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Visual Enumeration of Spatially 
Overlapping Subsets
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Abstract. Observers are able to extract summary statistical properties, such as numerosity or  the average, from spatially 
overlapping subsets of visuals objects. However, this ability is limited to about two subsets at a time, which may be primarily 
caused by the limited capacity of parallel representation of those subsets. In our study, we addressed several issues regarding 
subset representation. In four experiments, we presented observers with arrays of dots of one to six colors and instructed them 
to judge the number of colors. We measured both speed and accuracy of those judgments. Following standard criteria used 
for the interpretation of object enumeration data, we recognized two modes of subset representation: a) parallel, effortless 
and strategy-independent representation of no more than two subsets, and b) serial representation modulated by different 
attentional strategies and a working memory template. We also found an advantage of large sets over small ones, demonstrating 
that subset representation can be  formed based on some statistical accumulation of  information from individual objects.
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Introduction
Numerous studies have demonstrated that access to visual 
information is  severely limited by  the  natural capacities 
of  our attention or  visual working memory. That is, one 
is  normally able to  be  clearly aware of  and to  store only 
about three to  four items at a  time (Luck & Vogel, 1997; 
Pylyshyn & Storm, 1988). However, our everyday per-
ceptual experience tells us that we continuously see many 
more than just a  few objects at a  time. One way to over-
come the  strict limitations of  attention and visual work-
ing memory is to encode multiple objects as a single unit, 
or  ensemble, using the  broad settings of  the  attentional 
window (Navon, 1977; Treisman, 2006). The results 
of the past dozen years of research in this field show that 
the  visual system can effectively compress rather vari-
able features of individual objects to achieve an economic 
description of  an  entire ensemble in  a  set of  summary 
statistics such as  the  average along different dimensions 
(Ariely, 2001; Bauer, 2009; Dakin & Watt, 1997; Wata-
maniuk & Duchon, 1992) or  their numerosity (Chong & 

Evans, 2011). These summary statistics can be very useful 
for representing the gist of a  scene and for making rapid 
decisions. For instance, consider picking raspberries from 
a bush (the example is inspired by a recent analysis of visual 
foraging by Wolfe, 2013). When moving from one branch 
to another, one must visually estimate whether it is worth 
his or her efforts (especially if some branches are difficult 
to  reach). Instead of  serial inspection of  every individual 
berry (some of which cannot be seen), the picker can judge 
the  “goodness” of  the  branch based on  the  approximate 
number of  items that resemble berries and the  average 
“redness” of those items.

Representing Multiple Overlapping Sets
However, encoding all objects in the visual field as an indi-
visible ensemble is  not always useful. Looking at  a  rasp-
berry bush, the  picker would see berries interspersed 
with leaves. If the  “redness” statistics had been extracted 
from all bush elements it would have been spoiled enor-
mously by  the  “greenness” of  the  leaves which are typi-
cally far more numerous than berries. Therefore, the ben-
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efits of  ensemble representation appear to  be  incomplete 
without segmentation of  spatially grouped or overlapping 
subsets and subsequent selection of such subsets. In a set 
of  refined laboratory studies, it was found that observers 
are in  fact able to  extract summary statistics from spa-
tially overlapping subsets. Chong and Treisman (2005b) 
found that their observers were able to estimate the aver-
age size of  briefly presented and spatially mixed subsets 
of colored circles. The observers reported the average size 
of a subset almost as accurately as when only one set was 
presented. That led Chong and Treisman to  conclude 
that statistical representations of  subsets are independent 
of each other and based on a preattentive feature segrega-
tion process. The authors argued that it is  the  same pro-
cess as the one responsible for attentional guidance in effi-
cient visual searches for conjunction targets (e.g., Wolfe, 
Cave, & Franzel, 1989; Friedman-Hill & Wolfe, 1995). 
Moreover, the  performance shown by  Chong and Tre-
isman’s participants was equally good when a  relevant 
subset was both precued and postcued, suggesting that 
at least two subsets can be statistically processed in parallel.

In another experiment, Treisman (2006) tested 
the  ability to  estimate the  proportion of  subset members 
among a whole ensemble (a kind of numerosity judgment). 
Her participants succeeded in  parallel estimation of  such 
statistics as long as a relevant subset was defined by a single 
feature (a color or  a  letter shape). In contrast, when 
a relevant subset was defined by a color-letter conjunction, 
performance deteriorated dramatically.

However, the  seemingly parallel statistical represen-
tation of multiple ensembles is not truly free of limitations. 
Halberda, Sires, and Feigenson (2006) studied absolute 
numerosity judgments for spatially overlapping subsets. 
They briefly presented their observers with one to  six 
variably-sized subsets of  colored dots and precued 
or postcued a relevant color. The observers had to report 
the number of dots of the cued color. Halberda et al. (2006) 
found that, regardless of the number of subsets, observers 
could estimate numerosity with unchanging precision 
when the relevant subset was precued — that is, attended. 
However, when the  relevant subset is postcued, only two 
subsets and the superset could be enumerated with the same 
precision as  the  precued ones. This conclusion limits 
the generalization by Chong and Treisman (2005b) about 
the parallel and preattentive character of subset represen-
tation. Rather, results by  Halberda et al. (2006) suggest 
that operating with subsets requires limited attentional 
or  working-memory capacity that had been earlier 
estimated for single-item units (Alvarez & Cavanagh, 2004; 
Cowan, 2001; Luck & Vogel, 1997; Pylyshyn & Storm, 
1988).

More recently, Poltoratski and Xu (2013) tried 
to  determine whether the  limited capacity of  parallel 
statistical representation found by  Halberda et al. (2006) 
is a limit of the statistical “processor” per se. It is possible 
that the restrictions for statistical processing are imposed 
by a more basic limitation such as an ability to represent 
subsets ensembles in  parallel. First, Poltoratski and Xu 
(2013) replicated Halberda et al.’s (2006) finding that 
parallel enumeration is  limited to  a  capacity of  less than 
three. Then, using the  same stimuli, they ran a  partial 
report working memory test: they presented various 

numbers of overlapping color subsets followed after some 
delay by a color probe, and asked whether a subset having 
this color has been presented. Again, they found that fewer 
than three colors can be  perfectly stored in  memory for 
such stimuli. Poltoratski and Xu (2013) concluded that 
the  ability to  extract numerosity statistics from subsets 
is constrained by the limits of working memory for subsets. 
This estimate is consistent with that provided by Watson, 
Maylor, and Bruce (2005).

Limited Capacity and Enumeration of Objects
The limited capacity of  the  processing bottleneck 

is one of the cornerstone issues of vision theory. It is tightly 
associated with the  “magic number problem” (Cowan, 
2001): the  search for the  boundary condition delimi-
tating the  maximum number of  structural units that can 
be  processed and stored without loss in  parallel, with 
numbers exceeding this maximum involving some loss 
in processing.

One straightforward approach to  establishing 
the  boundary conditions for the  “magic number” 
of  processing capacity familiar since early experimental 
psychology (Jevons, 1871) is based on using enumeration. 
What can enumeration behavior tell us about the represen-
tation of subsets? In the standard enumeration paradigm, 
observers have to  report the  number of  distinct items, 
presented either briefly or  until a  response is  given. Two 
modes of  enumeration  — subitizing and counting  — 
are typically differentiated. Subitizing refers to  an  ability 
to  enumerate objects effortlessly and perfectly at  a  brief 
glance. It is  limited to  up to  four items at  one time. 
If the accuracy of enumeration is measured, then the error 
will be  always zero within the  subitizing range, even for 
brief presentations. If the reaction time (RT) is measured 
within that range, then the slope of the set size-RT function 
is  rather shallow (about 40 – 120 ms/item), indicating fast 
and almost parallel number representation (Mandler 
& Shebo, 1982; Trick & Pylyshyn, 1993) that, nonetheless, 
requires some attentional resources (Burr, Turi, & Anobile, 
2010; Vetter, Butterworth, & Bahrami, 2008) or  at  least 
a limited-capacity preattentive process (Trick & Pylyshyn, 
1994). Numbers exceeding four cannot be  subitized and 
are subject to counting. Counting is slower than subitizing 
(about 250 – 350 ms/item) (Trick & Pylyshyn, 1993) 
because large numbers can be  accurately represented 
only with serial shifts of  attention and they require clear 
awareness of  each individual item and its distinctiveness 
from other individual items (Chong & Evans, 2011; Trick 
& Pylyshyn, 1993). Alternatively, large numbers can 
be  estimated more rapidly but somewhat approximately 
when items are presented briefly or  are crowded during 
presentation. Chong and Evans (2011) suggested that slow 
but accurate counting and fast but approximate estimation 
are the different attentional strategies of representing large 
sets of  objects. Whichever strategy is  used, the  presen-
tation of  large sets typically causes a  substantial drop 
in enumeration performance (the error magnitude, the RT, 
or  both) as  compared to  the  presentation of  small sets. 
Therefore, the differences between subitizing and counting 
yield a  specific shape of  the  performance vs. set size 
function of enumeration. It consists of a flat region of easy 
and almost error-free performance followed by an abrupt 
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decline of  the  function that indicates more difficult and 
error-prone enumeration. Moreover, both the  error 
magnitude and the RT typically correlate with the number 
of items to be enumerated, so the function tends to become 
steeper after the  abrupt decrement. The “break point” 
between the flat and the steep regions (normally about four 
items) is the limit of subitizing capacity.

