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The initial-value problem for box-like initial disturbances is studied within the framework of an
extended Korteweg—de Vries equation with both quadratic and cubic nonlinear terms, also known as
the Gardner equation, for the case when the cubic nonlinear coefficient has the same sign as the
linear dispersion coefficient. The discrete spectrum of the associated scattering problem is found,
which is used to describe the asymptotic solution of the initial-value problem. It is found that while
initial disturbances of the same sign as the quadratic nonlinear coefficient result in generation of
only solitons, the case of the opposite polarity of the initial disturbance has a variety of possible
outcomes. In this case solitons of different polarities as well as breathers may occur. The bifurcation
point when two eigenvalues corresponding to solitons merge to the eigenvalues associated with
breathers is considered in more detail. Direct numerical simulations show that breathers and soliton
pairs of different polarities can appear from a simple box-like initial disturbance. © 2010 American

Institute of Physics. [d0i:10.1063/1.3279480]

Internal solitary waves in the stratified coastal ocean are
ubiquitous and are commonly observed. They may reach
an amplitude of 100 m and be comparable to the water
depth. The solitary waves preserve their shape and
propagate for long distances unchanged, thus they play a
very important role in the distribution of energy in the
ocean interior. Another kind of nonlinear internal wave,
bounded nonlinear wave packets or breathers, are already
known as exact solutions of certain model nonlinear wave
evolution equations, such as the modified Korteweg—de
Vries (KdV) equation. In the stratified ocean, the exis-
tence of breathers needs a specific kind of stratification
(quite distinct from the popular two-layer model). The
possibility of internal breathers in a stratified fluid was
only recently confirmed by fully nonlinear numerical
simulations. In general breathers are more complicated
nonlinear waves compared with solitary waves and have
been much less investigated. The Gardner equation (GE)
(the KdV equations with an extra term with cubic non-
linearity) is a simple nonlinear wave model which gov-
erns the dynamics of internal wave breathers. Getting the
benefit from the integrability of the GE by means of the
inverse scattering technique (IST), we study the initial-
value problem for a box-shaped initial perturbation in
detail, analytically and numerically. We show that when
the perturbation is of the opposite sign than the usual
KdV solitary waves, a complicated scenario occurs.
Single solitary waves, pairs of solitary waves, and inter-
nal breathers may be born from this simple initial distur-
bance, depending on its amplitude and width.
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I. INTRODUCTION

Internal solitary waves have often been modeled as soli-
tons of the KdV type (see reviews in Refs. 1-3). These mod-
els can provide for an accurate description of internal solitary
wave propagation and their interactions. In particular, the
solitary waves in the KdV equation can be found as the
asymptotic outcome from a localized initial disturbance (see
Ref. 4, for instance). Moreover, KdV solitons are often con-
venient for a qualitative description of nonlinear wave dy-
namics. Hence the KdV model is popular in many physical
applications.

For the case of internal waves, the coefficients in the
KdV equation are defined by the density stratification, which
may be quite variable in the ocean, and can lead to different
signs of the coefficient of the quadratic nonlinear term in the
KdV equation. Indeed, this coefficient can be quite small and
may even vanish. In this scenario the quadratic and cubic
nonlinear terms appear at the same order in an asymptotic
perturbation theory, and the outcome is an extended KdV
equation (or the GE), with both quadratic and cubic nonlin-
ear terms. Although it is slightly more complicated than the
KdV equation, in many cases it can describe large-amplitude
internal solitary waves rather better, showing dynamics
which can look quite different from the KdV case.”® The GE
is also integrable, and thus allows the analysis using the
IST.*

The associated scattering problem for the KdV equation
is defined by the stationary Schrodinger equation, which
plays a fundamental role in quantum physics. Thus, the
initial-value problem for the KdV equation is very well es-
tablished and understood. In contrast, the initial-value prob-
lem for the GE is less well developed. An example of its
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rather more complicated dynamics was shown by Grimshaw
et al.; the solution becomes more intricate due to the com-
petition between the two nonlinear terms. In the case of a
positive coefficient of the cubic nonlinear term relative to the
sign of the coefficient of the linear dispersive term, as well as
solitons, there are allowed exact breather solutions. The co-
efficients of the equation are determined by the density
stratiﬁcation;S’8 the cubic nonlinear coefficient is positive, for
example, in the case of a three-layer fluid, when the density
jumps are situated close to the bottom and to the surface, see
Grimshaw et al.® A breather is essentially a nonlinear wave
packet, and its dynamics can be quite complicated.6’9_ll The
possibility of the presence of breather waves in realistic con-
ditions in a continuously stratified ocean was shown recently
through fully nonlinear numerical simulations by Lamb
et al."?

