ISSN 1061-9208, Russian Journal of Mathematical Physics, Vol. 19, No. 2, 2012, pp. 163-170. @ Pleiades Publishing, Ltd., 2012.

1C

Demonstrativeness in Mathematics and Physics

V. P. Maslov
V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, 117333 Moscow, Russia

Received January 11, 2012

Abstract. An approach to the physical language, pointed out by Poincaré in a philosophical
work, is to link probability theory to arithmetic and thermodynamics. We follow this program
in the part concerning a generalization of probability theory.

DOI:

I have written repeatedly how difficult it is to speak a language which is understandable both for
mathematicians and for physicists. However, when speaking with mathematicians, you can present
a proof, and then the issue disappears. On the contrary, a mathematical proof is not convincing for
physicists (in [14], I have quoted my conversation with E. G. Maksimov who told me: “You won’t
convince me by your lemmas”).

Recently I had a correspondence with V. Ivrii, one of the connoisseurs on asymptotic methods in
analysis and mathematical physics. I quote it here, and then compare with the controversies which
have with theoretical physicists.

Here is my letter.
I've found (on the Internet) your work, which reads:

“Another approach to Lagrangian Distributions is based on Maslov Canonical Operator;
original not completely rigorous papers of Victor Maslov appeared before [2].”

My corresponding work (“Perturbation Theory and Asymptotic Methods” [3]) was thor-
oughly tested, first, by Grisha Eskin, who, when I asked him why he does not refer to
my work, said this particular phrase. I told him: “If you will find a hole which I will not
explain in the presence of V. P. Palamodov and S. P. Novikov, then I'll sweep aside all of
my claims.” Grisha questioned me, and I had given satisfactory answers. You can ask him
about it.

Second, it was Ladyzhenskaya, my opponent on the defense of the doctoral thesis. She
clarifies more or less the same points and tried to find a hole in the proof of estimates.
Everything has been thoroughly tested, and, as it seems to me that this is quite easy to do.

I hoped that physicists will also understand my work. Therefore, in the first paper I
omitted the details that are of no interest for physicists.

All my material was presented more thoroughly for mathematicians in the appendix to
Heading’s book “An Introduction to Phase-Integral Methods” [4] and in our joint work with
M. Fedoryuk [5]. Nobody and never found holes or errors in any of my works. However, I
found errors in works of Gel’fand, Kostyuchenko, Shilov, and Maurin, as well as in Gel’fand’s
report on P (see [6]).

In 1968, I found a gap in the paper of Levitan and Suvorchenkova which was sent to me
for refereeing. This enabled one to find not only sufficient conditions, as was suggested by
the authors, but also necessary and sufficient criteria (see my postscript to the paper of the
authors in [7])!.

Lars Hermander wrote that it was hard to find my book, and possibly not everything is
completely rigorous, but still he presented me no points that he could regard as unproven
ones.

T have already written in [8] that I tried to help Arnold in his election to Corresponding Member of USSR Academy
of Sciences. When there was a discussion about Arnol’d’s mistake in the problem of three bodies of different masses
one of which is of zero mass (the problem with two degrees of freedom) and Bryuno’s counterexample to one of
Arnol’d’s lemmas, Kantorovich suddenly said: “ We have here an expert on errors, namely, Maslov, lat us ask him.”
I joked: “I do not believe in mistakes found on the eve of the election.” The question was dropped.
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Thus, in a way, I challenged Grisha Eskin to a mathematical duel for his sentence. To
avoid the same with you at friendly relations that linked us during all our life, I urge you
to contact Grisha or Victor Palamodov and to exclude statements of this kind in your
work. I send you also my article in the “Doklady of the Academy of Sciences of the USSR”
which was published in 1967 and in which the Fourier integral operator was introduced?.
the operator Introduced where is also called the Lax / Maslov operator. You can look on
the Internet.

I would also like to add that the “Fourier integral operator” is referred to as the “Lax—
Maslov operator” in Dieudonné’s textbook in analysis?, as well as in many other works (you
can check it on the Internet). These two terms mean the same. It is possibly also this fact
to avoid any confusion in terms.

Viktor Ivrii answered:
Dear Viktor Pavlovich,
This is not a paper, it is a postgraduate course with three or four participants. However,

of course, this is not an excuse. The text is sitting on my server only, and I have a source,
and therefore it is easy to correct it.

And he corrected (http://weyl.math.toronto.edu:8888 /victor2 /preprints/MLAgradcourse.pdf).

We see that, among the mathematicians, the above problem can be solved in a rather simple
way. Before turning to these matters in physics, I shall give two referee’s reports concerning my
papers sent to a physical journal.

Some time ago I received a negative referee’s report from a referee physicist to my paper “The
mathematical concept of “phenomenological” equilibrium thermodynamics,” which is a version
of [9] (elaborated for physicists) overlapping with [10].

