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It is well-known that large random structures may have non-random macroscopic properties. We 

give an example of non-random properties for a class of large optimization problems related to the 

computational problem 𝑀𝐴𝑋𝐹𝐿𝑆= of calculating the maximal number of consistent equations in 

a given overdetermined system of linear equations. A problem of this kind is faced by a decision 

maker (an Agent) choosing the means to protect a house from natural disasters. For this class we 

establish the following. There is no “efficiently computable” optimal strategy for the Agent. When 

the size of a random instance of the optimization problem goes to infinity the probability that the 

uniform mixed strategy of the Agent is 𝜀 optimal goes to one. Moreover, there is no “efficiently 

computable” strategy for the Agent which is substantially better for each instance of the 

optimization problem.  
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1. Introduction 

It is well-known that macroscopic properties of large random objects are often not random; 

sometimes this is called concentration of measure. The simplest example is the law of large 

numbers: the arithmetic mean of many independent identically distributed (i.d.d) variables is 

non-random. An example from physics is delivered by the properties of a gas: pressure and 

temperature depend on the average speed of molecules and not their individual velocities. A 

simple example in game theory is a matrix game with a random square payoff matrix of fixed size. 

The matrix elements are i.d.d. Gaussian random variables. Both players know the matrix realized 

in the game. Consider the same game repeated 𝑛  times; each time the matrix is chosen 

independently. If the number 𝑛 of repetitions goes to infinity, then the value of this 𝑛-stage game 

divided by 𝑛 approaches the expectation of the value of the 1-stage game. The latter is not a 

random variable.  

 

In game theory a similar concentration of measure phenomena were studied in [1–5]. We show the 

concentration of measure for a special class of random optimization problems of large size which 

have no optimal effectively computable solutions.  

 

First we show that the uniform mixed strategy using all the pure strategies is equiprobably close to 

the optimal solution with an overwhelming probability when the size of the problem is large 

enough. Note that this “almost” optimal strategy does not depend on the parameters of the game 

and thus may be used when no information is available about the problem (except its size).  

 

Then we show that there is no effectively computable strategy which is substantially better for all 

the problems of the class considered.  

 

2. Basic notions and the formulation of the problem 

First we introduce the preliminary notions necessary to define the class of optimization problems. 

Let 𝐶𝑁,𝐾 , 𝐾 >> 𝑁  be a overdetermined unsolvable system of 𝐾  linear equations with 𝑁 

variables, for example with real coefficients.  

 

𝑀𝐴𝑋𝐹𝐿𝑆= is the following computational problem: given such a system 𝐶, find the maximal 

possible number 𝑀 = 𝑀(𝐶𝑁,𝐾 of consistent (i.e. simultaneously satisfiable) equations, and the 

values of the variables satisfying that many equations. It is well-known that 𝑀𝐴𝑋𝐹𝐿𝑆=  is 

NP-hard (cf. [6]), i.e. for each computational problem in the class 𝑁𝑃 there is a polynomial time 

algorithm reducing it to 𝑀𝐴𝑋𝐹𝐿𝑆=.  

 

Consider systems of linear equations of the following form (*). Let 𝑥𝑟, 𝑟 = 1, … , 𝑁, take values 

0 and 1; each equation has exactly 3 variables and is of form 𝑥𝑟 + 𝑥𝑠 + 𝑥𝑡 = 𝑎𝑟,𝑠,𝑡 modulo 2, 

where 𝑎𝑟,𝑠,𝑡 is also equal to either 0 or 1, 1 ≤ 𝑟 < 𝑠 < 𝑡 ≤ 𝑁. We assume that the equations are 

distinct and each pair of equations is consistent.  

 

It is easy to see that the maximal possible number 𝐾 of different equations in such a system is 

bounded by  

 

𝐾 ≤ 2 ⋅
𝑁(𝑁 − 1)(𝑁 − 2)

6
. 

 

Consider a random assignment of values to the variables in which each variable takes both 
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possible values 0 and 1 independently and equiprobably with probability 1/2.  

