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LINEAR BOUNDARY VALUE PROBLEMS AND CONTROL
PROBLEMS FOR A CLASS OF FUNCTIONAL
DIFFERENTIAL EQUATIONS WITH CONTINUOUS AND
DISCRETE TIMES *

A. CHADOV 7 AND V. MAKSIMOV *?

Abstract. For a functional differential system with continuous and discrete times,
the general linear boundary value problem and the problem of control with respect to an
on-target vector-functional are considered. Conditions for the solvability of the problems
are obtained. Questions of computer-aided techniques for studying these problems are
discussed.
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1. Introduction. = We consider here a system of functional differen-
tial equations (FDE, FDS) that, formally speaking, is a concrete realization
of the so-called abstract functional differential equation (AFDE). Theory of
AFDE is thoroughly treated in [7, 9]. On the other hand, the system under
consideration is a typical one met with in mathematical modeling economic
dynamic processes and covers many kinds of dynamic models with after-
effect (integro-differential, delayed differential, differential difference, differ-
ence) and impulsive perturbations resulting in system’s state jumps at pre-
scribed time moments [13, 3, 4, 14, 19]. The equations of the system contain
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simultaneously terms depending on continuous time, ¢ € [0, 7], and discrete,
t € {0,ty,...,tx, T}, this is why the term "hybrid” seems to be suitable. As
this term is deeply embedded in the literature in different senses, we will
follow the authors employing the more definite name ”continuous-discrete
systems” (CDS), see, for instance, [1, 2, 16, 17, 18] and references therein.
Notice that in [1, 2] a detailed motivation for studying CDS and examples
of applications can be found together with results on stabilization, observ-
ability and controllabality for a class of linear CDS with continuous-time
dynamics described by ordinary differential equations. To finish with the
terminology, it is pertinent to note that the name ”concrete systems” could
be used for short (as it was interpreted by V.I. Arnold, ”concrete” means
con(tinuous-dis) crete).

First we descript in detail a class of continuous-discrete functional dif-
ferential equations (CDFDE) with linear Volterra operators and appropriate
spaces where those are considered. We are concerned with the representation
of general solution to the system and derive basic relationships for the Cauchy
operator and the fundamental matrix. Next the setting of the general lin-
ear boundary value problem (BVP) for CDFDE is given, and conditions for
the solvability of BVP are obtained. The control problem (CP) for CDFDE
is set up and considered then. Here we give conditions for the solvability
of CP and propose a technique of constructing the solutions to the prob-
lem.Questions of computer-aided techniques for studying these problems are
discussed. Conclusively, we give a remark concerning CDFDE as an AFDE.

2. A class of continuous-discrete functional differential systems.
First, let us introduce the Banach spaces where operators and equations are
considered.

Fix a segment [0,7] C R. By L™ = L"[0,T] we donote the space of
summable functions v : [0,7] — R™ under the norm ||v|| » = fOT [v(s)]n ds,
where | - |, (] - | for short if the value of dimension is clear) stands for the
norm of R".

Given set {r,...,7m},0 < 7 < ... < 7, < T, the space DS™(m) =
DS"™0,71, ..., Tm, T] is defined (see [5, 8, 9]) as the space of piecewise abso-
lutely continuous functions y : [0,7] — R" representable in the form

y(t) = / o(s)ds + 5(0) + 3 X (DAY (),

where v € L", Ay(m) = y(7) — y(7e — 0), X[r,17(t) is the characteristic
function of the segment |74, T]: Xx[r,1(t) = 1if t € [7,T] and xjr, 1(t) =
0,t & [, T]. Thus the elements of DS™(m) are the functions being absolutely
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continuous on each [0, 1), [T1,T2), ..., [Tm, T] and continuous from the right at
the points 7, ..., 7,,,. Under the norm

1Yllpsnim) = 113110 + 19(0)n + D [Ay(7)ln
k=1

the space DS™(m) is Banach.