Our concern in this paper is to examine which kind of
initial conditions can generate breathers. Internal solitary
waves can become coupled due to weak dispersion or dissi-
pation effects,'>'* which is one possible mechanism for the
formation of internal breathers. Breather-type waves may
also appear due to the modulational instability of intense
short-scale waves,'"" through perturbations of solitary
waves,” or through variations in the waveguide
characteristics.'® However, steepening of internal tides is the
most common mechanism for the generation of internal soli-
tary waves in the ocean, and so here we shall study the
generation of intense internal breathers from initial distur-
bances of rather simple shapes.

We have already noted that the initial-value problem for
the GE is more complicated than for the KdV equation7 (see
also the discussion in Sec. II). The initial-value problem in
the large-amplitude limit (using then the framework of the
modified KdV equation) coincides with that for the focusing
nonlinear Schrodinger (NLS) equation, which is widely used
in nonlinear optics, and we note the long but still incomplete
list of the papers studying the initial value problem for the
focusing NLS equation.”_27 It is significant that the KdV-
like evolution equations describe real-valued wave fields,
while the NLS equation governs evolution of complex wave
fields. Therefore not all the initial-value problems treated
within the framework of the NLS equation have physical
sense in our case.

Although NLS envelope solitons on a pedestal are often
called breathers, in this paper we shall call breathers only
solitary solutions of modified KdV equation (or the GE) cor-
responding to a pair of complex conjugate eigenvalues. One
eigenvalue of the scattering problem for the NLS equation
always corresponds to one envelope soliton. A pair of com-
plex conjugate eigenvalues of the scattering problem for the
NLS equation corresponds to two envelope solitons. The
initial-value problem for disturbances composed of two ad-
joining box-like profiles was studied by Clarke et al.”® and
also by Kaup et al.* and Kaup and Malomed.* It was found
that single eigenvalues appear when the boxes have similar
polarities, while coupled complex conjugate pairs are fa-
vored by asymmetric initial pulses. Takahashi and Konno®'
and Desaix er al.”’ showed that complex conjugate pairs of
eigenvalues can arise from two separated pulse disturbances.
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In this paper we shall show that breathers of the GE, and
also solitons of opposite polarities can be generated from a
single box-shaped initial disturbance. Section II is introduc-
tory, where we formulate the associated scattering system for
the GE, discuss its relation to the KdV and modified KdV
equations, and present the soliton and breather solutions. In
Sec. IIT the exact solution of the scattering problem for a
box-like initial disturbance is obtained and discussed for
both possible signs. In Sec. IV some results of the direct
numerical simulations of the initial-value problem for the GE
are presented. Our results are summarized in Sec. V.

Il. EXACT SOLUTIONS OF THE GARDNER EQUATION

The GE with a positive coefficient of the cubic nonlinear
term is written here in the usual dimensionless form

U, + O6uut, + 6uu, + 1, =0. (1)

For the case when internal waves in a stratified ocean are
concerned, the function u(x,7) has the sense of the displace-
ment of the isopycnals, x is the horizontal coordinate, and ¢ is
time (more details may be found, for example, in Ref. 3).
The coefficients of the evolution equation are defined by the
background density stratification and current. When the cu-
bic nonlinear coefficient has the same sign as the linear dis-
persion coefficient, then the equation may always be reduced
to the form (1) with the help of the scaling and Galilean
transformations.

Equation (1) belongs to the important class of integrable
equations. The long-time asymptotics of its solution may be
found with the help of the IST. This method consists of the
solution of the associated linear scattering problem. The
latter may be given in the form (AKNS approach, see Refs.
28 and 4)

(b =0 3)
AV =\V, where V= . A= . (2
> u+1 9,
Here W is the complex-valued vector eigenfunction, and \ is
the complex-valued eigenvalue. In addition to Eq. (2), tem-
poral evolution of the eigenfunctions is also prescribed by
the IST (see Ref. 4), but is not used in this study. The eigen-
value problem in a similar form was first suggested in Ref.
29 for the GE with negative coefficient of the cubic nonlin-
ear term.

It is well known that the linear transformation

q(x,1) = u(x - %t,t) + % (3)

reduces solutions of GE (1) to the solutions of the modified
KdV (mKdV) equation

4+ 6674, + G = 0. )
The mKdV equation (4) has its own scattering system:*"
- - - (9x q
EV=0V, E= . (5)
q I

With the use of transformation (3) this eigenvalue problem
(5) may be directly applied for solving the GE, by seeking
the solutions of the mKdV equation on a pedestal, similar to
the approach of Romanova.’' However, since the transforma-
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tion (3) links the initial-value problem for the GE with a zero
background to an initial-value problem for the modified KdV
equation on a pedestal, it has not received much attention in
the literature.

