then we have for x ∈ R,

|K1(v, x)| =
1

2π

∣
∣
∣
∣
∣

E1(x)E1(v) − E#
1 (x)E1(v̄)

v̄ − x

∣
∣
∣
∣
∣
≤

≤
1

π
max{|E1(v)|, |E1(v̄)|} · max

t∈R

1 + |t|

|t − v̄|
·
|E1(x)|

1 + |x|
= Cω(x)|E(x)|

(3.2)

where C := 1
π

max{|E1(v)|, |E1(v̄)|}maxt∈R

1+|t|
|t−v̄|

. Hence |E(x)−1K1(v, x)| .

ω(x), E(x) 6= 0, and by continuity this inequality holds for all x ∈ R. Hence
ω ∈ Adm(E) and K1(v, ·) ∈ Rω(E). Since the linear span of the reproducing
kernels K1(v, ·), v ∈ C \ R, is dense in H(E1), we conclude that H(E1) ⊆
R(ω).

Conversely, let F ∈ Rω(E). Then F ∈ H(E) and, by [KW2, §2], E1 ∈
H(E) + zH(E). Thus E−1F, E−1E1 ∈ N(C+), and it follows that E−1

1 F ∈
N(C+). Moreover, by our assumption that mt E1

E
= 0, we have

mt
F

E1
= mt

F

E
+ mt

E

E1
= mt

F

E
≤ 0 .

Since F# also belongs to H(E) whenever F does, this argument also applies
to F# and we obtain E−1

1 F# ∈ N(C+), mt(E−1
1 F#) ≤ 0.

Since F ∈ Rω(E), i.e. |F (x)| . ω(x)|E(x)|, x ∈ R, we have |E1(x)−1F (x)| .

(1 + |x|)−1 ∈ L2(R). It follows that F ∈ H(E1) for any F ∈ Rω(E). Thus,
also R(ω) ⊆ H(E1).

Necessity: Assume that H(E1) = R(ω) for some ω ∈ Adm(E).
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Let us assume on the contrary that mt E1

E
= β < 0. Then, by Lemma 3.7,

H(E1) ⊆ H(β,β). Consider the map

Φ :

{
H(β,β) → H(E),
F (z) 7→ eiβzF (z),

cf. [KW2, Lemma 2.6]. This map is isometric and, therefore, continuous.
Since Rω(E) ⊆ H(β,β) it follows that Φ(Rω(E)) ⊆ H(E). Clearly, we have
|Φ(F )(x)| = |F (x)|, x ∈ R. Thus, Φ(Rω(E)) ⊆ Rω(E) and, consequently,
Φ(Rω(E)) ⊆ Rω(E). Hence, if F ∈ Rω(E), then for every n ∈ N we have
Φn(F ) ∈ Rω(E) ⊆ H(E). However,

mt
Φn(F )

E
= mt

einβzF (z)

E(z)
= −nβ + mt

F

E
.

If F 6= 0 and n is chosen sufficiently large, we have a contradiction since, due
to the inclusion Φn(F ) ∈ H(E), always mt Φn(F )

E
≤ 0 must hold. ❑

As a byproduct of the proof of Theorem 3.4 we obtain the following result
which will be of importance in our further investigation of the structure of
Adm(E).

3.8 Corollary. Let E ∈ HB and ω ∈ Adm(E). Then there exists F ∈
H(E) \ {0} such that R(ω) = R(ωF ).

Proof. Choose E1 ∈ HB such that R(ω) = H(E1). Then mt E1

E
= 0, and, as

we have seen in the proof of sufficiency of Theorem 3.4,

H(E1) = R

( |E1(x)|

(1 + |x|)|E(x)|

)

.

Let K1 be the reproducing kernel of H(E1) and fix v ∈ C+. It is easy to
see that |K1(v, x)| ≍ (1 + |x|)−1|E1(x)|, and we conclude that H(E1) =
R(ωK1(v,·)). ❑

The dB-subspaces of highest interest are those which satisfy (SubZ), i.e.
the elements of Subs(H(E)). Correspondingly, the admissible majorants of
highest interest are the elements of Adm+(E). From Theorem 3.4 we deduce
a characterization of R(Adm+(E)).

