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Abstract

We discuss efficiency of the quadratic bridge volatility estimator in com-
parison with Parkinson, Garman-Klass and Roger-Satchell estimators. It is
shown in particular that point and interval estimations of volatility, resting
on bridge estimator, are considerably more efficient than analogous estima-
tions, resting on Parkinson, Garman-Klass and Roger-Satchell one.
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1. Introduction

Volatility, defined as the variance of the increments of the log-price over a
specific time interval, is an universally used risk indicator. With the growing
availability of high-frequency tick-by-tick price time series, a number of new
efficient volatility estimators have been developed (see, for instance, [1, 2, 3,
4, 5]).

We present here a comparative analysis of the efficiency of the quadratic
bridge volatility estimator and the well-known Parkinson (PARK) [6], Garm-
an-Klass (GK) [7] and Roger-Satchell (RS) [8, 9] volatility estimators, based
on high and low values of the log-price increments within given time intervals.
Some fruitful information and detailed analysis of stochastic prices models
and efficiency of high-low-close volatility estimators one can find at the re-
cent article [10]. Detailed and valuable discussion of stochastic volatility

∗Bodenacherstrasse 67, 8121, Benglen, Switzerland. Phone 044577050541
Email address: saichev@hotmail.com ( A. Saichev)

Preprint submitted to Elsevier May 17, 2012



Electronic copy available at: http://ssrn.com/abstract=2026389

models and volatility estimators, related to the topic of the present paper,
are provided in G. Ramey and V. Ramey [11] and in Bonanno et al. [12, 13].

We find that the high-low quadratic bridge estimator, suggested in this
work, is significantly more efficient than the above-mentioned PARK, GK
and RS estimators, at least in the frame of the geometric Brownian motion
with a drift model of the price stochastic process. Notice that some related
results concerning statistical properties of volatility estimators was obtained
in Saichev et al. [14], were have discussed constructions of most efficient
volatility estimators. It was shown that efficiency of pointed out most efficient
estimators are close to efficiency of suggested in this paper quadratic bridge
estimator. The shortcoming of most efficient estimators, discussed in [14], is
that they have much more complicated construction than quadratic bridge
estimator.

For the Brownian motion model of log-price process, advantage of the
quadratic bridge estimator can be intuitively understand as follows: It is
well-known that the high and low values of a Brownian motion process are
most probably found in the neighborhood of the edges of the observation
interval. In contrast, by construction of the bridge, its high and low values
are in general distant from the edges. As a result, the high and low of a
bridge incorporate significantly more information about the variability of
the original stochastic process than its own high and low values.

The paper is organized as follows. In section 2 a short description of high-
low volatility estimators, including the quadratic bridge estimator, suggested
in this work, is given. In section 3, the statistical description of high-low
volatility estimators, in the frame of the Brownian motion model of the log-
price stochastic process, is discussed in detail. In section 4, we compare
the efficiency of PARK and quadratic bridge estimators. It is shown that, in
contrast to the PARK estimator, the bridge one is unbiased for all drift values
and has considerable smaller variance than the PARK estimator. In section
5, we give a comparative probabilistic analysis of the interval estimations,
resting on bridge, PARK, GK and RS volatility estimators. In section 6 the
results of statistical testing of the above-mentioned volatility estimators are
described. In section 7 we draw the conclusions.

2



2. Examples of volatility estimators

Consider dependence on time t of the price P (t) of some financial instru-
ment. As a rule, at discussing of volatility, one consider its logarithm

X(t) := lnP (t).

Let point out one of the conventional volatility V (T ) definition, which we
are using in this work: It is the variance

V (T ) := Var [Y (t, T )] = E
[
Y 2(t, T )

]
− E2 [Y (t, T )]

of the log-price increment Y (t, T ) := X(t + T ) − X(t) within given time
interval duration T .

Recall, GK [7], PARK [6] and RS [8] volatility estimators are resting on
the high and low values:

H := sup
t′∈(0,T )

Y (t, t′), L := inf
t′∈(0,T )

Y (t, t′).

Accordingly, PARK estimator is equal to

V̂p := (H − L)2
/
ln 16, (1)

while GK estimator given by expression

V̂g := k1(H − L)2 − k2(C(H − L)− 2HL)− k3C
2,

k1 = 0.511, k2 = 0.0109, k3 = 0.383.
(2)

Here C := Y (t, T ) is the close value of the log-price increment. Recall else
RS estimator, equal to

V̂r := H(H − C) + L(L− C).