The Present Study
We propose here that a similar logic can be applied to sub-
set representation. If summary statistics can be  extracted 
from at least two to three overlapping subsets without loss 
(Chong & Treisman, 2005b; Halberda et al., 2006; Poltor-
atski & Xu, 2013), then at  least the same number of  sub-
sets can be subitized. Thus, the subset enumeration task can 
be considered to be a converging way to measure the capac-
ity of effortless subset representation. Given a finding that 
spatially embedded objects cannot be  subitized (Trick & 
Pylyshyn, 1993, Experiment 1), our claim about subitizing 
spatially overlapping subsets seems challenging. However, 
subset subitizing does not necessarily involve the  same 
underlying mechanisms as object subitizing. Enumeration 
of  objects requires their spatial individuation by  bound-
aries in physical space. In contrast, individual boundaries 
can be discarded in  the  subset enumeration task as  these 
boundaries are not informative. Once the subitizing bound-
ary is  exceeded, the  enumeration task permits probing 
of the “fate” of subset representation beyond this boundary. 
Do observers see just the “colored stuff” when overlapping 
color subsets cannot be subitized? Or are they perhaps still 
able to represent the components of such “stuff” to some 
degree? In the former case, we can expect a decline in enu-
meration performance with no correlation to  an  actual 
number of subsets. In the latter case, we also expect a drop 
in performance but it should correlate with that number.

Watson, Maylor, and Bruce (2005) addressed some 
of  these points. They presented their participants with 
variable numbers of  color sets that could be  spatially 
grouped or overlapped. The observers were asked to report 
the  number of  colors presented, and their reaction times 
were measured. Watson et al. (2005) found a  breakpoint 
in  reaction times resembling the  subitizing-counting 
breakpoint for individual objects in  2- and 3-subset 
conditions. They also reported that the  enumeration 
of  overlapping subsets was far less efficient than that 
of  grouped subsets both in  the  subitizing and counting 
ranges. This suggests that it is  somewhat problematic 
for the  visual system to  extract a  subset by  mere parallel 
selection of  a  feature shared by  all subset members 
(Treisman, 2006). Instead, Watson et al. (2005) propose 
that a  limited-capacity mechanism related to  indexing 
potential objects can be  related to  subset enumeration 
(Trick & Pylyshyn, 1993, 1994).

In our study we addressed some novel aspects 
of  subset representation that have not been addressed 
in  previous studies such as  those of  Watson et al. (2005) 
or  Poltoratski and Xu (2013). First, Poltoratski and Xu 
(2006) as well as Halberda et al. (2006) as predecessors were 
focused on  merely establishing a  boundary condition for 
parallel subset representation and encoding their statistical 
properties. In our study, we tried to determine the “fate” 
of perceived subsets beyond this boundary condition, so we 

probed different numbers of subsets more rigorously using 
both speed and accuracy indices. Special focus was applied 
to  the  strategies that can mediate subset representation. 
Second, we investigated some issues of  subset formation 
across the  visual field. Specifically, we tested whether 
observers judge the  presence of  a  particular subset based 
on all members in parallel or on a sort of limited-capacity 
strategy, such as sampling.

Our general experimental approach is  based 
on the subset enumeration task which is similar to that used 
by Watson et al. (2005). Unlike standard object enumeration 
tasks (e.g., Halberda et al., 2006; Trick & Pylyshyn, 1993, 
1994), subset enumeration considers a  group of  similar 
items (such as a group of same-color dots among different-
color dots) as a unit of enumeration. It allows estimation 
of  a  somewhat “pure” ability to  represent and process 
subsets as holistic units without paying attention to  their 
constituents. Watson et al. (2005) used subset enumeration 
directly and registered the reaction time (RT) to distinguish 
between parallel and serial stages of  subset processing. 
A  similar ability was tested by Poltoratski and Xu (2013) 
using a  working memory task. Their participants had 
to detect the presence or absence of a postcued color in a set 
of differently colored dots regardless of the number of dots. 
The authors used hit and false alarm rates to  calculate 
the  capacity of  working memory that had been the  end 
point of  their measurements. Our experiments combine 
some aspects of both Poltoratski and Xu’s paradigm (brief 
presentation) and Watson et al.’s paradigm (long presen-
tation and RT measurement) for elaborative probing 
of the visual processing of subsets.

In all of  our experiments, we presented arrays 
of  differently colored dots and asked our observers 
to  respond with how many colors they have just seen. 
We also varied the  set size of  the  arrays, which caused 
corresponding changes in  the  number of  items per 
subset. This manipulation was aimed at  probing how 
subset representation is  formed from individual items. 
We measured both the accuracy and the speed of responses 
to  obtain a  more detailed behavioral pattern and a  time 
course of subset enumeration. In Experiment 1, we tested 
the  general ability of  observers to  enumerate spatially 
overlapping color subsets at  a  brief presentation. In   
Experiment 2, we tested whether subset enumeration can 
be accomplished via a  limited-capacity sampling strategy. 
In Experiment  3, we used the  same stimulation as  in   
Experiment 1 with the exception that observers could see 
the  dots until responding and, thus, could inspect them 
thoroughly. Finally, Experiment 4 was aimed at clarifying 
the nature of an unusual effect discovered in Experiments 
1 – 3, namely, facilitated enumeration of  larger numbers 
of subsets.

 Experiment 1
 Experiment  1 was designed to  investigate the  ability 
to enumerate spatially overlapping color subsets. Observ-
ers were briefly presented with arrays of dots of one to six 
colors randomly distributed in  the  space. The observers 
had to  determine how many colors had been presented. 
The maximum number of colors was chosen to exceed any 
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possible visual capacity estimates (e.g., Alvarez & Cava-
nagh, 2004). This allowed us to probe subset representation 
processes both within and beyond the subitizing range. We 
also varied the set size of arrays that allowed us to study how 
the subset representation is formed from individual items. 
If subset information is  extracted from all items at  once, 
then subset enumeration performance should not depend 
or even benefit from larger numbers of items in that sub-
set (Robitaille & Harris, 2011). Contrastively, if extracting 
a  subset requires focusing on  individual items, then per-
formance should decrease as  the  set size increases. There 
is a third possibility that a reported number of subsets can 
be approximated based upon a  few sample items without 
worsening performance. This possibility will be addressed 
specifically in Experiment 2.

Method
Participants. Fourteen undergraduate psychology stu-
dents of the Higher School of Economics (nine female, age 
range between 18 and 20 years, M = 18.9, SD =  .73) par-
ticipated in the experiment for extra credit in their general 
psychology lab classes or  as  volunteers. All participants 
were naïve with respect to the goals of the experiment. All 
reported having normal or corrected to normal visual acu-
ity, normal color vision and no neurological problems.

Apparatus and stimuli. Stimulation items were 
developed and presented through the  StimMake software 
(authors A.N.  Gusev and A.E.  Kremlev). Stimuli were 
presented on  a  standard VGA-monitor with a  refresh 
frequency of 85 Hz and spatial resolution of 800 × 600 pixels. 
The “working space” for displaying arrays was a 9 × 14 degree 
gray field in the center of the screen. The rest of the screen 
space was black and was not used for presentation.

Arrays of  colored dots were made for the  subset 
enumeration task. The dots were approximately .57 degrees 
in  diameter. The total number of  dots in  an  array could 
be  6, 12, or  36 (see Figure  1a). The dots were uniformly 
distributed over the  field, with the  average between-dot 

distance in small sets being greater than in  large sets. Six 
colors were used for coloring the  dots: black (RGB (0, 0, 
0); CIE XYZ (0, 0, 0)), white (RGB (255,  255,  255); CIE 
XYZ (95, 100, 109)), red (RGB (255, 0, 0); CIE XYZ (41.24, 
21.26, 1.93)), green (RGB (0,  255, 0); CIE XYZ (35.76, 
71.52, 11.92)), blue (RGB (0, 0, 255); CIE XYZ (18.05, 7.22, 
95.05)), and yellow (RGB (255, 255, 0); CIE XYZ (77, 92.78, 
13.85)). One to  six colors could be  present in  an  array. 
All colors were equally likely to be included in the arrays. 
All possible color combinations were used with equal 
frequency. So, one combination of  colors was used 
in  the  six-subset condition, six combinations were used 
in the one- and the five-subset conditions, 15 combinations 
were used in the two- and four-subset conditions, and 20 
combinations were used in  the  three-subset condition. 
Colors were uniformly divided between the subsets of dots 
using the simple N/n fraction, where N is the total number 
of dots and n is the number of colors. When perfect equality 
was impossible (e.g., dividing four colors between six dots) 
a closest-to-equal proportion was used instead (e.g., 1, 1, 2, 
and 2 items). Dots of different colors were randomly mixed 
in the space in a way that prevented same-color dots from 
grouping by proximity (see Figure 1a). Likewise, differently 
colored adjacent dots were placed in a way that precluded 
spatial regularity as  much as  possible. This provided 
maximum spatial overlap between color subsets.