3.9 Proposition. Let E, E1 ∈ HB be such that H(E1) ∈ Sub(H(E)). Then
the following are equivalent:

(i) H(E1) ∈ R(Adm+(E));

(ii) H(E1) ∈ Subs(H(E)) and mt E1

E
= 0;

11



(iii) H(E1) ∈ Subs(H(E)) and H(E1) ⊇
⋃

β<0 H(E)(β,β).

Proof. Combining Theorem 3.4 and Proposition 3.2 we immediately see that
(i) is equivalent to (ii).

Assume that (iii) does not hold, i.e. there exists β < 0 with H(E)(β,β) *
H(E1). Since Subs(H(E))∪{0} is totally ordered, this implies that H(E)(β,β) ⊇
H(E1). We obtain from Lemma 3.7 that mt E1

E
≤ β, and see that (ii) does

not hold.
Conversely, assume that β0 := mt E1

E
< 0. Then H(E1) ⊆ H(E)(β0,β0).

Since H(E1) 6= {0} it follows that H(E)(β,β) ) H(E)(β0,β0), β ∈ (β0, 0]. ❑
From this result we obtain a criterion for density of a set Rω(E) in H(E).

Results of this type are of interest since density of Rω(E) means that all
elements of H(E) can be approximated by functions F satisfying |E−1F | . ω
on the real axis, i.e. by, in a certain sense, ‘small’ functions.

3.10 Corollary. Let E ∈ HB.

(i) If the linear space L0 :=
⋃

β<0 H(E)(β,β) is dense in H(E), then for

every ω ∈ Adm+(E) the linear space Rω(E) is dense in H(E). Unless
dimH(E) = 1, also the converse holds.

(ii) Assume that ClosH(E) L0 = H(E) and let F0 ∈ H(E), d(F0)|R =
d(E)|R. Then the set

{
F ∈ H(E) : |F (x)| . |F0(x)|, x ∈ R

}

is dense in H(E).

Proof. The asserted implication in (i) follows immediately from Proposition
3.9, (i) ⇒ (iii). To prove the converse, let dimH(E) > 1 and assume that
L0 is not dense in H(E). If L0 = {0}, let L be any element of Subs(H(E)) \
{H(E)}. Note that this set is nonempty since dimH(E) > 1. If L0 6= {0},
put L := ClosH(E) L0. Since, clearly, L0 satisfies (Sub2), (Sub3) and (SubZ),
the same argument as in Proposition 3.2 shows that L ∈ Subs(E). By
Proposition 3.9, we have L = R(ω0) for some ω0 ∈ Adm+(E). We see that
Rω0(E) is not dense in H(E).

To establish the assertion (ii), apply (i) with the majorant ωF0. ❑
We would like to illustrate the above statements by some examples. First

let us make explicit two extreme cases.

3.11 Example. Assume that τE := mt E#

E
< 0. Then Rω(E) = H(E) for all

ω ∈ Adm+(E). Indeed, in this situation, by [KW2, Theorem 2.7, (ii)], we
have ClosH(E)

⋃

β<0 H(E)(β,β) = H(E).
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This result applies, in particular, to the Paley-Wiener space PWa =
H(e−iaz).

3.12 Corollary. For any ω ∈ Adm+(e−iaz) (in particular, if ω(x) = |F0(x)|,
where F0 ∈ PWa has no real zeros, or if ω : R → (0,∞) satisfies (2.1) and
log w is Lipschitz on R) the set Rω(E) is dense in PWa.

3.13 Example. Assume that E is of zero exponential type. Then, by [KW2,
Lemma 5.6], we have H(E)(β,β) = {0} for all β < 0. Hence every element
L ∈ Subs(E) can be written as L = R(ω) for some ω ∈ Adm+(E).

Next, we give an example where some, but not all, dB-subspaces can be
realized as R(ω). This example also shows that the concepts of dB-subspaces
defined by majorants on the one hand and by mean type conditions on the
other, are in a way complementary.

