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Abstract—We describe how a top-like quantum Hamiltonian over a non-Lie algebra appears in
the model of the planar Penning trap under the breaking of its axial symmetry (inclination of the
magnetic field) and tuning parameters (electric voltage, magnetic field strength and inclination
angle) at double resonance. For eigenvalues of the quantum non-Lie top, under a specific variation
of the voltage on the trap electrode, there exists an avoided crossing effect and a corresponding
effect of bilocalization of quantum states on pairs of closed trajectories belonging to common
energy levels. This quantum tunneling happens on the symplectic leaves of the symmetry algebra,
and hence it generates a tunneling of quantum states of the electron between the 3D-tori in the
whole 6D-phase space. We present a geometric formula for the leading term of asymptotics of the
tunnel energy-splitting in terms of symplectic area of membranes bounded by invariantly defined
instantons.
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1. INTRODUCTION

The ideal Penning trap is created by a homogeneous magnetic field and by a quadratic electric
potential with a saddle profile in 3D-space. Its Hamiltonian is just a hyperbolic-type harmonic oscillator
with three frequencies. Such devices are used for long time confinement of individual charges [1]—[3].
Of course, the Hamiltonians of real traps contain not only the harmonic part, but also some anharmonic
potentials. In this work, we deal with a planar trap with ring electrodes, as in [4]—[6], creating, in addition
to quadratic, also cubic, quartic, etc. terms in the electric potential near the trap center.

We study the main hyperbolic 2 : (—1) : 2 resonance of the trap frequencies suggested in [7]. We
also break the usual axial symmetry and assume that the magnetic field deviates by a small angle ¢ from
the saddle axis of the trap. We specially choose the deviation angle to obtain the secondary 4 : (—=2) : 1
resonance in the e-perturbing part of the Hamiltonian, as in [7]—[9].

In such a double-resonance trap, the cubic and quartic terms of the electric potential generate a
top-like Hamiltonian over a non-Lie analog of the su(1,1) algebra [9]. This non-Lie algebra consists
of bisymmetries (integrals of motion) of the quadratic part of the trap Hamiltonian. The dynamics
of the non-Lie top is the dynamics of symmetries under an anharmonic perturbation. This dynamics
determines the whole evolution of the charge in the trap.

In particular, the equilibrium points of the top dynamics (studied in [9], [10]) correspond to almost
invariant 2D-tori in the original 6D-phase space of the system. Near the stable equilibrium points, the
top Hamiltonian has families of closed trajectories fibrating the symplectic leaves of the bisymmetry
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808 KARASEV et al.

algebra. Each of these closed trajectories corresponds to an almost invariant Liouville 3D-torus in the
original phase space.

By an additional small variation of the voltage on the ring electrode of the trap, one can also obtain
unstable equilibrium points of the top dynamics as well as separatrices on the symplectic leaves. In this
case, some energy levels of the top Hamiltonian consist of pairs of closed curves. In the original phase
space, each such a pair of curves corresponds to a pair of 3D-tori belonging to the same energy level of
the moving charge. These pairs of Liouville 3D-tori are candidates for the tunneling of the charge in the
framework of quantum mechanics.

Of course, the quantum treatment is not actual for macrotraps and even for microtraps whose
frequencies are not in resonance or the resonance is degenerate (parabolic, like 1 : 0 : 0). A discussion
on the quantum behavior of planar Penning traps can be found, for instance, in [10], [I1]. The general
conclusion is the following: under the breaking of the axial symmetry and the tuning parameters at
biresonance, the electron in the microtrap has to be treated as a quantum particle, since its discrete
energy levels become “visible” and one cannot ignore its quantum properties.

For instance, a quantum tunneling of the electron from a 3D-torus to another one located near the
same energy level can appear. Here we use the words “near the same,” since there is actually some
splitting or a gap between the energy levels of the electron states on the pair of tunneling related tori.

In the present paper, we consider a top-like quantum Hamiltonian over the non-Lie algebra appearing
in the double-resonance Penning trap [7[-{9]. For this system one can prove the appearance of the
avoided crossing effect and the bilocalization of quantum states on pairs of closed curves under specific
tuning of the parameter of the top (by methods similar to [12], [13]).

The presence of controlling parameters is the key condition for the tunneling effects in systems with
broken symmetry. In our model, such a parameter is just a small variation of the voltage on the trap
electrode [11].