Procedure and design. Experimental sessions were 
conducted in a darkened room with groups of one to three 
participants. Observers were seated about 70 cm from 
a  monitor. A typical trial began with a  500-ms fixation 
on a small black cross at the center of the screen. Immediately 
after fixation, a stimulus array appeared for 50 ms followed 
by a question mark at the center that remained on the screen 
until a  response was provided. Participants had to  decide 
as quickly as possible how many colors they had just seen. 
They were informed that the number of colors would vary 
from one to  six per trial. Responses were entered using 
the numeric pad of a standard computer keyboard.

Figure 1. Examples of stimuli with set sizes of 6, 12, and 36 items used in (a) Experiment 1 and (b) Experiment 2.
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To obtain reliable statistics of  errors and reaction 
times (RT), 30 trials were presented in each experimental 
condition. The entire experimental design included six 
conditions of  the  Number of  Subsets (one to  six concur-
rently presented colors) × three Set Sizes (6, 12, and 36 
dots) × 30 trials = 540 trials per observer. Five rest breaks 
were given, one after every 90 trials. A training session 
consisting of 18 randomly chosen trials was presented prior 
to the main session of 540 trials. The results of the training 
session were excluded from analysis.

Results and Discussion
Absolute differences between the actual and estimated num-
ber of colors were computed on each trial as an error mag-
nitude measure. Average RTs were computed only on tri-
als with correct responses. Experimental effects were tested 
using a  within-subjects ANOVA including the  Number 
of Subsets and Set Size as fixed factors. To handle individ-
ual differences between observers, the model also included 
observers’ identity as a random factor. A series of post-hoc 
t-tests were performed to  establish pairwise differences 
providing overall experimental effects.

The effect of  the  Number of  Subsets on  the  error 
magnitude was significant (F(5, 65)  =  29.05, p  <  .001, 
η2

p  =  .69). Differences between the  pairs of  neighboring 
conditions of  the  Numbers of  Subsets were significant 
(p’s  <  .001, Bonferroni corrected), demonstrating 
gradually increasing errors with the  number of  subsets 
(see Figure 2a). The only exception was a non-significant 
difference between the 5- and 6-color conditions. The effect 
of Set Size was also significant (F(2, 26) = 12.51, p < .001, 
η2

p = .49), demonstrating the overall advantage of 36-item 
sets over 6-item and 12-item sets (p’s  <  .001, Bonferroni 
corrected) (see Figure 2c). Finally, the effect of the Number 
of Subsets × Set Size on the error magnitude was significant 
(F(10, 130)  =  5.88, p  <  .001, η2

p  =  .31). Within each set 
size, the  effect of  the  Number of  Subsets was significant 
(set size  =  6, F(5, 65)  =  18.52, p  <  .001, η2

p  =  .59; set 
size = 12, F(5, 65) = 33.73, p < .001, η2

p = .72; set size = 36, 
F(5, 65) = 19.71, p < .001, η2

p = .60). In all set sizes, there 

was no difference between the 1- and 2-color conditions. In 
set sizes of 6 and 12, there was no difference between the 3- 
and 4-color conditions. Finally, there was no difference 
between the 5- and 6-color conditions in the set size of 12. 
All of the other comparisons of neighboring pairs regarding 
the number of colors were significant within each set size 
(p’s < .05, Bonferroni corrected).

The effect of  the  Number of  Subsets on  the  RT 
was significant (F(5, 66) = 38.86, p <  .001, η2

p =  .75). All 
pairwise differences between neighboring conditions 
were significant (p’s <  .001, Bonferroni corrected), except 
for the  difference between the  4- and 5-color conditions. 
As can be  seen from Figure  2b, the  4-color condition 
is  a  point where the  general positive trend in  the  RT 
breaks down and subsequently reverses. The effect of Set 
Size was significant (F(2, 28) = 27.53, p < .001, η2

p = .66), 
demonstrating the advantage of 12- and 36-item sets over 
6-item sets (p’s  <  .001, Bonferroni corrected, Figure  2c). 
The effect of Number of Subsets × Set Size on the RT was 
also significant (F(10, 146)  =  6.59, p  <  .001, η2

p  =  .31). 
Within each Set Size, the effect of the Number of Subsets 
was significant (set size  =  6, F(5, 67)  =  39.30, p  <  .001, 
η2

p = .75; set size = 12, F(5, 67) = 25.81, p < .001, η2
p = .66; 

set size  =  36, F(5, 67)  =  32.10, p  <  .001, η2
p  =  .71). The 

effect is  predominantly provided by  the  increasing larger 
set advantage as a  function of  the number of  subsets. All 
of  the  between-neighbor pairwise comparisons regarding 
the number of colors were significant within each set size 
(p’s < .05, Bonferroni corrected).

Three results of Experiment 1 deserve attention in light 
of our topic. First, we found that both the error magnitude 
and the  RT tended to  increase with the  number of  color 
subsets (except the  terminal numbers; this effect will 
be discussed below). It appears that decisions become more 
difficult as  the  global variation of  an  ensemble increases. 
This finding has two important theoretical consequences. 
The first consequence is  that subset representation is not 
free from limitations, which is consistent with the general 
conclusions of Halberda et al. (2006), Poltoratski and Xu 
(2013), and Watson et al. (2005). Our results allow us 
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Figure 2. The results of Experiment 1: (a) – (b) the effect of Number of Subsets and Set Size on the error magnitude and the RT and (c) the 
effect of Set Size on the error magnitude and the RT. Error bars denote ± 1 S.E.M.
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to  conclude that there is  a  boundary condition defining 
those limitations. This boundary is  likely to  be  no more 
than two subsets. This result differs from the  estimate 
for object subitizing (e.g., Mandler & Shebo, 1982; Trick 
& Pylyshyn, 1993, 1994). However, it seems to be  in  line 
with other estimates for parallel subset representation 
(Poltoratski & Xu, 2013; Watson et al., 2005). We found 
that the error magnitude in the 2-subset condition is only 
slightly different than that in  the  1-subset condition (see 
Figure 2a). At the same time, a more dramatic increment 
in  the  error magnitude is  found between the  2- and 
3-subset conditions. In theory, this incremental difference 
may indicate a  transition from easy and near perfect 
enumeration (subitizing) to a more difficult and error-prone 
method (counting or  estimation). The second criterion 
of subitizing is a rather flat (40 – 120 ms/item) RT function 
(Mandler & Shebo, 1982; Trick & Pylyshyn, 1993, 1994). 
The criterion of the boundary condition between subitizing 
and counting is  an  abrupt change in  the  slope of  the  RT 
function, which becomes steeper. In our experiment, 
the  initial slope of  the  function (187 ms/subset) between 
the 1- and 2-subset conditions is larger than that required 
for conforming to the standard subitizing criterion although 
slightly smaller than that for counting (250 –350 ms/item). 
However, there is  also a  remarkable slope increment 
observed between the 2- and 3-subset conditions (424 ms/
subset). The slope ratio between the regions is, therefore, 
about 2.3. This ratio is substantial but a bit lower than that 
reported in  the  standard object enumeration paradigm 
(~2.9 – 8.3) (Trick & Pylyshyn, 1993). We suppose that 
in  our experiment the  ratio could be  deflated because 
of  the brief presentation duration. This possibly prevents 
our observers from reliably counting, which takes a  lot 
of  time per unit. As observers did not have that time 
because of  the  brief presentation, they probably relied 
on more rapid and imprecise judgments. In Experiment 3, 
we retest the slope ratio between the 1 – 2 and 2 – 3 subset 
regions with an unlimited duration of presentation.

In summary, so far our 2-subset estimate 
of the boundary condition of subset subitizing is in many 
ways preliminary. This preliminary approximation will 
be retested in further experiments.