Besides of mentioned well-known estimators, we discuss the quadratic
bridge estimator. Below we call it shortly by bridge estimator. Before to
define it, recall definition of the bridge Z(t, t′) of stochastic process Y (t, t′).
It is equal to

Z(t, t′) := Y (t, t′)− t′

T
Y (t, T ), t′ ∈ (0, T ). (3)
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Let introduce high and low of the bridge:

H := max
t′∈(0,T )

Z(t, t′), L := min
t′∈(0,T )

Z(t, t′).

Accordingly, mentioned above bridge volatility estimator given by

V̂b := κ (H−L)2 . (4)

The value of the factor κ will be calculated later on.

3. Geometric Brownian motion

One of conventional models of price stochastic behavior is geometric
Brownian motion (see [15, 16, 17]). In particular, it is used in theoretical
justification of GK, PARK and RS estimators. Below we discuss statistics of
mentioned volatility estimators in the frame of geometric Brownian motion
model. Namely, we assume that increment of the log-price is of the form

Y (t, T ) = µT + σB(T ).

Here µ is the drift of the price, while B(t) is the standard Brownian motion
B(t) ∼ N (0, t). Factor σ2 is the intensity of the Brownian motion.

Recall, Brownian motion posses by self-similar property

B(t) ∼
√
T B

(
t
/
T
)
, ∀ T > 0,

where and below sign ∼ means identity in law.
Using pointed out self-similar property, one can ensure that

Y (t, t′) ∼ σ
√
T x(τ, γ),

x(τ, γ) := γτ +B(τ), γ := µ
√
T
/
σ, τ := t′

/
T ∈ (0, 1).

(5)

Henceforth we call process x(τ, γ) by canonical Brownian motion, while factor
γ by canonical drift. Using relations (1), (2), (4) and (5), one find that

V̂p ∼ V (T ) · v̂p(γ), V̂g ∼ V (T ) · v̂g(γ), V̂b ∼ V (T ) · v̂b,

V̂r ∼ V (T ) · v̂r(γ), V (T ) = σ2T.
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We have used above canonical estimators :

v̂p(γ) := d2
/
ln 16, v̂b := κs2, d := h− l, s := ξ − ζ,

v̂g(γ) := k1d
2 − k2(cd− 2hc)− k3c

2, v̂r = h(h− c) + l(l − c),
(6)

containing high, low and close values

h := sup
τ∈(0,1)

x(τ, γ), l := inf
τ∈(0,1)

x(τ, γ), c := x(1, γ), (7)

of canonical Brownian motion, and high and low values

ξ := sup
τ∈(0,1)

z(τ), ζ := inf
τ∈(0,1)

z(τ), (8)

of the canonical bridge

z(τ) := x(τ, γ)− τx(1, γ) = B(τ)− τ ·B(1), τ ∈ (0, 1). (9)

Plots of the typical paths of the canonical Brownian motion x(τ, γ) (5) for
γ = 1 and corresponding canonical bridge z(τ) (9) are given in figure 1.

It is worthwhile to note that the closer expected values of canonical esti-
mators v̂p(γ), v̂g(γ), v̂r and v̂b to unity, the less biased corresponding original
volatility estimators. Analogously, the smaller variances of canonical estima-
tors the more efficient original volatility estimators V̂p, V̂g, V̂r and V̂b.

Notice additionally that canonical drift γ of the canonical Brownian mo-
tion x(τ, γ) (5) is, as a rule, unknown. Nevertheless, to get some idea about
dependence on drift µ of bias and efficiency of volatility estimators, we will
discuss below in detail dependence of canonical estimators statistical prop-
erties on possible values of the factor γ.

4. Comparative efficiency of PARK and bridge estimators

Resting on, given at Appendix, analytical formulas for probability density
functions (pdfs) of random variables (7) and (8), we explore in this section
some atatistical properties of canonical PARK estimator v̂p(γ) and bridge
one v̂b (6).

Let check, first of all, unbiasedness of canonical PARK estimator. To
make it, let calculate, with help of pdf qx(δ) (A.4), mean square of oscillation
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Figure 1: Typical paths of canonical Brownian motion x(τ, γ) (5) for γ = 1 and corre-
sponding canonical bridge z(τ) (9)

d = h− l of the canonical Brownian motion x(τ, γ) at the zero canonical drift
(γ = 0). After simple calculations obtain

E[d2] = 2 +
∞∑

m=1

2

m(4m2 − 1)
= ln 16.

From here and from expression (6) of canonical PARK estimator v̂p(γ) one
can see that the following expression is true

E[v̂p(γ = 0)] = 1.