Note that the tunneling between closed curves on symplectic leaves of the symmetry algebra
generates tunneling of quantum states of the electron between 3D-tori in the phase space of the trap.

In addition to the fact of bilocalization of eigenstates on two disconnected tori, it is important to
known the gap between the energy levels split by the tunneling. We present a formula for the leading
term of the exponential asymptotics of this energy splitting.

The obtained asymptotics for the tunnel splitting allows us to estimate the time of tunnel transitions
of the electron states from one 3D-torus onto another. In the case of a microtrap, this time can be on the
scale of microseconds [11]. Thus, tunneling can play a significant role in the dynamics of the electron in
the Penning microtrap.

2. RESONANCE PENNING TRAP WITH BREAKING
OF COMMUTATIVE SYMMETRY

In the planar Penning trap model under study, the electric field is created by three concentric
electrodes lying in the same plane, namely, a circle of radius p; where the zero potential is maintained,
a ring (annulus) with two radii p; < p2 to which a constant potential W is applied, and the exterior
of the ring where the zero potential is maintained. By (g1, ¢2) we denote the coordinates in this plane

with origin at the center of the circular electrode, r dd V@ + g3, and by g3 we denote the coordinate
in the direction perpendicular to the plane. Let us introduce the dimensionless coordinates as follows:

= a1/, Y oo q2/p1, p oo r/p1, 2 ddf q3/p1. We consider the case where the outer radius of the ring
electrode is much greater than the inner radius
Rt
P2

In the hali-space g3 > 0, the potential V' created by the electrodes has a stationary point with coordinate

qg = p12°, where 20 =§"1/3 (1 — %52/3 + 0(54/3)>.
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NON-LIE TOP TUNNELING AND QUANTUM BILOCALIZATION 809

Near this point, the potential energy (with regard to the fact that the electron charge is negative) can be
represented as

2
—eV =eV, - u, u = const +%u[2] + Bubl + yum +..., (1)

where Vj is a certain voltage calibration, which we fix below, and ul! are homogeneous polynomials of
degree j in the coordinates p and z:

1 3
2 _(,_ 02 _ L2 B8] _ (. _ .0 02 2 2
ull = (=2 = ol = (o =20 (- 202 - 57
ut = (2 — 20 = 3(z — 20)%p% + §p4.
The formulas for the coefficients have the form (for details, see [6])
w 1 w
2 _ 4/3 (1 _ L52/3 4/3 _ _ 5/3 2/3
W =By Q 582+ 0(6 )) §= 2581+ 0(),
5W
= - —382(1+ 0(6%?)).

7= 577021+ 0(%)

In addition to the electric potential, the trap also contains a homogeneous magnetic field B deviated
by a small angle ¢ from the axis (i.e., irom the perpendicular to the plane of electrodes). We assume that
the magnetic field is directed away from the stationary point of the electric potential towards the plane of
electrodes.

Now we introduce a voltage calibration which is determined by the energy density of the magnetic
field confining a charged particle inside the trap, Vo = ¢|B|?p? /mc?. Here m and e are the mass and the
value of the particle (electron) charge, and ¢ is the speed of light. We also introduce the magnetic length

po = \/hec/e|B| and the effective Planck constant h = (po/pl)Q.
In the energy units eVp, the total Hamiltonian of the trap becomes

H = (—ihV — A)/2 + u. (2)

Here A is the effective magnetic potential related to the magnetic field as (V x A) = B/|B|, and the
operation V = (V,, V,, V) is taken in dimensionless coordinates (z, y, 2).

The effective (dimensionless) magnetic field is defined by the unit vector B/|B| which has three

components B/|B| = (sine, 0, cos €) (assuming that z is the coordinate axis directed along the magnetic
field projection on the plane of electrodes). Neglecting terms very small in €, we represent the magnetic
field as B/|B| = b+ b + O(£®), where b = (0,0,w), b = (1,0,1/4), and w = 1 — /4 — £2/2. Thus, the
effective magnetic field is given by the “principal part” b directed along the trap axis and by a small
perturbation eb whose axial and longitudinal components relate as 1:4. This is a specially chosen
breaking of the commutative axial symmetry of the trap.

