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Abstract The task of complete complexity dichotomy is to clearly distinguish
between easy and hard cases of a given problem on a family of subproblems. We
consider this task for some optimization problems restricted to certain classes of
graphs closed under deletion of vertices. A concept in the solution process is based
on revealing the so-called “critical” graph classes, which play an important role in
the complexity analysis for the family. Recent progress in studying such classes is
presented in the article.

Keywords Computational complexity · Polynomial-time algorithm · Hereditary
graph class · Independent set problem · Dominating set problem · Coloring problem ·
List edge-ranking problem

1 Introduction

A large number of results on polynomial-time solvability and NP-completeness has
been accumulated for many graph problems under various restrictions of graph classes
[45]. The existing extensive literature is constantly updated with new papers in this
area. Despite the critical importance of studying the complexity of graph problems
for individual classes, there is a noticeable absence of the generality in papers in the
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field. Usually, the complexity status of an NP-complete graph problem is determined
for “standard” classes, like the classes of bipartite graphs, planar graphs, bounded
degree graphs, and etc. One could say that the standard approach in the area is to
enumerate several “famous” classes and point out the complexity of a given problem
for at least one of them. For example, the classical independent set problem is known
to be polynomial-time solvable for bipartite graphs and graphs with degrees at most
two [48], but it is NP-complete for planar graphs and graphs with degrees at most three
[14]. However, the approach does not allow to clarify what is the reason of different
complexity of the same graph problem for distinct restrictions of the class of all graphs.
At the same time, it would be more natural to look at the issue more generally. A novel
approach for a systematic study of the computational complexity is considered in this
paper.

When considering representative families of graph classes, one could set more
general problems than the complexity analysis of some concrete graph problem for
a given class of graphs. One could ask the following two general questions. How to
classify classes in a family with respect to the computational complexity of a consid-
ered graph problem? Is there a “boundary” separating “easy” and “hard” instances? To
answer these questions, a suitable choice of the corresponding conceptual apparatus
is necessary. Human intuition says that we should focus our attention on classes of
the family critical with respect to some “complexity-topological” sense. For exam-
ple, minimal “hard” and maximal “easy” classes are natural critical classes, as they
are phase-transition elements. Possible absence of the “boundary points” above leads
to the idea to consider the limits of monotonically decreasing sequences of “hard”
classes. Intuitively, these limits may also be critical classes.

This paper is a survey about some types of critical classes (boundary and mini-
mal hard) in the family of hereditary graph classes, i.e. sets of graphs closed under
isomorphism and deletion of vertices.

2 Hereditary classes

All graphs in this paper are finite, unlabelled, undirected, without loops and multiple
edges. A graph H is a subgraph of G if H is obtained from G by deletion of some
edges and vertices with incident edges. A graph H is an induced subgraph of G if H
is obtained fromG by deletion of some vertices with incident edges. A class of graphs
is a set of graphs closed under isomorphism. A graph H is called a subgraph of a
graph G if H can be obtained from G by deletion of vertices and edges. A graph H
is called an induced subgraph of a graph G if H can be obtained from G by deletion
of only vertices. A class of graphs is called hereditary if it is closed under deletion
of vertices. A class is hereditary if and only if it contains all induced subgraphs of
each its graph. Any hereditary (and only hereditary) graph class X can be defined
by a set of its forbidden induced subgraphs Y (see Theorem 15 of [28]). We write
X = Free(Y) in this case. In other words, X consists of those and only those graphs
that deletion of their vertices does not produce any graph in Y . There is a unique
minimal set Y with this property denoted by Forb(X ). If Forb(X ) is finite, then X
is called finitely defined. For example, if X1 is the set of all forests, then Forb(X1)
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consists of all cycles. If X2 is the class of graphs, whose connected components are
complete graphs, then a path with three vertices is a unique element of Forb(X2).
The class X2 is finitely defined, but X1 is not. Notice that if X and Y are hereditary
classes such that Y ⊂ X , then there is a subset Z ⊆ X such that Y = X ∩ Free(Z).

For some hereditary graph classes, determining the minimal set of forbidden
induced subgraphs is a simple problem. However, in general, the problem of find-
ing this set is far from being trivial, as the example of perfect graphs shows [10]. It
has been open for almost 40 years.

The choice of the family is motivated bymany reasons. Firstly, many known classes
are hereditary. For example, the classes of bipartite and planar graphs, bounded degree
graphs are hereditary. Secondly, the family is continuum and, hence, representative,
which makes the questions raised in the introduction to be interesting for it. Indeed,
taking any two different infinite subsets of the set of all simple cycles and forbidding
their graphs as induced subgraphs produces different hereditary classes. The set of
all simple cycles is countable, the power set of a countable set is continuum [47],
the set of all finite subsets of a countable set is also countable [47]. The difference
of a continuum set and a countable set is also continuum. Hence, the set of all those
hereditary classes is continuum. Thirdly, for hereditary classes, the concept of critical
graph classes really does its job, i.e. it helps to answer when a difficult problem
becomes easy. More precisely, a graph problem is NP-complete for a finitely defined
class if and only if the class contains a subclass critical for the problem. Hence, a
known list of classes critical for a given problem enables to classify its complexity
in the family of all finitely defined graph classes. Additional motivation to consider
specifically hereditary graph classes will be presented through one section.

3 Graphs and classical graph problems

As usual, Pn,Cn , and Kn are a simple path, a simple cycle, and a complete graph with
n vertices, respectively. A graph Kp,q is complete bipartite with p vertices in the first
part and q vertices in the second.

A graph G is the complement of a graph G. A graph G1 + G2 is the disjoint sum
of graphs G1 and G2 with non-intersected sets of vertices. A graph kG is isomorphic
to k disjoint copies of a graph G. For a graph G and its vertex x , degG(x) is degree
of x in the graph G.

In this paper, we will refer to the following classical graph problems.
An independent set of a graph is a subset of its pairwise non-adjacent vertices. The

size of a maximum independent set of G is said to be the independence number of G
and denoted by α(G). The independent set problem, for a graph G and a natural k, is
to verify the inequality α(G) ≥ k.