It may be shown that

AN =(22- v =(c?- )W =\"v, (6)

where ¢ is changed to u+1/2 in Eq. (5). Then the eigenval-
ues of the two scattering problems, Egs. (2) and (5), are
connected by

N=0-1. (7)

The eigenvalue problem for the GE with negative cubic
nonlinearity was reduced in Ref. 7 to the eigenvalue problem
of the KdV equation, which is a classic one, and thus, is
more convenient for qualitative analysis. Solutions of the GE
with positive cubic nonlinearity (1) may be transformed
through the relation

v(x,t):u(1+u)+i&—u, (8)
ox

similar to the well-known Miura transformation, to solutions
of the KdV equation

—+6v—+-—5=0. 9
ot ox o ©

The associated scattering problem for the KdV equation (9)
follows from Eq. (2),

7
(@w(x))ww, U=+ i (10)

But although the eigenvalue problem (10) has the classical
form, the change (8) makes the field v complex-valued.
Hence the scattering problem (10) corresponds to an unusual
case, when the potential is complex, and simple analogs can-
not be drawn.

It is useful to introduce the change in variable

=i +in, =iy —iiy, (11)

so that the system (2) becomes

—(Z_f+i(u+%>¢=<)\—é)lﬂ,
St oo

This more symmetrical form allows the elimination of either
variable to yield the equivalent second order equations

(12)

(;27(275 +lu(u+1) = \]p—iu,p=0,
(13)

‘:Tf +[uu+1) = N2+ iu,p=0.
Note that the second equation here is just Eq. (10) recovered

by a different approach. We note from Eq. (2) or Eq. (13)
that if A is an eigenvalue, then so are —\ and \*, and so the
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eigenvalues typically occur as a quartet, and only one quad-
rant of the eigenvalue plane may be considered without loss
of generality. It is convenient hereafter to restrict our interest
to eigenvalues Re(N\) >0. The discrete spectrum of the scat-
tering problem corresponds to solutions which decay at in-
finity; solitary waves (solitons) correspond to real-valued ei-
genvalues, and breathers to complex-valued eigenvalues.
Next, from Eq. (13) it follows that for the discrete spectrum,
we can obtain the integral identities

[ 0t 01 o =o,
(14)
f | + N2 =+ 1) f? = iu | f?dx = 0.

Taking the imaginary part of these expressions yields

2)\R7\lf |¢|2d}f=—f Mx|¢|2dx’

-0

(15)
27\R)\1J |¢|2dX=f “x|¢|2dx’

where A=A\, +i\;. Note that for a real eigenvalue when \;=0,
both integral terms on the right-hand side (RHS) must be
zero.

Returning to the system in the form (2) we can construct
the equation set for the squared eigenfunctions,

1,=2uQ,-2(u+1)Q,=2\J, J,=2\/,

(16)
Qi =ul =2\gQ;,  Qp,=—(u+ 1)1 +2Xz0,,
where
I=s+ i), J=i(h— i),
(17)

2

O =|pln Oy =1yl

Here Q;, O, are real and non-negative, and I, J are real
valued. Note that |¢|*=0Q,+Q,+J, ||*=Q,+Q,—J, and then
the relations (16) can be used to give an alternative deriva-
tion of Eq. (15).

There are several consequences which can now be
drawn. In particular if u(u+1)<O (that is —1<u<0) for
a<x<b where u=0 for x=a, x=>b where either or both of
a, b may be infinite, then the real and imaginary parts of Eq.
(14) may be considered separately which leads to the condi-
tion Nz <\; where A\=Ng+i\,. It follows that there are no
real eigenvalues, and hence only breathers can occur.

For the GE a soliton is given by
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FIG. 1. (Color online) Solitons of the
GE (1) (\=0001, 1, 2, 3). The lim-
iting algebraic soliton is given by the
thin dashed-dotted black line.

4\?
1= V1 +4\% cosh(2N(x — xp — 4N%1))

ug(x,r) = (18)
where the positive real number \ is the eigenvalue. The po-
larity of the solution cannot be determined by the eigenvalue
alone, and instead needs information about the eigenfunc-
tions. If the height of the wave is larger than |A},|,Ajim
=-2 the soliton may have either polarity [depending on the
choice of the sign = in Eq. (18)], see Fig. 1. The negative
soliton with limiting amplitude Aj;,, has a power-law decay-
ing tail, plotted by the dashed-dotted line in Fig. 1, and is
given by

2
5. (19)

Uo(x, ) = lim u (x,1) =—
alg(X,7) lim s(x,1) Tox

The perturbed algebraic soliton (19) is known to be structur-
ally unstable; it easily transforms to a breather.” Solitons of
smaller amplitudes can only be positive.