 

For each equation the expectation that it is satisfied by such an assignment is 1/2, and therefore 

the expectation of the maximal possible number 𝑀(𝐶𝑁,𝐾) of consistent equations is at least 𝐾/2, 

i.e. for the maximal possible number 𝑀 = 𝑀(𝐶𝑁,𝐾) of simultaneously satisfied equations of the 

system 𝐶 = 𝐶𝑁,𝐾 the following inequality holds: 

 

 𝑀(𝐶𝑁,𝐾)/𝐾 ≥ 1/2. (1) 

 

Hastad [7] considers systems of form (*) and proves that it is 𝑁𝑃-hard to approximately compute 

𝑀(𝐶𝑁,𝐾) beyond the random threshold, namely for each 𝜀 > 1/2, that it is 𝑁𝑃-hard to determine 

whether 

 

 𝑀/𝐾 > 1/2 + 𝜀. (2) 

 

We call a system 𝐶𝑁,𝐾 of equations degenerate iff each equation in the system has its opposite, i.e. 

the equation with the same left-hand and different right-hand side.  

 

Given a non-degenerate system 𝐶𝑁,𝐾 of form (*), consider the following optimization problem.  

 

An Agent wants to build a house protected from as many natural disasters as possible. The Agent 

controls 𝑁  parameters 𝑥𝑟 , 𝑟 = 1, … , 𝑁  taking values 0  and 1 . 𝒙 = (𝑥1, … , 𝑥𝑁) —a pure 

strategy of the Agent. There are 2𝑁 pure strategies. The Agent is able to randomize his strategies.  

 

There are 𝐾 possible natural disasters, 𝐾 >> 𝑁. We consider the case when the natural disaster 

happens once. The disaster is chosen by Nature at random according to a probability distribution 

𝒑 = (𝑝1, … , 𝑝𝐾) on the set {1, … , 𝐾} known to the Agent; here 𝑝𝑗 are positive rational number.  

 

The house is protected from the disaster 𝑗 iff the 𝑗-th equation of the system 𝐶𝑁,𝐾 is satisfied by 

the values of the parameters assigned by the Agent. The system is known to the Agent.  

 

If the house is protected, we set the Agent’s payoff to be +1; if it is not protected, we set the 

Agent’s payoff to be 0.  

 

The agent tries to maximize his expected payoff. The (mixed) strategy of the Agent which 

maximizes his expected payoff, is called optimal.  

 

For this class of optimization problems denoted by Γ(𝐶𝑁,𝐾, 𝒑) we show that:  

 

1. the expectation of the Agent’s payoff is at least 1/2  when the Agent plays 

optimally; 

2. there is no “effectively computable” optimal strategies of the Agent, i.e. there is no 

algorithm working in polynomial time and realizing the optimal strategy for each 

optimization problem of the class described above; 

3. the Agent may ensure payoff 1/2 by uniformly mixing all the pure strategies 

whatever probability distribution the Nature uses; 

4. for some natural measure on the set of all optimization problems Γ(𝐶𝑁,𝐾, 𝒑) this 

uniform mixed strategy is 𝜀-optimal for 𝑁 → ∞ and 𝐾/𝑁 → ∞, except on a set of small 

measure; 

5. the Agent has no “efficiently computable” strategy which is significantly better for 

all optimization problems than his uniform mixed strategy if Nature plays her uniform 
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strategy choosing all the disasters with the same probability 1/𝐾.  

 

Let us clarify the notion of the effectively computable mixed strategy for a class 𝐶 of optimization 

problems. Consider an arbitrary probabilistic algorithm which, given (a description of) an 

optimization problem of class 𝐶, outputs a pure Agent strategy with a certain probability. We 

think that such an algorithms “computes” a mixed strategy for an arbitrary optimization problem 

of class 𝐶. If the algorithm always finishes the computation in a time bounded by a polynomial in 

the length of the description of the optimization problem, we say that the algorithm realizes an 

efficiently computable strategy.  

 

3. Preliminary results 

Lemma 1. 𝑀(𝐶𝑁,𝐾)/𝐾 = 1/2 iff the system 𝐶𝑁,𝐾 is degenerate.   

 

Proof. It is easy to check that for degenerate systems the equality 𝑀/𝐾 = 1/2 holds.  

 

Assume the equality 𝑀(𝐶𝑁,𝐾)/𝐾 = 1/2 holds.  

 

This means the maximum number of simultaneously satisfied equations is exactly equal to the 

average number (by the uniform “counting” measure) and therefore each assignment satisfies 

exactly 𝐾/2 equations. Let us prove the system is degenerate.  

 

For this we consider how the maximum number of the simultaneously satisfied equations changes 

when a single variable changes its value, then when two variables change their values, and, finally, 

when three variables change their values.  