A vertex cover of a graph G is a subset V ′ ⊆ V (G) such that any edge in E(G) is
incident to an element of V ′. It is easy to see that V ′ is a vertex cover of G if and only
if V (G)\V ′ is independent. The size of a minimum vertex cover of G is denoted by
β(G). Clearly, α(G) + β(G) = |V (G)| for each graph G. The vertex cover problem,
for a graph G and a natural k, is to verify the inequality β(G) ≤ k.
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1596 D. S. Malyshev, P. M. Pardalos

A clique in a graph is a set of pairwise adjacent vertices. For a given graph G and a
natural k, the clique problem is to determine whether G contains a clique with at least
k vertices.

A dominating set of a graph G is a subset V ′ ⊆ V (G) such that any element of
V (G)\V ′ has a neighbor in V ′. The size of a minimum dominating set of G is said to
be the domination number of G and denoted by γ (G). The dominating set problem is
to check, for a given graph G and a natural k, whether γ (G) ≤ k or not.

A proper coloring (or simply a coloring) is an arbitrary mapping from the set of
vertices or edges of a graph into a set of colors of the graph such that any adjacent
vertices (or edges) are colored by different colors. The chromatic number of graph G
denoted byχ(G) is aminimal number of colors needed to properly colorG. The vertex
k-colorability problem is to verify whether vertices of a given graph can be properly
colored with at most k colors. The edge k-colorability problem is the edge analogue of
the vertex k-colorability problem. The chromatic number problem, for a given graph
G and a given natural k, is to check the validity of the inequality χ(G) ≤ k. Notice,
the vertex k-colorability and the chromatic number problems are distinct problems,
because we know k for the first problem in advance, i.e. before giving G. At the same
time, k is a part of an input for the second problem.

AHamiltonian cycle of a graph is a cycle that once visits all its vertices. For a given
graph, the Hamiltonian cycle problem is to check whether a given graph contains a
Hamiltonian cycle or not.

4 Boundary graph classes

We use the following natural formal definitions for “easy” and “hard” hereditary
classes. For a given NP-complete graph problem �, a hereditary class is said to be
�-easy if � can be polynomially solved for its graphs. A hereditary class is �-hard
if � is NP-complete for it. For instance, bipartite graphs constitute an easy case for
the independent set problem [48], but the class of planar graphs is hard for it [14].

Maximal �-easy and minimal �-hard classes are natural boundary elements in
the family of hereditary classes. It turns out that the boundary may be absent at all.
First, there are no maximal �-easy classes, as any �-easy classX can be extended by
adding a graph G /∈ X and all proper induced subgraphs of G. Clearly, the resultant
class is also �-easy, as we added a finite set of graphs to X . Second, minimal hard
classes exist for some problems and do not exist for some others. For a given graph G ′
and a function f : E(G ′) −→ {1, 2}, the travelling salesman problem with distances
one and two is to check whether the minimum length of its Hamiltonian cycles is at
most a given number or not. It is NP-complete in the class of all complete graphs
[44]. Forbidding any fixed complete graph in the class of all complete graphs restricts
the number of vertices of graphs in the resultant class. Hence, each proper hereditary
subclass of the class of all complete graphs contains a finite set of graphs. Hence, the
problem can be solved in O(1) time for the subclass. Hence, the class of all complete
graphs is a minimal hard case for the problem. On the other hand, for the vertex and
edge variants of the k-colorability problem, any hard class contains a proper hard
subclass. Indeed, if Y is a hard case for the problem, then it must contain a graph
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that cannot be properly colored in k colors. Let H ∈ Y be a fixed graph of this type.
Therefore, Y\Free({H}) contains only graphs that also cannot be properly colored in
k colors. There is a polynomial-time algorithm to test whether a given graph G ′′ ∈ Y
belongs toY∩Free({H}) by enumerating all subsets of V (G ′′)with |V (H)| elements
and verifying whether one of them induces H . If G ′′ ∈ Y\Free({H}), then G ′′ is
not k-colorable, as H is not k-colorable. Hence, Y ∩ Free({H}) must be hard for the
problem, and we have a contradiction. The phenomena of the absence of the boundary
we just considered was noticed in [31].

So, to classify hereditary classes, we have to take into account that the sets of easy
and hard classes can be openwith respect to the inclusion relation. In otherwords, there
may be infinite monotonically decreasing sequences of hard classes. Intuitively, the
limits of such chains should play a special role in the analysis of the complexity. This
observation leads to the notion of a boundary graph class. A classX is�-limit if there
is an infinite sequence X1 ⊇ X2 ⊇ . . . of �-hard classes such that X = ⋂∞

k=1 Xk .
Clearly, any �-limit class is hereditary. Moreover, any �-hard class X ′ is �-limit, as
the stationary sequence {Xi }, where Xi = X ′ for each i , converges to X ′. A �-limit
class that is minimal under inclusion is said to be�-boundary. The following theorem
shows the significance of the boundary class notion (see [2,4]).

Theorem 1 A finitely defined class is �-hard if and only if it includes some �-
boundary class.

The theorem shows that knowledge of the �-boundary system (i.e. the set of all
�-boundary classes) gives a dichotomywith respect to NP-completeness and non-NP-
completeness of� for the family of finitely defined classes. Note, the theorem does not
state that a finitely defined class is�-easy if it does not contain any�-boundary class.
One more interesting fact is that there is a boundary class for each NP-complete graph
problem (in contrast tominimal hard classes), as the set of all graphs is finitely defined.
Unfortunately, Theorem 1 cannot be extended to the whole family of all hereditary
classes, since it is wrong for it. The corresponding counterexample will be presented
later.