3.14 Example. Consider a canonical system on [0, l] with Hamiltonian H , cf.
Example 2.8. Then we have 1 ∈ H(Et) + zH(Et), t ∈ (0, l]. The function
Et belongs to N(C+) and τ(t) := mt Et =

∫ t

0

√

det H(s) ds. Note that τ is a
continuous and nondecreasing function on [0, l]. We obtain from Proposition
3.9 that a space H(Et), where t ∈ (0, l] is not an inner point of an indivisible
interval, belongs to R(Adm+(El)) if and only if τ(t) = τ(l). On the other
hand, by Lemma 3.7, we have for β ≤ 0

H(El)(β,β) =

{

H(Es(β)), s(β) > 0,

{0}, otherwise,

where s(β) := sup
{
t ∈ [0, l] : τ(t) = τ(l) + β

}
.

4 Minimal majorants

In this section we will have a closer look at the order structure of Adm(E)/≍
and Adm+(E)/≍, respectively. It turns out that the question of existence of
minimal elements is an intriguing matter.

4.1 Definition. An admissible majorant ω is said to be minimal if its equiv-
alence class ω/≍ is a minimal element of Adm(E)/≍. This means that for
every admissible majorant ω̃ with ω̃ . ω, we must have w̃ ≍ w.

Our investigation is based on the following result, which shows that min-
imal admissible majorants correspond to one-dimensional dB-subspaces of
H(E).
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4.2 Theorem. Let E ∈ HB. If ω ∈ Adm(E) is minimal in Adm(E)/≍,
then dimRω(E) = 1. Conversely, if ω ∈ Adm(E) and dimRω(E) = 1,
then there exists ω0 ∈ Adm(E), which is minimal in Adm(E)/≍, such that
Rω(E) = Rω0(E).

Proof.

Step 1: Let ω ∈ Adm(E) and assume that dimRω(E) > 1. We show that ω
is not minimal in Adm(E)/≍.

Since dimRω(E) > 1, we also have dim Rω(E) > 1. Choose linearly inde-
pendent elements F1, F2 of Rω(E). Fix v ∈ C \R and choose α1, α2 ∈ C, not
both zero, such that α1F1(v) + α2F2(v) = 0. Put

F (z) :=
α1F1(z) + α2F2(z)

z − v
.

Then F ∈ Rω(E) and does not vanish identically. Hence ωF . ω. However,

we have |E(x)−1F (x)| . (1 + |x|)−1ω(x), x ∈ R, and hence infx∈R

ωF (x)
ω(x)

= 0.

Thus, ω 6. ωF . It follows that ω is not minimal in Adm(E)/≍.

Step 2: Let F ∈ H(E) \ {0} and dimRωF
(E) = 1. Then ωF is minimal in

Adm(E)/≍.

Let ω ∈ Adm(E) be given such that ω . ωF , and choose G ∈ Rω(E) \ {0}.
Then G also belongs to RωF

(E). Our assumption that dimRωF
(E) = 1

implies F = λG for some λ ∈ C. It follows that, for some appropriate
constant C > 0,

ωF (x) =

∣
∣
∣
∣

F (x)

E(x)

∣
∣
∣
∣
= |λ|

∣
∣
∣
∣

G(x)

E(x)

∣
∣
∣
∣
≤ C|λ|ω(x) .

Hence ωF . ω, and we see that ωF is minimal in Adm(E)/≍.

Step 3: Let ω ∈ Adm(E) and dimRω(E) = 1. Then for every F ∈ Rω(E) \
{0} we have ωF . ω and Rω(E) = RωF

(E).

Fix F ∈ Rω(E) \ {0}, and consider ωF . Since Rω(E) is finite-dimensional,
we have Rω(E) = Rω(E). Thus, ωF . ω and so RωF

(E) ⊆ Rω(E). Since
dimRω(E) = 1, this implies that dimRωF

(E) = 1, and thus, clearly, also
RωF

(E) = Rω(E).