 

Fix an arbitrary assignment 𝑥1 = 𝑐1, … , 𝑥𝑁 = 𝑐𝑁 . Consider sets 𝑋𝑖(𝑐1, … , 𝑐𝑁), 1 ≤ 𝑖 ≤ 𝑁  of 

equations satisfied by 𝑥1 = 𝑐1, … , 𝑥𝑁 = 𝑐𝑁 and containing occurrences of variable 𝑥𝑖. Similarly, 

consider the set 𝑋′
𝑖(𝑐1, … , 𝑐𝑁)  of unsatisfied equations containing occurrences of the same 

variable 𝑥𝑖.  

 

Consider the assignments where a single variable 𝑥𝑖 = 𝑐𝑖 + 1  changes its value and notice 

|𝑋𝑖| = |𝑋′
𝑖|.  

 

𝑋𝑖(𝑐1, … , 𝑐𝑖, … , 𝑐𝑁) = 𝑋′
𝑖(𝑐1, … , 𝑐𝑖 + 1, … , 𝑐𝑁) 

 

and  

 

𝑋′
𝑖(𝑐1, … , 𝑐𝑖, … , 𝑐𝑁) = 𝑋𝑖(𝑐1, … , 𝑐𝑖 + 1, … , 𝑐𝑁). 

 

Analogously, consider assignments where two variables 𝑥𝑟 = 𝑐𝑟 + 1, 𝑥𝑠 = 𝑐𝑠 + 1 change their 

values.  

 

Under this change of the assignment the following equations become unsatisfied which were 

satisfied before:  

 

𝑋𝑟(𝑐1, … , 𝑐𝑖, … , 𝑐𝑁) ∪ 𝑋𝑠(𝑐1, … , 𝑐𝑖, … , 𝑐𝑁) ∖ (𝑋𝑟(𝑐1, … , 𝑐𝑖, … , 𝑐𝑁) ∩ 𝑋𝑠(𝑐1, … , 𝑐𝑖, … , 𝑐𝑁)). 
 

Analogously, under this change of the assignment the following equations become satisfied which 

were unsatisfied before:  
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𝑋′
𝑟(𝑐1, … , 𝑐𝑖, … , 𝑐𝑁) ∪ 𝑋′

𝑠(𝑐1, … , 𝑐𝑖, … , 𝑐𝑁) ∖ (𝑋′
𝑟(𝑐1, … , 𝑐𝑖, … , 𝑐𝑁) ∩ 𝑋′

𝑠(𝑐1, … , 𝑐𝑖, … , 𝑐𝑁)). 
 

Hence, the cardinality of these sets are equal; let us now calculate their size.  

 

By assumption the latter two sets have the same number of elements. The number is |𝑋𝑟| + |𝑋𝑠| −
|𝑋𝑟 ∩ 𝑋𝑡|. To simplify notation, omit (𝑐1, … , 𝑐𝑖, … , 𝑐𝑁).  

 

By the inclusion-exclusion principle their size is equal to |𝑋𝑟| + |𝑋𝑠| − |𝑋𝑟 ∩ 𝑋𝑡| and |𝑋′
𝑟| +

|𝑋′
𝑠| − |𝑋′

𝑟 ∩ 𝑋′
𝑡|, respectively.  

 

Now, |𝑋𝑟| = |𝑋′
𝑟|, |𝑋𝑠| = |𝑋′

𝑠| implies |𝑋𝑟 ∩ 𝑋𝑠| = |𝑋′
𝑟 ∩ 𝑋′

𝑠|.  

 

Analogously, |𝑋𝑟 ∩ 𝑋𝑡| = |𝑋′
𝑟 ∩ 𝑋′

𝑡|, |𝑋𝑠 ∩ 𝑋𝑡| = |𝑋′
𝑠 ∩ 𝑋′

𝑡|.  

 

Now consider assignments where three variables 𝑥𝑟 = 𝑐𝑟 + 1 , 𝑥𝑠 = 𝑐𝑠 + 1  and 𝑥𝑡 = 𝑐𝑡 + 1 

change their values. Using the inclusion-exclusion principle in a similar way, we get  

 

|𝑋𝑟 ∩ 𝑋𝑠 ∩ 𝑋𝑡| = |𝑋𝑟| + |𝑋𝑠| + |𝑋𝑡| − |𝑋𝑠 ∩ 𝑋𝑡| − |𝑋𝑟 ∩ 𝑋𝑡| − |𝑋𝑠 ∩ 𝑋𝑡| 
 

and analogously  

 

|𝑋′
𝑟 ∩ 𝑋′

𝑠 ∩ 𝑋′
𝑡| = |𝑋′

𝑟| + |𝑋′
𝑠| + |𝑋′

𝑡| − |𝑋′
𝑠 ∩ 𝑋′

𝑡| − |𝑋′
𝑟 ∩ 𝑋′

𝑡| − |𝑋′
𝑠 ∩ 𝑋′

𝑡|. 
 