In the beginning of the report, the referee compliments related to my old papers and points out
works on the topic of my paper which I did not read (in his opinion). I miss everything written
about my old papers and omit teachings of the referee, because I've carefully studied all works
indicated by the referee in my youth.

In conclusion, the referee writes:

“ ... I would like to formulate now what are serious disadvantages of this article, in my opinion.

1. It is unclear what are needs of the traditional thermodynamics of the “three laws” and why
it is to be reformed.

2. It is unclear under what circumstances the new thermodynamics reduces to the traditional
one. In all other revolutions of the past, namely, in the relativistic one,in the quantum one, and
in the others, a new theory admitted a passage to the pre-revolutionary limit theory, and it has
always been regarded as a proof of ability of the new theory.

3. I have already written about the collision of thermodynamics and kinetics.*.

The main information I've learned when reading the paper is that V. P. Maslov is interested in
fundamentals of thermodynamics and has revolutionary ideas concerning this topic. ... I forbade
myself any temper during the preparation of this report, but I am ready to understand a potential

2The text of this article is in the appendix. Every mathematician can compare it with the 1971 Hoérmander’s
definition. All proofs are given in my 1965 paper cited above, where the operator A is to be replaced by i9/d7 only.
Apparently, for this reason, Hérmander originally wrote in a preprint: “ The work of Egorov is actually an application
of ideas from Maslov [20]. The author regrets his lack of direct familiarity with this book, which according to a lecture
by Dr. Maslov at the International Congress in Nice, actually contains the ideas attributed here to Egorov [7] and
Arnold [1] and even a more general and precise operator calculus than the one that we shall describe. However, since
the book is highly unaccessible and perhaps not quite rigorous we hope this paper will still prove to be useful”. I
did not ask Hérmander why he changed this remark later, in the published paper [2]. I'll be very grateful to any
mathematician who will find a difference between my 1965 paper presented in the appendix and Hérmander’s 1971
paper [2]. I have already discussed this issue in [8].

3 Translator’s note: Jean Dieudonné, Treatise on Analysis, Vol. 8, Academic Press, 1993, 356pp., pp. 261, 269, 282,
etc.

41t has been said above in the report, “The following unusual specific feature of the new thermodynamics is the direct
invasion of kinetics in this thermodynamics. According to the author, the viscosity should be explicitly included in
thermodynamic expressions.” (Cf. the other referee’s report below.)
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reader if this paper will anger him to the highest degree. I shall not try to predict the exact number
of angry readers and their oral and printed response if the journal will print the paper. Undoubtedly,
this number will be large.

I definitely recommend to the editors to reject this article.”

The Editor-in-Chief received another referee’s report (concerning the same paper) from V. S. Vo-
rob’ev, an outstanding expert in modern equilibrium thermodynamics, who was influenced by my
explanations and changed the concept of fractals in the paper [11]. He works with me now in the
area of gas mixtures.

I present V. S. Vorob’ev’s report entirely.

“Most publications in modern thermodynamics can be divided into two groups. The works of the
first group basically use the Gibbs distribution for the statistical ensemble or a Bogolyubov chain
(BBKI). The most modern approach is related to a computer experiment, in which sufficiently
many homogeneous particles interacting according to some empirical potential with random initial
conditions are considered. Here diverse versions of the Monte Carlo or molecular dynamics methods
with a given interaction potential between the particles are mainly implemented. Finding a correct
set of potentials of this kind and their relation to various forms of molecules are the main problems
of these methods.

Another group of investigations uses laws of thermodynamical similarity that generalize the van
der Waals equation. Among these laws, the most well-known rule is the law of corresponding states,
which shows in practice that some group of molecules behaves in the same way in a sense. Recently,
another law attracted a definite interest; the law also follows from the van der Waals equation.
This law, which is one of the most amazing empirical rules that are confirmed for many substances,
claims that the line for the unit compressibility factor (in English-language literature, the Zeno
line) on the density-temperature plane is represented by a line segment and is characterized by
two constants, T and pg. These two constants, as well as the parameters for the critical point,
are known for many substances both from full-scale experiment experiments and from indirect
measurements.

V. P. Maslov’s paper is related to the second group. In the first section, V. P. Maslov suggested,
for the first time, the idea concerning the relationship between the critical compressibility factor (the
dimensionless quantity relating the critical parameters of the real substance, Z. = P./(T.p.)) and a
Bose distribution of fractal dimension. The author substantiates in detail that the Bose distribution
of fractal dimension corresponds not only to the quantum Bose gas for integer dimensions but also
to a classical gas in the presence of macro-measuring device measuring the density of gas in the
entire volume.