The second consequence of our finding is that subsets 
are somehow represented beyond the subitizing range. This 
conclusion is based on systematic changes that occur in both 
the error magnitude and RT with the number of  subsets. 
Otherwise, enumeration performance would have looked 
like random guessing with no difference between conditions. 
Note that the  average error magnitude did not exceed .7 
even in  the most difficult conditions (see Figure 2a), and 
the  analysis of  frequencies showed that observers rarely 
underestimated or  overestimated the  number of  subsets 
by  more than one or  two. Some additional data about 
the  “fate” of  subset representation beyond the  subitizing 
boundary will be reported in Experiments 3 and 4. Another 
finding that looks unusual is  the  striking acceleration 
of enumeration at the terminal points of the RT function, 
accompanied by  the  relative stabilization of  the  error 
magnitude. Moreover, the  points where the  reversal 
of the function takes place varies for different set sizes (see 
Figure 2a and 2b). In larger sets the advantage of terminal 
positions starts with the 5-subset condition, while in small 

sets it is  found only in  the  6-subset condition. Given 
the  incremental character of  the  function at  the  previous 
positions, this reversal pattern is  discouraging and needs 
careful replication and explanation. The replication 
of the effect will be reported in Experiments 2 and 3 using 
independent groups of observers. In Experiment 4, we will 
address two possible mechanisms underlying this pattern.

The third important finding from Experiment  1 
is the systematic advantage of  larger sets over small ones. 
It appears that subset representation somehow benefits 
from increasing the number of items in that subset (which 
was proportional to  the  set size in Experiment  1). This 
conclusion is  not surprising given growing experimental 
evidence that ensemble summary statistics also benefit from 
larger sets (Chong, Joo, Emmanouil, & Treisman, 2008, 
Experiment 2; Robitaille & Harris, 2011). A more important 
conclusion from this result is  that the visual system does 
not need to  serially inspect all subset members to  collect 
a  subset representation, despite their spatial separation 
by other items. However, this result of Experiment 1 does 
not necessarily imply a parallel mode of subset formation. 
The point is that the same pattern of results can be provided 
by  two completely different mechanisms: exhaustive 
processing of  all 1-color items at  one time vs. limited-
capacity sampling. These two hypothetical mechanisms 
will be explained in detail and dissociated in Experiment 2.

Experiment 2
As was mentioned above, two hypotheses can be  consid-
ered about the  mechanisms providing the  larger subset 
advantage observed in Experiment 1. The first hypothetical 
mechanism implies that all subset members are being pro-
cessed in a parallel and cumulative manner, which some-
how collects evidence from individual items and eventually 
improves their representation as a whole subset. The second 
hypothetical mechanism explains the pattern without ref-
erence to a parallel process. The advantage can theoretically 
be achieved by selectively focusing attention on a few dots, 
or sampling (Myczek & Simons, 2008). Consider a typical 
display in Experiment  1 (see Figure  1a). How many dots 
should one inspect to reliably judge the number of colors 
in the entire set? The rules of array composition (see Appa-
ratus and Stimuli) allowed such a  judgment based upon 
a randomly chosen group of about six adjacent dots. In sta-
tistical terms, any random sample of six neighboring items 
was representative of the color distribution among all items 
presented. A very plausible strategy in this case is inspecting 
a sample of six items closest to the fovea where color vision 
is the best. In large sets, the sample occurs in close proxim-
ity to the center of fixation due to the high density of dots. 
In contrast, the sample items in small sets are farther from 
that center, yielding poorer discrimination and involving 
additional costs in  moving spatial attention (Tsal,  1983).

To clarify whether subset formation is being carried 
out over all items in  parallel or  by  focusing attention 
on  a  sample of  foveal items, we made all visual sets 
equal in  density and centered them around the  fixation 
point (which made sets subtending different total areas 
in the visual field). On the one hand, if a foveal sampling 
strategy is  involved this manipulation would eliminate 
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the  large set advantage. Enumeration would be  even 
more precise in the small 6-item sets, as they are complete 
representative samples of  themselves, while in  large sets 
the  representativeness of  a  small sample varies from trial 
to  trial. So, we can expect better performance with small 
sets if observers indeed rely on the foveal sampling strategy. 
On the other hand, if all items contribute to the formation 
of a subset representation then density manipulation would 
have no effect on that advantage.

Method
Participants. Thirteen undergraduate students and pro-
fessors of the Higher School of Economics (six female, age 
range between 18 and 37 years, M = 20.3, SD = 5.03) par-
ticipated in the experiment for extra credit in their general 
psychology lab classes or  as  volunteers. All participants 
were naïve about the goals of the experiment. All reported 
having normal or corrected to normal visual acuity, normal 
color vision and no neurological problems. None had par-
ticipated in Experiment 1.

Apparatus and stimuli. The apparatus was identical 
to  that used in Experiment  1. Stimuli were very similar 
to  those used in Experiment  1; the  only exception 
concerned the  spatial arrangement of  dots in  the  arrays. 
In all sets, the  average distance between dots was about 
1.6 degrees (the same value was used in Experiment 1 for 
the sets with 36 dots), providing approximately constant 
density for all set sizes. Therefore, a visual angle occupied 
by  a  set of  dots grew proportionally to  the  set size. All 
sets were located around the center of the screen in a way 
that the  average spatial position of  the  dots was always 
at the fixation point.

Procedure and design. The procedure and design 
were identical to those used in Experiment 1.

Results and Discussion
The results of Experiment 2 are summarized in Figure 3. 
The methods used to  compute the  error magnitude and 
the RT, as well as the statistical procedures, were the same 
as in  Experiment 1.

The effect of  the  Number of  Subsets on  the  error 
magnitude was significant (F(5, 55)  =  24.98, p  <  .001, 
η2

p  =  .69). The difference between the  1- and 2-color 
conditions was non-significant. The difference between 
the  5- and 6-color conditions was also non-significant, 
replicating the  finding from Experiment  1. All other 
between-neighbor pairwise differences along the  number 
of  subsets were significant (p’s  <  .001, Bonferroni 
corrected), demonstrating that errors gradually increased 
with the  number of  subsets (see Figure  3a). The effect 
of  the  Set Size was nearly significant (F(2, 22)  =  3.33, 
p  =  .055, η2

p  =  .23). However, the  pairwise difference 
between the  6-item sets and two other conditions was 
significant (p = .001, Bonferroni corrected), demonstrating 
the  relative advantage of  larger sets (see Figure  3c). The 
effect of  the  Number of  Subsets × Set Size on  the  error 
magnitude was also significant (F(10, 110) = 4.13, p < .001, 
η2

p =  .27). Within each set size, the effect of  the Number 
of  Subsets was significant (set size  =  6, F(5, 55)  =  28.47, 
p < .001, η2

p = .72; set size = 12, F(5, 55) = 17.95, p < .001, 
η2

p = .62; set size = 36, F(5, 55) = 10.23, p < .001, η2
p = .48). 

In all set sizes, there was no difference between the  1- 
and 2-color conditions. In set sizes of  12 and 36, there 
was no difference between the 5- and 6-color conditions. 
Finally, there was no difference between the 3- and 4-color 
conditions in the set size of 12. The rest of the comparisons 
of neighboring pairs regarding the number of colors were 
significant within each set size (p’s  <  .05, Bonferroni 
corrected).

The effect of  the  Number of  Subsets on  the  RT 
was significant (F(5, 56) = 25.75, p <  .001, η2

p =  .70). All 
pairwise differences were significant (p’s < .001, Bonferroni 
corrected) except the difference between the 4- and 5-color 
conditions. As can be  seen in Figure  3b, the  reversal 
of the RT vs. Number of Subsets function starts at the 4-color 
condition, similar to what was found in Experiment 1. The 
effect of the Set Size was also significant (F(2, 28) = 27.53, 
p  <  .001, η2

p  =  .66), with all pairwise differences being 
significant (p’s ≤ .01). As can be seen in Figure 3b, the RT 
tended to  decrease as  the  set size increased. The  effect 
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Figure 3. The results of Experiment 2: (a) – (b) the effect of Number of Subsets and Set Size on the error magnitude and the RT and (c) the 
effect of Set Size on the error magnitude and the RT. Error bars denote ± 1 S.E.M.
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of  the  Number of  Subsets × Set Size on  the  RT was also 
significant (F(10, 146)  =  6.59, p  <  .001, η2

p  =  .31). This 
effect is  predominantly provided by  the  increasing larger 
set advantage as  a  function of  the  number of  subsets. 
Within each set size, the effect of  the Number of Subsets 
was significant (set size  =  6, F(5, 55)  =  20.19, p  <  .001, 
η2

p = .65; set size = 12, F(5, 55) = 23.87, p < .001, η2
p = .68; 

set size  =  36, F(5, 55)  =  22.13, p  <  .001, η2
p  =  .67). All 

comparisons of  neighboring pairs regarding the  number 
of  colors were significant within each set size (p’s  <  .05, 
Bonferroni corrected).