Hence |𝑋𝑟 ∩ 𝑋𝑠 ∩ 𝑋𝑡| = |𝑋′
𝑟 ∩ 𝑋′

𝑠 ∩ 𝑋′
𝑡| and these sets are either both empty or have a single 

element.  

 

Finally, notice that |𝑋𝑟 ∩ 𝑋𝑠 ∩ 𝑋𝑡| = 1 iff the system contains the equation 𝑥𝑟 + 𝑥𝑠 + 𝑥𝑡 = 𝑐𝑟 +
𝑐𝑠 + 𝑐𝑡 , and that |𝑋′

𝑟 ∩ 𝑋′
𝑠 ∩ 𝑋′

𝑡| = 1 iff the system contains the “opposite” equation 𝑥𝑟 +
𝑥𝑠 + 𝑥𝑡 = 𝑐𝑟 + 𝑐𝑠 + 𝑐𝑡 + 1 which is inconsistent with the former equation.  

 

The same argument goes through if these two sets are both empty. This finishes the proof that the 

system is degenerate.  

 

Claim 1. (a) The Agent has a pure optimal strategy 𝑥∗ = 𝑥∗(𝐶𝑁,𝐾, 𝒑).  

 

(b) If the Agent uses the optimal strategy, the payoff expectation 𝑉𝑎𝑙(Γ(𝐶𝑁,𝐾, 𝒑)) is at least 1/2. 

The equality holds iff the system contains a pair of contradictory equations (a degenerate system).  

 

(c) There is no “effectively computable” optimal strategy for the Agent, i.e. there is no algorithm 

which takes at most polynomial time (in 𝐾) and realizes the Agent’s optimal strategy for each 

problem Γ(𝐶𝑁,𝐾, 𝒑) of the form described above.   

 

Proof. Let us show that for an arbitrary mixed strategy 𝒑 of Nature with positive rational 

components 𝑝𝑗 > 0 there exists the best answer of the Agent as a pure strategy.  

 

First consider the case when 𝒑 is the uniform distribution: 𝒑:  𝑝𝑗 = 1/𝐾.  

 

Let 𝒑,  𝑝𝑗 = 1/𝐾, 𝑗 = 1, … , 𝐾, represent the uniform strategy of Nature. It is easy to see that 

there is a unique optimal strategy for the Agent corresponding to this strategy of Nature, namely 

this strategy is pure and assigns to variables the values which satisfy the maximal number 
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𝑀(𝐶𝑁,𝐾) of equations. We know it is 𝑁𝑃-hard to compute this strategy of the Agent, as it is 

𝑁𝑃 -hard to compute the number 𝑀(𝐶𝑁,𝐾). In other words, the (mixed) optimal strategy is 

𝑁𝑃-hard to compute.  

 

Using Lemma 1, inequality 1 implies item (b), and item (c) is implied by the fact that the problem 

of finding 𝑀(𝐶𝑁,𝐾) is 𝑁𝑃-hard.  

 

Consider the general case: Nature plays the strategy represented by 𝒑 = (𝑝1, … , 𝑝𝐾)  where 

𝑝𝑗 > 0  are rational, 𝑗 = 1, … , 𝐾 . Let 𝐷 = 𝐷(𝒑)  be the least common multiple of the 

denominators of 𝑝𝑗, 𝑗 = 1, … , 𝐾. Thus 𝑝𝑗 = 𝑑𝑗/𝐷 where ∑ 𝑑𝑗
𝐾
𝑗=1 = 𝐷 and 𝑑𝑗 are integer. Note 

that 𝐷 > 𝐾 unless the distribution 𝒑 is uniform and 𝐷 = 𝐾.  