The quantity w is the frequency of rotation in the longitudinal (z,y)-plane. Also, the quadratic part
of the potential u contains the frequency wq of oscillations in the direction of the z-axis. As is known[1],
the relation w > v/2wq guarantees the trapping regime (the boundedness of the particle trajectories). We
subject the frequencies to a stronger resonance condition w = %wo, which ensures that the trajectories

are not only bounded but also periodic. In view of the above explicit formulas for the frequencies w and
wp, the resonance condition reads

055 =0k je s o)

We assume that the geometric parameters of the trap are consistent with each other in scale as
follows:

§Y3 = ke,  k~1. (3)
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In this case, the above resonance condition can be represented up to O(£?) as

R S G »

This formula of combined resonance relates the potential W of the ring electrode of the trap, the
value of the magnetic field (determining the voltage V;), the angle ¢ of the magnetic field deviation from
the trap axis, and the ratio of the ring electrode radii § = p1/po.

From the above computations, we obtain the following statement.

Lemma 1. Under the condition of combined resonance (4), the coefficients of expansion (1) are
given by the formulas

2

2 e € 8k 10k?
w=g(1-3-5)  F=-mroe 9= )

The effective Hamiltonian descrtbmg the electron motion in a planar quantum Penning trap can
be written as H = Hy + cHy + e2Hy + O(&3), where

- 1r. R R 3 ) . 1
Ho = 5[#%+ 53 + 52 = Swo(ah, — ypa) +wh(z — )% + Toudla® +42)].
~ 17 . . ) 3
Ay = < [e + (40 = 2°) = ), — 4. — Bwo(z — ) + Swn(@® +17)]

+8 =20 =207 - 2@ +42)],
Hy = 172 + (2~ 4(z — )] + 1z = 2 = 8( = 222 +12) + 2 (0 + 7).

128 [ 8

and the quantum momentum is defined as p = —ihV.
After the change of variables

2 A 1 Jwo . . A 2 . .
$:\/w—0($++$—), Pe = 51/ = Dy +D-), y=1/—Ps —D-),

2V 2 wo
. 1 Jwo xo . .
Py =73 7($+ —z), z= N + 27, Pz = Vwopo

the principal part Hy of this Hamiltonian has the normal form

N 1 R o 5
Ao = 20020 +a%) = (2 + %) + 2065 + a3)

with hyperbolic resonance 2 : (—1) : 2 between the frequencies.

3. NONCOMMUTATIVE BISYMMETRY ALGEBRA
Now we introduce operators of complex structure fj = \%(xj +1p;), j € {+,—,0}, and their
adjoint operators é;‘ in L2(R3), and define the “action” operators Sy = éléi, Sy = 56‘{0, and
Sy =28, — S_ + 255 whose spectrum consists of numbers multiple of . Then we have
3h
2 )

Because the group exp{—itSy/h} is periodic, we apply the quantum averaging procedure

U_II;[U = I;Io + Eﬁlo + 621;[20 + 0(53)

I% (So +

to pass to the new perturbation operators fflo and ﬁgo, which commute with the leading part
[ﬁo,ﬁlo] = [ﬁo,ﬁzo] =0.

Detailed calculations were given in [9].
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NON-LIE TOP TUNNELING AND QUANTUM BILOCALIZATION 811

Lemma 2. After the averaging procedure, the perturbing Hamiltonian Hy from Lemma 1 is
transformed to the linear combination

N 1/ - . A 3h

Hio = (4A+ —2A_ 1 A+ 7) (6)

of the following three commuting operators whose spectrum consists of numbers multiple of h

Ay=5., Ay=2[25+8-V24,+A)], A =[5 +25+V2(4,+ A))].  (7)

In this lemma, we have used one of the three generators Ap = éifo, A, = éi(fi)2, Ay = (éi)zéa‘ of
the symmetry algebra of the operator Hy.