As can be seen from the results, our density manipu-
lation had a very limited effect on performance as compared 
to Experiment  1. Indeed, we found a  local reduction 
in  the  advantage of  larger over smaller sets in  the  error 
magnitude. This could be partially explained by improved 
color processing at the fovea. However, the effect appears 
insufficient for accepting the  foveal sampling hypothesis. 
If observers perfectly attended to only a few sample items 
around the  center, they probably would have been able 
to filter out the rest of the items and our density manipu-
lation would have eliminated any large set advantages. 
Moreover, we expected even more accurate enumeration 
in  small sets due to  their greater representativeness. 
In contrast to this expectation, the general trend remained 
the  same as  in   Experiment  1, suggesting that foveal 
sampling is an implausible strategy for subset enumeration. 
In addition, the  large set advantage was kept in  the  RT 
domain as well. It appears, consequently, that all items are 
processed in parallel across the entire visual field to provide 
a  cumulative, redundant effect on  subset representation. 
Our results here are similar to  those reported by  Chong 
et al. (2008, Experiment 2), who found that the reliability 
of  ensemble representation benefits from larger numbers 
of  items independently of  their spatial arrangement. 
Other findings reporting a  facilitating effect of  large sets 
in averaging tasks (Chong et al., 2008; Robitaille & Harris, 
2011) support numerosity as  a  strong factor providing 
the quality of ensemble encoding.

What did Experiment 2 add to our estimate of subset 
subitizing capacity made in Experiment  1? Primarily, 
the  experiment confirmed the  stated boundary of  about 
two subsets in  an  independent population of  observers, 
which is  in  line with Poltoratski and Xu’s (2013) and 
Watson et al.’s (2005) reports. As can be seen in  the plot 
in Figure  3a, two subsets are enumerated as  accurately 
as one subset but the error magnitude gradually increases 
in the other conditions (except the 6-subset condition). The 
pattern corresponds in general to  the subitizing-counting 
pattern. This boundary is supported by the RT data, which 
show a  substantial break in  slopes between the  2- and 
3-subset conditions (156 ms/subset for the  1 – 2 subsets 
region and 452 ms/subset for the  2 – 3 subsets region). 
Therefore, the slope ratio between the regions is about 2.9, 
close to  the  minimum difference sufficient to  distinguish 
between subitizing and counting. In Experiment  3, 
additional evidence will be provided that a substantial break 
in the RT occurs between the 2- and 3-subset conditions.

Finally, the  unusual RT reversal pattern observed 
in Experiment 1 was completely replicated in Experiment 2, 
which demonstrates the  robustness of  that pattern. 
In  Experiment 4, this pattern will be considered in detail.

Experiment 3
In Experiment 3, we used an unlimited duration of stim-
uli presentation (Watson et al., 2005) instead of  the brief 
duration allowed in Experiments 1 and 2. This manipula-
tion had two goals. First, we sought to prove that the results 
of Experiments 1 and 2 were not due to a lack of encoding 
time. Specifically, we asked whether the “subitizible” num-
ber of subsets can be more than two when encoding time 
is  unlimited. The brief presentation of  stimuli in  Experi-
ments 1 and 2 required observers to  enumerate subsets 
approximately, using an  estimation strategy as  termed 
by  Chong and Evans (2011). In contrast, unlimited pre-
sentation time allows observers to enumerate subsets more 
thoroughly, slowly and precisely, using a true counting strat-
egy. What should remain insensitive to duration manipula-
tion is subitizing. We expect, therefore, that both the error 
magnitude and the  RT should not differ substantially 
within the subitizing range as compared to those observed 
in Experiments 1 and 2. In contrast, more drastic changes 
are expected beyond the boundary condition of subitizing. 
Specifically, we expect an  overall decrement in  the  error 
magnitude and an  increment in  the  RT as  compared 
to  Experiments 1 and 2, since the  true counting strategy 
is now available. This relative change along with the “break 
point” described above may eventually provide the reliable 
value of the boundary condition. Furthermore, the princi-
pal availability of the counting strategy is expected to make 
the time course of subset enumeration more pronounced.

Method
Participants. Fifteen undergraduate students and profes-
sors of the Higher School of Economics (seven female, age 
range between 18 and 45 years, M = 23.6, SD = 8.67) par-
ticipated in the experiment for extra credit in their general 
psychology lab classes or  as  volunteers. All participants 
were unaware of the goals of the experiment. All reported 
having normal or corrected to normal visual acuity, normal 
color vision and no neurological problems. None had par-
ticipated in Experiments 1 or 2.

Apparatus and stimuli. Apparatus and stimuli were 
identical to those used in Experiment 1.

Procedure and design. The procedure and design 
were similar to  those used in Experiment  1. The only 
exception was that the duration of display presentation was 
prolonged as compared to the former experiment. Stimulus 
sets remained on the screen until a response or for 7,000 ms 
if no response followed. The design was the same as in two 
previous experiments.

Results and Discussion
The results of Experiment 3 are summarized in Figure 4. The 
methods used to compute the error magnitude and the RT 
were the same as  in   Experiment 1, as were the statistical 
procedures.

The effect of  the Number of Subsets on the absolute 
error was significant (F(5, 65) = 24.82, p < .001, η2

p = .65). 
The pairwise differences between the  1- and 2-color 
conditions and between the 5- and 6-color conditions were 
non-significant, replicating the finding from Experiment 2. 
All other pairwise differences between the  numbers 
of subsets were significant (p’s < .001, Bonferroni corrected) 
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demonstrating gradually increasing errors with the number 
of subsets (see Figure 4a). The effect of the Set Size was also 
significant (F(2, 26) = 10.56, p <  .001, η2

p =  .45), with all 
pairwise differences being significant (p’s < .01, Bonferroni 
corrected). In contrast to  Experiments 1 and 2, the  error 
magnitude changed non-monotonically with the  set size, 
as  depicted in Figure  4c. The non-monotonic character 
of this effect can perhaps be explained by a complex Number 
of  Subsets × Set Size interaction (F(10,  130)  =  11.38, 
p < .001, η2

p = .47) indicating some range-specificity of set 
size effects. Within each set size, the effect of the Number 
of  Subsets was significant (set size  =  6, F(5, 65)  =  10.67, 
p < .001, η2

p = .45; set size = 12, F(5, 65) = 22.13, p < .001, 
η2

p = .63; set size = 36, F(5, 65) = 18.34, p < .001, η2
p = .59). 

In all set sizes, there was no difference between 1- and 
2-color conditions. In the  set size of  6, there was no 
difference between 3- and 4-color conditions, nor was 
there a  difference between 4- and 5-color conditions. 

In the set size of 12, there was also no difference between 
2- and 3-color conditions. Finally, there was no difference 
between 5- and 6-color conditions in the set size of 36. All 
of  the  other comparisons of  neighboring pairs regarding 
the number of colors were significant within each set size 
(p’s < .05, Bonferroni corrected).

The effect of  the  Number of  Subsets on  the  RT was 
significant (F(5, 65) = 97.37, p < .001, η2

p = .88), as shown 
by  significant pairwise differences between all conditions 
(p’s  <  .001, Bonferroni corrected). As can be  seen in 
Figure  4b, the  shape of  the  function basically replicates 
those from Experiments 1 and 2. The effect of the Set Size 
was also significant (F(2, 26) = 15.83, p <  .001, η2

p =  .53) 
demonstrating the  advantage of  6-item and 36-item sets 
over 12-item sets (p’s < .05, Bonferroni corrected). Again, 
the effect is non-monotonic (see Figure 4c), as was found 
in the error domain. We propose that it can be explained 
by a more complex Number of Subsets × Set Size interaction 
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(F(10, 130) = 13.37, p < .001, η2
p = .51). As in the previous case, 

the interaction is provided by the range specificity of set-size 
advantages. For the  “low” range (one to  three subsets), 
post-hoc tests revealed the advantage of 36-item sets over 
smaller ones. Within each set size, the effect of the Number 
of  Subsets was significant (set size  =  6, F(5,  65)  =  90.68, 
p < .001, η2

p = .87; set size = 12, F(5, 65) = 85.54, p < .001, 
η2

p = .87; set size = 36, F(5, 65) = 55.15, p’s < .001, η2
p = .80). 

All between-neighbor differences were significant in  all 
set sizes (p’s  <  .05, Bonferroni corrected) except for 
the difference between 4- and 5-color conditions in the set 
size of 6, and between 5- and 6- color conditions in set sizes 
of 12 and 36.

One of the main goals of Experiment 3 was to compare 
two duration conditions  — brief vs. unlimited presen-
tation  — that are likely to  induce different prevailing 
enumeration strategies, namely estimation and counting 
(Chong & Evans, 2011). We supposed that a  substantial 
strategic effect on performance would be  found for those 
subsets that cannot be subitized. In Figures 4d and 4e, we 
plotted enumeration functions from Experiments  1 – 3 
that were averaged across set sizes. As can be  seen from 
the plots, both the error (Figure 4d) and the RT (Figure 4e) 
functions have rather similar shapes in  all experiments, 
indicating the robustness of subset enumeration behavior 
regardless of  spatiotemporal conditions such as  density 
(Experiment  1 vs. 2) or  duration (Experiment  1 vs. 3). 
However, the  slopes of  the  functions differ between 
Experiments 1 and 2 versus Experiment 3. We suggest that 
these differences reflect the  predominant use of  the  two 
different strategies mentioned above. Specifically, in 
Experiment  3 observers could rely on  true counting that 
yielded a simultaneous decrement in the error magnitude 
per subset and an increment in the RT per subset.