The definition of a boundary graph class also shows the importance of the family
of hereditary graph classes, as critical graph classes may be absent at all for some
other families. For example, the method does not work for the family of all graph
classes. Indeed, if X is an arbitrary class of graphs, then it is a finite or a countable
set, as the class of all graphs is countable. If X is �-hard, then X must be countable.
Hence, X = {G1,G2, . . .}. Therefore, for each fixed i , the problem � is also NP-
complete for Xi = X \⋃i

j=1{G j }. The sequence {Xi } converges to the empty set, as
⋂∞

i=1 Xi = ∅. Hence, an infinite monotonically decreasing sequence of classes with
NP-complete problem � converging to the empty set can be stretched from any class
with NP-complete problem�. So, applied to the family of all graph classes, the empty
set is an analogue of a boundary class. In other words, critical classes do not exist for
the family. At the same time, removing a graph G from a hereditary class X forces to
remove all supergraphs of G from X , i.e. we come to the class X ∩ Free({G}). The
computational status of a graph problem for X and X ∩ Free({G}) may be distinct.
So, to form an infinite monotone sequence {Xi } of �-hard classes, for each i , one can
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forbid only particular graphs in Xi to obtain Xi+1. This restriction imposes “lower
bounds” on �-boundary classes in the family of hereditary classes.

The notion of a boundary graph class was originally introduced by V. E. Alekseev
for the independent set problem [2]. It was later applied for the dominating set problem
[5]. Nowadays, boundary classes are known for several algorithmic graph problems
[2,4,5,19,30,34,36,39].

The aim of the following three sections is to present some known boundary classes
for the independent set, dominating set, and edge 3-colorability problems. The bound-
ary of some of them will be equipped by a complete or a partial proof to demonstrate
key ideas in this area.

5 Boundary classes for some classical graph problems

5.1 The independent set problem

The notion of a boundary class was introduced in [2] applied to the independent set
problem, where the first boundary class was also found for the problem. This class isS,
which consists of all forests with at most three leaves in every connected component.
In other words, any connected component of every graph in S is a graph of the form
Si, j,k for some non-negative numbers i, j , and k (see Fig. 1).

Now, we are ready to give an example showing that Theorem 1 is not true for
general hereditary classes. Indeed, the class of all forests is easy for the problem [48]
and it contains S.

Any proof that a class is boundary for some graph problem can be split into two
parts. First, the fact that it is a limit class should be proved. Next, its minimality
should be shown. There are two tools to discover limit classes: graph transformations
and reducibility between NP-complete problems. We demonstrate the first tool in this
and the third subsections and the second tool in the following subsection.

A graph is subcubic if degrees of all its vertices are at most three. Let Deg(3) be
the set of all subcubic graphs. The hereditary closure [X ] of a graph class X is the set
of all induced subgraphs (not necessary proper) of all members of X .

Lemma 1 The class S is limit for the independent set problem.

Proof The independent set problem is NP-complete in the classDeg(3) [14]. Denote
this class by X0. A k-subdivision of an edge (a, b) of a graph is to delete it from the
graph, add new vertices c1, c2, . . . , ck and the edges (a, c1), (c1, c2), . . . , (ck−1, ck),

Fig. 1 A graph Si, j,k

1

2

i

1
2

k

1
2

j
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(ck, b). It is known that a 2-subdivision of any edge of any graph increases its inde-
pendence number by exactly one [43]. Let us apply a 2i-subdivision to every edge of
each graph in X0. Let Xi be the hereditary closure of the set of all resultant graphs.
Clearly, the problem is NP-complete for Xi for each i . Let Yi be equal to

⋃∞
j=i Xi .

Clearly, Y1 ⊇ Y2 ⊇ . . . and Yi is a hard case for the problem for each i . In addi-
tion,

⋂∞
i=1 Yi = S. Hence, S is a limit class for the independent set problem by the

definition. 
�
The dominating set problem is NP-complete for the class Deg(3) [14]. It is also

known that a 3-subdivision of any edge of any graph increases its domination number
by exactly one [18]. Hence, similar to the proof of Lemma 1, it is easy to show that S
is limit for the dominating set problem.

There are no common ideas in proving the minimality of limit classes. That is, the
most of known proofs are individual and based on a structure of a limit class. Perhaps,
a proof for S and reduced to it are the only exceptions due to some interesting property
of monotone graph classes not including S.

A hereditary graph class is monotone if it is additionally closed under deletion of
edges. For example, the classes of bipartite and planar graphs are monotone, but the
class of all complete graphs is not. Any monotone class (and only monotone) can be
defined by its forbidden subgraphs [28].

Clique-width is an important parameter of graphs. This is explained by the fact
that many graph problems can be solved in polynomial time for graphs of bounded
clique-width (see [11] for more information). More precisely, for each fixed number
C , many problems that are NP-complete for the set of all graphs become polynomial-
time solvable for the class of all graphs having clique-width at most C . In particular,
this category includes the independent and dominating set problems, the vertex 3-
colorability problem [11].

Lemma 2 [8] If X is a monotone class and S � X , then there is a constant C(X )

such that any graph in X has clique-width at most C(X ).

Theorem 2 If P �= N P, then the classS is boundary for the independent set problem.

Proof Assume that there is a class X , boundary for the problem, such that X ⊂ S.
As X is hereditary and X ⊂ S, there is a number k such that kSk,k,k /∈ X . Then
X ⊆ S∩Free({kSk,k,k}). LetY be the set of all possible graphs obtained from kSk,k,k
by addition of one or more edges. Any graph in this set is not a forest with at most three
leaves in every connected component.Hence,Y∩S = ∅ andX ⊆ Free({kSk,k,k}∪Y).
The class Free({kSk,k,k} ∪ Y) is monotone, as it coincides with the set of all graphs
that do not contain kSk,k,k as a subgraph. In addition, it is finitely defined and does
not include S. Hence, it must easy for the problem by the previous lemma. But, by
Theorem 1, it must be hard, as it includes a boundary classX . We have a contradiction
with P �= N P . 
�

By Theorem 2, if P �= N P , then S is boundary for the vertex cover problem.
Similarly, the class co(S) = {G| G ∈ S} is boundary for the clique problem if
P �= N P . A proof that S is boundary for the dominating set problem (assuming that
P �= N P) is similar to the proof of Theorem 2.
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Theorems 1 and 2 not only shed some new light on known results on the complexity
of the independent set problem, but also give numerous new facts of this type. The
class of all graphs without triangles is finitely defined. For each fixed k, the class
of all graphs with degrees of all vertices at most k is also finitely defined. Indeed,
any its minimal forbidden induced subgraph is obtained from a graph H with k + 1
vertices by adding a new vertex adjacent to all vertices of V (H). The first class and
the second class for k > 2 are classical cases with NP-complete independent set
problem [14]. These facts known more than 35 years completely correspond to those
recent theorems, as each of the two classes includes S. Moreover, for arbitrary graphs
G1, . . . ,Gs not belonging to S, the independent set problem is NP-complete for
Free({G1, . . . ,Gs}) by Theorems 1 and 2. So, the new approach generalizes some
previously known intractability results and discovers a lot of new hard cases for the
problem.