In the Hamiltonian (6), we obtain the new (secondary) resonance 4 : (—2) : 1 which is ensured by the

above-chosen proportion 1 : 4 between the axial and longitudinal components of the correction of order
e to the magnetic field. Due to this resonance, we can apply the averaging procedure once again, now

to the Hamiltonian Hy + e Hyo + e2Hao. We use a unitary operator U to reduce this Hamiltonian to the
form

(j_l(ﬁo + Eﬁlo + Ezﬁgo)ﬁ = ﬁo + Eﬁlo + E2ﬁ200 + O(Eg),
where [Ho, Hago] = [H1o, Haoo) = 0.
The twice averaged Hamiltonian Hygg can be written as a function of the joint symmetries of Hy

and Hio. This bisymmetry algebra is determined by the operators Ag, A, A_ defined in (7) and by the
operators

B= \/g(/io +V24y). (8)
The commutation relations of the generators (7), (8) have the form
[Ag, Ax) = [A1, A ] =0,

[Ag, B] = 2hB, [A,,B] =0, [A_, B] = hB, (9)

[B*, B] = 2h(A2 + 4AgA_ + 3hAg + 2hA_ + 2h?),
together with the conjugate relations. This algebra contains three Casimir elements

D=2i — Ay S =A., K=BB —24(Ay—h)A_.

In realization (7) and (8), the Casimir elements are given by the operators

.4 . 4.  3h . 1 -~ 2. h 5
D=—"Hy— —Ho+>, 8 =-—Ho+-Ho—~, K=0.
Swg 0 g0t L= g ot g g

As a result, the twice averaged Hamiltonian Hagyg is represented as the quadratic function
N 1 -~ . .
H200:s<§(B+B*)—aAS—bA0) +e (10)

in the generators (7) and (8) of the bisymmetry algebra (9). Here we denote

8 1289 A A N 540
~ — ~ ~ — 1182 — — =14 1
sech, axk o b { 820kS) — ThSo + = 5k + 89611/@},
~ 1 "2 AT A2 1026 pad
¢~ Tiea | 580kST + 104kS1.So + TkSy — T + 1060k + 2244hk | Sy (I1)

4 A 2
- <% + 290k + 80hl<:> Sy — (% + 1866h2k>],
where k is the ratio of geometric parameters of the trap (3) and the approximate up to O(e) values (5) of
the parameters wy, 3, v are used (because of this, we use the sign ~ instead of =).

Thus we have obtained the following statement.
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Lemma 3. By applying two unitary transformations U and U, the original trap Hamiltonian (2)
is reduced to the form

Wo(a 3R\ £/ s A 3h\ 4 ,
7(50+7)+1(651—50+7)+5H200+0(5). (12)

with the operator Hagg given by (10), (11) over the algebra (9). The action operators Sy and Sy
commute with all generators of the algebra, and their spectrum consists of numbers multiple of
h,i.e., Spec Sy = {hs | s € Z}, Spec S1 = {hr | r € Z4}.

After restriction to the sth eigensubspace of Sy and the rth eigensubspace of Sy, the Hamilto-
nian (12) reads as

1 3 £ 2s ol & 1 3 .
3(34—5)11—1—1(67“— = +2)h—|—s (sE—i—c— 6(8+§)h) +O(E%). (13)
Here

01 . . .

E = §(B + B*) —aA3 — bA
and the coefficients b, ¢ are obtained from b, ¢ in (11) by substituting the numbers sh, rh for the
action operators Sy, S1.

Note that if the control potential W on the ring electrode of the trap is supplemented with a small
variation 6W so that

W
UL

then the parameter b in the term linear in Ay in the Hamiltonian E changes as follows: b — b+ ' (also,
an insignificant constant is added to ¢). Thus (see [11]), varying the potential W in the order €2, we can
strongly vary the parameter b; in particular, we can change its sign.

9

2 /
—b
E16’

4. AVOIDED CROSSING FOR THE TOP HAMILTONIAN
OVER A NON-LIE ALGEBRA

We have reduced the model of planar resonance Penning trap to the top-like Hamiltonian
E = (1/2)(B + B*) — aA? — bAy with known numerical coefficients a and b over the algebra
[Ag,A_]=0, [Ag,B]=2nB, [A_,B]=hB,
[B*, B] = 2h(A2 + 4AgA_ + 3hAg + 2hA_ + 2h?) (14)
with Casimir elements D = 2A_ — Agand K = BB* — QAO(AO — h)/l_. In the discussed model, we are
dealing only with the irreducible representation of this algebra, where the operator D = Sy — 25, + 2h

takes the value d = (s — 2r 4 2)h and the element K takes the value zero.
The Poisson algebra is given by the relations
{Ay, B} = 2iB, {B,B} = 2iAy(3A0 + 2d). (15)
The desired irreducible representation corresponds to the symplectic leaf determined by the equations
{Y12+Y22 — A2(Ag +d), (16)
Ay >0, Ag> —d.

Here we use the notation B = Y7 + ¢Y5.