The problem of interference of a macro-measuring device in the experiment was posed already
by the Copenhagen school (Bohr’s complementarity principle) and was also treated in a series of
similar effects (the Einstein—Podolsky—Rosen effect et al.) The author has shown that the presence
of a device measuring the density of gas essentially influences the statistics of classical particles.
The author links this fact with Gédel’s mathematical theorem.

In our paper (E. M. Apfel’baum, V. S. Vorob’ev, “Correspondence between of the ideal Bose gas
in a space of fractional dimension and a dense nonideal gas according to Maslov scheme”, Russian
J. Math. Phys. 18 (1), 19-25, 2011), we have verified the possibility to use a fractal Bose distribution
for real gases. The (fractional) dimension of the space of the ideal Bose gas (BG) was determined
from the condition that the compressibility factor of the BG is equal to the compressibility factor of
a particular substance. A comparison was conducted for a number of real substances (Ar, Hg, H20,
NH3, Cs) and for two model systems, namely, a system described by the van der Waals equation
and a system of particles interacting according to the Lennard—Jones potential. In all cases, the
critical isotherms calculated from the ideal BG of fractional dimension are in good agreement with
tabulated or experimental data.

Note that this method of calculating the interaction potential is not used explicitly. Moreover,
the agreement with experimental data is observed over a wide range of pressures, including values
which are several times less than the pressure in the case of the ordinary ideal gas, up to a critical
point. I would now loke to discuss the “negative pressure” associated with Maslov’s amendment
to the Bose distribution for dimensions less than two (see, for example, I. A. Molotkov, “Maslov
distribution and formulas for the entropy”, Russian J. Math. Phys. 17 (4), 476-485, 2010).

It should be noted that, whereas the van der Waals equation well agrees with the Maslov scheme
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and close to the molecules of mercury, the situation becomes fundamentally changed for negative
pressures, because this pressure is not bounded below in the van der Waals equations; however, in
the Bose distribution with Maslov’s correction, for dimensions less than two, the negative pressure
is bounded below indeed, which corresponds to experimental observations. Another problem con-
sidered in the paper is to simulate some aspects of thermodynamical behavior when considering the
problem of scattering for two particles in a given potential in the presence of an external attractive
field. Here a change of variables is used, which reduces the scattering problem at infinity to a finite
interval and leads to the disintegration of the Hamiltonian into an attracting part and a repelling
part.

The author adopts further a heuristic (physical) reason which modifies the ordinary problem in
classical mechanics by assuming that the repulsive part of the potential leads to the creation of a
viscosity, like it happens in the Boltzmann equation and its generalizations. In this case, the so-
called p-particle (a pair), which occurred in the potential well by slipping at the e-distance from the
barrier height, eventually falls to the bottom of the well, and the author relates this phenomenon
to the stable position of the p-particle (a dimer). To beat this particle away from the bottom of
the well requires an energy equal to the depth of the well. Drawing an analogy of this energy with
temperature, the author finds the parameters of the scattering problem that correlate with some of
the values of thermodynamical quantities, like the critical temperature and the Boyle temperature.

Further, the author also takes into account the attractive thermal potential. In this problem,
the potential has a minimum and a maximum. The line along which the minima and maxima
are the same is an analog of the unit line of the compressibility factor, which is well known in
thermodynamics (the Zeno line). It is straight up to within 3%. The quantity which is an analog
of the compressibility factor at the critical point coincides with the critical values for monatomic
gases.

Further, using the fact that the compressibility factor is equal to one on the Zeno line, as in
the case of the ordinary ideal gas, the author derives differential equations for a nonideal gas and
obtaiins fairly good agreement with isotherms of supercritical fluids.

I shall now discuss the section concerning the “Wiener quantization.” The author draws attention
to the formal similarity between the Schrodinger equation and the heat equation when written in the
variables ¢ = exp(iS/h) and u = exp(S/v), where v stands for the viscosity; in the quantum case,
the role of “viscosity” is played by the quantity i/h. Asymptotic solutions for these equations, in the
presence of infinitesimal viscosity, are well known, and are fundamentally distinct from solutions in
which the value of viscosity is set to be zero from the very beginning. This enables us to look anew
to the distinction between the classical and nonclassical critical exponents. Here the author also
draws attention to the fact that a similar problem occurs when using the semiclassical approaches
in ordinary quantum mechanics when studying turning points and inflection points. This topic has
been neglected in the literature, although it is rather clear both for the turning point (when using
the Airy functions) and to the point of inflection (when using the Weber functions). It is advisable
to consider this section in more detail, in order that a wider circle of readers learn the idea of
Wiener quantization.

The Wiener quantization, as well as the consideration of scattering of u-particles, is related to
introducing an infinitesimal viscosity. In other words, one introduces the viscosity which affects
the thermodynamical problem in such a way that the thermodynamical problem is substantially
modified as the viscosity tends to zero. A similar fact occurs in hydrodynamics when describing
the emergence of a shock wave.