However, the dramatic change in slopes did not take 
place along entire functions. The regions between the  1- 
and 2-subset conditions maintain almost the same slopes 
as  in Experiments 1 and 2. For the error magnitude, this 
region is flat, so two subsets were likely to be enumerated 
as precisely as one subset. For the RT, the slope of this region 
is 272 ms/subset. It is about 1.6 times as steep as the average 
slope found in Experiments 1 and 2 within the same region. 
This can be  partially explained by  the  general tendency 
to  respond slower when provided an  unlimited duration 
of  presentation, which is  consistent with other ensemble 
representation data (Robitaille & Harris, 2011). Moreover, 
the  1.6-time difference is  smaller than that required for 
being ascribed to critically different modes of enumeration 
(Trick & Pylyshyn, 1993). Besides, the  ratio was even 
smaller than those found between the  2- and 3-subset 
conditions of Experiments 1 and 2. We conclude, therefore, 
that both the error magnitude and the RT functions reflect 
a rather rapid and efficient process of subitizing.

A more dramatic difference between Experiments 
1 and 2 versus Experiment  3 appears at  the  3-subset 
condition. This is  well depicted in  Figures 4d and 4e, 
where a  small between-function gap at  the  beginning 
is  followed by  a  progressively increasing gap after 
the 2-subset condition. As was mentioned above, we argue 
that the  latter gap is  explained by  the  difference between 
the  estimation and counting strategies (Chong & Evans, 
2011) acting beyond the subitizing boundary. We consider 

this gap to be additional evidence that no more than two 
spatially overlapping subsets can be effortlessly represented 
and enumerated at a time.

The results of Experiment  3 also provide several 
important observations about subset representation 
beyond the boundary condition of subitizing. First, our RT 
data show that observers were likely to count subsets. This 
claim is  supported by  the  steep slope of  the  RT function 
at  the  2 – 3 subset region (955 ms/subset, about 3.5 times 
as steep as at the “subitizable” 1 – 2 subset region), followed 
by a very steep increment in subsequent conditions (except 
the 6-subset condition). This shows that slow serial selection 
is  likely to  be  required for perceiving and enumerating 
each additional subset. Second, we found that subset 
enumeration is  more difficult than object enumeration, 
even with a  longer duration of  presentation. When we 
count individual items one by one, our accuracy is normally 
close to  perfect. In contrast, Experiment  3 showed that 
even if one has an  opportunity to  count color subsets, 
accuracy diminishes gradually with the number of subsets. 
There are several possible explanations for this pattern. 
On the one hand, the increasing variety of colors may cause 
difficulties with segregation of one subset from the others. 
However, experimental data show that a  relevant subset 
can be easily segregated from the multicolor environment 
and represented in statistical terms if that subset is properly 
attended to  (Halberda et al., 2006). As  counting requires 
focusing attention on  each enumerated unit (Chong 
& Evans, 2011), we rule out this explanation based on poor 
subset segregation. On the  other hand, during slow and 
serial counting observers might sometimes forget which 
subsets have already been counted and which have not. 
Obviously, the number of subsets to count increases with 
the  total number of  subsets, and so does the  number 
of subsets that can be forgotten as counting progresses. This 
can explain the incremental character of the error function 
in Experiment 3. Certainly, this explanation is speculative 
and needs careful testing in future research.

An interesting observation was made about the effect 
of the set size on enumeration performance, and it can also 
be  related to  the  error-proneness of  subset counting. For 
the “low” range of subset numbers, the pattern replicated 
the large sets’ advantage from Experiments 1 and 2, indi-
cating that a subset representation is formed upon all subset 
members in parallel. Taken together, these patterns indi-
cate that subset formation is independent of spatial (Exper-
iments 1 vs. 2) and temporal (Experiments 1 vs. 3) condi-
tions. However, for the  “high” range of  subset numbers, 
the pattern changes in  favor of  small sets. The advantage 
of  small over large sets is well known from the  literature 
on visual search, and is often explained by focused attention 
that shifts serially from one occupied location to another 
(Treisman & Gelade, 1980). We suppose that our partici-
pants were able to use a sort of focused attention strategy 
at  the  “high” range. In other words, they could perform 
color enumeration of individual items instead of (or maybe 
along with) counting subsets as wholes. Although a color 
subset can be easily individuated as a whole from a multi-
colored ensemble at a brief glance (Halberda et al., 2006), 
this does not mean that observers did not pay attention 
to individual items when the presentation time was unlim-
ited. During brief stimulus presentations (such as in Exper-

http://www.cogjournal.org/
http://www.cogjournal.org/


Igor S. Utochkin Enumeration of Subsets

www.cogjournal.org

14

The Russian Journal of Cognitive Science	 Vol. 3, Issue 1 – 2, March – June 2016

iments 1 and 2), enumeration is likely to be accomplished 
only with coarsely distributed attention as it spreads to all 
items momentarily. Of course, decisions can be  rather 
intuitive and imprecise under distributed attention, but it 
aids the  encoding of  global ensemble features (Chong & 
Treisman, 2005a; Treisman, 2006) which, in  turn, would 
benefit from larger set sizes (Chong et al., 2008; Robitaille & 
Harris, 2011). That is exactly what was observed in Experi-
ments 1 and 2. In contrast, focused attention is more avail-
able during longer stimulus presentations due to  its slow 
serial deployment. It yields more confident, precise, and 
somewhat rational decisions but impairs global feature 
encoding (Chong & Treisman, 2005a) and grants an advan-
tage of  small sets over large ones. That was the  case in 
Experiment 3.

Finally, the  reversal pattern of  performance 
in  the  terminal subset numbers was replicated again 
with the  independent group of  observers and modified 
conditions in Experiment  3. This led us to  conclude that 
the pattern is more than an occasional feature of particular 
observers or  specific stimulus conditions. Experiment  4 
addresses the nature of this pattern.

 Experiment 4
Two possible explanations for the  reversal enumeration 
pattern were suggested in the discussion of Experiment 1, 
and will now be considered in detail. First, we presumed 
that observers could rely on a “full set” memory template 
when distinguishing between the large numbers of subsets. 
The benefit of templates of this kind can be explained using 
inverted U-shaped functions as  shown in Figure  5. The 
functions relate the number of particular color combina-
tions to the total number of possible colors. Given the lim-
ited color possibilities in Experiments 1 – 3, the lowest num-
ber of combinations is achieved in the 6-subset condition 
(see Figure 5, dotted line). That is the only possible combi-
nation that includes the entire range of colors. It can be eas-
ily stored as a template for representing a gist. When a large 
number of colors are presented at once, it is obviously eas-
ier to compare a display with the  template than to count 
colors one by one.

However, there is  a  second and more mundane 
explanation for the observed pattern in terms of the “ceiling 
effect”. This is  based on  a  simple bias toward terminal 
response categories, such as  the  6-color response. While 
seeing large numbers of  colors, observers may choose 
the  6-color category more readily because it has no 
neighboring categories from the  upper side, while other 
responses do. For instance, when four or  five colors are 
presented, the  nearest uncertainty zone incorporates 
two additional alternatives: above and below the  correct 
response. In the 6-color condition, the nearest uncertainty 
zone incorporates only one alternative, which can impose 
an  easier decision. The inevitable consequence of  such 
organization of the response choices is a more accurate and 
fast response (since decisions are predominantly distributed 
around two instead of three adjacent categories). The same 
strategy can apply to the 1-color condition as well (the “floor 
effect”), but near perfect performance makes it almost 
useless. Note that this ceiling strategy nevertheless implies 

that some discrimination between subsets does in fact exist 
in  the 4- to 6-color range, for otherwise observers would 
respond randomly in  all conditions and no bias could 
be observed.

 Experiment  4 was designed to  properly address 
the  two possible explanations suggested above. In this 
experiment, we extended the  range of  colors but kept 
the same restrictions for the response system. So, observers 
could see up to six colors in any given trial but the colors 
could be  randomly taken out from the  set of  seven 
colors, providing much more particular combinations 
(see Figure  5, solid line). To explain this manipulation, 
consider the  6-color condition which is  most critical for 
the experiment. There is only one way to take out six colors 
of six but there are seven ways to take out six colors of seven. 
It is  easy to  store and consistently use a  single “full set” 
template (as was the case in Experiments 1 – 3) but it is less 
useful (if not impossible) to store and use seven templates. 
If the hypothesis of the “full set” template is correct, then 
using the  7-color set with six response categories would 
eliminate or  at  least reduce the  reversal pattern found 
in  Experiments  1 – 3. On  the  other hand, if the  reversal 
pattern can be explained by the mere “ceiling effect” then 
our manipulation will keep it intact as  the  categorical 
system of responses is the same as before.