Let find now the factor κ at expressions (4) and (6). To make it, calculate
first of all the mean square of the bridge oscillation. Due to expression (A.5)
for the bridge oscillation s (6) pdf, one have

E[s2] =
∞∑

m=1

1

m2
=

π2

6
.

Accordingly, unbiased canonical bridge estimator has the form

E[v̂b] = 1 ⇒ κ = 1
/
E[s2] ⇒ v̂b = 6 s2

/
π2. (10)
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Figure 2: Plot of canonical PARK estimator v̂p(γ) mean value, as function of canonical
drift γ. It is seen that with growth of γ PARK estimator becomes more and more biased.
Straight line is the plot of canonical bridge v̂b, mean value

The great advantage of the bridge estimator is its unbiasedness for any
drift. This remarkable property of the pointed out estimator is the conse-
quence of the fact that the bridge Z(t, t′) (3) and its canonical counterpart
z(τ) don’t depend on the drift µ (canonical drift γ) at all. On the contrary,
PARK estimator becomes essentially biased at nonzero drift. In figure 2
depicted dependence on γ of canonical PARK estimator expected value, il-
lustrating bias of PARK estimator at nonzero drift. Corresponding curve
obtained with help of analytical expression (A.3) for canonical Brownian
motion’s oscillation d pdf.

Let calculate variances of canonical PARK and bridge estimators. After
substitution into the rhs of expression

E[v̂2p(γ = 0)] :=
1

ln2 16

∫ ∞

0

δ4qx(δ)dδ

the sum (A.4) for the canonical Brownian motion oscillation pdf qx(δ), and
after summation obtain for γ = 0:

E[v̂2p(γ = 0)] = 9 ζ(3)
/
ln2 16 ≃ 1.40733.
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Accordingly, variance of canonical PARK estimator v̂p is

Var[v̂p(0)] =
9 ζ(3)

ln2 16
− 1 ≃ 0.407. (11)

As the next step, we calculate variance of canonical bridge estimator v̂b
(10). Sought variance is equal to

Var[v̂b] :=
36

π4
E[s4]− 1.

After substitution here, following from (A.5), relation

E[s4] :=

∫ 2

0

δ4qb(δ)dδ = 3
∞∑

m=1

1

m4
=

π4

30
,

obtain

Var[v̂b] =
6

5
− 1 = 0.2. (12)

Comparing equalities (11) and (12), one can see that variance of bridge esti-
mator is approximately twice smaller than variance of PARK estimator.

Recall, variance of bridge estimator does not depend on drift. On the
contrary, variance of PARK estimator essentially depends on the drift. One
can see it in figure 3, where depicted plot of dependence, on canonical drift
γ, of canonical PARK estimator variance.

Notice else that bias of some estimator is insignificant only if it is much
smaller than rms of corresponding estimator, i.e. is small the relative bias:

ϱ :=
E[v̂(γ)]− 1√
Var[v̂(γ)]

. (13)

Plot of canonical PARK estimator relative bias, as function of canonical drift
γ depicted in figure 4.

5. Interval estimations on the basis of PARK and bridge estimators

Given at Appendix analytical expressions (A.3), (A.4) and (A.5) for
canonical Brownian motion and canonical bridge random oscillations pdfs
allow us to explore in detail probabilistic properties of PARK and bridge
canonical estimators. Let find, at first, pdfs of mentioned canonical esti-
mators random values. It is well-known from Probabilistic Theory that pdf
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Figure 3: Plots of dependence on γ of canonical PARK estimator variance. Straight line
is the variance of canonical bridge estimator

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

γ

̺
p
(γ

)

Figure 4: Plot of relative bias (13) of canonical PARK estimator as function of canonical
drift γ
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Wp(x; γ) of canonical PARK estimator is expressed through pdf qx(δ; γ) (A.3)
of canonical Brownian motion oscillation by the relation

Wp(x; γ) =

√
α

4x
qx

(√
αx; γ

)
, α = ln 16. (14)

Similarly, pdf of canonical bridge estimator is equal to

Wb(x) =

√
α

4x
qb
(√

αx
)
, α =

π2

6
. (15)

Here qb(δ) (A.5) is the pdf of canonical bridge oscillation. Plots of canonical
PARK estimator pdf, for γ = 0, and pdf of canonical bridge estimator are
depicted in figure 5. In figure 6 are comparing pdfs of canonical PARK
estimator, for γ = 1, and pdf of canonical bridge estimator. It is seen in
both figures that pdf of canonical bridge estimator is better concentrated
around its expected value E[v̂b] = 1 than canonical PARK estimator pdf.