The breather solution may be formally represented as an
interaction of two solitons of different signs. One breather is
determined by a couple of complex conjugated eigenvalues A
and \* and may be written in the form

b cosh mcos y+a cos cosh ¢ b sinh 7sin y +a sin 6 sinh ¢

a sin 6 cosh ¢ + b sinh 7 cos x

a cos 6 sinh ¢ — b cosh 7 sin x

ugr(x,1) =2ab

b cosh 7 sin Y —a cos #sinh ¢ b sinh 77 cos x +a sin § cosh ¢

a sin 6 cosh ¢ + b sinh 7 cos x

n=alx-Vt—xy), 0=blx-vt-xy),

V=a?>-3b% v=3d>-b>,

) 11 i+ 2\ ~ .
+ixy==In , =a+ib.
PHIX= M 0N avt

The values x, and x,,;, specify the initial position and phase of
the breather. A breather is a two-parameter solution (real and
imaginary parts of \) and in general behaves like a wave
packet propagating as a whole with velocity V, and with
individual waves propagating with velocity v, so that V and v
are essentially nonlinear analogs of the group and phase ve-
locities, respectively. Note that depending on its parameters,
a breather may propagate faster or slower than linear waves
within the framework of the GE. The breather repeats its
shape each time

a cos 0 sinh ¢ — b cosh 7 sin x

(20)

Top= — 1)
BR™ (@ +bY)
If a> b then the breather resembles two interacting solitons
of different polarities [Fig. 2(a)]. The nonlinear wave is very
asymmetric when a is not large. In the opposite case b>a
the envelope contains many individual waves and is rather
symmetric [Fig. 2(b)].
Solitons and breathers elastically interact with each other
and with other waves. The N-soliton exact solutions and
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A simple configuration which allows analytic solution of
the direct scattering problem (2) is represented by a square-
wall-type disturbance with width L,

A, |x|<L2,

22
0, |x|=Ln. @2)

u(x,t=0) ={

This simplified wave profile is very convenient for an ana-
lytic study. However, similar shapes for internal tidal waves
have been observed in realistic conditions, see Ref. 33.

For the box potential Eq. (15) can be reduced to

Y f |82+ |2l = = SAN s (23)

—o0

so that if \;# 0, there is a contradiction when A > (0. Hence
for a positive box potential there can only be real eigenval-
ues. Also, the relations (16) can be used to show that

2>\,f Idx=0,
L/2

where it is useful to note that in x>L/2, =2\,
I=4NR0», and in x<-L/2, ;=0, I=0. Then, since for
-1 <A <0, \;#0, it follows that these can be rearranged to
give

L2 %
A f Idx=2\g
-L/2 -L/2

1 L/2 L2
<A+5>J Idx=2)\RJ 0,dx >0,
-L2 —»

which are in contradiction when —1/2 <A =0. Hence in this
case there are no eigenvalues, real or complex valued. For

Qldx > 0,

(25)
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the case —1 =A <-1/2 when only complex eigenvalues may
occur, our numerical simulations of the GE and a perturba-
tion analysis described below indicate that complex-valued
eigenvalues do indeed exist, and so we infer that the nonex-
istence proof made above for —1/2=A =0 cannot be ex-
tended into the range —-1=A<-1/2.

A A
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Then the localized discrete eigenfunctions for the eigen-
value problem (2), or equivalently, for any of Egs. (12) and
(13), corresponding to the discrete spectrum, may be defined
for each interval of the constant potential (22), and then
matched at the boundaries. As a result the discrete spectrum
is determined by

- +1
IAMNZ—A(1+A) V\2—A(1+A
expLN —A(1+A)) = — (1+4) (1+4)

A A

N —A(1+4) Z—A(1+A)

or alternatively by

| 2
2s\VG —s

U-2(G-5%’

where s2=G(1-u2), NL=u\G, U=AL%, G=U(1+A), and
A(1+A)#0.

Some other forms of the solution (26) are given in the
Appendix. In Eq. (26b) w is the normalized eigenvalue,
which is complex valued in the general case, and s is an
auxiliary variable, which may also be complex valued.

The real parameter G is a convenient parameter, defining
the strength of nonlinear effects, and generalizes the Ursell
number U, defined here as U=AL?, which is a commonly
used similarity parameter for the KdV equation. Note that G
tends to U when |A| is small. In the opposite case, when |A]
is large, G — AL, It is important to note that the RHS of Eq.
(26) does not depend on L. This fact allows us to express
value G'’? via the normalized eigenvalue u and amplitude A
of the disturbance,

tan s = (26b)

2
— 1 VI_M
VG = —+——=( mk+atan| uy——— | |,
i-w v
i M
(27)
= P A U 1
JG=LVA( +A), p=—— Lo .
# VA(1+A) 2G 2(1+A)

In Eq. (27) the domain of the atan function lies within the
interval (—7/2,7/2); many branches of the solution exist
due to the term mk, where k is an integer number.