Methods
Participants. Fifteen undergraduate students of  the 
Higher School of  Economics (nine female, age range 
between 17 and 24 years, M = 17.4, SD = .63) participated 
in  the  experiment for extra credit in  their general psy-
chology lab classes or as volunteers. All participants were 
unaware of the goals of the experiment. All reported having 
normal or corrected to normal visual acuity, normal color 
vision and no neurological problems. None had partici-
pated in Experiments 1 – 3.

Apparatus and stimuli. Apparatus and stimuli were 
basically identical with those used in Experiment 1. The only 
addition was made to the stimulus options; namely, magenta 
color (RGB (255, 255, 0); CIE XYZ (59.29, 28.48, 96.98)) 
was used along with the six colors from Experiments 1 – 3. 
That caused the increment in the number of possible color 
combinations as Figure 5 depicts (dotted line).

Procedure and design. In order to  uniformly 
distribute all possible combinations of seven colors across 
presentations, we exposed our participants to 35 trials per 
condition instead of 30. Therefore, the entire experimental 
design included six Numbers of Subsets × three Set Sizes (6, 
12, and 36 dots) × 35 trials = 630 trials per observer. Five 
rest breaks were made, one after every 105 trials. The rest 
of the procedural details were the same as in  Experiment 1.

Results and Discussion
The results of Experiment 4 are summarized in Figure 6. 
The methods used to  compute the  error magnitude and 
the  RT, as  well the  statistical procedures, were the  same 
as in  Experiment 1.

The effect of  the  Number of  Subsets on  the  error 
magnitude was significant (F(5, 70)  =  85.70, p  <  .001, 
η2

p  =  .86). The difference between the  1- and 2-color 
conditions was non-significant. All other pairwise 
differences between the numbers of subsets were significant 
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(p’s < .001, Bonferroni corrected), including the difference 
between the 5- and 6-color conditions. Therefore, the error 
magnitude was monotonically increasing after the 2-color 
boundary, and no stabilization was observed at the terminal 
points (see Figure  6a). The effect of  the  Set Size was also 
significant (F(2, 28)  =  9.40, p  =  .001, η2

p  =  .40). It was 
shown by the advantage of 36-item sets over 6- and 12-item 
conditions (p’s < .001, Bonferroni corrected, see Figure 6c). 
The effect of the Number of Subsets × Set Size on the error 
magnitude was significant (F(10, 140)  =  7.48, p  <  .001, 
η2

p  =  .35). Within each set size, the  effect of  the  Number 
of  Subsets was significant (set size  =  6, F(5, 70)  =  54.53, 
p < .001, η2

p = .80; set size = 12, F(5, 70) = 87.29, p < .001, 
η2

p = .86; set size = 36, F(5, 70) = 46.48, p < .001, η2
p = .77). 

In all set sizes, there was no difference between the  1- 
and 2-color conditions. All of  the  other comparisons 
of  neighboring pairs regarding the  number of  colors 
were significant within each set size (p’s < .05, Bonferroni 
corrected).

The effect of  the  Number of  Subsets on  the  RT 
was significant (F(5, 70) = 48.87, p <  .001, η2

p =  .76). All 
between-neighbor pairwise differences were significant 
(p’s  <  .01, Bonferroni corrected), except for the  5- 
and 6-color conditions. As can be  seen in Figure  6b, 
the  reversal RT vs. Number of Subsets function, similar 
to  that found in Experiment  1, starts at  the  4-color 
condition. The effect of  the  Set Size was also significant 
(F(2, 28)  =  27.53, p  <  .001, η2

p  =  .66), demonstrating 
the advantage of the 12- and 36-items sets over the 6-items 
sets (p’s  <  .001, Bonferroni corrected, see Figure  6c). 
The effect of the Number of Subsets × Set Size on the RT 
was significant (F(10, 146) = 6.59, p < .001, η2

p = .31). This 
effect is  predominantly demonstrated by  the  increasing 
larger set advantage as a function of the number of subsets. 
Within each set size, the effect of  the Number of Subsets 
was significant (set size  =  6, F(5, 72)  =  60.00, p  <  .001, 

η2
p = .81; set size = 12, F (5, 72) = 28.95, p < .001, η2

p = .67; 
set size = 36, F(5, 72) = 31.74, p < .001, η2

p = .69).
These results show that the  additional member 

in  the  range of  possible subset-constituting colors in 
Experiment  4 had a  substantial effect on  enumeration 
accuracy at  terminal points, as  compared to  the previous 
experiments. Critically, the growth in the error magnitude 
was maintained between the  5- and 6-subset conditions, 
while all of  the  previous experiments showed no such 
growth. This result is  inconsistent with the mere “ceiling 
effect” caused by  the  restriction of  response categories. 
Rather, it is  consistent with the  prediction derived from 
the  hypothesis of  the  “full set” template in  working 
memory. On the  other hand, our RT data replicated 
the  reversal pattern from the  previous experiments, and 
this result is consistent with the “ceiling effect” rather than 
the “full set” template hypothesis. We conclude, therefore, 
that stabilization of  the error magnitude and the  reversal 
of the RT at terminal points are likely to reflect two different 
mechanisms. On the  one hand, the  observers enumerate 
the  large numbers of  subsets with more or  less accuracy 
depending on the utility of a template. On the other hand, 
they appear to  make terminal responses faster regardless 
of the accuracy that can be due to the “ceiling effect”.

Except the effect of the additional color on the error 
magnitude, all of  the  other results replicated those 
observed earlier. Again, we found that no more than 
two subsets can be  enumerated as  accurately as  one 
subset. The break in  the  RT functions was also found 
at the boundary condition of two subsets. This is provided 
by the substantial difference between the slopes at the 1 – 2 
and 2 – 3 regions (138 ms/subset and 391 ms/subset, respec-
tively, which resulted in  a  ratio of  about 2.8). Consistent 
replication of  these two basic results in  all experiments 
indicates the  robustness of  the  pattern and supports our 
estimate of  the  boundary condition of  subset subitizing. 
Together with previous data from other researchers 
(Halberda et al., 2006; Poltoratski & Xu, 2013), our results 
provide converging evidence that no more than two 
spatially overlapping subsets can be  represented at  one 
time by the human visual system. Finally, in Experiment 4, 
we also replicated the  advantage of  large sets over small 
ones previously found in  Experiments 1 and 2. This 
replication indicates the  robustness of  this pattern under 
brief presentation, which was a  common condition for 
those experiments.

General Discussion

Subset Representation within 
and beyond the Subitizing Range
Applying the  standard criteria for distinguishing between 
subitizing and the  counting of  individual objects (Trick 
&  Pylyshyn, 1993, 1994), we discovered that similar pro-
cesses are likely to operate in our subset enumeration task. 
Specifically, we found a region of almost error-free perfor-
mance that was accompanied by a rather flat slope of the RT 
function, which can be  recognized as  subset subitizing. 
The  boundary condition of  this subset subitizing  — no 
more than two — was highly consistent across experiments. 
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Figure 5. The number of possible color combinations as a func-
tion of the number of presented color subsets and the total range 
of colors. In the six-color range (as used in Experiments 1 – 3, dot-
ted line) there is only one possible combination that presumably 
can be stored as a single “full set” memory template (given that 
the full set includes six colors). The seven-color range (as used 
in  Experiment 4, solid line) generates seven “full set” templates 
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It is  important to  note that our estimate is  also consis-
tent with that reported by other authors who investigated 
the  limit of  parallel object enumeration (Halberda et al., 
2006; Poltoratski & Xu, 2013; Watson et al., 2005). Taken 
together, the results from different paradigms provide con-
verging evidence in favor of a two-unit capacity of the par-
allel representation of spatially overlapping subsets.

Immediately after the  boundary condition of  subset 
subitizing, a substantial break in performance was observed. 
A very important finding is that both the error magnitude 
and the  RT changed systematically, not by  chance, with 
the  number of  subsets. We conclude, therefore, that 
the  observers indeed discriminated between different 
numbers of  subsets beyond the  subitizing range, despite 
the failure of representing those subsets in parallel.