Let us give some remarks concerning the approach to the impulse sys-
tems based on the use of the space DS™(m). An approach to the study of
differential equations with discontinuous solutions is associated with the so
called ”generalized ordinary differential equations” whose theory was initi-
ated by J.Kurzweil [10]. Nowadays this theory is highly developed (see, for
instance, [21, 6]). According to the accepted approaches impulsive equations
are considered within the class of functions of bounded variation. In this case
the solution is understood as a function of bounded variation satisfying an
integral equation with the Lebesgue-Stiltjes integral or Perron-Stiltjes one.
Integral equations in the space of functions of bounded variation became to
be the subject of its own interest and are studied in detail in [22]. Recall
that the function of bounded variation is representable in the form of the
sum of an absolutely continuous function, a break function, and a singular
component (a continuous function with the derivative being equal zero al-
most everywhere). The solutions of equations with impulse impact, which
are considered below, do not contain the singular component and may have
discontinuity only at finite number of prescribed points. We consider these
equations on a finite-dimensional extension D.S™(m) of the traditional space
of absolutely continuous functions. This approach to the equations with im-
pulsive impact was offered in [5]. It does not use the complicated theory
of generalized functions, turned out to be rich in content and finds many
applications in the cases where the question about the singular component
does not arise.

Let us fix a set J = {to,t1,....t,}, 0=t <t1 <..<t,=T.

FD"(u) = FD"{to,t,...,t,} denotes the space of functions z : J — R”
under the norm

w
21l ey = D 12 ()l
i=0
We consider the system

y= Tuy + Tiz+f,
2 = Ty + Tnz+g,

(1)
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where the linear operators 7;;, ,j = 1,2, are defined as follows.

T = [ K9is)ds + AY0u0) + S ALY ¢ € 0.7

k=1

Here the elements kj;(t,s) of the kernel K (t,s) are measurable on the set
0 < s <t < T and such that |k;(¢,s)] < k(t), 4,5 = 1,...,n, &(-) is
summable on [0,7] , (n x n)-matrices A}, ..., AL have elements summable
on [0,7]. Recall [8, 9] that such a form of 77; covers many kinds of linear
operators with concentrated and distributed delays including the so-called
inner superposition operator.

(Tia)  Tha: FD"(u) — L™ (Ti2)(t) = Y Bit)z(ty), t €[0T,

{j:tj St—Al}

where elements of matrices B}, j=0,,...,u, are summable on [0, 7], A; > 0.
As is it usually is, here and in the sequel Zi:k F; = 0 for any F; if | < k.

(T21) To1 : DS™(m) — FD"(p);

m

t;i—Ao
Tt = [ KX + A0) + 3 ALY, 1 =01t
0 k=1

with measurable and essentially bounded on [0, 7] elements of matrices K?
and constant (v x n)-matrices A% ,i =0,1,....,p, k=0,1,...,m; Ay > 0. .

(T22) Tao : FDY () — FD"(p); (Ta22)(t ZB ey I

with constant (v x v)-matrices B}
In what follows we will use some results from [8, 9] concerning the equa-
tion

(2) y = Tuy + f

and the results of [3] concerning the equation

<3) z = Tz + g.
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Recall that the homogeneous equation (2) (f(t) = 0,t € [0,7]) has the
fundamental matrix Y'(¢) of dimension n x (n + mn):

(4) Y(t) = O(t) + X(t),

where
@(t) = (En7X[Tl,T]En7-'-aX[Tm,T]En)a

E, is the identity (n x n)-matrix, each column z;(t) of the (n x (n 4+ mn))-
matrix X (¢) is a unique solution to the Cauchy problem

(5) i(t) —/O K'(t,8)i(s) ds + a;(t), =(0) =0t € [0,T].

Here @} (t) is the i-th column of the matrix A' = (A}, Al, ..., AL).
The solution of (2) with the initial condition y(0) = 0 has the represen-
tation

(6) y@Z@ﬂ@ZAQ@W@&

where C(t, s) is the Cauchy matrix [11, 12] of the operator d/dt — T1;. This
matrix can be defined (and constructed) as the solution to

t
M) 50i(ts) = [ K05 Cns)dr + Kits), 0S5 <t<T,
s T

under the condition C(s,s) = E,,.
The matrix Cy(¢,s) is expressed in terms of the resolvent kernel R(t, s)
of the kernel K'(t,s). Namely,

t
Ci(t,s) = B, + / R(t,s)dr.