Assuming P �= N P , V. E. Alekseev conjectured that S is a unique boundary class
for the independent set problem [2]. This conjecture is true if and only if Free({G}) is
easy for the problem for each G ∈ S [2]. Progress on the way to prove or disprove this
conjecture is modest. At the moment, polynomial-time solvability of the independent
set problem for Free({G})wasproved for all graphsG ∈ S having atmost five vertices
[3,21,24]. On the other hand, the complexity of the problem is already unknown for
Free({S1,1,3}) and Free({P6}), i.e. for classes defined by forbidding some six-vertex
graphs in S. Nevertheless, there are several indirect evidences that the Alekseev’s
conjecture is likely true [6,7,23,35].

5.2 The dominating set problem

The class S is boundary for the dominating set problem [5]. Three more boundary
graph classes are known for it. For a graph G, its line graph L(G) has vertex set E(G)

and two vertices of L(G) are adjacent if and only if the corresponding edges of G are
adjacent. Let T be the set of all line graphs of graphs in S, i.e. the set {L(G)| G ∈ S}.
In other words, any connected component of any graph in T is a path or of the form
shown in the figure below.

If P �= N P , T is boundary for the dominating set problem [5]. A proof of this
fact is somewhat similar to the proof presented for S and the independent set problem
(Fig. 2).

For a graph G, a graph Q(G) has vertex set V (G) ∪ E(G) and edge set
{(vi , v j )| vi , v j ∈ V (G)} ∪ {(v, e)| v ∈ V (G), e ∈ E(G), v is incident to e} (see
Fig. 3).

Fig. 2 A representative of the
class T
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Fig. 3 The graphs S1,2,2 and
Q(S1,2,2)

1 2 3 4 5

6 (1, 2) (2, 3) (3, 4) (4, 5) (3, 6)

1 6

3 4
2 5

The classQ is the set [{G| ∃H ∈ S,G = Q(H)}]. It is the third boundary class for
the problem. Partially proving this fact, we also demonstrate the idea of polynomial-
time reducibility between two graph problems.

Lemma 3 For every connected graph G, we have γ (Q(G)) = β(G).

Proof The set V (Q(G)) can be split into a clique A and an independent set B, where
A = V (G) and B = E(G). Clearly, any vertex cover of G corresponds to a subset
of A that is a dominating set of Q(G). Hence, γ (Q(G)) ≤ β(G). It is easy to see
that if D is a dominating set of Q(G) and x ∈ D ∩ B, then D\{x} ∪ {y} is also a
dominating set of G, where y ∈ A is an arbitrary neighbor of x . Therefore, there is a
minimum dominating set of Q(G) included in A. It corresponds to some vertex cover
of G. Hence, γ (Q(G)) ≥ β(G). 
�
Theorem 3 If P �= N P, then the classQ is boundary for the dominating set problem.

Proof For a hereditary classX , by Q(X )wedenote the hereditary closure of {G| ∃H ∈
X ,G = Q(H)}. The independent set problem for X is polynomially equivalent to
the dominating set problem for Q(X ) [5]. Lemma 3 is the most important result to
prove this fact. Hence, Q = Q(S) is a limit class for the dominating set problem, as
it is so for S and the independent set problem. In addition, the class Q(G) is finitely
defined, where G is the class of all graphs [5]. Hence, any monotone sequence {Xi }
of hard classes for the dominating set problem converging to a proper subset of Q
must contain an element X j such that X j ⊆ Q(G). Moreover, there is a graph G ′ ∈ S
such that X j ⊆ Q(G) ∩ Free({Q(G ′)}) for some j . The dominating set problem for
X j can be polynomially reduced to the independent set problem for the class of all
graphs that do not contain G ′ as a subgraph. The last class is monotone, and it does
not include S. Hence, the independent set problem is easy for the class. Hence, X j is
easy for the dominating set problem. We have a contradiction with P �= N P . 
�

The fourth boundary class is defined similar to Q. Let G be a subcubic graph. Let
V ′(G) be the set of all degree three vertices of G and V ′′(G) = V (G)\V ′(G). We
define a graph Q∗(G) as follows. The set V (Q∗(G)) coincides with V ′′(G) ∪ E(G).
A vertex x ∈ V ′(G) is incident to edges e1(x), e2(x), e3(x) in the graph G. The
set E(Q∗(G)) coincides with {(vi , v j )| vi , v j ∈ V ′′(G)} ∪ {(v, e)| v ∈ V ′′(G), e ∈
E(G), v is incident to e}∪⋃

x∈V ′ {(e1(x), e2(x)), (e1(x), e3(x)), (e2(x), e3(x))}. The
class Q∗ is the set [{G| ∃H ∈ S,G = Q∗(H)}].

A proof of the following result is similar to the presented proof of Theorem 3
(Fig. 4).

Theorem 4 [39] If P �= N P, then the class Q∗ is boundary for the dominating set
problem.
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Fig. 4 The graphs S1,2,2 and
Q∗(S1,2,2)

1 2 3 4 5

6 (1, 2) (2, 3)
(3, 6)

(3, 4) (4, 5)

1 5

6
2 4

Unfortunately, a complete description of all boundary classes for the dominating
set problem is unknown.

5.3 The edge 3-colorability problem

In this subsection, we present boundary classes for the edge 3-colorability problem.
Graph stretching is the main idea to reveal limit classes for it. The proof for their
minimality presented below is surprising. Namely, we show that boundary classes
included in the revealed limit classes must contain graphs of a special form. Next,
we prove an “extendability property”—if a boundary class X contains a graph G
having a vertex x of a special type, then there is a graph H ∈ X such that G is an
induced subgraph of H and x is not a special-type vertex in G. This property and
those mandatory graphs impose some structural “lower bounds” on boundary classes
for the problem, which mean that those limit classes must be boundary.