In the sequel, two different cases corresponding to the
sign of the disturbance are considered in detail.

A. Positive initial disturbance

When A >0, then all the eigenvalues \ or u are real and
only solitary waves arise. This is an immediate consequence
of Eq. (23), since if \;#0 there is a contradiction when
A>0. Since here G>0 it can be shown that the auxiliary
variable s must also be real and positive, and so 0<u<<1.
The solution of Eq. (26b) can now be analyzed qualitatively

, (26a)
-1

by plotting the curves of the left-hand side (LHS) and RHS
as functions of real s. For this case of positive A it is more
convenient to plot the inverse values of RHS and LHS of Eq.
(26b). While the function cot s on LHS becomes infinite at
s=mk, where k is integer, the inverse RHS of Eq. (26b) be-
comes infinite when s=0 or s=G"2. Thus, at least one solu-
tion (one soliton) always exists for A>0 for any L>0. A
new soliton branch appears when G'?=m(N,~1), where N,
is the number of solitons given by

Ns={ﬁ]+l, (28)

™

where [f] is the maximum integer not exceeding f.

When the KdV limit A— 0 is concerned, the number of
solitons N, depends on the Ursell parameter only (G — U). In
the case of large amplitudes, N, depends on parameter L>AZ,

The solution (27) is plotted in Fig. 3. Each soliton
branch starts with

o=0 at \Gy=m(N,~1) (29)

and tends to u,=1 [otherwise, A — X\, =(A(1+A))"?] when G
tends to infinity. When the eigenvalue is small, the expres-
sion (27) may be decomposed into the Taylor series, and then
the following relation holds, where a soliton level appears:

[~ [~
- VG — \’GO

, wh =~ 1. 30
d1aa) hen A= s (30)

M
The angle of the curve on the plane w versus G2 is defined
by the value (1+A)~". It tends to zero when A is large, as
shown in Fig. 3(c).

B. Negative initial disturbance

Let us first consider the case A<<-1, when G>0, but
U<0. At first we again examine Eq. (26b) for real values of
s, when of necessity we must then have s> <G corresponding
to a real-valued eigenvalue. Then as in the previous case, the
RHS and LHS of Eq. (26b) may be drawn as functions of s
for a qualitative analysis, where here the curves are not in-
verted. The RHS curve has a “loop” which begins at s=0 and
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FIG. 3. (Color online) Normalized eigenvalues u vs normalized nonlinear
parameter G2/ for the cases (a) A=0.5, (b) A=5, and (c) A=50.

ends at s=G"2. The RHS and LHS curves do not intersect if
G is small. When G is close to, but less than the value

VGo=mm, n=102,..., (31)

two solutions of Eq. (26) exist with real eigenvalues, which
is due to the two intersections of the curves. When G in-
creases, one of the eigenvalues increases, while the other one
decreases and vanishes at the threshold (31). The former ei-
genvalue continues growing and tends to w.=1 [that is A
—\N*=(A(1+A))"?] when G — .

The situation is shown in Fig. 4, where we plot the nor-
malized eigenvalue u versus the normalized nonlinear pa-
rameter G'’? for three different values of negative amplitudes
A (red thick solid curves). The points, when “soliton”
branches start (with small eigenvalues), are defined by the
condition (31), where n numerates the branches; at these
points uy=0. Two eigenvalues corresponding to two solitons
can be readily seen in Fig. 4(c) (red thick solid curves), and
less evident in Figs. 4(a) and 4(b).
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FIG. 4. (Color online) Normalized eigenvalues wu vs normalized nonlinear
parameter G'2/ 7 for the cases (a) A=—1.1, (b) A=—2, and (c) A=—50. Red
thick solid lines represent real eigenvalues; the complex eigenvalues are
given by blue thin solid lines (the real part) and black thin dashed-dotted
lines (the positive imaginary part).