It is stressed in the paper that, in some cases, the experiment is better explained by means
of Wiener quantization than by using the scaling hypothesis, although the Wiener quantization
is also a conjecture. However, this conjecture fits well into the overall context of the paper. As a
new conjecture, which explains the difference between the values of the critical indices (exponents)
and the classical ones, the Wiener quantization can be of particular interest for a group of experts
in thermodynamics who questions some conclusions of scaling theory. In the paper, some critical
exponents arising from the renormalization-group theory are compared with the predictions of the
paper under consideration. The analysis is based on experiments of several well-known experts
(W. Wagner, M. S. Green, D. Yu. Ivanov, etc.)

It should also be noted that rather complicated Maslov’s formulas for mixtures unexpectedly
lead to an almost linear law, the so-called Kay’s rule. In particular, for the air, these formulas give
coincidences up to within 0.5%.
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The section on mixtures concluded the paper. This is quite natural, because, if the preceding
sections were based on experiments that are already known, the computer-aided approaches of
molecular dynamics, when applied to mixtures that are characterized by several interaction poten-
tials, become dozens and dozens of times more complicated. This increases the practical role of
applying the methods suggested by the author to mixtures.”

I do not cite the benevolent conclusion of this report.

These reports show that, to speak a language which can be understood by physicists, means to
induce associations which are consonant to them and cause no rejection. Moreover, for different
physicists, the consonant associations may be different. Therefore, it is difficult to please everyone
at once.

For example, the association related to fractals helped me to convince E. M. Apfel’baum and
V. S. Vorob’ev, outstanding experts in modern thermodynamics, but caused a natural rejection of
a first-rate theoretical physicist, since the fractional dimension is related in essence to the frequency
spectrum of molecules. The last remark has convinced some physicists when they referred to these
molecules as “quasiparticles” (see [9]).

On the other hand, fractional values of the number of degrees of freedom, which are associated
with the spectrum density of the molecule, were accepted by the same theoretical physicist without
objection. This is possibly the most natural physical explanation for the introduction of a new
parameter in thermodynamics, since it seems to evoke an association with reasonings presented by
physicists for the one-dimensional, two-dimensional, and multi-dimensional numbers of degrees of
freedom for molecules in the old ideal gas.

From a physical point of view, it is more natural to regard D as the number of degrees of freedom
rather than as the dimension. The new ideal gas consists of very many molecules each of which
has its own degrees of freedom at a given temperature, i.e., different degrees of freedom can be “
frozen” for different molecules.

The average degree of freedom at a given temperature, which corresponds to the average speed
of molecules, is a fractional, a continuous, a “fractal” value.

Moreover, the formulas (5)—(10) in [10], which we obtain from number theory, need not be multi-
plied by the volume V in general. They can be multiplied by V* or, when viewed in a dimensionless
form, by (V/Vh)®, where o depends on v only and is preserved for T' < T.. In this case, the com-
pressibility factor Z is multiplied by «, and this multiplier enables us to compare our results in a
more natural way with the old ideal gas, which is obtained as p — 0, P — 0, and Z — 1.

However, as is pointed out in the textbook by Landau and Lifshitz [12], the Poisson adiabat,
in the case of D = 3 (in the three-dimensional case) and for an ideal Bose gas, coincides with the
adiabat of the monatomic ideal gas (see L.D. Landau and E.M. Lifshitz, Course of Theoretical
Physics, Vol. 5: Statistical Physics (Pergamon Press, Oxford, 1968), § Bose and Fermi gases). As
we saw in [9], this is not occasional. For T' > T (in the fluid region), the quantity v can depend on
the density and on the other thermodynamic quantities.

The physicist believes that we obtain a new state by changing the gas particles according to
Boltzmann. However the instrument measuring the density by the Rayleigh interferometer or by
using the refractive index (which is proportional to the density) does not know this. This instrument
will give the same value of density after changing the indexing of two particles.

The professor of thermodynamics can drive this idea to students. However, it is impossible to
drive this to a device. It does not feel the new state.

“ We must apply a more sensitive instrument,” says the theoretical physicist. However, an
experimental physicist denies the suggestion. It is very difficult to apply such a device to a gas
which is so dense, and this is not necessary.

Another approach to the physical language, as Poincaré had pointed out in his philosophical
work, is to link probability theory to arithmetic and thermodynamics. We shall follow this program
in the part concerning a generalization of probability theory.

Example. Random processes are self-similar (like a random walk). Their fractal dimension for
the Wiener process is equal to 1/2.
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Unlimited Probability Theory

Let N be the number of trials. Consider a discrete order statistics: an ordered set of sample
values & < & < -+- <& < &up1 < --- <&y -+ of arandom variable £ (a variational series).