Let G be a graph with two chosen vertices such that there is an automorphism of G
mapping these vertices to each other. Replacement of an edge e = (a, b) by the graph
G is to delete e from a graph, identify a with one of the chosen vertices of G and b
with the other chosen vertex of G. Clearly, the resultant graph does not depend on the
choice of a vertex identified with a.

For a finite binary sequence π of length l, a π -garland is a graph obtained from a
path with 2l+2 vertices by replacements of its edges. For each i ∈ {1, 2, . . . , l}, 2i-th
edge of this path is replaced by a diamond (if πi = 0) or by a bug (if πi = 1), where
the degree two vertices of the diamond and the bug are chosen (see Figs. 5, 6).

Lemma 4 For every graph and every finite binary sequence π , replacement of any
its edge by a π -garland preserves edge 3-colorability.

Proof Follows from the fact that replacement of any edge of any graph by the (1)-
garland or by the (0)-garland preserves edge 3-colorability. This fact can be checked

Fig. 5 The graphs diamond
and bug

Fig. 6 The (0, 1)-garland
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as follows. Let G be an arbitrary graph and e = (a, b) be its edge. Let G ′ be
obtained by replacement of e by the (0)-garland. That is, we delete e from G, add ver-
tices v1, v2, v3, v4 and the edges (a, v1), (v1, v2), (v1, v3), (v2, v3), (v2, v4), (v3, v4),

(v4, b). Suppose that G has a proper edge 3-coloring, in which e has the first
color. For the graph G ′, keeping the colors of E(G) ∩ E(G ′), we color the edges
(a, v1), (v2, v3), (v4, b) in the first color, the edges (v1, v2) and (v3, v4) in the second
one, the edges (v1, v3) and (v2, v4) in the third color. Hence, G ′ is edge 3-colorable.
Suppose that G ′ is edge 3-colorable. The colors of (a, v1), (v1, v2), (v1, v3) are pair-
wise distinct. The same is true for (b, v4), (v2, v4), (v3, v4); (v1, v2), (v2, v3), (v2, v4);
(v1, v3), (v2, v3), (v3, v4). Hence, the edges (a, v1), (v2, v3), (v4, b) have the same
color c∗ in the coloring of G ′. For the graph G, keeping the colors of E(G) ∩ E(G ′),
we color the edge e in c∗ to obtain a proper edge 3-coloring of G. The case of replace-
ment of e by the (1)-garland is considered in a similar way. 
�

By Sπ we denote a graph obtained by replacements of all edges of an S1,1,1 by
π -garlands.

Let π be an infinite binary sequence now and π(l) be its subsequence that consists
of the first l members of π . The class Sπ is the set [⋃∞

l=1{l Sπ(l)}].
Lemma 5 For every infinite binary sequence π , the class Sπ is limit for the edge
3-colorability problem.

Proof The edge 3-colorability problem is NP-complete in the class X0 of all graphs
with degrees of all vertices equal to three [17]. For a graph G ∈ X0, let Gπ(i) be a
graph obtained from G by replacements of all its edges by π(i)-garlands, where π(i) is
the sequence that consists of the first i members of π . LetXi be the hereditary closure
of

⋃
G∈X0

{Gπ(i)}. Clearly, for each i , Xi is hard for the edge 3-colorability problem,
as the problem for X0 can be polynomially reduced to the same problem for Xi by
Lemma 4. Let Y j = ⋃∞

i= j Xi . Clearly, Y1 ⊇ Y2 ⊇ . . . and
⋂∞

i=1 Yi = Sπ . Hence,
Sπ is a limit class for the edge 3-colorability problem. 
�

Avertex x of a graphG ∈ Deg(3) is called specific if one of the following conditions
holds:

(a) degG(x) ≤ 1
(b) degG(x) = 2, and there exists a neighbor y of x such that degG(y) ≤ 2
(c) degG(x) = 2, and x belongs to an induced diamond of G
(d) degG(x) = 2, and x belongs to an induced bug of G

Lemma 6 Let X be an arbitrary boundary class for the edge 3-colorability problem,
G1 ∈ X , and x be a specific vertex of G1. Then X ⊆ Deg(3) and it contains a graph
G2 such that G1 is an induced subgraph of G2 and x is not specific in G2.

Proof For every subcubic graph H and every its specific vertex x , the graph H is edge
3-colorable if and only if it so for H\{x}. To make sure the correctness of this fact,
one should verify that H is edge 3-colorable whenever H\{x} is edge 3-colorable. It
is clear if degH (x) ≤ 1. If degH (x) = 2, y is a neighbor of x in H having degree
at most two, H\{x} is edge 3-colorable, then H\{(x, y)} is also edge 3-colorable, as
x and y are degree one vertices in H\{(x, y)}. As x and y are degree one vertices
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1604 D. S. Malyshev, P. M. Pardalos

in H\{(x, y)}, then H is also edge 3-colorable. If degH (x) = 2, x belongs to a
diamond of H induced by vertices x, a, b, c, where (x, c) /∈ E(G), H\{x} is edge
3-colorable, then coloring of (x, a) in the color of (b, c) and (x, b) in the color of (a, c)
produces a proper edge 3-coloring of H . If degH (x) = 2, x belongs to a bug of H
induced by vertices x, a1, b1, a2, b2, y, where (x, a1, b1) and (y, a2, b2) are triangles
of H , (a1, a2) ∈ E(H), (b1, b2) ∈ E(H), H\{x} is edge 3-colorable, then coloring
of (x, a1) in the color of (y, a2) and (x, b1) in the color of (y, b2) produces a proper
edge 3-coloring of H .