 

Consider the system 𝐶̃𝑁,𝐷 of 𝐷 linear equations of 𝑁 variables which, for 𝑗 = 1, … , 𝐾, contains 

𝑑𝑗 copies of 𝑗-th equation of the system 𝐶. Let 𝒒 be the uniform distribution on the equations of 

the system 𝐶̃𝑁,𝐷 . Now consider the game instances Γ(𝐶𝑁,𝐾, 𝒑)  where Nature plays 𝒑  and 

Γ(𝐶̃𝑁,𝐷 , 𝒒) where Nature plays 𝒒. They are equivalent and the corresponding optimal strategies 

for the Agent are the same, to assign to variables the values which satisfy the maximal number 

𝑀(𝐶̃𝑁,𝐷) of equations of system 𝐶̃𝑁,𝐷.  

 

Claim 2. For any distribution 𝒑  the Agent’s mixed strategy where he equiprobably (with 

probability 1/2𝑁) picks a pure strategy to use, gives payoff 1/2.   

 

Proof. Recall that we assume that all the components of the distribution 𝒑 are positive.  

 

An argument analogous to the proof of inequality (1) shows that the payoff is 1/2 when the Agent 

uses the uniformly mixing strategy: the expectation that each equation is satisfied by the 

assignment is equal to 1/2. Hence, the expectation of the payoff is equal to 1/2 as well.  

 

This strategy is optimal iff the system is degenerate, i.e. the system 𝐶𝑁,𝐾 has a pair of 

contradictory equations.  

 

4. -optimality of the Agent’s uniform strategy 

In this section we consider probability measures on a set of systems (optimization problems) and 

show that the uniform strategy is 𝜀-optimal with a probability approaching 1 when 𝑁 → ∞ and 

𝐾/𝑁 → ∞.  

 

In Theorem 1 below we assume that the distribution 𝑝𝒖𝒏𝒊 is uniform and we denote Γ(𝐶𝑁,𝐾, 𝑝𝒖𝒏𝒊) 

as the corresponding optimization problem. We also assume that the system 𝐶𝑁,𝐾 contains no 

pairs of inconsistent equations.  

 

Consider the uniform probability measure on the family of the systems of the form (*) containing 

exactly 𝐾 different equations. Let 𝜇𝑁,𝐾 denote this measure. We show that for a random system 

of the form (*), chosen according to measure 𝜇𝑁,𝐾, without pairs of inconsistent equations, the 

Agent’s uniform strategy which randomly chooses from each of the pure strategies with equal 

probability, is asymptotically 𝜀-optimal except for a set of small 𝜇𝑁,𝐾-measures.  

 

Let 𝑎(𝐶𝑁,𝐾) denote the difference 𝑀(𝐶𝑁,𝐾/𝐾 − 1/2. Fix 𝜀 > 0. Consider the set of systems 
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𝑈𝑁𝐼𝑁,𝐾(𝜀),  

 

𝑈𝑁𝐼𝑁,𝐾(𝜀) = {𝐶𝑁,𝐾: 𝑎(𝐶𝑁,𝐾) < 𝜀}. 
 

If 𝐶𝑁,𝐾 ∈ 𝑈𝑁𝐼𝑁,𝐾(𝜀) , then Claim 2 implies that the Agent’s mixed strategy which uses 

equiprobably (with probability 1/2𝑁 ) each pure strategy, is the 𝜀 -optimal strategy in the 

optimization problem Γ(𝐶𝑁,𝐾, 𝑝𝒖𝒏𝒊).  

 

Let ⌈(1/2 − 𝜀)𝐾⌉ denote the least integer not less than (1/2 − 𝜀)𝐾, and let ( 𝐾
⌈(𝜀+1/2)𝐾⌉

) denote 

the the number of ⌈(1/2 − 𝜀)𝐾⌉-element subsets of a set of size 𝐾.  

 

Theorem 1. Fix 𝜀 > 0. The probability 𝜇𝑁,𝐾  of systems 𝐶𝑁,𝐾  such that the Agent’s uniform 

strategy is 𝜀-optimal for Γ(𝐶𝑁,𝐾, 𝑝𝒖𝒏𝒊), goes to 1 when 𝑁 → ∞ and 𝐾/𝑁 → ∞.  