The sequence of positive integers,
and also the sequence
& =1iP/?, (2)

are special cases of such a sequence &,,; here we use the letter D to denote the dimension and refer
to the variational series (2) as the basis series of dimension D.

Further, let n; be the value of the outcome corresponding to &;.
The sample value (an estimate) of the expectation is equal to

doni&i

Assume that £ — oo as N — 0.
It is also convenient to introduce the parameter v by the formula

D
D:2(’7+1)7 7:5_1'

Let us consider the one-parameter family of entropies .S as the logarithm of the number of solutions
of the system of relations

o (o ]
> ni=N, ) n&<NE. (3)
=1 i=1

We refer to the asymptotic relation N(F) between N and E as N — oo at which the maximal
number of solutions of the system (1) is attained (up to o(N)) as the point of maximal accumulation
of the estimate (the sample value) of the expectation and say that the families of solutions {n;}/N
of the equations (3) are typical; the value N at which the maximal accumulation is attained is
denoted by N..

The binary logarithm of the number of solutions of equation (1) is the Hartley entropy S.

Let a1, o be the Lagrange multipliers for finding the maximum of S, with the conditions (3),

dS = a1 dN + az d(EN), (4)
dEN) = a5 - “Lan, (5)
a9 Q9

We denote the quantity 1/as by T and the quantity «y/as by . We refer to T' as the mean value
of a random variable, T'>> 1, and to g as the disaccumulation coefficient. We also write b = 1/T.
To the value N = N, there corresponds 7' = T.

For a given E, the maximum of accumulation is attained at the value N(FE), which we have
denoted above by N..

The entropy S, for v > 0, is of the form

S:N[(2+7)+%} (6)

If # = 0 and for N > N, the entropy S can be extended continuously by a constant (this is
the phenomenon which is called by the physicists (in the special case D = 3) the “Bose-Einstein
condensate”).
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Introduce a four-dimensional phase space, taking the value —S as the momentum p;, the value
T as the coordinate ¢;, the value p as the coordinate g, the value of N as the momentum ps,
and NE as the action. Then relation (5) defines a two-dimensional Lagrangian manifold in the
four-dimensional phase space.

Passing to integrals by the Euler—-Maclaurin formulas, for a fractional dimension D > 2, we
obtain a one-parameter basis family [13-15],

(7)

EN:TE-"—’Y/OOtI-‘r’Ydt( 1 N )
0

exp(t+ 7/T,) — 1 explt + i/ T,) —

T, =T/T..
We also have

1 N
N:TH“Y/ ﬂdt( - - a
"o exp(t +p/T;) =1 exp(t+p/T;) — )

or, by virtue of

] _ 1 o0 ts—l
50 =15 ), @ o

. 1 :
EN = TEH(ngﬂ(z) ~ AT Lig~ (2 )>, (10)

we have

where z = e_;/ Tr and )
N = T} (Lings (2) = 37 Linea (7)), (11)

In the case of D < 0 (7 < 0) and in the case of g — 0 (z — 1), the second term in (11) and (8)
becomes significant.

In the paper [10], the case of p = —O(logN) was calculated (in thermodynamics, p = —f).

However, if o > §, where § > 0 does not depend on N, then the second integral in formula (11)
can be neglected.

For p = 0, the formula can be simplified considerably.
In the paper [13] cited above, in particular, we have introduced the notation

F@=<2—¢{J

Cly) = /0 FEErde, —1<y<o.

and

V. E. Nazaikinskii noticed that the Euler—-Maclaurin transition to the integrals is not applicable
here, whereas, in the discrete case, thr constant can be expressed quite simply by and using the
function F(§).

Namely, in the discrete case,

mzzéflzzﬁb Zva (12)
J= j=

Since the function f(x) = x7F(bx) is monotonically decreasing, it follows that

z_:j”F(bj) =§:f / f(x dx—/ 27 F(bx) dx:b“/ooo 2V F(z)de.  (13)
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Thus,
N.=b'"¢1—y)+00b '), <0, b=1/T (for p=0 and T =T,),

where ( stands for the Riemann zeta function.

This means that, under the transition from = 0 to 1+ O(1/log N), we obtain a jump. Further,
for p = § > 0, where 6 does not depend on N, we obtain another jump to the expression (11)
without the second term in the brackets. These jumps correspond to the instability jumps when
the value 11 becomes positive under a small perturbation.

Events are said to be independent if their entropies are added. Let us consider the conditional
probability for independent events.

As is known, by the conditional probability of an event one means the probability of the simul-
taneous occurrence of a pair which consists of the event and the condition, where the probability is
normalized with respect to the probability of the condition, i.e., P(A|B) = P(AN B)/P(B), where
A stands for the event and B for the condition.