A necessary condition for a graph to be edge 3-colorable is to be subcubic. Let
Y be a hard case for the edge 3-colorability problem. We remove all non-subcubic
graphs from it. Next, we consider all induced subgraphs having no specific vertices
of all graphs in the remaining part of Y . The hereditary closure of the class of all
subgraphs of this type is denoted by Y ′. It is a hard case for the problem, as the edge
3-colorability problem for Y can be polynomially reduced to the same problem for
Y ′ by the first sentence of the previous paragraph. Notice that every graph in Y ′ is
subcubic. In addition, the class Y ′ has the following extendability property. For any
graph G1 ∈ Y ′ and its specific vertex x , there is a graph G2 ∈ Y ′ such that G1 is an
induced subgraph ofG2 and x is not specific inG2. This follows from the fact thatY ′ is
the hereditary closure of a set of subcubic graphs, whose every vertex is not specific. As
X is boundary for the edge 3-colorability problem, there is amonotonically decreasing
sequence {Xi } of hard classes for the problem converging toX , each member of which
is included in Deg(3) and has the extendability property. Therefore, X ⊆ Deg(3).
We will show that X also has the extendability property.

Let G be a graph in X such that some vertex x of G is specific. Clearly, for any
i , G ∈ Xi . Let Gi ∈ Xi be a graph such that G is an induced subgraph of Gi and
x is not specific in Gi . It obligatory exists. We construct a graph G ′

i as follows. If
degGi (x) = 3 , then we delete all elements of V (Gi )\V (G) non-adjacent to x . If
degGi (x) = 2, then we delete all elements of V (Gi )\V (G) lying at the distance at
least four from x . Taking into account that x is not specific in Gi and the “locality” of
the specific vertex notion, it is easy to see that x is also not specific in G ′

i . Moreover,
|V (G ′

i )|−|V (G)| ≤ 14 for any i , asG ′
i is subcubic. Hence, the sequence (G ′

1,G
′
2, . . .)

contains finitely many distinct graphs. Therefore, for some i∗, a graph G ′
i∗ belongs to

infinitelymany of the classesX1,X2, . . .. AsX1 ⊇ X2 ⊇ . . ., thenG ′
i∗ belongs to each

of these classes. Therefore, G ′
i∗ ∈ X . We have a contradiction with the assumption. 
�

Theorem 5 If P �= N P, then, for every infinite binary sequence π , the class Sπ is
boundary for the edge 3-colorability problem.

Proof Assume that there exists a classX , boundary for the problem, such thatX ⊂ Sπ .
Clearly, X ⊆ Free({L(S2,2,2)}), as Sπ ⊆ Free({L(S2,2,2)}) by the definition of Sπ .
First, wewill show that a graph i S1,1,1 belongs toX for each i . It is known that for every
graphs G1 ∈ S and G2 ∈ T clique-width of any graph in Deg(3) ∩ Free({G1,G2})
is bounded by some constant C(G1,G2) [26]. Hence, Deg(3) ∩ Free({G1,G2}) is
an easy case for the edge 3-colorability problem [11]. The class Deg(3) is a finitely
defined superclass of X by the previous lemma. Hence, if i∗S1,1,1 /∈ X for some
i∗, then Deg(3) ∩ Free({i∗S1,1,1, L(S2,2,2)}) is a finitely defined superclass of X .
Therefore, any monotonically decreasing sequence of hard classes converging to X
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must contain a class that is included in Deg(3) ∩ Free({i∗S1,1,1, L(S2,2,2)}). This
class is easy for the edge 3-colorability problem by [11,26]. We have a contradiction
with P �= N P .

As X ⊂ Sπ , then a graph l S(l)
π does not belong to X for some l. Let G ∈ X be

a maximal proper induced subgraph of l S(l)
π that contains an l S1,1,1 as an induced

subgraph. Then the graph G obligatory has a vertex x such that x is a specific vertex
of G. Let H be a minimal graph in X such that G is an induced subgraph of H and
x is not a specific vertex of H . This graph exists by Lemma 6. We may consider that
degG(x) ≤ 2, otherwise deleting all elements of V (H)\V (G) except any neighbor of
x produces an supergraph of G, which is a proper induced subgraph of l S(l)

π . Hence,
G is not maximal in the case degG(x) ≤ 2. Suppose degG(x) = 2. By the minimality
of H and by the structure of l S(l)

π , H is obtained from G by adding exactly one vertex
adjacent to x or several vertices, each of which is adjacent to a neighbor of x . By the
structure of Sπ , H is also an induced subgraph of l S(l)

π . We have a contradiction with
the maximality of G. Hence, the strict inclusion X ⊂ Sπ is impossible. So, the class
Sπ is boundary for the problem for every infinite binary sequence π . 
�

Clearly, Sπ1 �= Sπ2 for every distinct infinite binary sequences π1 and π2. Hence,
as the set of all binary infinite sequences has the continuum cardinality, the boundary
system for the edge 3-colorability problem is also continuum. This result was initially
proved in [30,32]. The boundary systems for the vertex k-colorability and edge k-
colorability problems for every k ≥ 3, the chromatic number problem also have the
continuum cardinality [19,33,34].

Advances in complete descriptions of the boundary systems for the independent set
and dominating set problems are minor. A natural idea arises that for some graph prob-
lems structure of boundary systems is too complex that is impossible to describe them
completely. By Theorem 1, the cardinality of a boundary system can be interpreted
as a complexity measure of the corresponding graph problem. It has been conjectured
in [4] that there is a graph problem with an infinite boundary system, i.e. with a large
value of the measure. One could consider this conjecture as a Gödel argument in the
sense that a boundary systemmay be quite complicated and attempts to get its exhaus-
tive description may look hopeless. Theorem 5 shows that the conjecture is a true
statement.

5.4 The chromatic number and Hamiltonian cycle problems

A subcubic tree is a tree with degrees of all vertices at most three. A vertex is said to
be cubic if it has three neighbors. A caterpillar with hairs of an arbitrary length is a
subcubic tree, in which all cubic vertices belong to a single path. An example of such
a graph is shown in Fig. 7.

The classS constitutes all graphs, in which every connected component is a cater-
pillar with hairs of an arbitrary length. The class R(S) is the hereditary closure of the
result of inscribing a triangle in each cubic vertex of every graph in S (see Fig. 8).