When G becomes smaller, the two real eigenvalues
merge and produce two complex conjugate eigenvalues. The
blue thin solid curve and the black dashed-dotted curve in
Fig. 4 show the real and positive imaginary parts of the nu-
merical solution of Eq. (26). A pair of complex conjugate
eigenvalues describes a breather (20). Close to the bifurca-
tion point, the imaginary parts of the eigenvalues are small,
but become larger when G decreases; at the same time the
real part becomes smaller and vanishes at some point. If we
suppose that the eigenvalue is pure imaginary, Eq. (26b) con-
sists of real LHS and imaginary RHS, what can only be the
case if they both are zero (when there is no solution) or
infinite. The latter condition is

, U 1

. = T = P’y 32
Him= 56~ 2(1+A) (32)

otherwise, )\izm=A/ 2.
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The expression (32) defines the upper limit of imaginary
parts of w, shown in Fig. 4. Since the LHS of Eq. (26b) is
infinite, then s=/2+ wk, where k is an integer. Thus, with
the use of Eq. (32), we get that

20+A) (7 2
Gim_—(1 +2A)(2 +(n- 1)77) \ (33)

where the integer n >0 numerates the branches. This nonlin-

ear parameter corresponds to the case when the eigenvalues

(N and w) are purely imaginary. It then follows from Egs.

(32) and (33) that complex solution exists when A <-1.
When |A] is large, Eq. (33) becomes

Gilrfzg+(n—l)77, —A> 1. (34)
Thus, the real parts of the complex eigenvalues in Fig. 4(c)
cross the abscissa axis at Eq. (34), which is in the middle
between the points where the real eigenvalues are born
(G(l)/z). This limit corresponds to the case of the modified
KdV equation. It is seen from Fig. 4 that the curves of real
eigenvalues (thick lines) become close to the point defined
by Eq. (34), when |A| is large. It is well known that the
relation (34) defines the birth of solitons within the frame-
work of the mKdV equation. The large-amplitude limits for
positive and negative values of A have similar solutions,
compare Fig. 4(c) and Fig. 3(c).

For small values of |1+A| the coefficient (1+A)/(1
+2A) in formula (33) becomes smaller, and hence the curves
of complex eigenvalues become dense, see Figs. 4(a) and
4(b). This coefficient tends to zero when A ——1. The bifur-
cation point, when two solitons tend to a breather, may be
found approximately under certain assumptions (see the de-
tails in the Appendix) as

2 1+A
Gli:fz =ni-— _(l +A)2, Mpif =~ — 2 . (35)
ni ™

It may be seen in Fig. 4 that for small values of |1+A| the
real parts of the normalized complex eigenvalues corre-
sponding to the bifurcation points become smaller as the
branch number increases, but the bifurcation eigenvalue A,

2
)\bif%—2(1+A)(l—2<l;nA> ), (36)

slightly grows with the branch number n.

Let us now examine the case —1=A<-1/2, when
G <0, and U<0. We notice first that the reference solution
corresponding to purely imaginary eigenvalues still exists,
since formulas (32) and (33) remain valid and provide \;,
and Gj,,. In the present case —1 =A <—1/2 the values \,,, are
imaginary, but s;, and u;, are real. Moreover, it follows
from Eq. (26) that purely imaginary eigenvalues \;, exist
even for the case A=—1. Indeed in this case, the expression
(26a) collapses to

exp(—2AL) =1 + 422, (37)

It readily follows that Eq. (37) possesses purely imaginary
solutions
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FIG. 5. (Color online) Eigenvalues \ vs normalized perturbation width L/
for the cases (a) A=—1 and (b) A=-0.8. The complex eigenvalues are given
by blue thin solid lines (the real part) and black thin dashed-dotted lines (the
positive imaginary part).

i 1
)\im=i—5, Lim:—E(ﬂ'+27Tn), n>0 (A=-1),
N \

(38)

which agrees with Eqgs. (32) and (33). A perturbation ap-
proach may now be used to prove the existence of the solu-
tion of Eq. (37) in the vicinity of Aj,. Let us seek a solution
in the form

N=Nim+Ng+iN;, L=Lj, +1, (39)
where \p, A/, and [ are real and small; N, =0. Then a solu-
tion of Eq. (37) at the leading order is

N~ 2 LN~ 1 L
Koger2

53 +L12ml’ (A=-1). (40)

Numerical solutions of Eq. (26) for the cases A=—1 and
A=-0.8 are given in Fig. 5. Note that Fig. 5 is plotted in
different coordinates than in Fig. 4. The maximum value of
the imaginary part of the eigenvalues is given by Eq. (32),
and they become smaller as the real part becomes nonzero,
according to Eq. (40). Every branch of the complex eigen-
value tends to zero, when L— o and A=-1 [Fig. 5(a)], or to
some purely imaginary value when L—o and —-1<A
<-1/2, as is readily seen in Fig. 5(b). This value is defined
by the condition A2—A(1+A)=0, which is a solution of Eq.
(26), as may be readily confirmed. Thus, the limiting value in
Fig. 5(b) is defined by
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* . r/—
N= = iV=A(1 +A). (41)

When A=-1, then A*=0, as seen in Fig. 5(a). When
A—-1/2, then \* tends to N\, and the solution vanishes.