The formula

k

k
P(B)=> P(B(A:)=)Y_P(BlA)P(A), J[4Ai=9 (14)

=1 =1

for disjoint events {A;} is referred to as the formula of full probability.

A similar formula holds in the new conception of probability. It suffices to obtain the formula for
k = 2. First, this is an equation for the entropies with regard to the conditional probability with «
and 8 =1 — a. Namely, if gz = 0, then

Ze(Ve +2) = a(y1,e +2)Z1c + B(v2,c +2) 22, (15)

where Z. = ((v+2)/¢(v+ 1) and o + = 1.
Further, it is clear that, for the expectations multiplied by the number of trials for each of them,
we have the relation

(’YC + 1)ZCTC = CV(’Yl,c + 1)Z1.CT1,C + /8(72,0 + I)ZQ,CTQ,o (16)

It is of interest that, as a result, a rather complicated system of equations in thermodynamics
almost coincides with the Kay empirical rule [16].

We can obtain the values T and ~. from these formulas for “mixtures” of type (14), using the
basis variational series.

Remark. The Erdos theorem implies a bound for the expectation of the random number &
taking the values in the positive integers, ¢ = 1,2,... ,n,n 4+ 1,..., namely,

E(©) < N/(Clog N),  c=+/3/2/m.

This additional condition on the set of positive integers can hinder the proof of Gédel’s theorem.

If we have reached the value of N, trials and then begin to increase the disaccumulation co-
efficient gz, then the number of trials cannot be reduced, and it remains to be equal to N. (the
irreversibility of the number of trials), although the estimate for the expectation will be changed
as the disaccumulation coefficient increases.

This gives a nonsmooth extension of the curve T, = const in the plane E,Z = E/T,. Denote by
i the extension of the parameter i to this branch. Since dN = 0, it follows from (4) that, for this
branch, we obtain the following formula for the entropy S.(7),~) in the case of i = 0:

Se(Tr,7) = TP (v + 2). (17)

We can now find the value of v for which the entropy on this branch is maximal. This is the point
of reference for i in formula (10) for this branch.
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We can further carry out the dequantization procedure for the Wiener (tunnel) quantization. This
means that we introduce the tunnel canonical operator (see Chap. 9, Sec. 3 in [17], and also [18])
on the Lagrangian manifold indicated above, and then consider the quantization parameter (the
viscosity or the Planck constant multiplied by the imaginary unit) as an infinitesimal.

In this case, at the points of maximal accumulation iz = 0, we obtain the so-called critical

indices, and obtain a phase transition of gas-liquid type for T < T, and g = ﬁ > 0. A similar phase
transition occurs also for the “jamming effect” and in genetics, at the passage from a mutation to
stable transmission by heredity.

Seemingly, in economics, this passage corresponds to dropping/lifting an “iron curtain” (cf. [19]).
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APPENDIX
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REGULARIZATION OF THE CAUCHY PROBLEM FOR
PSEUDODIFFERENTIAL EQUATIONS

V. P. MASLOV

In this paper we discuss a modification of the construction of the regularizer (i.e., the selection
of the nonsmooth part of the solution) of pseudohyperbolic systems (see [1]).5

First of all we note that we wish to investigate the nonsmooth part of the function ¢(x) € Hg,
x € R™. The smoothness of functions in H, is defined in terms of their adherence to the domain
of some power or other of the operator /—A. For convenience we shall imbed the function ¢(x)
in a single-parameter family of functions by means of the formula ¢ (z,7) = exp(iv—AT)¢(x). We
shall regard ¢ (x, 7) as a function ¢ (x) with values in a Banach space C of functions of the variable
7. The smoothness of such a function is defined in terms of its belonging to the domain of some
power of the operator A = i0/07, operating on only one variable. We proceed to the construction
of a general theory of such functions.

Let H be a complex Hilbert space, and A be an unbounded selfadjoint operator with domain
D(A), and range R(A), both dense in H. We consider a chain of Hilbert spaces H4,, s =1, —1,...,
with norms ||g||s = |[(A+i)%g||g (for s >0 g€ D(A®), and for s <0 H,” is the completion of
H in the norm || - ||s).

Let M™ be an n—dimensional Lagrange manifold in 2n—dimensional (Euclidean) phase space
p,q [1, 2] with the infinitely smooth measure d,. We shall consider functions on M"™ with values in
H. On M"™ we have the following “weighting” partition of unity:

w
= Z Piryeonsin Winsin)i Yinsoin = Qins Qizs -+ -+ Qiggs Pina - -+ Pin (Gh—v 7 Tkt

i1=i;
Pir..in € C™°, pi,....ip =0 in a neighborhood of points for which J;, . ;. = dy,, ... /do =0. We
shall set

Ay iy =0%/0qi, + -+ +0%/0q;, + 0% )Opiy., + -+ 0% )Opi,.