Step 4: The proof of the theorem is now easily completed. Assume that ω is
minimal, then by Step 1 we must have dimRω(E) = 1. Assume conversely
that dimRω(E) = 1. Choose F ∈ Rω(E) \ {0}, then, by Step 3, Rω(E) =
RωF

(E) and, by Step 2, ωF is minimal. ❑
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4.3 Remark. An analogous result is, actually, true in the model subspaces
setting, cf. [BH, Proposition 5.6]. However, in contrast to the general situa-
tion, we obtain in the case of deBranges spaces a one-to-one correspondence
between minimal majorants and one-dimensional deBranges subspaces.

4.4 Corollary. Let ω ∈ Adm(E). Then ω is minimal in Adm(E)/≍ if and
only if dimRω(E) = 1 and ω ≍ ωF for some F ∈ H(E) \ {0}. In this case
ω ≍ ωF for any F ∈ Rω(E) \ {0}.

Proof. Assume that ω ∈ Adm(E) is minimal in Adm(E)/≍. By the above
theorem we have dimRω(E) = 1. By Step 3 of its proof, for F ∈ Rω(E)\{0},
the majorant ωF satisfies ωF . ω. By minimality of ω, this implies ωF ≍ ω.
The converse is just Step 2 of the above proof. ❑

4.5 Remark. It should be emphasized that, if ω ∈ Adm(E) has the property
that dimRω(E) = 1, it does not necessarily follow that ω itself is minimal.

For example, let E(z) := (z + i)(z + 2i). Then H(E) = span{1, z}
and we see that ω(x) := |E(x)|−1 and ω1(x) := |E(x)|−1

√

|x| + 1 belong to
Adm+(E) and that Rω(E) = Rω1(E) = span{1}. However, clearly, ω is
essentially smaller than ω1.

4.6 Corollary. Let E ∈ HB and assume that dimH(E) > 1. Then the set
Adm(E)/≍ contains uncountably many minimal elements.

Proof. Let x0 ∈ R and consider the function Sα(z) := eiαE(z)− e−iαE#(z),
α ∈ [0, π). Then there exists at most one number α ∈ [0, π) such that
Sα ∈ H(E). Hence all but at most countably many real numbers t are not
zeros of a function Sα belonging to H(E). Then, by [dB, Theorem 22], for
such t the space RωK(t,·)

(E) is one-dimensional; in fact

RωK(t,·)
(E) = span{K(t, ·)} .

By Corollary 4.4, ωK(t,·) is minimal in Adm(E)/≍.
Since dimH(E) > 1, no two of the elements K(t, ·), t ∈ R, are linearly

dependent. Hence no two of the spaces RωK(t,·)
(E) coincide. Thus no two of

the majorants ωK(t,·) define the same equivalence class in Adm(E)/≍. ❑
For admissible majorants separated from zero the situation is significantly

different. Below we will show that the set Adm+(E)/≍ need not necessarily
contain minimal elements and give a criterion for the existence of minimal
elements in Adm+(E)/≍.

4.7 Lemma. Let ω ∈ Adm+(E) be given. Then ω/≍ is a minimal element
in Adm+(E)/≍ if and only if it is minimal in Adm(E)/≍.
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Proof. Let ω/≍ be a minimal element of Adm+(E)/≍ and assume that
ω1 ∈ Adm(E) is such that ω1 ≤ ω and infR ω1/ω = 0. It is elementary to
see that, since ω ∈ Adm+(E), there exists a function ω2 separated from zero
and such that ω1 ≤ ω2 ≤ ω, infR ω2/ω = 0. Thus, ω2 ∈ Adm+(E), ω2 . ω,
but ω2 6≍ ω, which contradicts the minimality of ω/≍ in Adm+(E)/≍. ❑

4.8 Lemma. Let E ∈ HB. Then the space H(E) contains a real function S
with

d(S)|R = d(E)|R and d(S)|C\R = 0 , (4.1)

if and only if there exists L ∈ Subs(H(E)) such that dim L = 1. In this case
there exists, up to constant real multiples, exactly one real function S ∈ H(E)
which satisfies (4.1).