The general solution of (2) has the form

(8) y@:wm+ﬁamW@m

with arbitrary @ € R**™",

As for equation (3), it has the immediate analogs of the above terms.
Namely, the fundamental matrix Z(¢;), i = 0, ..., 1, of the homogeneous equa-
tion (3):

i—1
) = Y BAaty), i=1,2,...p
=0
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is defined as the solution of the initial problem
(9) Z(t;) = ZB%Z(tj), i=1,2,..., 1 Z(ty) = E,.
The Cauchy matrix Cs(i, j) is defined by the recurrent relationships
(10) Cs( E+ZB Cok,j), 1<j<i<p,
and gives the solution to (3) under the condition z(#y) = 0:

z(ti) = (Cag) ( ZCQZJ 1=0,1,..., 4.

Thus, the general solution of (3) has a representation

(11) 2(t;) = Z(t:)B + (Cag) (t:), i=0,1,...,p,

with arbitrary g € R”.
Now we can apply (8) and (11) to the first equation and the second one
of (1) respectively. Thus we obtain in operator form

Yy = Y « + 017122‘{’01](.,

12
(12) 2 = Zp+ CyTyny +Csg,

(13) <—C£751 Cﬁ;)-gg)(g;)-(g)
(5 a) ()

where [ is the identity operator in a proper space.

To obtain a representation of the general solution to (1) and derive the
key relationships for the fundamental matrix and the Cauchy operator of
CDS (1), we shall solve (13) with respect to = = col (y, z). This will be done
making use of the following Lemma.

LEMMA 1. Let Ay and Ay in definition of Tis and Ta be such that the
condition

(14) AL+ 0y #£0
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holds. Then the operator

—C5 T I

18 1nwvertible.

P= < ! ~Ci T ) : DS™(m) x FD"(u) — DS"™(m) x FD" (1)

I A S
B I > with linear

operators A: Z — Y and B:Y — Z (Y, Z are Banach spaces) is invertible
if (I—BA): Z — Z has the inverse (I —BA)™' : Z — Z. In such a situation,
the inverse (I — AB)™! exists too and

. (I—-AB)"' —(I-AB)"'A
M :(—B(I—AB)1 (I — BA)™ )

In the case under consideration, BA = C3T721C1 T2 : FDY () — FDV(u)
is a 7-Volterra [12, p.106] operator with 7 = A; + A, and, therefore, is a
nilpotent operator. In such a case, the spectral radius of BA equals zero. [

In the sequel we assume that (14) holds. Thus, it is follows from (13)
that

(2)=Com o) (o 2)(5)
z )\ Han H 0 Z B
15
(15) +<anm>_(a 0)_(f)
Hy Hy 0 G 9 )’
where
(16)  Hyy=(I—CiTiaCyTan) "5 Hia =~ — Cy T12C2 T21) " 'C1 Tz 5
Hy = Cy Ty (I — Cy Ti2Co To1) ™' Hag = (I — Cy T C) ﬂz)_l-

Proof. 1t is easy to verify that a linear operator M = <

Finally, the general solution x = ( ‘Z ) € DS™(m) x FD"(u) of (1) has

the form

=x(3)e(])

where the fundamental matrix X is expressed in terms of the fundamental
matrices Y and Z by the equality

HHY HlQZ Xll Xl2
18 X = =
( ) ( HQIY H22Z ) ( XQI XQQ )

and the Cauchy operator C is expressed in terms of the Cauchy operators C'
and Cy:

HllCl HIQCZ Cll Cl2
19 - _ ,
(19) (mpl@@> @m@ﬂ
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3. General linear boundary value problem.  The general linear
BVP is the system (1) supplemented by the linear boundary conditions

(20) &vzf(‘z):’y, v € RY,

where ¢ : DS"(m) x FD"(u) — RY is a linear bounded vector functional.
Let us give the representation of ¢:

(21) z( g > :/0 O(s)y(s) ds + Toy(0) + Y UpAy(m) + ijz(tj).

Here Uy, k =0,1,...,m, are constant (N x n)-matrices, I';, j =0,1,...,p
are constant (N x v)-matrices, ® is (N X n)-matrix with measurable and
essentially bounded on [0, T] elements. We assume that the components
l;: DS™(m) x FD"(u) - R,i=1,...,N,of { =col(¢,...,Ly) are linearly
independent.