Let us see how the spectral lines of the Hamiltonian E depend on variations of the numerical
parameter b in the semiclassical approximation (0 < h < 1).

The corresponding classical mechanical system with Hamiltonian

E =Y —aA3 —bA
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NON-LIE TOP TUNNELING AND QUANTUM BILOCALIZATION 813

is defined on the two-dimensional symplectic leaf (16) with the canonical (Kirillov) symplectic form w.

The symplectic leaf (16) is a surface of rotation around the axis Ag in the enveloping three-dimen-
sional space with coordinates (Y1, Y2, Ag). In the case d < 0, the symplectic leaf is a smooth cup-shaped
surface with minimum at the point A9 = —d, and in the case d > 0, the symplectic leaf is shaped as a
cusp with the singularity at the origin (see Fig. 1).

The trajectories of the classical motion corresponding to the energy E = & can be obtained as
intersections of the symplectic leaf with the level surfaces of the Hamiltonian F in the three-dimensional
space (Y1, Ys, Ap). Figure 1 shows the cross-section of the symplectic leaf (16) by the plane Yo = 0 and
the family of level lines of the Hamiltonian E.

Ay Ao

\TI
(@) (b)

Fig. 1. Figures (a) and (b) show the cross-section of the symplectic leaf by the plane Y2 = 0 in the cases of “cusp”
and “cup,” respectively. The figures also show three parabolas, i.e., curves of constant energy E = £. The left parabola

”»

corresponds to Emin, the middle parabola corresponds to the “double-well” regime, and the right parabola corresponds
to £ = Emaa, i.€., to the unstable equilibrium and the separatrix. The small squares with indexes 1 and 2 are the turning
points M7 and M5 on the classical trajectories 1 and -2, respectively.

By analyzing Fig. 1, we obtain the following statement.

Lemma4. [f the parameter b < 0 is sufficiently large in absolute value, then there is a separatrix
separating pairs of trajectories of the periodic motion corresponding to the same energy level £.
[n the case of “cusp” (d > 0), the condition for origination of such pairs of trajectories is simple:

b <0, b2 >d>0.

In the case of “cup” (d <0), the pairs of trajectories of periodic motion corresponding to the
same energy level £, also arise for a sufficiently large in absolute value parameter b < 0.

The quantum energy levels which approximate the discrete spectrum of the Hamiltonian E up to

O(h?) can be determined by using the Planck—Bohr—Sommerfeld quantization rule
1
o L@ =k 172), (17)

where n is an integer, ¥ is the bounded domain in the symplectic leaf with the boundary 0¥ =« and v
is a trajectory of periodic motion corresponding to the energy £ = £. Solving (17) as an equation for the

energy & for different quantum numbers n, we obtain a series of energy levels £(),

Let us mention, that the singularity of the Kirillov form w at zero appearing in the “cusp” case is
integrable, and the rule (17) still works in this case.

[ the parameters of the system are chosen so that in a certain interval (Epin, Emax) €ach energy level €
consists of a pair of periodic trajectories ; and ~» of classical motion, then in this interval there are two

series 51(") and 52(m) determined separately over the curves -7 and 9 by the Planck—Bohr—Sommerfeld
rule (17) with quantum numbers n and m. For definiteness, we assume that ~; is the trajectory
corresponding to lesser values of A, and 9 is the trajectory corresponding to greater values of Ay.
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814 KARASEV et al.

The trajectories 1 and ~y, are represented by two segments of the middle parabola on Fig. 1. Let M;
be the point of intersection of the trajectory v; with the plane Yo = 0atY; <0, j = 1,2. They are labeled
by indices | and 2 on Fig. 1.

Such a geometric picture is similar to the one arising when the Hamiltonian p? + V() is considered
on the straight line with the double-well potential V' (x). In the problem under study, for definiteness, we
also call this regime a “double-well” regime.

EAN E

AN
R
N
TR ‘
TR

W \ N
\\\\\\\\\\\\\\\\\§§
AVTTVUVTVVVr RV vy v vy A
5 ' 4 ' 3
(@)

Fig. 2. Figures (a) and (b) show the grid of approximate energy levels of the operator £ between the lines Emin
and Emaz for the parameters b € [—5,—3], a = 1, h = 1/30. Figure (a) illustrates the “cusp” case for d = 1, and
Fig. (b) illustrates the “cup” case for d = —1/2. The dashed lines correspond to Emin and Emaz, the sloping lines of
the grid correspond to «y1, and the abrupt lines, to the trajectories ~yo.