 

Namely, this probability satisfies the inequalities  

 

(𝐼)  1 − 2𝐹1(1, ⌈(1/2 − 𝜀)𝐾⌉, ⌈(1/2 + 𝜀)𝐾⌉ + 1, −1) ⋅ 2𝑁−𝐾 ⋅ (
𝐾

⌈(𝜀 + 1/2)𝐾⌉
) 

 

≤ 𝜇𝑁,𝐾(𝑈𝑁𝐼𝑁,𝐾(𝜀))

≤ 1 − 2𝐹1(1, ⌈(1/2 − 𝜀)𝐾⌉, ⌈(1/2 + 𝜀)𝐾⌉ + 1, −1) ⋅ 2−𝐾 ⋅ (
𝐾

⌈(𝜀 + 1/2)𝐾⌉
), 

 

where 2𝐹1(𝑎, 𝑏, 𝑐, 𝑑) is the hypergeometric function (cf. [8]). For some constant 𝑐 > 0 it holds  

 

(𝐼𝐼)  1 − 2𝑁 ∫ 𝑒−𝑡2

∞

𝐾

𝑑𝑡 ⋅ 𝑒𝑥𝑝(2𝜀2𝐾 + 𝑐)) ≤ 𝜇(𝑈𝑁𝐼𝑁,𝐾(𝜀)) 

 

≤ 1 − ∫ 𝑒−𝑡2

∞

𝐾

𝑑𝑡 ⋅ 𝑒𝑥𝑝(2𝜀2𝐾 − 𝑐)). 

 

Note that the estimate (II) is more explicit but less precise.  

 

Proof. As the measure 𝜇𝑁,𝐾 is uniform, it is enough to find an upper bound for the fraction 

(among all systems) of the systems such that 𝑀/𝐾 > (
1

2
+ 𝜀), i.e. those systems for which some 

assignment satisfies at least (
1

2
+ 𝜀)-fraction of the equations. It is enough to estimate the number 

of equations with fixed left-hand sides which satisfy at least (
1

2
+ 𝜀)-fraction of the equations on a 

given assignment.  

 

So let us fix the left hand sides of all the 𝐾 equations of the system. Further, fix an arbitrary 

assignment of values to the variables; there are 2𝑁 of them. A system with given left hand sides of 

the equations is fully determined by the set of its equations which are satisfied by a given 

assignment of values to the variables.  

 

Let ( 𝐾
>𝐿

) denote the number of subsets of the set of 𝐾 elements which contain more than 𝐿 
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elements. Note that (
𝐾

>(
1

2
+𝜀)𝐾

) is the number of systems with given left hand sides such that a 

given assignment satisfies more then (
1

2
+ 𝜀)-fraction of the number of the equations. In terms of 

probability theory, (
𝐾

>(
1

2
+𝜀)𝐾

) = 2𝐾𝑃𝜀  where 𝑃𝜀  is the probability of that more than (
1

2
+ 𝜀)𝐾 

heads occur in the Bernoulli trial of 𝐾 tosses of a uniform coin. Here we use that there are no two 

equations have the same left hand sides.  

 

This number may be written explicitly as the hyper-geometric function  

 

(
𝐾

> (
1
2 + 𝜀)𝐾

) = 2−𝐾 (
𝐾

⌈(
1
2 + 𝜀)𝐾⌉

) 2F 1 (1, ⌈(−
1

2
+ 𝜀) 𝐾⌉;  ⌈(

1

2
+ 𝜀) 𝐾⌉ + 1; −1). 

 

We can also use estimates of Littlewood [9,10]:  

 

𝑃𝜀 = ∫ 𝑒−𝑡2

∞

𝐾

𝑑𝑡 ⋅ 𝑒𝑥𝑝(2𝜀2𝐾 + 𝑐0𝐾−1/2 + 𝑂(𝐾−1)). 

 

Constant 𝑐 may be given explicitly but we only remark that 𝑐 < 0.6.  

 

Estimates (II) follow from (I) and the fact that 𝑐0𝐾−1/2 + 𝑂(𝐾−1) are bounded both from above 

and below by a constant.  

 

Finally, note that in this way we may have counted each system several times, but at most 2𝑁, and 

this implies the estimates.  

 

We remark that the measure 𝜇𝑁,𝐾 is not natural in the sense that it is not generated by a natural 

stochastic process. This measure may be generated by the process which adds a new equation to 

the set of equations already added. However, this process needs to check whether the equation 

does not belong to the set already and this is what it makes unnatural from the point of view of the 

theory of stochastic processes.  

 

Now let us show that the proof of Theorem 1 goes through for a larger class of optimization 

problems and measures satisfying certain symmetry assumptions. Namely, Theorem 1 generalizes 

to problems Γ(𝐶𝑁,𝐾, 𝒑) where the distribution 𝒑 and the number 𝐾 of equations are arbitrary. 

The class of probability measures is defined with help of the following parameters.  