Proof. If S = S# and (4.1) holds, then, clearly, L := span{S} satisfies
(Sub1)-(Sub3) and (SubZ). Conversely, assume that L ∈ Subs(H(E)) is one-
dimensional. By (Sub2) there exists S = S# ∈ L \ {0}. Since, for a zero

v of S, the functions S(z) and S(z)
z−v

are linearly independent, it follows from
(Sub3) and Remark 2.4 that S must satisfy (4.1).

If S1, S2 are real elements of H(E) which both satisfy (4.1), then span{S1}
and span{S2} are one-dimensional elements of Subs(H(E)). Hence, by the
Ordering Theorem, span{S1} = span{S2}. ❑

Combining Theorem 4.2 with Theorem 3.4 leads to the following:

4.9 Theorem. Let E ∈ HB. Then there exists a minimal element in
Adm+(E)/≍ if and only if the following hold:

(i) there exists L ∈ Subs(H(E)) with dim L = 1;

(ii) for all β < 0 we have H(E)(β,β) = {0}.

In this case there exists exactly one minimal element in Adm+(E)/≍, namely
ωS/≍ where S is the (up to scalar multiples unique) real element of H(E)
with d(S)|R = d(E)|R, d(S)|C\R = 0.

Proof. Assume that the conditions (i) and (ii) hold. Let L be the one-
dimensional element of Subs(H(E)), and let S be as in Lemma 4.8. By
Proposition 3.9 there exists ω ∈ Adm+(E) such that L = R(ω). By Step
3 of the proof of Theorem 4.2, we have RωS

(E) = L, and ωS is minimal by
Step 2. Since S satisfies (4.1), we have ωS ∈ Adm+(E).

Assume that ω is a minimal element of Adm+(E)/≍. By Lemma 4.7
and Theorem 4.2, we have dimRω(E) = 1. Hence (i) holds. Moreover, by
Theorem 3.4, we must have Rω(E) ⊇ H(β,β) for all β < 0. Thus, dimH(β,β) ∈
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{0, 1} for all β < 0. If for some β < 0 we have dimH(β,β) = 1, we would have
H(β,β) = H(β′,β′) for all β ′ ∈ (β, 0), which contradicts Lemma 3.6.

Let ω1, ω2 be minimal elements of Adm+(E)/≍. By Lemma 4.7 and The-
orem 4.2 we have dimRωj

(E) = 1, j = 1, 2. Since Rωj
(E) ∈ Subs(H(E)), it

follows that Rω1(E) = Rω2(E) = span{S} where S is as in Lemma 4.8. By
Corollary 4.4 we have ωj ≍ ωS, j = 1, 2. ❑

4.10 Remark. The present Theorem 4.9 is a (slight) generalization of a result
of V.P. Havin and J. Mashreghi, cf. [HM1] or [B, BH], which states the
following: Assume that E ∈ HB is of zero exponential type. Then there
exists a positive and continuous minimal majorant in Adm(E) if and only
if 1 ∈ H(E). Moreover, in case of existence, this majorant is given by ω =
|E|−1, and any other continuous positive minimal majorant ω1 ∈ Adm(E)
satisfies ω1 ≍ |E|−1.

Note that, in the present setting, the inclusion 1 ∈ H(E) is equivalent to
|E|−1 ∈ L2(R). A number of conditions sufficient for the inclusion 1 ∈ H(E)
may be found in [B, KW3].

4.11 Example. Consider a canonical system defined on [0, l] with Hamiltonian
H . Then Adm+(El) contains a minimal element if and only if for some ǫ > 0
the interval (0, ǫ) is indivisible and det H(t) = 0, a.e. t ∈ [0, l]. In this case
the minimal majorant is given by |El(x)|−1.

In particular, for the Paley-Wiener space PWa = H(e−iaz) there are no
minimal majorants.
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[KW2] M. Kaltenbäck, H. Woracek, De Branges spaces of exponential type: gen-
eral theory of growth, Acta Sci. Math. (Szeged) 71 (2005), 1-2, 231–284.
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