Figures 2 present the dependence of the approximate energy levels 51(”) and Sz(m) on the parameter b

in the interval (Epmin, Emaz) both in the “cusp” and “cup” cases. In the “cusp” case, the minimal energy
Emin = 0 corresponds to the trajectory passing through the singularity at the origin, and &,,,, is the
energy corresponding to the separatrix. In the “cup” case, the minimal energy &,,;,, corresponds to the
stable equilibrium, and &4, as in the “cusp” case, corresponds to the separatrix (see Fig. 1).

Lemma 5. The curves of approximate energy levels 51(") and Sz(m) form a grid with many
intersections in the interval (Emin, Emax ), Where the levels 51(") intersect with Sz(m) for different n

and m. Since the parameter h is small, the energy curves 51(") with different values of the quantum

number n are practically parallel and lie at the distance of order h from each other. The family of
(m)

curves £ have a similar structure.

The methods of semiclassical approximation [14] allow one to construct normalized approximate
stationary states ™ and "™ for each energy level £™ and £{™, and these states satisfy the spectral
equation

By = &y

with a small discrepancy of order O(h?). The states 1[)@ and d)ém) are localized in small neighborhoods
of the classical trajectories «; and s, respectively (in the sense that corresponding Wigner or Husimi
distributions are concentrated there up to O(h>)).

If for a fixed value of the parameter b, we consider the energy level 51(") at a far enough distance
from its points of intersection with the levels 52(m), then we can claim that the exact stationary state of
the Hamiltonian E is close to ¢§”) and is, therefore, localized in a neighborhood of only one of the two
trajectories of classical motion. The same holds for the levels Sz(m) and the states wém). The picture is

essentially different in a neighborhood of the points of intersection of the approximate energy levels 51(”)
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and 52(m). Since the discrete spectrum of the operator E is nondegenerate, it follows that the so-called
effect of avoided crossing of energy levels occurs [15], [16].
We obtain the following statement.

Theorem 1. /n the “double-well” regime, i.e., under conditions of Lemma 4, two energy levels of
the top Hamiltonian E come at the minimal distance AE from each other for some critical value
of the parameter b = by, ,, and then go away from each other as b increases. The stationary states
corresponding to the minimal distance AE between energy levels have the form of a symmetric

and an antisymmetric combination of the states wln) and d)ém):

S5 (01 £ ") (18)

i.e., both stationary states are uniformly localized near the trajectories v1 and ~s.

The obtained bilocalization on pairs of closed curves for the top Hamiltonian over the
symmetry algebra generates the bilocalization of quantum states of the electron on pairs of
3D-tori in the phase space of the Penning trap.

About stationary states of the form (18) we say that they are bilocalized [12], [17]. It is assumed
that the phases of wave functions of the states ngn) and 1/12m) are chosen so that they are consistent;

otherwise, an additional phase multiplier e¢ in front of wém) can arise in formula (18).

The appearance of avoided crossing of the spectral levels and bilocalized stationary states are a
well-known quantum effect (see, e.g., [15], [18], [19]) related to the possibility of quantum tunneling
of a state between trajectories of classical motion v; and 2. At a far distance from points of avoided
crossing, the quantum tunneling is practically not manifested, and the state remains localized near one
of the trajectories. On the other hand, in a small neighborhood of points of avoided crossing of energy
levels, the exponentially small effects of quantum tunneling significantly (of the order 1) influence the
wave functions of stationary states. A sharp variation of the tunneling dynamics in a quantum system
due to a variation of the external parameter is known as the effect of resonant tunneling.

The key role in the description of the effect of avoided crossing of energy levels is played by a small
value AFE, which is called the value of tunnel splitting or the tunneling amplitude. For example, if
the parameter of a system is tuned at the avoided crossing value b = by, , and the initial quantum state
is localized in a neighborhood of only one closed trajectory of the classical motion, then during the time
wh/AEFE the state completely tunnels into a neighborhood of the other classical trajectory at the same
energy level, then returns, and so on. Thus, the quantity AE/h plays the role of frequency of tunnel
transitions.