The following result was obtained in [19]. We do not present a proof, since its
ideas are graph transformations and reducibility between graph problems and we have
already met with them.
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Fig. 7 A caterpillar with hairs
of an arbitrary length

Fig. 8 Inscribing a triangle in x y1

y2 y3

x

y1

y2 y3
x2 x3

x1

Theorem 6 If P �= N P, then co(T ) = {G| G ∈ T } is boundary for the chromatic
number problem, S and R(S) are boundary for the Hamiltonian cycle problem.

The notion of a boundary graph class can be used for graph problems of a diverse
nature, not only to algorithmic ones. An interested reader is referred to [20,25,27].

6 Complete descriptions of boundary systems

Perhaps, the most important issue in the theory of boundary classes is obtaining a
comprehensive description of boundary systems. This question appears to be difficult
to answer for many graph problems. The first and unique known result about complete
descriptions of boundary systems has recently been obtained by one of the authors in
[36], where a generalization of the edge k-colorability problem has been considered.
This problem is called the list edge-ranking problem, which can be stated as follows.

We are given a graph G and a set L = {L(e) : e ∈ E(G)}, where L(e) is a finite
set of naturals that are feasible colors to color e. The list edge-ranking problem is
to recognize whether G admits a mapping c : E(G) −→ ⋃

e∈E(G) L(e) such that:
a) c(e) ∈ L(e) for each e ∈ E(G) b) if c(e1) = c(e2), e1 �= e2, then any path
connecting e1 and e2 contains an edge e3 ∈ E(G) with c(e3) > c(e2). Clearly, the
last requirement generalizes the definition of a proper edge coloring, as it forbids to
color any adjacent edges in the same color. The problemwas firstly introduced in [13],
and it has applications in parallel query processing [29] and in parallel assembly of
modular products [12].

To define the boundary classes, we need to define some graphs. Graphs Combi ,
Stari ,Cami ,Cometi are drawn in Fig. 9.

The class Cliques is the set of all complete graphs, Bat is the set of all complete
bipartite graphswith atmost twovertices in one of the parts,Comb,Star , Cam, Comet
are the hereditary closures of

⋃∞
i=1{Combi },⋃∞

i=1{Stari },
⋃∞

i=1{Cami },⋃∞
i=1{Cometi }, respectively.

Graphs S̃i and T̃i are isomorphic to S1,i,i and L(S1,i+1,i+1), respectively, graphs Ŝi
and T̂i are drawn in Fig. 10.

The classes S̃ , Ŝ, T̃ , T̂ are the hereditary closures of
⋃∞

i=1{i S̃i },
⋃∞

i=1{i Ŝi },⋃∞
i=1{i T̃i },

⋃∞
i=1{i T̂i }, respectively.
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Fig. 9 Graphs
Combi , Stari ,Cami ,Cometi

1 i2

Combi

1 2 i

Stari

1

2 i

Cami

1

2

i

1 2 i

Cometi

Fig. 10 Graphs Ŝi and T̂i

12i 1 2 i
Ŝi

12i 1 2 i
T̂i

In [36], the following result was proved. We do not give its proof, since it is too
long and difficult.

Theorem 7 If P �= N P, then the boundary system for the list edge-ranking problem
consists of the classes Cliques,Bat, Comb,Star , Cam, Comet, S̃, Ŝ, T̃ , T̂ .

Theorem 1, a general result, does not claim that a finitely defined class is �-easy
if it contains no �-boundary classes. Applied to the list edge-ranking problem, we
really have a complete complexity dichotomy (a “zero-one law”) in the sense that any
finitely defined class is easy or hard for the problem.

Theorem 8 [36] If a finitely defined class contains at least one of the classes
Cliques,Bat, Comb,Star , Cam, Comet, S̃, Ŝ, T̃ , T̂ , then it is hard for the list edge-
ranking problem. Otherwise, it is easy for the problem.

By Theorem 8, we have a complete description of all finitely defined easy cases for
the edge list-ranking problem. This rises the following natural question. How to apply
Theorem 8 for a given finitely defined class? How to decide whether it contains at
least one of the ten classes? To this end, one could use a more simple, graphic form of
Theorem 8. Let us demonstrate it on the example of the classes Free({P6, K3,C4})
and Free({P5, S1,1,1, K4}). We fill two criterion tables by pluses and minuses as
follows. We put “+” if and only if a graph in the lists of forbidden induced subgraphs
belongs to one of the ten classes (Tables 1, 2).

Theorem 8 can be reformulated as follows. A class is hard for the list edge-ranking
problem if there is a column having only minuses. Otherwise, it is easy. Hence,
Free({P6, K3,C4}) is hard, but Free({P5, S1,1,1, K4)}) is easy.

When the set of all �-boundary classes is completely known, a table reformula-
tion of Theorem 1 could be more useful than the original. Indeed, for a given class
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Table 1 A criterion table for Free({P6, K3,C4})

Graph Cliques Bat Comb Star Cam Comet S̃ Ŝ T̃ T̂

P6 – – – – – + + + + +

K3 + – + – + – – – + +

C4 – + – – – – – + – –

Table 2 A criterion table for Free({P5, S1,1,1, K4)})

Graph Cliques Bat Comb Star Cam Comet S̃ Ŝ T̃ T̂

P5 – – – + – + + + + +

S1,1,1 – + + + + + – – + +

K4 + – – – – – – – – –

X = Free({G1, . . . ,Gs}), one may construct a table, whose rows correspond to
G1, . . . ,Gs and columns correspond to �-boundary classes. If a graph Gi belongs
to j th �-boundary class, the we put “+” into the i j-cell and “−” otherwise. By
Theorem 1, X is �-hard if and only if there is a column containing only minuses.

7 Applications of the boundary class notion in the analysis
of the computational complexity

Theorem 8 is a unique known example of a complete complexity dichotomy in the
family of all finitely defined graph classes. This fact certifies the opinion that obtaining
a complete dichotomy in the family is a difficult task for many graph problems. A
natural idea comes to mind is to consider a subfamily of the hereditary classes family
and try to solve the problem specifically for it. One of the best examples in this field
is connected to monotone classes. Indeed, a finitely defined monotone graph class
including S is hard for the independent set problem by Theorems 1 and 2. On the
other hand, any monotone graph class not including S is easy for it by Lemma 2 and
[11]. Hence, we have the following result.