BVP (1),(20) is well-defined if N = n 4+ mn + v. In such a situation,
BVP (1),(20) is uniquely solvable for any f, ¢ if and only if the matrix

(22) (X = (ﬁXl, . ,EX"””"*”) ,
where X7 is the j-th column of X is nonsingular, i.e.
(23) det LX # 0.

Hence the result may be summarized up as the following theorem.
THEOREM 1. Suppose that N = n+mn+v. Then BVP (1),(20) is uniquely
solvable for any f,q if and only if (23) holds, where (N x N)-matriz (X is
defined by (22),(21),(18),(16).

4. Problem of control with respect to a system of linear on-
target functionals.  Let us write CDS (1) in the form

(24) 5= O + ¢,
where z = ( Y ) € DS"(m) x FD*(1), ¢ = ( g ) € L"(m) x FD"(u),

S Th T
@—(7;1 7;2)’

and consider the system under control

(25) dx = Ox + Fu+ .
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Here uw € H is a control, H is a Hilbert space with the inner product (-, -},
F:H — L"x FD"(u) is a liner bounded operator responsible for realization
of control actions. To formulate the control problem for (25), we introduce
an on-target vector-functional ¢ : DS™(m) x FD"(u) — RN of the general
form (21). The control problem (CP) with respect to a given finite system
of functionals ¢;, col (¢1,...,¢n) = ¢, for CDS (25) is the problem

dx =0Ox + Fu+ ¢,
(26) z(0) = ( zggg ) = ( g ) € R, lr=v€RY

as the problem of the existense of a control u € H such that BVP

dr = Oz + Fu + ¢,
(21) x(0)=<g); lx =y

is solvable. If such a control exists for any ¢ € L™ x FD"(u), a € R",
B € R, v € RN, then the CDS under control (25) is said to be controllable
with respect to the vector-functional /.

We shall obtain conditions of the solvability to (26) on the base of the
representation (17) which gives the description of all solutions to (25) under
the initial conditions y(0) = a € R", 2(0) = f € R".

0%
(28) r=X| o | +Cp+CFu.
B

Here 0 = col (Ay(m), ..., Ay(7y)) € R™ is arbitrary. Applying the vector-
functional ¢ to both sides of (28) and taking into account the goal of control-
ling as reaching the given value v € RY for £z along the trajectories of (26),
we arrived at the equation

a
(29) (X o | +Cp+CFu="
B

with respect to 0 € R™" and u € H.

We shall reduce (29) to a linear algebraic system. Note that A; = ¢;CF is
a linear bounded functional defined on the Hilbert space H, this is why there
exists v; € H such that A\; = (v;, u) (v; = (CF)*{;, -* stands for notation of
adjoint operator).
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Let us seek the control % in the form of the linear span

N
U= E divi
=1

(recall that the space H can be represented as the direct sum
Spa’n(vh B 7UN) S5 [Span(vl, B 7UN)]J_)‘
Thus, we have

(30) (CFu=Vd,

where V' = {(v;, v;)}
vy,...,uny € H.
Let us write the matrix X in the form

ij=1...n is the Gram (N x N)-matrix for the system

(31) (X = (5], Zal, 22),

where the matrices Z,, Ea, =, have dimensions N x n, N x (mn), N x v,
respectively.
Now we arrive at the system

(32) Eac+Vd=~y—-U0Cp—-Z,a0—E.5

and formulate the result as the following theorem.

THEOREM 2. (c¢f. Theorem 2 [13]) The control problem (26) for CDS (25) is
solvable if and only if the linear algebraic system (32) is solvable in (mn+N)-
vector col(a,d). Each solution col(cy,dy), o9 = col(al, ..., o), of the system
(32) defines the control that solves CP (26) including the impulses of =
Ay(ty), k=1,...,m, and the controlu € H, u = Zj\;l do;vj.