As is well known, the tunneling effects are exponentially small in the parameter h of the semiclassical
approximation. The value of the tunnel energy splitting A E' usually has an exponential asymptotics like

AFE = exp <—%S + O(l)> . (19)

Below we present a formula for the exponent S in the case of the quantum top E over the non-Lie
algebra (14).

5. TUNNEL SPLITTING, COMPLEXIFICATION, AND INSTANTON

[t is known that the description of tunneling dynamics of a quantum particle in the semiclassical
approximation is closely related to the complexification of classical Hamiltonian equations (see the
survey in [20], [21]).

Let us consider the natural complexification of the Poisson algebra (15) and the Hamiltonian F under
the assumption that the coordinates Y7, Y5, Ag take complex values. Then the complexification of the
Hamilton system, the symplectic leaf (16), and the symplectic structure on the leaf also arise.

We shall consider only the domain of the complexification where the real part of Ay is nonnegative
and Re Ay > —d in the “cup” case where d < 0.
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Definition 1. Periodic trajectories of the complexified Hamilton system with pure imaginary time that
intersect the real symplectic leaf are called symplectic instantons.

Each symplectic instanton necessarily lies in the complexification of the symplectic leaf (16) and
belongs to a constant energy level of the complexified Hamiltonian E. In the “double-well” regime
symplectic instantons automatically interset both the real trajectories v; and ~5 belonging to the given
energy level £ = €£.

Theorem 2. [n the “double-well” regime, suppose that the energy & and the parameter b
are in O(h?)-neighborhood of the avoided crossing values. Then the avoided crossing energy
splitting AFE, i.e., the minimal gap between the two energy levels of the Hamiltonian E over the
algebra (14), has the asymptotics (19), where the tunneling action S is given by the following
geometric formula:

1

=5 L@ (20)

Here 3 is a membrane in the complexified symplectic leaf whose boundary 9% = 7 is the sym-
plectic instanton intersecting the real trajectories v, and -~y at points where Yo =0 and Y1 <0,
i.e., at the points My and M (see Figs. 1).

Remark 1. Although the idea of instanton first arose in the study of the low-lying quantum states
tunneling between two stable equilibrium points [22], [23], the same terminology is applied in the case
of tunneling between Lagrangian submanifolds on upper energy levels [24].

Usually (see [20], [25]), the instanton is understood as half the trajectory 4, i.e., a path whose initial
and end points lie on different trajectories of the classical motion. The use of the complete instanton
as a periodic trajectory allows us to obtain the invariant geometric formula such as (20) based on the
symplectic structure (15) alone.

Note that in this formula the value of the integral depends on the instanton homotopic class only,
and thus the closed curve 4 in (20) can be arbitrarily deformed inside the given energy level. Such
a topological point of view was used in [21] for the description of tunnel splitting in the case of the
Laplace—Beltrami operator.

Proof of Theorem 2. The proof uses some functional analysis related to the difference operator

appearing in the natural representation of the top Hamiltonian E. The details of this analysis can be
recovered by following, for instance, the approach of [26]. Here we present, step by step, a scheme for
the derivation of formula (20) and demonstrate the existence of the symplectic instanton.

The method for calculating the tunnel splitting AE is based on the consideration of the spectral
problem for the operator F in the spectral representation of the operator Ag. For convenience, we
introduce the coordinate § = Ay/2 and the operator p = —ih0,.

Since

BO(]: (q—h)OB,
we see that the operator B in this representation becomes
B = (g, h)e™"?,

where 3(q, h) is a real function. The explicit expression for this function can be found by substituting the
operator B into the formula for the Casimir operator & = 0; doing this, we obtain

Bla,h) =2v/q(q — h/2)(2q + d) = 2¢\/2q + d + O(h).

In this representation, the spectral problem for the operator E takes the form of the following
Hermitian three-term recurrence relation:

S8(a+ h,hy(a + h) — (aq® +2ba) y(a) + 360, Wyla — ) = Ey(a), 21)
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where y(q) is the wave function of the stationary state. The variable ¢ takes values of the form gy + hl,

l € Z4 over the spectrum of /10/2, and the explicit form of go9 depends on the representation in question,
i.e., on the numbers r and s in (13):

0, s> 2r—2, s even;
q0 =< h/2, s>2r—2, s odd;
(2r—2—s)h/2, s<2r—2.