Knowing estimators pdfs, one can produce interval estimations of pos-
sible volatility values. Consider typical interval estimation: Let V̂ is some
volatility estimator, equal to

V̂ = V (T ) · v̂. (16)

Here v̂ is corresponding canonical estimator, while V (T ) is the measured
volatility. One needs to find probability

F (N) := Pr
{
V (T ) < N · V̂

}
that unknown (random) volatility V (T ) is not more than N times exceeds
known (measured) volatility estimated value V̂ . It follows from (16) that
following inequalities are equivalent:

V (T ) < N · V̂ ⇔ v̂ > 1
/
N.

Last means in turn that sought probability F (N) is expressed through pdf
of canonical estimator v̂ by the following way:

F (N) = Pr
{
v̂ > 1

/
N
}
=

∫ ∞

1/N

W (x)dx. (17)

Here W (x) is the pdf of canonical estimator v̂.
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Figure 5: Plots of canonical PARK and bridge estimators pdfs, clearly demonstrating
“probabilistic preference” of bridge estimator in compare with PARK one

Calculations, based on the relations (14), (15) and (17) give the result
that the probability that the true volatility is less than twice of given bridge
volatility estimator value V̂b is equal to Fb(2) = 0.918. This is substantially
larger than the analogous probability in the case of the PARK estimator:
Fp(2, γ = 0) ≃ 0.813. The plots of the probabilities F (N) (Eq. (17)) as a
function of the level N , for the PARK estimator (in the case of zero drift
µ = 0) and for the bridge volatility estimator, are shown in figure 7.

6. Comparative statistics of canonical estimators

Above, we explored in detail statistical properties of two, PARK and
bridge estimators. Here we compare their statistics and statistics of another
well-known volatility estimators: GK and RS one. Despite to previous chap-
ters, where we have used known analytical expressions for pdfs of canonical
PARK and the bridge estimators, below we use predominantly results of
numerical simulations.

Namely, we produce M ≫ 1 numerical simulations of random sequences

xn(γ) := γ
n

N
+

1√
N

N∑
n=1

ϵn, n = 0, 1, . . . , N, x0(γ) = 0,
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Figure 6: Plots of PARK and bridge canonical estimators pdfs for γ = 1
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Figure 7: Plots of probabilities Fp(N) and Fb(N) that true volatility is less than N times
exceeds values of PARK and bridge estimators
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where {ϵn} are iid Gaussian variables ∼ N (0, 1). Notice that stochastic
process xn(γ) of discrete argument n rather accurately approximates, for
large N ≫ 1, paths of canonical Brownian motion x(τ, γ) (5).

Knowing M iid sequences {xn(γ)} one can find corresponding iid samples
of pointed out above canonical estimators. Everywhere below we take number
of iid samples M and discretization number N equal to

N = 5 · 103, M = 5 · 105.

Plots in figure 8 demonstrate rather convincingly accuracy of numerical sim-
ulations. In figure 9 are given two hundred samples of canonical GK, RS,
bridge and PARK estimators, ensuring “by naked eye” that canonical bridge
estimator is more efficient than GK one.

In figures 10 and 11 are given, obtained by numerical simulations, plots of
canonical GK, PARK, RS and bridge estimators mean values and variances.
These plots clearly demonstrate unbiasedness and high efficiency of the bridge
estimator in comparison with PARK, GK and RS estimators.

Finally, in figure 12 are shown the plots of probabilities that the true
volatility V (T ) is larger than half of corresponding estimator value and less
than twice of it:

P∆ := Pr
{
V̂
/
2 < V (T ) < 2V̂

}
=

∫ 2

1/2

W (x)dx. (18)

It is seen that for any γ mentioned probability is essentially larger for bridge
estimator, than for GK, RS and PARK estimators.

7. Conclusions

In this work we have analyzed statistical properties of the quadratic bridge
volatility estimator, which is significantly more efficient than most, known
before, high-low-close volatility estimators.
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nette and Bernardo Spagnolo.
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Figure 8: Upper panel: Histogram of M samples of canonical bridge estimator v̂b. Solid
line is the plot of canonical bridge estimator’s pdf, given by analytical expression (15),
(A.5). Dashed line is the pdf of canonical PARK estimator for γ = 0. Lower panel:
Histogram of M samples of canonical GK estimator v̂g for γ = 0. Solid line is the plot of
the canonical bridge estimator pdf. Dashed line is the canonical PARK estimator pdf for
γ = 0
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Figure 9: Plots of two hundreds samples of canonical estimators. Up to down are samples
of GK, RS, bridge and PARK estimators. It is seen even by “naked eye” that bridge
estimator estimates volatility more accurately than another mentioned estimators

Appendix A. Probabilistic properties of high, low and close values

Here are given pdfs of random variables (h, l, c) (7) and variables (ξ, ζ)
(8), which one need for canonical estimators (6) statistical analysis. Let
begin with random variable c = x(1, γ). Obviously, its pdf is

f(χ; γ) :=
1√
2π

exp

(
−(χ− γ)2

2

)
, χ ∈ (−∞,∞).