Theorem 9 A finitely defined monotone class is hard for the independent set problem
if it contains S. Otherwise, it is easy for it.

The last theorem also holds for the dominating set problem.
Another example of a “good” subfamily is a set of all classes defined by small for-

bidden induced subgraphs. Combining results of [2,3,21,24], we obtain the following
result.

Theorem 10 LetX be a set of graphs with at most five vertices. Then the independent
set problem is hard for Free(X ) if it contains S. Otherwise, it is easy.

Korobitsyn has considered in [18] the so-called monogenic graph classes, i.e.
classes defined by a single forbidden induced structure. He also proved there that the
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dominating set problem is polynomial for Free({G}) if G is isomorphic to Pi + pK1,
where i ≤ 4 and p is arbitrary. Moreover, the problem is NP-complete for all other
choices of G [18]. This result can be rewritten as follows.

Theorem 11 A monogenic graph class X is hard for the dominating set problem if
S ⊆ X or T ⊆ X or Q ⊆ X . It is easy in all other cases.

The complexity of the dominating set problemwas considered in [39,40] for classes
defined by small forbidden induced structures. Namely, the following result has been
proved.

Theorem 12 Let X be a set of graphs with at most five vertices. The class Free(X )

is hard for the dominating set problem if S ⊆ X or T ⊆ X or Q ⊆ X . It is easy in
all other cases.

Of course, the boundary class notion helps to prove only half of each of Theorems 9,
11, 12, as, by Theorem 1, it can certify only NP-completeness of a graph problem for
a finitely defined class. To prove the second half, the corresponding polynomial-time
algorithms should be invented for all classes in the families not including the boundary
classes. So, Theorems 9, 11, 12 are concrete examples of a successful application of
the general method for obtaining complexity dichotomies based on boundary classes:
proveNP-completeness for some classes in a family by applyingTheorem1 and design
polynomial-time algorithms for all of the remaining classes.

Clearly, any result on a complexity dichotomy in a subfamily of hereditary classes
defined by small forbidden induced subgraphs can be formulated in terms of an explicit
description of “easy” prohibitions not in terms of boundary classes. It was done in
[1,9,15,16,22,37,38,41,42,46] and many other papers. At the same time, the size of
an answer can quickly growwith the size of the prohibitions. The notion of a boundary
class helps to represent the answer more compactly.

8 Conclusions and open problems

In this paper,we considered the notion of a boundary graph class,which is a helpful tool
for analyzing the computational complexity of graph problems in the family of finitely
defined classes. This notion is interesting in that a graph problem is NP-complete for
a finitely defined graph class X if and only if X includes a boundary class for the
problem. Therefore, discovering boundary classes for various graph problems is of
interest. We described all known boundary classes for some classical graph problems:
the independent set and the dominating set problems, the Hamiltonian cycle problem.
For the edge 3-colorability problem, we constructively showed that the boundary
system has the continuum cardinality. We gave a complete description of all boundary
classes for the so-called list edge-ranking problem. At length, we presented several
examples on how boundary classes present a complete complexity dichotomy in a
“simple” subfamily of the hereditary classes family.

Despite some achievements, the theory of boundary graph classes is still full of
open questions. Perhaps, the oldest open question here is the Alekseev’s conjecture.

Open problem 1 Is S a unique boundary class for the independent set problem?
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Similar questions can be asked for the dominating set and Hamiltonian cycle prob-
lems.

Open problem 2 Is there is a boundary graph class for the dominating set problem
distinct to S, T ,Q,Q∗, simultaneously?
Open problem 3 Is there is a boundary graph class for the Hamiltonian cycle prob-
lem distinct to S and R(S), simultaneously?

As we mentioned before, the cardinality of a boundary system can be considered
as a complexity measure of a graph problem. It would be interesting to know what
values can take this measure.

Open problem 4 What are possible cardinal numbers of boundary systems of graph
problems?

The set of all graphs is countable. The set of all finite subsets of a countable set
is also countable [47]. Every finitely defined class can be described by a finite set of
its forbidden induced subgraphs. Hence, the set of all finitely defined graph classes is
also countable. Therefore, the boundary system for the edge 3-colorability problem
is redundant for complexity classifying in the family of all finitely defined classes, as
the system is continuum. This observation leads to the notion of a criterial system. For
a graph problem �, a �-criterial system is any countable subset of the �-boundary
system that is enough to classify the complexity of� in the family of all finitely defined
graph classes. Such a system obligatory exists, as we can take the union

⋃
X {YX } over

all �-hard finitely defined classes X , where YX is any �-boundary class included in
X .

Theorem 13 If the �-boundary system is finite, then there is a unique �-criterial
system coinciding with the �-boundary system.

Proof Let some�-criterial system consists of classesX1, . . . ,Xk and do not contain a
�-boundary classX . Let Forb(X ) = {G1,G2, . . . ,Gs, . . .}. This setmust be infinite,
otherwise X is finitely defined and it includes a �-boundary class X . Hence, it must
be a �-hard class. As {X1, . . . ,Xk} is a �-criterial system, X must contain one of
its elements. We obtain that one of �-boundary classes contains another �-boundary
class. It is impossible. We have a contradiction.

For each i , let Yi = Free({G1, . . . ,Gi }). It is a �-hard class, as it includes X . As
{X1, . . . ,Xk} is a �-criterial system, then, for each i , there is a number ji such that
Yi includes X ji . The infinite sequence j1, j2, . . . has finitely many distinct elements.
Hence, some number 1 ≤ i∗ ≤ k appears in the sequence infinitely many times.
Therefore, we can find an infinite subsequence in the sequence {Yi } such that each
its member includes Xi∗ . This subsequence also converges to X . Hence, X ⊇ Xi∗ . In
other words, one of �-boundary classes includes other �-boundary class. We have a
contradiction. 
�

For the edge 3-colorability problem, any criterial system is distinct to the boundary
system, as the boundary system has the continuum cardinality. Perhaps, the problem of
finding out its criterial system is much simpler than the boundary system. This raises
the following open problem.

Open problem 5 What is a criterial system for the edge 3-colorability problem?
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