WKB methods similar to the corresponding methods for differential equations have been developed
for three-term recurrence relations of the form (21); see, e.g., [26]{29]. In [30]—[33], the discrete WKB
method was also used in problems of estimating tunneling effects.

The transition formulas from the coordinates (g, p) on the symplectic leaf (16) to the coordinates
(Y1,Ys, Ag) have the form

A = 2q, Y1 = 2¢+/2q + d cos(p), Yo = —2¢+/2q + dsin(p). (22)
Therefore, the classical Hamiltonian E in the coordinates (g, p) reads
E(q,p) = 2q\/2q + d cos(p) — 4aq* — 2bq. (23)

The turning point for the Hamiltonian (23) is determined as the point ¢ where the velocity is equal to
zero

OFE
qg= o = —2¢+\/2q + d sin(p) = 0.

Hence there are two types of regular turning points, namely, the points with p = 0 and p = 7. Substi-
tuting p = 0 and p = 7 into the equation E = &£, we obtain the following equation for the coordinates of
the turning points:

E+4aq®+2bg B

+1
2x+/2q + d ’
where the “4” sign corresponds to p = 0 and the “—" sign corresponds to p = 7. Figures 3 show the

coordinates of the turning points depend on the energy £.

We see that (for values of the parameter b belonging to intervals described above) the regions of
classical motion form a “double-well” structure with a barrier separating the classical trajectories v,
and ~s.

We assume that the values of energy £ correspond to the “double-well” regime so that the barrier
(forbidden region) is located between the turning points ¢; and ¢o, as is shown in Figs. 3. Figures 3
clearly demonstrate that turning points ¢; and g are corresponds to the momentum p = 7.

By applying methods [27]—[33], as well as the approach of [26], to our problem, we obtain the
following result.

Lemma 6. For the spectral problem (21) the tunneling action S has the standard form as in the
case of the Schrodinger equation with double-well potential:

E+4daqg®+ 2bq>
2qv/2q+d ’

where arccosh(z) = In(z + V22 — 1) > 0 for z > 1 and the momentum p(q, £) is the complex branch
of the solution to the equation E(q,p) = £.

q2

a2
S =1Im p(q,&)dx = / arccosh <—

q1 q1

The quantity S can now be written in an invariant form independent of the specific choice of
coordinates on the symplectic leaf. Indeed, S has the form

g L yﬁpdm, (24)
2'L ;/
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Fig. 3. Figures (a) and (b) show the turning points of the Hamiltonian E(z, p) depending on the energy in the “cusp”
and “cup” cases, respectively. The small and big parabolic-like curves correspond to p = 7 and p = 0 turning point
curves, respectively. The dashed line shows the energy corresponding to the “double-well” regime. Region I is
classically allowed, and regions II are classically forbidden. The figures show the turning points g1 and ¢g» determining

the barrier between two classically allowed regions.

where 4 is the trajectory of the periodic motion in the complexified Hamiltonian system

dg  OF
&~ oy
dp . OF
ar ~ '9q’
which corresponds to a motion with pure imaginary time ¢t = —ir.

The trajectory 4 starts at 7 = 0 at the turning point ¢ = ¢1, p = 7 on the curve 71, and then moves
towards the turning point ¢ = ¢o, p = 7 on the curve 5. These turning points are M; and Ms, shown
in Fig. 1. On the trajectory 4, the value E(q,p) = £ remains unchanged, the coordinate ¢ takes real
values from ¢; to g2, and the coordinate p takes complex values of the form p(7) = 7 4+ ip(7). Thus,
the trajectory 4 is a symplectic instanton, i.e., it lies on the complexification of the Lagrangian manifold
E(q,p) = € and connects two real trajectories 77 and ~» belonging to this submanifold.

The quantity S in formula (24) is written in terms of the complexification of the coordinates ¢ and p
on the symplectic leaf. We note that the Kirillov symplectic form on the leaf (16) is given by w = dp A dgq,
and that the orientation of the instanton 4 in (24) agrees with the orientation induced by the symplectic
form. Thus, applying Stokes’ theorem, we can transform formula (24) to the form (20).

In the initial Poisson coordinates (Y7, Y3, Ag), the symplectic instanton 4 can be chosen so that it
passes through the points M7 and My of the real trajectories «; and 79 at which Y =0 and ¥; < 0.
On this symplectic instanton, the coordinates Ay and Y; remain real and the coordinate Ys takes pure
imaginary values.
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