A more detailed analysis of the error and RT patterns 
sheds light on  the processes providing the  representation 
of  subsets beyond the  boundary condition of  subitizing. 
Our data show that observers were able to  rely on  a  set 
of  enumeration strategies such as  rapid but approximate 
estimation and slower but more accurate counting (Chong 
& Evans, 2011). However, in our case it is hardly possible 
to say that observers used either of these pure strategies. We 
conclude this because both the error magnitude and the RT 
increased quite concordantly in  all experiments, while 
each of  the pure strategies presumes that either the error 
magnitude or the RT, but never both, grows with the number 
of  stimuli. Instead, it appears that some flexible tradeoff 
strategy was used in our experiments, with a predominant 
component determined by  the  experimental conditions. 
This flexible tradeoff is clearly illustrated by the finding that 
the slopes of the error and the RT functions tend to change 
in mutually opposite directions depending on the viewing 
duration (Experiments 1 and 2 vs. Experiment  3, see 
Figures 5d and 5e). In the  brief presentation condition 
(Experiments 1, 2, and 4), slow and thorough inspection 
is  naturally less available, so the  observers had to  judge 
the  number of  subsets quite intuitively and approxi-
mately. That resulted in the shallower RT but the steeper 

error function, indicating the  greatest contribution 
of the estimation strategy to subset enumeration. In contrast, 
in  the  long viewing condition (Experiment  3), observers 
had enough time to  serially inspect all of  the  subsets 
(or even individual items). This, in turn, yielded the steeper 
RT but the shallower error function which can be ascribed 
to the greater contribution of the counting strategy.

There is another important implication of the finding 
that both estimation and counting strategies are involved 
in subset enumeration. This finding indicates a critical role 
of  attentional selection in  subset representation, and this 
role appears to be greater than in representing individual 
objects. Chong and Evans (2011) claim that the  serial 
attentional selection of individual items is needed only when 
an exact number is required, and that can be accomplished 
by  counting. In contrast, when an  exact number is  not 
necessary or  unavailable (e.g., due to  brief presentation 
or  crowding; Valsecchi, Toscani, & Gegenfurtner, 2013), 
an  immediate and approximate estimation can be  made 
with a broadly distributed attentional window that spreads 
over all items at  once rather than selecting them one 
by  one. Our results demonstrate that the  serial pattern 
of enumeration is kept (at least for three and four subsets 
which are above the subitizing range and far from reaching 
the  “ceiling” response category), even when the  duration 
of  presentation is  not enough for counting subsets 
properly. It appears, therefore, that, unlike individual 
objects, spatially overlapping subsets require some degree 
of serial attentional selection to be consciously represented 
regardless of  a  predominant strategy of  building that 
representation.

The Role of Subset Numerosity
We manipulated the  set size as  a  within-subject factor 
in  all experiments in  order to  probe how a  subset repre-
sentation is extracted from the individual members of that 
subset. We found a  rather enduring advantage of  large 
sets over small ones in almost all experimental conditions 
except for the “high” range (five and six subsets) in Experi-
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ment 3. Experiment 2 showed that this advantage cannot 
be explained by  the difference in  the spatial arrangement 
of items between large and small sets and by the sampling 
strategy based on  this arrangement. We conclude, there-
fore, that the large set advantage was provided by numer-
osity itself.

If numerosity improves both speed and accuracy 
of  subset enumeration, the  implication is  that the  visual 
system is  likely to  process all items representing a  subset 
in parallel. However, a simple parallel process cannot explain 
the  advantage of  large sets, as  it implies the  independent 
character of  processing all items and predicts no cost 
and no advantage of  the  set size. It appears that a  more 
complex, cumulative process underlies building the subset 
representation from individual items. At least two possible 
mechanisms may explain the  cumulative character 
of  this process. First, a  greater number of  items per 
subset can aid the reliability of the holistic representation 
of a corresponding subset. In other words, the more items 
represent a subset in the visual field, the more readily we 
perceive those items as a solid though disseminated group 
and, hence, easily enumerate them as a single unit. A similar 
view of  the  role of  numerosity in  ensemble represen-
tation was advocated by  Robitaille and Harris (2011) 
in the domain of mean perception. The other mechanism 
is  based on  the  rule of  statistical power, which says that 
a critical value of a statistical test sufficient to confirm the H1 
hypothesis (which states the  dissimilarity between distri-
butions) decreases with the total number of observations. 
Continuing the statistical approach to ensemble represen-
tation (Alvarez, 2011; Ariely, 2001; Chong & Treisman, 
2003), it is  reasonable to  suppose that visual discrim-
ination between spatially overlapping ensembles can 
somehow follow the  rules of  statistical decision. In other 
words, it may be easier for the visual system to distinguish 
between differently colored subsets when greater samples 
of  items represent those subsets. Elsewhere, we discussed 
a similar mechanism of numerosity effects in visual search 
(Utochkin, 2013). Certainly, both of  these mechanisms 
need thorough testing in future research.

The “Full Set” Memory Template
A robust pattern was found in  our experiments at  termi-
nal subset numbers, indicating the  violation of  monoto-
nous growth of the error and RT functions. It can be par-
tially ascribed to the “ceiling” effect of enumeration caused 
by  the  finite categorical scale of  possible responses (Man-
dler & Shebo, 1982). However, as Experiment 4 shows, this 
effect can be also explained by the use of a template repre-
senting the whole variety of possible subsets for the given 
set. This template appears to  be  useful for enumerating 
large numbers of  spatially overlapping subsets, reducing 
the error of enumeration where applicable. A detailed expla-
nation of  how this “full set” template might work is  pre-
sented in  the  preamble for Experiment  4 and depicted in 
Figure 5. Here, we are going to emphasize the role that such 
a template can play in subset representation and, more gen-
erally, in gist perception. In our opinion, a template of this 
sort can be an efficient tool for representing familiar scenes, 
ensembles, or textures. Instead of serial enumeration of each 
subset one by  one in  a  complex ensemble, we can simply 
rely on a global impression of the “full” set, the “something 

lacking” set, or  the “something redundant” set. Therefore, 
a  template of  this sort in  the memory could be an  impor-
tant component of  visual expertise requiring rapid deci-
sions about complex ensembles or textures. Note, however, 
that our results allow only rather preliminary conclusions 
about the “full set” memory template and its possible func-
tions. Further experiments are needed to properly test our 
speculations.

Conclusions
In the present study, we addressed the issue of the repre-
sentation of spatially overlapping subsets in complex visual 
ensembles. We used a subset enumeration task that allowed 
us to  probe the  available representations of  subsets and 
the time course of their formation. We found some similar-
ity between subset enumeration and object enumeration. 
In particular, we discovered that subsets can be represented 
in  two different ways depending on  the number of  those 
subsets. One mode of this representation — fast and almost 
error-free subitizing — works for no more than two subsets 
at a time. This estimate provides converging evidence for 
the previously established boundary of parallel extraction 
of summary statistics (Halberda et al., 2006; Poltoratski & 
Xu, 2013; Watson et al., 2005). Beyond this boundary, sub-
sets are represented via slower and more error-prone esti-
mation or counting. Although both of these strategies are 
less ideal than subitizing in  terms of  speed and accuracy, 
their outcome correlates with the actual number of subsets, 
thus indicating that overlapping subsets are being discrimi-
nated well enough beyond the limit of parallel representa-
tion. Other results show that subset representation beyond 
the  subtizing boundary appears to  be  subject to  rather 
complex strategic modulation, appealing to different con-
dition-dependent attentional modes (such as  distributed 
vs. focused attention, Chong & Evans, 2011) or  memory 
templates. In contrast, within the subitizing range, subset 
enumeration performance was almost insensitive to condi-
tional manipulations supporting the notion of highly paral-
lel and effortless processing.
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Зрительная оценка 
количества в подмножествах, 
перемешанных в пространстве
Игорь Сергеевич Уточкин
Национальный исследовательский университет «Высшая школа экономики», Москва, Россия

Аннотация. Наблюдатели способны к эффективной зрительной оценке сводных статистик (например, среднего зна-
чения какого-либо признака или количества) из подмножеств объектов, перемешанных в пространстве. Однако 
эта способность ограничена — одновременно могут быть извлечены статистики всего около двух подмножеств, 
что исходно может быть вызвано ограниченным объемом параллельной репрезентации этих подмножеств. Мы про-
вели четыре эксперимента, в которых наблюдателям предъявлялись наборы точек, окрашенных в разные цвета 
(от одного до шести цветов в наборе); задача состояла в определении количества показанных цветов. Измерялись 
скорость и точность ответов. Следуя стандартным критериям, используемым для интерпретации данных в зада-
чах определения количества объектов, мы выделили два режима репрезентации подмножеств: а) параллельная, лег-
кая и стратегически-независимая репрезентация не более двух подмножеств и б) последовательная репрезентация, 
модулируемая стратегиями внимания и шаблоном рабочей памяти. Также было обнаружено преимущество в точно-
сти и скорости в ответах на большие подмножества по сравнению с маленькими, демонстрирующее, что репрезента-
ция подмножества объектов с общим признаком формируется на основе статистического накопления информации 
об отдельных объектах.

Контактная информация: Игорь Сергеевич Уточкин; isutochkin@inbox.ru; 109316, Москва, Волгоградский пр-т, 
д. 46 Б, комн. 314.
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