It is easy to show, additionally, that joint pdf qx(η, χ; γ) of high value h (7)
of canonical Brownian motion x(τ, γ) and the close value c = x(1, γ) is equal
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Figure 12: Estimations of probability P∆ (18) at different γ values, for PARK (�), RS
(⋆), GK (�) and bridge (N) estimators. Solid lines are results of theoretical calculations,
resting on formula (18)

to

qx(η, χ; γ) =

√
2

π
(2η − χ) e2γη exp

(
−1

2
(2η − x+ γ)2

)
,

χ < η, η > 0.

In turn, pdf of high value h (7)

qx(η; γ) :=

∫ h

−∞
qx(η, χ; γ)dχ

given by expression

qx(η; γ) =

√
2

π
exp

(
−(η − γ)2

2

)
− γe2γη erfc

(
η + γ

2

)
, η > 0.

Let write here explicit expression for joint pdf qx(η, ℓ, χ; γ) of random
variables (h, l, c) (7). Using formulas, given at the monograph [18] and in the
article [19], one might show that pointed out joint pdf given by:

qx(η, ℓ, χ; γ) = f(χ; γ)S(η, ℓ|χ),

χ ∈ (ℓ, η), h > χ1(χ), ℓ < χ1(−χ).
(A.1)
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Here 1(χ) is the unit step function, equal to unity for χ > 0 and zero other-
wise. Besides, above there is function

S(η, ℓ|χ) :=
∞∑

m=−∞

m [mF(m(η − ℓ), χ) + (1−m)F(m(η − ℓ) + ℓ, χ)] ,

F(η, χ) :=
[
(χ− 2η)2 − 1

]
e2η(χ−η).

(A.2)

To explore statistical properties of canonical GK estimator, we need
in joint pdf qx(δ, χ; γ) of canonical Brownian motion x(τ, γ) (5) oscillation
d = h − l and the close value c = x(1, γ). As it follows from (A.1), (A.2),
mentioned pdf is equal to

qx(δ, χ; γ) = 4f(χ; γ)
∞∑

m=−∞

m×[
m(δ − |χ|)[(|χ|+ 2mδ)2 − 1]− (m+ 1)(|χ|+ 2mδ)

]
e−2mδ(|χ|+mδ),

δ > |χ|, χ ∈ (−δ, δ).

After integration above joint pdf over all χ values obtain pdf qx(δ; γ) of
oscillation d:

qx(δ; γ) = 2
∞∑

m=−∞

m

(√
8

π
e−

γ2

2
−2m2δ2×[

e−
δ2

2
(1+4m) cosh(δγ)(1 + 2m+ γ2m)−m(2 + γ2)

]
+

γ [a(δ, γ,m) + a(−δ, γ,m)]

)
, δ > 0.

(A.3)

Here have used auxiliary function

a(δ, γ,m) := e2mδγ [1 +m(3 + γ(2mδ + γ + δ))]×[
erf

(
2mδ + γ + δ√

2

)
− erf

(
2mδ + γ√

2

)]
.

In particular case of zero drift (γ = 0), one get from (A.3) following expression

qx(δ) =

√
32

π

∞∑
m=−∞

m

[
(1 + 2m)e−

(1+2m)2δ2

2 − 2me−2m2δ2
]
. (A.4)
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All statistical properties of high and low values (8) of canonical bridge
(9) are defined by their two-fold joint pdf qb(η, ℓ), given by relation

qb(η, ℓ) =
∞∑

m=−∞

m [mF(m(η − ℓ)) + (1−m)F(m(η − ℓ) + ℓ)] ,

F(η) := 4(4η2 − 1)e−2η2 .

Following from here pdf qb(δ) of canonical bridge oscillation s = ξ − ζ given
by equality

qb(δ) = 8δ
∞∑

m=1

m2(4m2δ2 − 3)e−2m2δ2 , δ > 0. (A.5)
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