The sequence of norms

i 74

for r = 1,2,... defines a countably-normed space v,, and for r = 1,2,..., s = 1,2,..., defines
the countably-normed space v. The completion of the algebraic factor-space vs/vs in the weak
topology
gN —g€vy = lim gy =g
N—o0

we shall denote by V.

We now will formulate a rule for transforming functions ¢ € V; under a canonical change of vari-
ables. 1) Under a canonical change which transforms the coordinates g;, , ¢i,, - - - , ¢;, into themselves,
&(Yi, ,...i,) changes like a scalar. 2) In the case of a change ¢;,, iy, - -, Qi1 — DivsPins -« s Pin 15

m — 1 < k, we introduce the operator X/Zm";’ki’“pil ..... in® Wi, i) = V(i e, ™/2), Where

-----

5Presented at the International Congress of Mathematicians, Moscow, 1966
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Y(Yi,,....in, 1) is obtained by the method of successive approximations in the powers of (A4 +i)~*
from the equations

A
w(yi'm:“':ik’t) = T_Hpily-nvik (yi'nu“'vik)¢(yi7n7~~7ik)

1 t m 1 8 1
VIS ol 0L
+A+Z /0 ;(axzu/apzy 8}71”) \/j(z)(y moyeeeslk )

i
A+

+ ¢(yim7~-'vik7t)’

where: z = g cos(t) + psin(t), p = Pir,sim> 4= Q(ylmzk) = Giyyorryiy J = Jim,...,ikDJU/Dpa and all
integrals are understood in the sense of circling the actual poles in the lower halfplane.

Let k£ be a canonical atlas, the maps of which are presented in the form w;, y;, . ;.. Let the
support of ¢, € V; lie in u;. We shall denote by

_E U1yl ) ) )
quéuj - ‘Gl,...,jmp]h“'v]mqsuj (y]17-~~7]m)

Juv

the operator of transitions of the coordinates y;, .. i, .

We shall now define two zero-dimensional cochains. Suppose that on M™ the characteristic class
is trivial [1, 2], and § pdg = 0.

Let a® be some fixed point in M™. 1) we set

o n—k
def
S(uj7a) = /0 pdqg — Zpik+uqik+u (Oé), = O‘(yi17~-~7ik) € uj.
@

v=1

This zero-dimensional cochain with values in a bundle of functions shall be called an action.

2) We set v, = ind[a, o] - the index of inertia |0g;, ., /Opiy. . |lvu=1,...n—k where ind[a®, ]
is the index of the intersection of any path from o to a with the singularities of the projection
of M™ on the g-plane (see [1, 2]). It turns out that 7,; does not depend on «, and is the integer
zero-dimensional cochain.

We now proceed to the definition of the canonical operator (c.o.) K o’ \which maps the space V;
into the completion Wy in the weak topology (gn — ¢ € Ky = limy_,o gy = ¢g) of the algebraic

factor-space K/ Ny Ky, where K is the Hilbert space of function from q with values in H and
norms

wam—/w<—A+@f+Wﬂmwwm

0 Pi yersPinp, % . 1T
K @y, (a) = @, ﬁ expliAS(u;, ) — ETuj}qu Pu; (@),
i1,k
where @IX’““’W’M" is the A-Fourier transform in the variables p;, ..., p;, [1].°

We have defined zero-dimensional operator cochain. It turns out that the c.o. does not depend
on the canonical atlas. In fact, we have:

6Let us recall the definition of the A-Fourier transform. Let H+(H ™) be a subspace of H, invariant with respect to
A, such that A is positive (negative) definite on Ht(H ™). Clearly H = HT @ H~. We define by I(I'/2) the linear
operator such that Ig = g(I'/2g = g) for g € H and Ig = —g(I'/2g = ig) for g € H~. The operator |A| = Al =IA
is positive definite. The operator

de —n n n .
ooy (o) /2 g /2 gn/2 / exp[—ipgAlp(p)dp

is unitary in K.
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Theorem 1.The c.o. is a zero-dimensional cocycle with coefficients in an operator bundle.

Note. Consider D™ € M™. Let dD™ = M™ ! so that dimensionalities of the projection operators
of M™ and M"™~! onto the g-plane coincide at points o € M™~!. Then a c.o. on M™ might be
contracting on D".

Example. Let H be the space of m-component vector-functions in 7 with square-integrable
modulus, and A = i9/07. It is not hard to see that for sufficiently small 7, exp(iv/—A7)d(¢—&)E =
Kaoqb(oz)g(T); g(1) = (n — D)7 —ig) ™2 /(n/2)!(27)"/? where E is the unit m x m matrix;
M™ is a cylinder; |p| = 1; ¢ = £+ pt’ (€ fixed, t' is a parameter); ¢(a) = ¢(t') is finite and is equal
to unity in a neighborhood of ¥ = 0;do = dt’dw, where dw is the global measure on the sphere
[p| = 1. On this manifold we shall denote by M the support of ¢(a).