 

Fix three constants 𝛿(𝑁), 0 < 𝛿(𝑁) < 1, 𝑁 < 𝐾𝑚𝑖𝑛 < 𝐾𝑚𝑎𝑥.  

 

Define the following conditions on a measure 𝜈𝑁 of the countable set Γ(𝐶𝑁,𝐾, 𝒑) of systems.  

 

1. the symmetry measure of a system (i.e., the measure of a singleton set) does not depend on 

the right hand sides of the equations occurring in the system;  

2. the error measure of the set of systems with 𝐾 equations where 𝐾𝑚𝑖𝑛 < 𝐾 < 𝐾𝑚𝑎𝑥, is 

more than 1 − 𝛿(𝑁).  

 

Let us give an example of a measure which is natural from the point of view of probability theory 

and satisfies condition (1) of uniformity of the measure’s restriction to a set of systems with fixed 

left hand sides.  
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Define the following random process which builds a system of not more than 𝐾  different 

equations. Independently and equiprobably pick an equation 𝐾 times. This defines a probability 

measure on the set of systems of linear equations with multiplicities and the corresponding 

optimization problem Γ(𝐶𝑁,𝐾′ , 𝒑) with a random number of equations 𝐾′ < 𝐾. The probability 

𝑝𝑗, 1 ≤ 𝑗 ≤ 𝐾′, is proportional to the number of times the corresponding equation was chosen by 

the random process. At each step, and for each equation, the probability of picking the equation is 

equal to the probability of picking the equation with the same left hand side and the opposite right 

hand side; this implies the measure satisfies condition (1) of uniformity of the restriction.  

 

Let us now show that this measure also satisfies condition (2). Take 𝐾𝑚𝑖𝑛 = (1 − 𝜀)𝐾  and 

𝐾𝑚𝑎𝑥 = (1 + 𝜀)𝐾 . To estimate error 𝛿(𝑁) , we use Bernoulli tails estimates, for example 

Theorem 1.5 [11] gives a bound 𝛿(𝑁) <
𝐾−1/2

𝜀
𝑒−𝜀2𝐾/6 for 𝐾 < 𝑁3/2 i 3/𝐾 < 𝜀 < 1/12.  

 

Let us introduce the following notation to state Theorem 2. Let 

𝑎(Γ(𝐶𝑁,𝐾, 𝒑)) = 𝑉𝑎𝑙(Γ(𝐶𝑁,𝐾, 𝒑) − 1/2 . Fix 𝜀 > 0 . Consider the set of systems 𝑈𝑁𝐼′
𝑁,𝐾(𝜀) 

defined as  

 

𝑈𝑁𝐼′
𝑁,𝐾(𝜀) = {Γ(𝐶𝑁,𝐾, 𝒑): 𝑎(Γ(𝐶𝑁,𝐾, 𝒑)) < 𝜀}. 

 

Theorem 2. Fix ε > 0. Let νN denote a measure satisfying conditions (1) and (2).  

 

The probability νN(UNI′
N,K(ε)) that in a random (according to measure νN) instance of the 

optimization problem Γ(CN,K, 𝐩) the uniform strategy of the Agent is -optimal goes to 1 when 

N → ∞ and K/N → ∞.  

 

Namely, this probability νN of the set of the optimization problems such that the uniform strategy 

is -optimal, satisfies the following inequalities:  

 

(I)  1 − 2N−Kmin (
Kmin

⌈(ε + 1/2)Kmin⌉
) 2F1(1, ⌈(1/2 − ε)Kmin⌉, ⌈(1/2 + ε)Kmin⌉ + 1, −1)

− δ(N) ≤ νN(UNI′
N,K(ε)) 

 

νN(UNI′
N,K(ε))

≤ 1 − 2−Kmax (
Kmax

⌈(ε + 1/2)Kmax⌉
) 2F1(1, ⌈(1/2 − ε)Kmax⌉, ⌈(1/2 + ε)Kmax⌉

+ 1, −1) + δ(N). 
 

For some constant c > 0  

 

(II)  1 − 2N ∫ e−t2

∞

Kmin

dt ⋅ exp(2ε2Kmin + c) − δ(N) ≤ νN(UNI′
N,K(ε)) 

 

≤ 1 − ∫ e−t2

∞

Kmax

dt ⋅ exp(2ε2Kmax − c)) + δ(N). 