IV. NUMERICAL SIMULATIONS

In this section the initial-value problem within the
framework of the GE is solved by direct numerical integra-
tion of Eq. (1). The box-like disturbance (22) is used as the
initial condition. From Sec. III, a disturbance of positive po-
larity will evolve in a qualitatively simple manner, producing
sequences of solitary waves, which are similar to the solitons
of the KdV equation, when their amplitudes are small, and
similar to solitons of the modified KdV equation, when they
are large. Negative disturbances, in contrast, can give birth to
both solitons and breathers.

The regions near the bifurcation points on the plots in
Fig. 4, where two real eigenvalues merge and produce a
complex conjugate pair, are the most fascinating. In particu-
lar, the solution of the scattering problem for the eigenvalues
alone does not give information about the polarity of the
solitons. Here we consider only the case near the bifurcation
point corresponding to the first branch of soliton solutions.
We consider initial conditions for one amplitude, A=-2, but
different widths, L [Fig. 4(b) corresponds to these condi-
tions]. According to the solution presented in Sec. III, a
breather appears when G, <G<G; The value of the
width, corresponding to the bifurcation point, may be found
from the estimate (35) for A==2 as L= 1.8, but in fact is
underestimated. According to Fig. 4(b), it is about Gy
~(0.90 and Ly;;=2.0. Thus, a breather should appear when
0.9<L<2.0. The IST predicts that two solitons should
emerge within the interval Gy;;<G <G, which in terms of
the perturbation width results in 2.0<L<2.2. Figure 6
shows the results of the direct numerical simulations of the
GE (1) with initial conditions in form (22) for A=—2 and
three values of the width, L=1.9 [Fig. 6(a)], L=2 [Fig. 6(b)],
and L=2.1 [Fig. 6(c)].

The pseudospectral numerical code employs a three-
layer integration in time. The computational domain is
—-100<x<60; an exponential damping is applied near the
left boundary to suppress the fast dispersive tail radiation
moving to the left. 4096 grid points are used. The time step is
chosen small enough to provide a smooth evolution of the
wave field. Velocities of the solitons and breathers, which
should appear from the initial disturbances following the so-
lution of the scattering problem, are given in Fig. 7. There
the thick red line corresponds to the solitary wave branch,
the thin blue line shows the “group” velocity of the breathers
V. The vertical dashed lines from left to right correspond to
the conditions of the numerical experiments, L=1.9, L=2,
and L=2.1. Figure 6(a) shows the birth of a breather wave,
which almost does not propagate in accordance with Fig. 7.
An oscillating tail may be seen at the early stage of the
evolution, but it quickly propagates to the left and is sup-
pressed near the left boundary due to the introduced
damping.

Two solitary-like waves propagating to the right may be
seen in Fig. 6(b) at early times. One wave, of negative po-
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FIG. 6. Numerical simulation of the Cauchy problem for the GE and box-
like initial perturbation of height A=—2 and widths (a) L=1.9, (b) L=2, and
(c) L=2.1. Note the different scales of the figures.

larity appears first, and the second one of positive polarity
and much smaller amplitude, appears later. The solitons col-
lide at r=42 when a transient intense positive wave occurs.
Then the solitons restore their shapes, but the negative soli-
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FIG. 7. (Color online) Velocities of solitons (thick red line) and breathers
(thin blue line) for the case A=-2. Vertical dashed lines show conditions of
the numerical experiments L=1.9, L=2, and L=2.1.

ton is shifted backward, while the positive one is shifted
forward. This is a typical dynamics of a breather consisting
of two coupled solitarylike waves (that is, a very small
imaginary part of the eigenvalues), see Ref. 6. From Fig. 7,
one could expect two solitary waves, while the direct nu-
merical simulation shows coupled solitons composing a
breather. This discrepancy may be because of small numeri-
cal errors due to the discretization (note that the case
A=-2, L=2 is very close to the bifurcation point), or due to
weak numerical viscosity leading to the coupling of solitons,
similar to the experiments in Ref. 14.

In the case shown in Fig. 6(c), the solution of the AKNS
problem predicts two solitary solutions (see Fig. 7, the ver-
tical line on the right). The negative soliton is well seen, it
corresponds to the larger value of the eigenvalue (and, cor-
respondingly, to the larger velocity). The positive soliton is
almost invisible in Fig. 6(c), it propagates very slowly, so
that it is still near x=~0 after 30 time units of evolution.