5. Reliable computing experiment. The effective study of the
original problem, (BVP (1),(20) or CP (26)) is based on the use of the cor-
responding linear algebraic system (LAS), (X - ¢ = v for BVP and (32) for
CP. In doing so we have to understand that all parameters of such a system
can be only approximately calculated. Thus the study of LAS for solvabil-
ity requests a special technique with use of the so-called reliable computing
experiment (RCE) [9, 20]. Both the theoretical background and practical
implementation of RCE need the elaboration of some specific constructive
methods of investigation based on the fundamental statements of the general
theory with making use of contemporary software. It is relevant to notice
that the main destination of such methods is reliable establishing the fact
of the solvability of the problem. If it is done, the next task is to construct
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an approximate solution in common with an error bound of quite high qual-
ity. RCE as a tool for the study of differential and integral models is very
actively developing during last 20 years. There are some main directions in
this field: the study of the Cauchy problem for ordinary differential equa-
tions (ODE) as well as for certain classes of partial DE (PDE) (H.Bauch,
M.Berz, G.Corliss, B.Dobronetz, E.Kaucher and W.Miranker); the study of
boundary value problems (BVP) for ODE and PDE (S.Godunov, M.Plum,
N.Ronto and A.Samoilenko); the study of integral equations (E.Kaucher and
W.Miranker, C.Kennedy, R.Wang); the study of nonlinear operator equa-
tions (S.Kalmykov, R.Moor, Yu.Shockin, Z.Yuldashev). A common idea in
this studies is the interval calculus in finite-dimensional and functional spaces
and, as a consequence, the special techniques of rounding off when calcula-
tions are produced by real computer. Our approach allows us to consider es-
sentially more wide class of problems that are complicated by such properties
as the property of not being a local operator, the presence of discontinuous
solutions, the presence of the inner superposition operator, as well as the gen-
eral form of boundary conditions. In addition we do not use interval calcula-
tions, which are characterized by high speed of the accumulation of rounding
errors, but make use of the rational numbers arithmetics with a specific tech-
nique of definitely oriented rounding. The key idea of the constructive study
is as follows: by the original problem there is being constructed an auxiliary
problem with reliably computable parameters, which allows one to produce
the efficient computer-assisted testing for the solvability. If such the problem
is solvable, the final result depends on the closeness of the original problem
and the auxiliary one (recall that the inequality ||(X —£X|| < 1/|/[€X] || for
approximations !7, X to ¢, X, implies that £X is nonsingular). The theorems,
which stand for a background of RCE, give efficiently testable (by means of
computer) conditions of the solvability for the original problem. In the case
these conditions are failed one has to construct a new (and more close to the
original problem) auxiliary problem and then to test the conditions again.
The implementation of the constructive methods in the form of a computer
program (of course, it must be oriented to quite definite class of problems)
allows one to study a concrete problem by a many-times repeated RCE. A
theoretical background and some details of the practical implementation of
RCE for the study of functional differential systems are presented in [20]. It
is clear that RCE includes the construction and the successive refinement of
approximation to the key parameters of LAS with reliable error bounds. An
efficient computer-aided technique of such the construction for certain classes
of FDE under some natural conditions is proposed in [15] (see also [9]).
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6. Conclusive remark. CDFDS as an AFDE. First, recall the
definition of AFDE. Let D and B be Banach spaces such that D is isomorphic
to the direct product B x RP ( D= B x RP for short).

The equation

(33) Lx =

with a linear bounded operator £ : D — B is called the linear abstract
functional differential equation (AFDE). The theory of the equation (33)
was thoroughly treated in [7, 9]. Let us fix an isomorphism J = {A,Y} :
B x R? — D and denote the inverse J~' = [§,r]. Here A : B — D,
Y:RF—> Dandd: D — B, r: D — RP are the corresponding components
of J and J~1:

J{z,a} = Az +Ya€eD, z€ B,a€ R,

J 'z = {6x,rz} € Bx RP, v € D.
The system

(34) or = 2, rx = «

is called the principal boundary value problem (PBVP). Thus, for any
{z,a} € B x RP,

(35) r=Az+Ya

is the solution of (34). The representation (35) gives the representation
of L: Lz = L(Az + Ya) = LAz + LYo = @Qz + Ac«, where the so-
called principal part of £, ) : B — B, and the finite-dimensional operator
A RP — D are defined by Q@ = LA and A = LY. The general theory of
(33) assumes @ to be a Fredholm operator (i.e. a Noether one with the zero
index).

The system (1) written in the form (24) is an AFDE with Lz = dz — Oz
considered as a linear bounded operator from the space D to the space B,
where B = L™ x FD"(u), D = [L™ x FD"(u)] x [R™™ x R"]. In the case
under consideration the principal part, @, is invertible.
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