 

Proof. Pick a number K′ and pick K′ many left hand sides of equations. Consider the measure 
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induced on the systems with these left hand sides. Their number is 2K′
 and by condition (1) the 

measure induced on these systems is uniform. Hence we may use the estimates (I), (II) for the 

uniform measure in the proof of Theorem 1. Note that the dependence on K′ in these estimates is 

monotone; also note that by (2) we have the inequality Kmin < 𝐾 < Kmax holds on a set of 

measure at least 1 − δ(N). Hence, the lower bound in Theorem 2 is obtained from the lower 

bound in Theorem 1 by replacing K by Kmin and subtracting the error term δ(N). Similarly, the 

upper bound in Theorem 2 is obtained from the upper bound in Theorem 1 by replacing K by 

Kmax and adding the error term δ(N).  

 

5. The unimprovability of the uniform strategy of the Agent in 

the class of effectively computable strategies 

As Theorems 1 and 2 imply, the uniform strategy of the Agent is close to being optimal for all 

problems in Γ(CN,K, 𝐩) except a set of small measure which approach 0 when the size of the 

system goes to infinity. For these exceptional problems it holds that  

 

1/2 + ε < 𝑉𝑎𝑙(Γ(CN,K, 𝐩) ≤ 1. 
 

In this section we investigate a "worst" case for the Agent to use the uniform strategy, namely 

when his payoff expectation Val(Γ(CN,K, 𝐩)) is close to 1,  

 

Val(Γ(CN,K, 𝐩) ≥ 1 − ε. 
 

Assuming that Nature chooses equations equiprobably, 𝐩:  pj = 1/K, j = 1, … , K, we show that 

there is no “effectively computable” mixed Agent’s strategy which is substantially better for 

problems Γ(CN,K, 𝐩) under consideration. From now on we omit the parameter 𝐩 as it is fixed.  

 

To demonstrate this we use the result of Hastad [6] which establishes that for a fixed ε > 0 it is 

𝑁𝑃-hard to check whether there exists an assignment of values of the variables which satisfy at 

least (1/2 + ε)K many equations in an arbitrary system of form (*).  

 

Let us clarify the motivation and methods used by Hastad. Using Fourier transforms, Hastad [6] 

constructed a probabilistically checkable proof system (PCP, cf. (Arora & Barak [12]) with 

minimal parameters.  

 

Usually, an algorithm used to check a proof takes the whole of proof as input and reads the whole 

proof. A probabilistically checkable proof is a proof rewritten in such a way that that a modified 

algorithm checks it reading 3 bits at random and finds an error with probability at least 1/2.  

 

Dinur [13] gives a new construction of probabilistically checkable proofs which uses expander 

graphs.  

 

We note that although the size of the probabilistically checkable proofs built is bounded by 

n × (log n)O(1) where n is the length of a classical proof, the constant appearing O(1) may be 

quite large.  

 

We use an equivalent reformulation of the result of Hastad which says that for the considered class 

of optimization problems constructing an optimal solution is asymptotically as hard as 

constructing an approximate solution with a given rate of approximation.  
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Consider the subfamily Γ1−ε = Γ1−ε(CN,K) of the systems Γ(CN,K) of form (*) in which the 

Agent’s optimal payoff is at least 1 − ε.  

 

Reformulation of the Hastad’s result. Fix ε > 0. It is 𝑁𝑃-hard to find a mixed strategy for the 

Agent which gives him payoff at least 1/2 + ε in any problem Γ1−ε.  

 

Corollary. Assume P ≠ NP. Fix ε > 0. There is no “effectively computable” mixed strategy 

which gives the Agent a payoff of at least 1/2 + ε in an arbitrary optimization problem in Γ1−ε, 

i.e. there is no algorithm working in polynomial time and computing a possibly mixed strategy 

with payoff at least 1/2 + ε in an arbitrary problem Γ1−ε.   

 

6. Conclusions 

We consider a class of optimization problems interpreted as problems arising when an Agent 

wants to build a house and choose ways to protect it from natural disasters. We showed that in this 

class there are no effectively computable optimal strategies. However, the uniformly mixing 

strategy—to choose equiprobably from all available pure strategies—is close to being optimal for 

an overwhelming majority of optimization problems when their size is large enough. Therefore, it 

is advisable to use this strategy even when little is known about the parameters of the optimization 

problem.  

 

Under the assumption that natural disasters happen with the same probability, we showed that 

there is no effective strategy which is always essentially better than the uniform strategy for all the 

problems, in particular those problems where the uniform strategy is not close to optimal.  

 

The authors would like to thank Fedor Sandomirsky for valuable remarks and references.  
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