V. CONCLUSION

We have investigated the initial-value problem for the
GE with an initial disturbance of a simple box-like shape.
The most interesting result of our study is the complicated
evolution when the disturbance is negative. Near the bifur-
cation point, depending on weak variations in the initial dis-
turbance, one soliton, two solitons, or a breather may be
born, see Figs. 4—6. We should note, however, that when a
pair of solitons belonging to one soliton branch of the AKNS
problem results from a negative disturbance, the positive
soliton is much smaller and is much slower propagating [see
Figs. 6(b) and 6(c)]. Moreover, due to weak effects of non-
integrability in the numerical scheme, a pair of solitons may
fuse and produce a breather.

The bifurcation point when the two solitons give birth to
a breather corresponds to a rational breather was discussed in
Ref. 9. Negative solitons with small eigenvalues are close to
algebraic solitons, which are known to be structurally
unstable.” It was shown in Ref. 9 that a perturbed negative
soliton with a small eigenvalue may transform either into a
negative soliton with a perturbed eigenvalue; or into a couple
of solitons depending on the polarity of the perturbation; a
negative soliton corresponding to the larger eigenvalue; and
a positive soliton corresponding to the smaller eigenvalue;
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otherwise the perturbed solitary wave transforms to a
breather solution. Thus, the destruction of an algebraic soli-
ton leads to the formation of the same sets of waves, as we
have found in the present study.

Note that depending on their parameters, breathers may
propagate faster than linear waves, similar to solitons, or
slower than solitons, and thus, may have the same speed as
linear waves of an appropriate wavelength. But, in contrast
to linear waves, breathers remain localized and preserve en-
ergy. Thus, in the ocean, internal breathers may significantly
change the wave energy transport from zones of intense in-
ternal wave generation.

For the conditions of the stratified ocean when the con-
tributions of the quadratic and cubic nonlinear terms to the
internal wave dynamics are comparable (this depends on the
specific density and current stratification), the initial-value
problem for intense disturbances may be quite complicated.
In contrast to the classic situation, when the field evolves
according to the KdV theory, the evolution of a long-scale
internal wave may result in the generation of solitary waves
of both polarity, and breathers, which may be represented as
coupled solitonlike waves of different signs, or as an intense
wave group. Thus, the interpretation of observed internal
waves can be a quite sophisticated problem.

ACKNOWLEDGMENTS

The study was supported by RFBR (Grant Nos. 08-05-
91850, 09-05-90408, and 08-02-00039), and by NWO-RFBR
Grant No. 047.017.2006.003.
APPENDIX: ANALYSIS OF COMPLEX EIGENVALUES

With the help of a trigonometric substitution

s=G sin o, (A1)
Eq. (26b) may be reduced to forms

A(cot ¢+ cot s) + (cot 2¢ +cot 5) =0 (A2)
or

2A+1+ mn(:%s) = (A3)
and the normalized eigenvalue is defined by

M =COs @. (A4)

Forms (A2) and (A3) are convenient to analyze the case
A <0 when complex eigenvalues exist. It may be straightfor-
wardly obtained that the origins of the solitary branches cor-
respond to conditions

T

Q=7 + 7n, (A5)

where integer n>0 numerates the branches. The maximum
limit of the eigenvalues is attained when

¢ — @, =0. (A6)

Complex eigenvalues require the phase ¢ to be complex.
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If one supposes the eigenvalue to be complex with a
small imaginary part, solution (A3) may be written in Taylor
series in the form

Ty +iT, Im(¢) + O(Im(¢)?), (A7)

where T and T, are real functions of Re(¢). Thus, condition
T,=0 defines the leading order of the solution (considerable
real part of the eigenvalue) and is equivalent to Eq. (A3), and
T,=0 defines the condition, when this situation (small imagi-
nary part of the eigenvalue) occurs, what reads

1+2A

14VG cos o+ =0, A8
X T F4A(1 + A)cos? @ (A8)
otherwise
G
74 -0, Z=plG. (A9)

—— 7+
4A(1+A)7 7 24

Equation (A9) defines the bifurcation points jointly with Eq.
(26). The solution of Eq. (A9) may be found, but Eq. (26)
remains transcendental.

It may be shown through differentiation that Eq. (A3)
results in Eq. (A8) when condition

G

9G _ A10
e (A10)
is employed. It follows from the graphical solution of Eq.
(26b) that near the bifurcation points s~ 7n, Nr=~ 7°n?, and
thus, ¢= /2. Then, the RHS of solution (27) may be de-

composed in the Taylor series for ¢~ /2 as

2
\/Ez 7 —2(1 +A)((p— g) + ﬂ((p— E)

Aol

The first three terms on the RHS of Eq. (All) represent a

parabola with the minimum corresponding to the condition

(A10), which therefore corresponds to the bifurcation point,
T 1+A

=~ —+2 ,
Poif 2 J,

(A11)

(A12)

which gives formula (35).
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