We shall now proceed to the pseudohyperbolic equation.

Let L(p,q,t) be a (2n + 1) -parameter m X m matrix, having the following properties: 1) the
coefficients of the matrices L(p, ¢, 1),

LO(p, ¢, t) ™ limy, o hL(h~'p, q,t)
de . _
L' (p, q.t) < Timy_o h(hL(h=1p, q,t) — LO(p, ¢, 1))

belong to C*°. 2) The eigenvalues \'(p,q,t),...,A\™(p,q,t) of LY are real, their multiplicity is
constant, and they have no root-subspaces. 3) A solution of the system p = —X;,¢ = A
1,...,m exists in the large.”

We shall consider the problem®

i ;o
P’ t=

iou/ot + Lu = f(¢.1),  f(g,1) € H,, (A1)
’U,‘t:o = 0, (A2)

where L is a pseudodifferential operator with symbol L(p,q,t). Notation: ]\Ji"Jrl is a Lagrange
manifold with boundary formed by the trajectories of the system p = —)\f],q‘ = /\;, 0<t<

t1, with boundary conditions on M : Mi"H]t:o = Mg, Kf‘o is a c.o0. corresponding to the

manifold MZ-"H, the measure do = dtdt’ dw, and some fixed weighting partition of unity; L° is
a matrix adjoint to the matrix consisting of the complementary minors of L — X*, multiplied by
[T\ = N)7L L =defLi,_o; R is the matrix inverse to L® — A" on the region R(L° — \?) of
its values;

P Y

i—0 N )
J paeM T po=AL _,

is the polarization matrix;"T7 = id/dt+ P’ is an operator on M, i”“, defined on functions which are
equal to zero when ¢ = 0 (on Msn), Ly, Ly are some infinitely differentiable operators in W_, /91,
the analytic expressions of which we will not introduce here. The sign = indicates equality in
W_in/21-1, i€, equality up to a function in () Kn.

Theorem 2. Under conditions 1)-3), a solution of problem (A1), (A2) exists and is unique in the
space Hg, and can be represented, up to an arbitrarily smooth function, in the form u = Rf(q,t),
where the operator R is written below.

1t is sufficient that the derivative of A’ in p in the direction g grow faster than |q|log|q|loglog|q|...loglog...log |q|

—_———
k

for one k.

8We note that Li(q) = o4 91 dn [(Ap, q,t)PoPLPn

9This matrix is significant in physics. It indicates the divergence of spin and dissipative character in the jth component

of the regularizer R from the classical selfadjoint Schroedinger equation 9w /0t = M (p, q,t),p = i0/9q, where

M (p,q,t) is an operator pseudodifferential in the sense of Weyl with symbol M (p, g, t).
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We outline the scheme of the proof.
Having made the change u = K G'(a,t)g(7), we obtain.

0

. a - Oco i a i ~ ~
<Z(9t + L> K G'a,t)g(r) = K [(L°=N) + 5511 + ﬁLQ
X Gi(aat)g(T)

Developing G*(a,t) in power of (A +i)~! under the condition G*|;—g = L{$(t'), we obtain [1]

¢ =Y (A,
k=0
, I . . A 1
=0 =B 'DL) R (Lif]_, + Laf]_,) - B; 1LJL2Jr»",g_1;Bj:Tj+5 > M
k

P Y S
k

T P Lp(t)

The sum Y .-, K*’Gi(a,t)g(r) gives in the form of a series in power
of (A + i)~! the solution of equation (A1) for f(q,t) = 0 and under the condition u|i—¢ =
exp[—ivVAT] x3(q — €)E, as an operator from W_in/21-1 to W_pp 211

Let us take a sufficiently large segment of the series we obtain and denote the resulting m x m
matrix by G(q,&,t, 7). The operator

t
RF(q,t):/O dt*/G(q,f,t—t*,T) exp[—ivV —AT|F(&,t")d¢

is the regularizer of the solution of equation (A1): it is clear that (i0/dt + L)RF(q,t) = F + vF,
where v is a Volterra operator which arbitrarily smooth kernel.

From this it follows that for any f(q,t) € H, there exists a solution of problem (Al)-(A2)
(precisely, v = R(1 + v)~1f(q,t)) which up to a sufficiently smooth function is representable in
the form RF'(q,t). An analogous assertion for the adjoint operator leads to the uniqueness of the
solution of problem (A1)—(A2). Since the solution found here has an integral representation, its
smoothness may be investigated just as is done for equations with constant coefficients. Analogous
theorems of existence and uniqueness can be obtained in significantly more general situations.
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